7 research outputs found

    Evaluation Measures for Relevance and Credibility in Ranked Lists

    Full text link
    Recent discussions on alternative facts, fake news, and post truth politics have motivated research on creating technologies that allow people not only to access information, but also to assess the credibility of the information presented to them by information retrieval systems. Whereas technology is in place for filtering information according to relevance and/or credibility, no single measure currently exists for evaluating the accuracy or precision (and more generally effectiveness) of both the relevance and the credibility of retrieved results. One obvious way of doing so is to measure relevance and credibility effectiveness separately, and then consolidate the two measures into one. There at least two problems with such an approach: (I) it is not certain that the same criteria are applied to the evaluation of both relevance and credibility (and applying different criteria introduces bias to the evaluation); (II) many more and richer measures exist for assessing relevance effectiveness than for assessing credibility effectiveness (hence risking further bias). Motivated by the above, we present two novel types of evaluation measures that are designed to measure the effectiveness of both relevance and credibility in ranked lists of retrieval results. Experimental evaluation on a small human-annotated dataset (that we make freely available to the research community) shows that our measures are expressive and intuitive in their interpretation

    Context Sensitive Search String Composition Algorithm using User Intention to Handle Ambiguous Keywords

    Get PDF
    Finding the required URL among the first few result pages of a search engine is still a challenging task. This may require number of reformulations of the search string thus adversely affecting user's search time. Query ambiguity and polysemy are major reasons for not obtaining relevant results in the top few result pages. Efficient query composition and data organization are necessary for getting effective results. Context of the information need and the user intent may improve the autocomplete feature of existing search engines. This research proposes a Funnel Mesh-5 algorithm (FM5) to construct a search string taking into account context of information need and user intention with three main steps 1) Predict user intention with user profiles and the past searches via weighted mesh structure 2) Resolve ambiguity and polysemy of search strings with context and user intention 3) Generate a personalized disambiguated search string by query expansion encompassing user intention and predicted query. Experimental results for the proposed approach and a comparison with direct use of search engine are presented. A comparison of FM5 algorithm with K Nearest Neighbor algorithm for user intention identification is also presented. The proposed system provides better precision for search results for ambiguous search strings with improved identification of the user intention. Results are presented for English language dataset as well as Marathi (an Indian language) dataset of ambiguous search strings.

    Metadata categorization for identifying search patterns in a digital library

    Get PDF
    Purpose: For digital libraries, it is useful to understand how users search in a collection. Investigating search patterns can help them to improve the user interface, collection management and search algorithms. However, search patterns may vary widely in different parts of a collection. The purpose of this paper is to demonstrate how to identify these search patterns within a well-curated historical newspaper collection using the existing metadata.Design/methodology/approach: The authors analyzed search logs combined with metadata

    Event detection in social networks

    Get PDF

    Understanding and Supporting Vocabulary Learners via Machine Learning on Behavioral and Linguistic Data

    Full text link
    This dissertation presents various machine learning applications for predicting different cognitive states of students while they are using a vocabulary tutoring system, DSCoVAR. We conduct four studies, each of which includes a comprehensive analysis of behavioral and linguistic data and provides data-driven evidence for designing personalized features for the system. The first study presents how behavioral and linguistic interactions from the vocabulary tutoring system can be used to predict students' off-task states. The study identifies which predictive features from interaction signals are more important and examines different types of off-task behaviors. The second study investigates how to automatically evaluate students' partial word knowledge from open-ended responses to definition questions. We present a technique that augments modern word-embedding techniques with a classic semantic differential scaling method from cognitive psychology. We then use this interpretable semantic scale method for predicting students' short- and long-term learning. The third and fourth studies show how to develop a model that can generate more efficient training curricula for both human and machine vocabulary learners. The third study illustrates a deep-learning model to score sentences for a contextual vocabulary learning curriculum. We use pre-trained language models, such as ELMo or BERT, and an additional attention layer to capture how the context words are less or more important with respect to the meaning of the target word. The fourth study examines how the contextual informativeness model, originally designed to develop curricula for human vocabulary learning, can also be used for developing curricula for various word embedding models. We identify sentences predicted as low informative for human learners are also less helpful for machine learning algorithms. Having a rich understanding of user behaviors, responses, and learning stimuli is imperative to develop an intelligent online system. Our studies demonstrate interpretable methods with cross-disciplinary approaches to understand various cognitive states of students during learning. The analysis results provide data-driven evidence for designing personalized features that can maximize learning outcomes. Datasets we collected from the studies will be shared publicly to promote future studies related to online tutoring systems. And these findings can also be applied to represent different user states observed in other online systems. In the future, we believe our findings can help to implement a more personalized vocabulary learning system, to develop a system that uses non-English texts or different types of inputs, and to investigate how the machine learning outputs interact with students.PHDInformationUniversity of Michigan, Horace H. Rackham School of Graduate Studieshttp://deepblue.lib.umich.edu/bitstream/2027.42/162999/1/sjnam_1.pd

    Ranking and Retrieval under Semantic Relevance

    Get PDF
    This thesis presents a series of conceptual and empirical developments on the ranking and retrieval of candidates under semantic relevance. Part I of the thesis introduces the concept of uncertainty in various semantic tasks (such as recognizing textual entailment) in natural language processing, and the machine learning techniques commonly employed to model these semantic phenomena. A unified view of ranking and retrieval will be presented, and the trade-off between model expressiveness, performance, and scalability in model design will be discussed. Part II of the thesis focuses on applying these ranking and retrieval techniques to text: Chapter 3 examines the feasibility of ranking hypotheses given a premise with respect to a human's subjective probability of the hypothesis happening, effectively extending the traditional categorical task of natural language inference. Chapter 4 focuses on detecting situation frames for documents using ranking methods. Then we extend the ranking notion to retrieval, and develop both sparse (Chapter 5) and dense (Chapter 6) vector-based methods to facilitate scalable retrieval for potential answer paragraphs in question answering. Part III turns the focus to mentions and entities in text, while continuing the theme on ranking and retrieval: Chapter 7 discusses the ranking of fine-grained types that an entity mention could belong to, leading to state-of-the-art performance on hierarchical multi-label fine-grained entity typing. Chapter 8 extends the semantic relation of coreference to a cross-document setting, enabling models to retrieve from a large corpus, instead of in a single document, when resolving coreferent entity mentions

    Leveraging Semantic Annotations for Event-focused Search & Summarization

    Get PDF
    Today in this Big Data era, overwhelming amounts of textual information across different sources with a high degree of redundancy has made it hard for a consumer to retrospect on past events. A plausible solution is to link semantically similar information contained across the different sources to enforce a structure thereby providing multiple access paths to relevant information. Keeping this larger goal in view, this work uses Wikipedia and online news articles as two prominent yet disparate information sources to address the following three problems: • We address a linking problem to connect Wikipedia excerpts to news articles by casting it into an IR task. Our novel approach integrates time, geolocations, and entities with text to identify relevant documents that can be linked to a given excerpt. • We address an unsupervised extractive multi-document summarization task to generate a fixed-length event digest that facilitates efficient consumption of information contained within a large set of documents. Our novel approach proposes an ILP for global inference across text, time, geolocations, and entities associated with the event. • To estimate temporal focus of short event descriptions, we present a semi-supervised approach that leverages redundancy within a longitudinal news collection to estimate accurate probabilistic time models. Extensive experimental evaluations demonstrate the effectiveness and viability of our proposed approaches towards achieving the larger goal.Im heutigen Big Data Zeitalters existieren überwältigende Mengen an Textinformationen, die über mehrere Quellen verteilt sind und ein hohes Maß an Redundanz haben. Durch diese Gegebenheiten ist eine Retroperspektive auf vergangene Ereignisse für Konsumenten nur schwer möglich. Eine plausible Lösung ist die Verknüpfung semantisch ähnlicher, aber über mehrere Quellen verteilter Informationen, um dadurch eine Struktur zu erzwingen, die mehrere Zugriffspfade auf relevante Informationen, bietet. Vor diesem Hintergrund benutzt diese Dissertation Wikipedia und Onlinenachrichten als zwei prominente, aber dennoch grundverschiedene Informationsquellen, um die folgenden drei Probleme anzusprechen: • Wir adressieren ein Verknüpfungsproblem, um Wikipedia-Auszüge mit Nachrichtenartikeln zu verbinden und das Problem in eine Information-Retrieval-Aufgabe umzuwandeln. Unser neuartiger Ansatz integriert Zeit- und Geobezüge sowie Entitäten mit Text, um relevante Dokumente, die mit einem gegebenen Auszug verknüpft werden können, zu identifizieren. • Wir befassen uns mit einer unüberwachten Extraktionsmethode zur automatischen Zusammenfassung von Texten aus mehreren Dokumenten um Ereigniszusammenfassungen mit fester Länge zu generieren, was eine effiziente Aufnahme von Informationen aus großen Dokumentenmassen ermöglicht. Unser neuartiger Ansatz schlägt eine ganzzahlige lineare Optimierungslösung vor, die globale Inferenzen über Text, Zeit, Geolokationen und mit Ereignis-verbundenen Entitäten zieht. • Um den zeitlichen Fokus kurzer Ereignisbeschreibungen abzuschätzen, stellen wir einen semi-überwachten Ansatz vor, der die Redundanz innerhalb einer langzeitigen Dokumentensammlung ausnutzt, um genaue probabilistische Zeitmodelle abzuschätzen. Umfangreiche experimentelle Auswertungen zeigen die Wirksamkeit und Tragfähigkeit unserer vorgeschlagenen Ansätze zur Erreichung des größeren Ziels
    corecore