470 research outputs found

    Correlating Workload Characteristics to Performance Metrics for theCray X-MP/Y-MP

    Get PDF
    Workload characterization is essential for performance evaluation studies. For multiprocessor supercomputers, this characterization usually consists of program measurements from uniprocessor execution (e.g., average vector length, percentage vectorization, etc.). There is no consistent, quantitative correlation between such characteristics and performance metrics across different programs. We present a methodology for defining and measuring characterization parameters for both single and multi-processor executions. Using several production codes, we show for the Cray X-MP/Y-MP that these characterization parameters correlate consistently to observed performance metrics across different programs. Moreover, the correlation allows the identification of bottlenecks in system architecture that limit performance. Presentation slides from the Fourth SIAM Conference on Parallel Processing for Scientific Computing, December, 1989

    A NEW EQUATION FOR THE LOAD BALANCE SCHEDULING BASED ON THE SMARANDACHE F-INFERIOR PART FUNCTION

    Get PDF
    A new equation for upper bounds is obtained based on the Smarandache f-inferior part function. An example involving tpper diagonal matrices is given in order to illustrate that the new equation provide a better computation

    Large Scale Computational Problems in Numerical Optimization

    Get PDF
    Our work under this support broadly falls into five categories: automatic differentiation, sparsity, constraints, parallel computation, and applications. Automatic Differentiation (AD): We developed strong practical methods for computing sparse Jacobian and Hessian matrices which arise frequently in large scale optimization problems [10,35]. In addition, we developed a novel view of "structure" in applied problems along with AD techniques that allowed for the efficient application of sparse AD techniques to dense, but structured, problems. Our AD work included development of freely available MATLAB AD software. Sparsity: We developed new effective and practical techniques for exploiting sparsity when solving a variety of optimization problems. These problems include: bound constrained problems, robust regression problems, the null space problem, and sparse orthogonal factorization. Our sparsity work included development of freely available and published software [38,39]. Constraints: Effectively handling constraints in large scale optimization remains a challenge. We developed a number of new approaches to constrained problems with emphasis on trust region methodologies. Parallel Computation: Our work included the development of specifically parallel techniques for the linear algebra tasks underpinning optimization algorithms. Our work contributed to the nonlinear least-squares problem, nonlinear equations, triangular systems, orthogonalization, and linear programming. Applications: Our optimization work is broadly applicable across numerous application domains. Nevertheless we have specifically worked in several application areas including molecular conformation, molecular energy minimization, computational finance, and bone remodeling

    Domain Decomposition Based High Performance Parallel Computing\ud

    Get PDF
    The study deals with the parallelization of finite element based Navier-Stokes codes using domain decomposition and state-ofart sparse direct solvers. There has been significant improvement in the performance of sparse direct solvers. Parallel sparse direct solvers are not found to exhibit good scalability. Hence, the parallelization of sparse direct solvers is done using domain decomposition techniques. A highly efficient sparse direct solver PARDISO is used in this study. The scalability of both Newton and modified Newton algorithms are tested

    Alternative Fourier Expansions for Inverse Square Law Forces

    Get PDF
    Few-body problems involving Coulomb or gravitational interactions between pairs of particles, whether in classical or quantum physics, are generally handled through a standard multipole expansion of the two-body potentials. We discuss an alternative based on a compact, cylindrical Green's function expansion that should have wide applicability throughout physics. Two-electron "direct" and "exchange" integrals in many-electron quantum systems are evaluated to illustrate the procedure which is more compact than the standard one using Wigner coefficients and Slater integrals.Comment: 10 pages, latex/Revtex4, 1 figure

    Objective multiscale analysis of random heterogeneous materials

    Get PDF
    The multiscale framework presented in [1, 2] is assessed in this contribution for a study of random heterogeneous materials. Results are compared to direct numerical simulations (DNS) and the sensitivity to user-defined parameters such as the domain decomposition type and initial coarse scale resolution is reported. The parallel performance of the implementation is studied for different domain decompositions
    corecore