42 research outputs found

    Multicast Multigroup Precoding and User Scheduling for Frame-Based Satellite Communications

    Get PDF
    The present work focuses on the forward link of a broadband multibeam satellite system that aggressively reuses the user link frequency resources. Two fundamental practical challenges, namely the need to frame multiple users per transmission and the per-antenna transmit power limitations, are addressed. To this end, the so-called frame-based precoding problem is optimally solved using the principles of physical layer multicasting to multiple co-channel groups under per-antenna constraints. In this context, a novel optimization problem that aims at maximizing the system sum rate under individual power constraints is proposed. Added to that, the formulation is further extended to include availability constraints. As a result, the high gains of the sum rate optimal design are traded off to satisfy the stringent availability requirements of satellite systems. Moreover, the throughput maximization with a granular spectral efficiency versus SINR function, is formulated and solved. Finally, a multicast-aware user scheduling policy, based on the channel state information, is developed. Thus, substantial multiuser diversity gains are gleaned. Numerical results over a realistic simulation environment exhibit as much as 30% gains over conventional systems, even for 7 users per frame, without modifying the framing structure of legacy communication standards.Comment: Accepted for publication to the IEEE Transactions on Wireless Communications, 201

    Semidefinite Relaxation of Quadratic Optimization Problems

    Full text link

    Rate-splitting multiple access for non-terrestrial communication and sensing networks

    Get PDF
    Rate-splitting multiple access (RSMA) has emerged as a powerful and flexible non-orthogonal transmission, multiple access (MA) and interference management scheme for future wireless networks. This thesis is concerned with the application of RSMA to non-terrestrial communication and sensing networks. Various scenarios and algorithms are presented and evaluated. First, we investigate a novel multigroup/multibeam multicast beamforming strategy based on RSMA in both terrestrial multigroup multicast and multibeam satellite systems with imperfect channel state information at the transmitter (CSIT). The max-min fairness (MMF)-degree of freedom (DoF) of RSMA is derived and shown to provide gains compared with the conventional strategy. The MMF beamforming optimization problem is formulated and solved using the weighted minimum mean square error (WMMSE) algorithm. Physical layer design and link-level simulations are also investigated. RSMA is demonstrated to be very promising for multigroup multicast and multibeam satellite systems taking into account CSIT uncertainty and practical challenges in multibeam satellite systems. Next, we extend the scope of research from multibeam satellite systems to satellite- terrestrial integrated networks (STINs). Two RSMA-based STIN schemes are investigated, namely the coordinated scheme relying on CSI sharing and the co- operative scheme relying on CSI and data sharing. Joint beamforming algorithms are proposed based on the successive convex approximation (SCA) approach to optimize the beamforming to achieve MMF amongst all users. The effectiveness and robustness of the proposed RSMA schemes for STINs are demonstrated. Finally, we consider RSMA for a multi-antenna integrated sensing and communications (ISAC) system, which simultaneously serves multiple communication users and estimates the parameters of a moving target. Simulation results demonstrate that RSMA is beneficial to both terrestrial and multibeam satellite ISAC systems by evaluating the trade-off between communication MMF rate and sensing Cramer-Rao bound (CRB).Open Acces

    Transmitter Optimization Techniques for Physical Layer Security

    Get PDF
    Information security is one of the most critical issues in wireless networks as the signals transmitted through wireless medium are more vulnerable for interception. Although the existing conventional security techniques are proven to be safe, the broadcast nature of wireless communications introduces different challenges in terms of key exchange and distributions. As a result, information theoretic physical layer security has been proposed to complement the conventional security techniques for enhancing security in wireless transmissions. On the other hand, the rapid growth of data rates introduces different challenges on power limited mobile devices in terms of energy requirements. Recently, research work on wireless power transfer claimed that it has been considered as a potential technique to extend the battery lifetime of wireless networks. However, the algorithms developed based on the conventional optimization approaches often require iterative techniques, which poses challenges for real-time processing. To meet the demanding requirements of future ultra-low latency and reliable networks, neural network (NN) based approach can be employed to determine the resource allocations in wireless communications. This thesis developed different transmission strategies for secure transmission in wireless communications. Firstly, transmitter designs are focused in a multiple-input single-output simultaneous wireless information and power transfer system with unknown eavesdroppers. To improve the performance of physical layer security and the harvested energy, artificial noise is incorporated into the network to mask the secret information between the legitimate terminals. Then, different secrecy energy efficiency designs are considered for a MISO underlay cognitive radio network, in the presence of an energy harvesting receiver. In particular, these designs are developed with different channel state information assumptions at the transmitter. Finally, two different power allocation designs are investigated for a cognitive radio network to maximize the secrecy rate of the secondary receiver: conventional convex optimization framework and NN based algorithm

    Multiuser Downlink Beamforming Techniques for Cognitive Radio Networks

    Get PDF
    Spectrum expansion and a significant network densification are key elements in meeting the ever increasing demands in data rates and traffic loads of future communication systems. In this context, cognitive radio (CR) techniques, which sense and opportunistically use spectrum resources, as well as beamforming methods, which increase spectral efficiency by exploiting spatial dimensions, are particularly promising. Thus, the scope of this thesis is to propose efficient downlink (DL) beamforming and power allocation schemes, in a CR framework. The methods developed here, can be further applied to various practical scenarios such as hierarchical multi-tier, heterogenous or dense networks. In this work, the particular CR underlay paradigm is considered, according to which, secondary users (SUs) opportunistically use the spectrum held by primary users (PUs), without disturbing the operation of the latter. Developing beamforming algorithms, in this scenario, requires that channel state information (CSI) from both SUs and PUs is required at the BS. Since in CR networks PUs have typically limited or no cooperation with the SUs, we particularly focus on designing beamforming schemes based on statistical CSI, which can be obtained with limited or no feedback. To further meet the energy efficiency requirements, the proposed beamforming designs aim to minimize the transmitted power at the BS, which serves SUs at their desired Quality-of-Service (QoS), in form of Signal-to-interference-plus-noise (SINR), while respecting the interference requirements of the primary network. In the first stage, this problem is considered under the assumption of perfect CSI of both SUs and PUs. The difficulty of this problem consists on one hand, in its non-convexity and, on the other hand, in the fact that the beamformers are coupled in all constraints. State-of-the-art approaches are based on convex approximations, given by semidefinite relaxation (SDR) methods, and suffer from large computational complexity per iteration, as well as the drawback that optimal beamformers cannot always be retrieved from the obtained solutions. The approach, proposed in this thesis, aims to overcome these limitations by exploiting the structure of the problem. We show that the original downlink problem can be equivalently represented in a so called ’virtual’ uplink domain (VUL), where the beamformers and powers are allocated, such that uplink SINR constraints of the SUs are satisfied, while both SUs and PUs transmit to the BS. The resulting VUL problem has a simpler structure than the original formulation, as the beamformers are decoupled in the SINR constraints. This allows us to develop algorithms, which solve the original problem, with significantly less computational complexity than the state-of-the-art methods. The rigurous analysis of the Lagrange duality, performed next, exposes scenarios, in which the equivalence between VUL and DL problems can be theroretically proven and shows the relation between the obtained powers in the VUL domain and the optimal Lagrange multipliers, corresponding to the original problem. We further use the duality results and the intuition of the VUL reformulation, in the extended problem of joint admission control and beamforming. The aim of this is to find a maximal set of SUs, which can be jointly served, as well as the corresponding beamforming and power allocation. Our approach uses Lagrange duality, to detect infeasible cases and the intuition of the VUL reformulation to decide upon the users, which have the largest contribution to the infeasibiity of the problem. With these elements, we construct a deflation based algorithm for the joint beamforming and admission control problem, which benefits from low complexity, yet close to optimal perfomance. To make the method also suitable for dense networks, with a large number of SUs and PUs, a cluster aided approach is further proposed and consists in grouping users, based on their long term spatial signatures. The information in the clusters serves as an initial indication of the SUs which cannot be simultaneously served and the PUs which pose similar interference constraints to the BS. Thus, the cluster information can be used to significantly reduce the dimension of the problem in scenarios with large number of SUs and PUs, and this fact is further validated by extensive simulations. In the second part of this thesis, the practical case of imperfect covariance based CSI, available at the transmitter, is considered. To account for the uncertainty in the channel knowledge, a worst case approach is taken, in which the SINR and the interference constraints are considered for all CSI mismatches in a predefined set One important factor, which influences the performance of the worst case beamforming approach is a proper choice of the the defined uncertainty set, to accurately model the possible uncertainties in the CSI. In this thesis, we show that recently derived Riemannian distances are better suited to measure the mismatches in the statistical CSI than the commonly used Frobenius norms, as they better capture the properties of the covariance matrices, than the latter. Therefore, we formulate a novel worst case robust beamforming problem, in which the uncertainty set is bounded based on these measures and for this, we derive a convex approximation, to which a solution can be efficiently found in polynomial time. Theoretical and numerical results confirm the significantly better performance of our proposed methods, as compared to the state-of-the-art methods, in which Frobenius norms are used to bound the mismatches. The consistently better results of the designs utilizing Riemannian distances also manifest in scenarios with large number of users, where admission control techniques must supplement the beamforming design with imperfect CSI. Both benchmark methods as well as low complexity techniques, developed in this thesis to solve this problem, show that designs based on Riemannian distance outperform their competitors, in both required transmit power as well as number of users, which can be simultaneously served

    Convex Optimisation for Communication Systems

    No full text
    In this thesis new robust methods for the efficient sharing of the radio spectrum for underlay cognitive radio (CR) systems are developed. These methods provide robustness against uncertainties in the channel state information (CSI) that is available to the cognitive radios. A stochastic approach is taken and the robust spectrum sharing methods are formulated as convex optimisation problems. Three efficient spectrum sharing methods; power control, cooperative beamforming and conventional beamforming are studied in detail. The CR power control problem is formulated as a sum rate maximisation problem and transformed into a convex optimisation problem. A robust power control method under the assumption of partial CSI is developed and also transformed into a convex optimisation problem. A novel method of detecting and removing infeasible constraints from the power allocation problem is presented that results in considerably improved performance. The performance of the proposed methods in Rayleigh fading channels is analysed by simulations. The concept of cooperative beamforming for spectrum sharing is applied to an underlay CR relay network. Distributed single antenna relay nodes are utilised to form a virtual antenna array that provides increased gains in capacity through cooperative beamforming. It is shown that the cooperative beamforming problems can be transformed into convex optimisation problems. New robust cooperative beamformers under the assumption of partial and imperfect CSI are developed and also transformed into convex optimisation problems. The performance of the proposed methods in Rayleigh fading channels is analysed by simulations. Conventional beamforming to allow efficient spectrum sharing in an underlay CR system is studied. The beamforming problems are formulated and transformed into convex optimisation problems. New robust beamformers under the assumption of partial and imperfect CSI are developed and also transformed into convex optimisation problems. The performance of the proposed methods in Rayleigh fading channels is analysed by simulations

    Centralized and partial decentralized design for the Fog Radio Access Network

    Get PDF
    Fog Radio Access Network (F-RAN) has been shown to be a promising network architecture for the 5G network. With F-RAN, certain amount of signal processing functionalities are pushed from the Base Station (BS) on the network edge to the BaseBand Units (BBU) pool located remotely in the cloud. Hence, partially centralized network operation and management can be achieved, which can greatly improve the energy and spectral efficiency of the network, in order to meet the requirements of 5G. In this work, the optimal design for both uplink and downlink of F-RAN are intensively investigated
    corecore