workload Characterists to

Correlating
or the Cray

Performance Metrics f

By Walid Abu-Sufah and John L. Larson

TR 89-43

X-Mp/Y-MP

Correlating Workload Characteristics to Performance Metrics
for the Cray X-MP/Y-MP

Walid Abu-Sufah
Department of Computer Science
Virginia Polytechnic Institute and State University
Blacksburg, Virginia

John L. Larson 7
National Center for Supercomputing Applications
Beckman Institute for Advanced Science and Technology
University of Illinois at Urbana-Champaign

This work was supported by
Center for Supercomputing Research and Development (CSRD),
and National Center for Supercomputing Applications (NCSA),
University of Illinois at Urbana-Champaign

Presented at the Fourth SIAM Conference on Parallel Processing for
Scientific Computing, December 11-13, 1989

Abstract

Workload characterization is essential for performance evaluation
studies. For multiprocessor supercomputers, this characterization usually
consists of program measurements from uniprocessor execution {e.g,
average vector length, percentage vectorization, etc.). There is no
consistent, quantitative correlation between such characteristics and
performance metrics across different programs. We present a methodology
for defining and measuring characterization parameters for both single
and multi-processor executions. Using several production codes, we show
for the CRAY X-MP/Y-MP that these characterization parameters correlate
consistently to observed performance metrics across different programs.
Moreover, the correlation allows the identification of bottlenecks in
system architecture that limit performance.

Key Words: supercomputers, multiprocessors, performance evaluation,
workload characterization, performance metrics, Cray X-MP, Cray Y-MP

Performance Evaluation

Axiom Number 1

A program that gets the right answer,
is always faster,

than one that doesn't.

What we're doing

accuracy of modeling

hardware
dynamic analysis
(simulator, hpm)

WE ARE HERE

software /A
static analysis

effort

Keywords

‘What is performance?

What is a program?

Performance definition

Rate of work performed by the (11) vector functional
units. Overall work metric = MOPS

1. Computational functional units (8)
a. Floating point units (3) - metric’ = MFLOPS

floating point add
floating point multiply
reciprocal approximation

b. Integer/logical units (5) - metric = MILOPS

integer add

logical (and, or, mask)
shift
population/parity
second logical

2. Memory functional units (3) - metric = MMEMS

load
load (direct or indirect)
store (direct or indirect)

Program definition

FORTRAN

-

B

Method A

Compiler

CAL

Hardware

v

Method B

ek

Performance

The assembly language code (CAL) is the program.

The source code is NOT the program, but only a

display of opportunities.

The source code is NOT a true reflection of the
work which will be performed.

WYSINWYG

What you see is NOT what you get

FORTRAN
DO 10 I=1. 50
10 IVEC(I) = 8 * I
CAL
A7 50
VL A7
2 8
AQ CII$ @(0.1.2,...63)
V7 AO.1
A7 3
V6 V7 < A7 (I-1)*3
V5 82 + V6 + 8
AQ @IVEC
AD.1 2

Since the X-MP has no vector integer multiply
functional unit, something else has to be done.

Where to look for
performance relationships

Program sets -e— B Performance

0. Universe of all FORTRAN programs
l. An application area
2. Key algorithms
3. Kernals
4. Individual loops
infinite sets
finite sets
5. Chimes
6. Machine instructions
7. Electrons

Working with an infinite set is a big challenge.

Performance is an intrinsic attribute of an object,
€.g. mass, electric charge, color. -

At what level is this attribute visible?

What is the essense of program performance?

Definitions

Chain - a sequence of related vector operations
pipelined together.

Chime - a collection of one or more (partial)
chains executing simultaneously.

o

MULTIPLY }—

2]

-ﬂ———-—CHIN[E —

A CHIME BREAKS a

Major chime types

low level: LL*+8§ (SAXPY)

high level: XYZ = (523) (SAXPY)_

X. vector operations
Y. computational operations
a. ftloating point
1. add |
2. multiply

3. reciprocal approximation

b. integer/logical

1. integer add

2. logical (and, or, mask)
3. shift

4. population/parity

Z. memory operations

a. load
- b. load indirect
- C. Store

d. store indirect

Periodic table of major chime types

X Y Z = (vec-ops, comp-ops, mem-ops)

only 14 major types for MFLOPS metric

101 110
N Ly
202 211 -220-
TN
303 312 321 330
413 422 431

523 532

increasing flops per chime —
(protons)

increasing memory operations per chime
(neutrons) -

Prospecting for performance

Pure Gold

(220)

(*, +) - isomer

(+, *) - isomer

Performance Model for Chimes

Common model for all pipeline machines

Perf (chime) =

F (vector length, peak speed, startup)

MFLOPS = r * PIPE (vector length, n)
infinity 1/2

Rbger Hockney, Parallel Computers 2, 1988

Chime time

Cannot average performance of chimes over loop.
Must use harmonic average, weighted by time.

operations * 10 ** 6
Time (chime) = oo

Mega-ops / second

Chemical Formulas

Pure chime loop (SAXPY - BLAS-1)

[(523)] mem/flop = 1.5
ceil (N/64)

145 MFLOPS

Mixed chime loop (MXM - BLAS-3)

[(321) (220)] mem/flop = 0.25
ceil (N/64)

225 MFLOPS

Decomposition of a loop into chimes

DO 10 I=1, 200

10 V(I) =S + V(I)

chime type chime loop block
| L
(413) 1 + 1 VL=8
S
L
+ 2 VL=64
(312) 2 S
L
+ 3 VL=64
(312) 3 S
L
(211) 4 + 4 VL=64
S

original chime tool developed by Dick Hendrickson,
Cray Research, 19837

Application to a loop in a CFD code

for severe thunderstorm modeling

c vertical advection terms for t,qv,qc,qr, km
CDIRS IVDEPD PATeRS, an.
do 87004 k=1,nzl
tit (k,j)=~.5%rdz*
{rrp(k)*w(k+l,j,i)*(t (k+1,3,4)-t (,j,i))*fsw(k+l)
from(k) *w(k ,j,i)*(t (X ,3,4)-t k=3, 3,1))*fsw(x))
qult{k, j)==-.5%rdz*fst (k) *

N

(TP (k) *w(k+1, 3, L) * (qu(k+1, 5, 1) +qv(k L3,50)

2 “Irm(R)*w(k ,3,1i)*(qv(k rii)Fau(k-1,4,4)))
qclt(k, j)=-.5%rdz*fst (k) *

1 (rrp (k) *wik+l,J,1) *(ge(k+1l,3,1)+qc(k r3e1))

2 ‘rm(k)*W(k ;j:i)*(qc(k rJr;)+qc(k_lfjrl)))
arlt(k, j)==-.5%rdz*fst (k) *

1 (rrp(k)*w(k+1,j,i}*(qr(k+l,j,i}+qr{ X ,3,1))

2 —rrm(k) *w{ k pJeid*{gr{ k PJeld+qrik=1,3,i0))
kmlt (k, j)=-.5%rdz*fst (k) *

i (Irp(k)*w(k+lfj,i)*(km(k+l,j,i)+km(k3,40
2 -rrm(k)*w(k rjri)*(km(k rj!l)"'km(k_lr}f:—)))
dvz (k) =-2./3.*(edcm(k)*(km(k,j,i)+alowk*alkt(k))}**2

duz (k) =fsw(k+1)*((km(k,j,i)+km(k+1,j,i}}+2.*alowk*alkw(k+l))

87004 ceontinue

What function the loop performs
does not tell clearly about its performance.

What is this loop I see?

Chemical formula

36 vs S5*RVE Do s :R:U:
36 V1 V3+FVS : R: U: O ;o

VECOPS

FLOPS

PORTS

LOGICS

INTEGS
: INDIRS
36 V7 VZ2*RV1 U0 o iR
36 LA0,1 v7 DUz A I AT S -

SO OMNND

VECOPS
FLOPS
BORTS
LOGICS
INTEGS
’ INDIRS
37 JAN n7 M .
30 CHIMES
101 VECOPS
54 FLOPS
41 PORTS
0 LOGICS
6 INTEGS
0 INDIRS
.367VECOPS/CHIME
.800 FLOPS/CHIME
.367 PORTS/CHIME
.000 LOGIC/CHIME
.200 INTEG/CHIME
.000 INDIR/CHIME

O OO N

DO O

(110) (211) (220) (321) (413) (422) (523)
S| 2 5 6 2 5 3

+ subtypes (421 010) (623 010) (311 010)
| 4 1 1
containing integer operations ’

Performance Prediction

Based on

1) current understanding of basic material
properties of loop performance elements

2) enhanced model from one described here

we have

Bob's loop:
actual MFLOPS = 137.46 (hpm)

predicted MFLOPS = 88.93 (mo_del)

Chemical bonding

rectangle chime model

chime 1 2 3

parallelogram chime model

DA N NN

Performance Profiling

1.0

frequency

(303) (220)

chimes by increasing metric value

1.0

fraction of

total program
metric value

(303) (220)

chimes by increasing metric value

(get the lead out!)

Future plans

* address shortcomings

* develop visualization interface for
vectorization training
understanding of optimizations
FORTRAN and CAL software development

identification of hardwafe/software
bottlenecks

Performance Evaluation

Axiom Number 2

* It is reasonable to publish careful
measurements, even if they cannot be
understood or if the explanation seems

far fetched.

* Not all such measurements should be
published.

* It is difficult to know the difference.

Margaret L. Simmons |
Los Alamos National Laboratory

Conclusions

After 8 years experience (6 1/2 at CRI),
I have yet to understand vectorization.

The methodology described here ig |
applicable to all machines which use
pipeline parallelism (of course, using
architecture-specific details), and to
all vector Ioops.

investigators dealing with infinite sets
will have a difficult time without
encorporating knowledge of the basic
elements of performance in the
‘'programs” they use.

Better living

through

Chemistry

