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Abstract

Cloud Radio Access Network (C-RAN) has attracted an explosive enthusiasm

among researchers worldwide in recent years. The basic concept for the C-RAN

is rather simple and straightforward: Moving as much base band signal processing

functionalities as possible to the cloud, in order to achieve a centralized processing

and joint optimization. In the uplink, the densely and widely distributed Remote

Radio Heads (RRH) positioning on edges of the network perform only rather basic

Radio Frequency (RF) functions, which act only as signal collectors without imple-

menting any complicated signal processing steps. The collected signals are then

delivered, via the capacity-limited fronthauls, to the Base Band Units (BBU) pool

located in the cloud. At the BBU pool, further based band signal processing pro-

cedures are executed jointly in a centralized manner. The downlink is similar, the

BBU pool executes most base band signal processing steps, as well as some higher

layer functionalities, before the data streams are sent to RRHs. Due to such joint

and centralized processing in the cloud, much more efficient interference manage-

ment, resource allocation, traffic handling, etc., can be realized, which can lead to

much higher Spectral Efficiency (SE) and Energy Efficiency (EE) of the network.

Hence, C-RAN is shown to be a promising network architecture for the Fifth Gen-

eration (5G) wireless system. In order to combat against some accompanied emerg-

ing drawbacks and practical difficulties of such centralized processing, e,g, high la-

tency, high computational complexity imposed on the BBU pool, and high capacity

demand on the fronthauls, etc., the Fog Radio Access Network (F-RAN), based on

the fog computing (edge computing), has been proposed and widely discussed re-

cently. In F-RAN, the RRH evolves into the so-called enhanced RRH (eRRH). There

are various strategies in the realization of an eRRH in practice. For example, equip-

ping a RRH with some limited computational capabilities, or simply adding a cache

module to it. With the fog computing, several selected base band signal processing

functionalities can be pulled back from the cloud to the network edge. With such a

structure, some shortcomings of C-RAN can be overcome, while many benefits can

still be retained. Naturally, compared to C-RAN, some performance degradation is

inevitable.

In this work, we investigate the design and optimization for F-RAN. In order to

fulfill different requirements for various 5G scenarios, we take different criteria into
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consideration, e.g., high Energy Efficiency (EE) oriented design, and high Spectral

Efficiency (SE) oriented design. For each architecture, both uplink and downlink

are considered. Furthermore, we tackle this problem in two steps: In the first step,

we propose the framework of joint optimization and design, where all optimization

tasks are performed in a centralized manner at the BBU pool, the global Channel

State Information (CSI) is thus required. Therefore, a large amount of overhead has

to be conveyed from the network edge to the cloud, which would impair the actual

performance of the network. Although the centralized design is theoretical opti-

mal, its computational complexity might be prohibitively high in some cases, and

the amount of overhead can also be intolerable. Therefore, we proceed to the sec-

ond step: With the help of the edge computing, as well as the channel hardening

effects from the concept of Massive MIMO, the framework of a partially decentral-

ized signal processing mechanism and optimization are proposed. In this approach,

only partial CSI is required at the BBU pool in the cloud. Thus, the amount of over-

head can be greatly reduced. Moreover, as we are going to show, the computational

complexity, and even the hardware costs can also be reduced.

Besides the assumption of perfect CSI, the robust design and optimization of the

network based on inaccurate CSI is also to be investigated. Compared to the con-

ventional network architecture, the imperfection of CSI in C-RAN or F-RAN might

be a more severe issue: The CSI are collected at the network edge and delivered to

the cloud, more distortions are expected. Therefore, how to ensure the target Qual-

ity of Service (QoS) for different criteria, but with only inaccurate CSI knowledge,

is also worth to be investigated.

Based on the research and the corresponding numerical results of this thesis, some

interesting properties of C-RAN and F-RAN can be drawn, which yield some guide-

lines to their practical deployment in the near future.
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Introduction

This chapter contains
1.1 The Fifth-Generation (5G) Wireless System . . . . . . . 1
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1.5 Networked Massive MIMO based F-RAN . . . . . . . 18

1.6 Outlines and Contributions . . . . . . . . . . . . . . . . 20

1.7 Related Publications and Copyright Information . . . 22

1.1 The Fifth-Generation (5G) Wireless System

The last few decades have witnessed an explosive growth in the wireless commu-

nications industry. The development of the cellular network from the First Gener-

ation wireless system (1G) to the 4G system is achieved not only by the innovation

of RF techniques, but also with the evolution of network architecture, as well as the

concepts behind it. Nowadays, the service of cellular network has been far more

than just voice services, but becomes a key aspect of our daily lives with the help

of Smart phones, Tablets, and Laptops, etc.. According to the investigation from

Ericsson’s annual report [Eri16b], the mobile data traffic has accumulated to more

than 5.5 Zetabytes (5.5 billion Terabyte) per month worldwide in 2016, which has

almost saturated the capacity of the current 4G network. However, lots of emerg-

ing user scenarios, such as Virtual Reality (VR), Augmented Reality (AR), Internet

of Things (IoT) , Ultra High Definition (UHD) Transmission, Tactile Internet, etc.,
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Figure 1.1: Three generic 5G services emphasizing different 5G requirements.

require even much higher data transmission rate and reliability, lower latency and

energy consumption, as well as a broader network coverage.

Therefore, many global initiatives, such as 3GPP, 5GPPP, Ericsson, Nokia, Qual-

comm, Samsung, etc., are collaborating on the development of 5G system and the

corresponding standards. It has been agreed [OMM16] that the following three

generic services should be supported by the 5G system, as shown in Fig. 1.1:

1. Enhanced Mobile BroadBand (eMBB) shall provide extremely high data trans-

mission rates, as well as low latency for some real-time applications, e.g., VR

and AR. Moreover, an extremely broad network coverage that can greatly in-

crease users’ Quality of Experience (QoE), is required to be achieved. Hence,

the area capacity, which is characterized by bits/unit per area, shall be in-

creased by roughly 1000× compared to the current LTE system.

2. Massive Machine-Type Communication (mMTC) aims to provide wireless con-

nectivity for billions of low-cost and energy-constrained devices, so as to fa-

cilitate the concept of IoT. Therefore, the network must be able to cover im-

mense areas seamlessly, and support the transmission for a massive number

of devices. Moreover, compared with LTE, the per-link energy consumption

must at least not increase. As a consequence, the target energy efficiency of

5G shall be increased by 100× at least.

3. Ultra-Reliable Low-Latency Communication (URLLC) addresses an ultra-reliable

low-latency communication. More specifically, at least 99.999% service avail-

ability and reliability, with only 1− 10 ms latency [5G-15], have to be achieved
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simultaneously. Such a service can bring applications such as the V2X com-

munication, the Tactile Internet, into reality.

In order to fulfill the above challenging requirements, i.e., increasing both Energy

Efficiency (EE) and Spectral Efficiency (SE) simultaneously with higher reliability

and reduced latency, both the RF techniques and the network architecture have be

evolved and even revolutionized. In Physical Layer, new waveforms such as GFDM

[FKB09] and FBMC [MBe10] have been discussed, so as to overcome some limita-

tions and drawbacks of OFDM. A straightforward approach to increase the network

capacity is to increase the bandwidth used for transmission, hence, the mmWave

frequency bands [Ne15] ranging from 30 GHz to 300 GHz are under investigation

recently. Another straightforward approach is simply increasing the number of an-

tennas: It has been shown in [Mar10; Rus+13; Mar+16; NCS17] , with a massive

number of antennas, and by exploiting the resultant channel hardening effect, the

resultant Massive MIMO is scalable and can lead to huge performance improve-

ment, in terms of both SE and EE, without incurring too high complexity and too

much amount of overhead. Moreover, the Full-Duplex Communication [Son+17],

with which the signals are transmitted and received in the same frequency band si-

multaneously, can theoretically double the current SE immediately, compared with

the conventional Half-Duplex mode. Furthermore, from 1G to 4G, only Orthogonal

Multiple Access (OMA) is adopted, i.e., FDMA, TDMA, CDMA, or OFDMA. While

from the perceptive of the information theory, for given amount of transmission

resources, e.g., time or frequency, the Non-orthogonal Multiple Access (NOMA) al-

ways outperforms the OMA [GK11], due to its more efficient usage of the available

resources. Hence, NOMA is also discussed for 5G [Dai+15].

Besides the above-mentioned innovative techniques, rethinking of the network ar-

chitecture is also a promising direction, which can forecast even more performance

improvement, as well as lower cost. Therefore, the concepts of the Network Func-

tion Virtualization (NFV) [AT12], and the Software Defined Networking (SDN)

[Fou12], with which much more flexibility and scalability in future networks can

be achieved, are to be utilized. In particular, the Cloud Radio Access Network

(C-RAN) [Mob11], as well as the Fog Radio Access Network (F-RAN) [Pen+16]

have been shown to be promising architectures and platforms to run NFV and SDN

[Won+17]. In C-RAN, the radio connectivity to mobile users is provided via densely

deployed low-cost Remote Radio Heads (RRH), where only basic RF functions are

executed. The RRHs act only as RF signal collectors and emitters: In the uplink,

they forward the collected signals to the Base Band Units (BBU) pool in the cloud,

via the fronthauls. In the downlink, they receive the pre-processed signals and

emit them without further processing. The servers located in the cloud with strong

computational capabilities undertake most of the base-band signal processing func-

tionalities in a centralized manner. With such a centralized joint signal processing,
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much more efficient interference management, transmission coordination, load bal-

ancing, resource allocation, etc., can be achieved [Pen+15; Que+17], which are able

to significantly increase both SE and EE of the network. Moreover, the centraliza-

tion can better coordinate the inter-user interference arising from NOMA, and as

stated above, provide an ideal platform for running various Virtual Network Func-

tions of NFV and different Layers of SDN [OMM16]. However, the fully centralized

processing might incur extremely high computational complexity, a large amount

of overhead, and intolerable latency. Hence, F-RAN is proposed, where the edge

computing is introduced at the network edge, e.g., RRHs, with which partial func-

tionalities can be undertaken there instead of the cloud. Hence, the heavy burden

on the fronthauls and cloud servers can be relieved [Wue+14]. Naturally, such a

functional split leads to a trade-off between the computational complexity and the

performance improvement. Intensive illustrations and discussion will be given in

the main part of the thesis.

Data Offloading, Unlicensed LTE, D2D transmission, etc., are among the other

promising concepts and techniques for 5G [Won+17]. Due to space limitations we

can not elaborate on all of them, an illustration of several 5G techniques and con-

cepts can be seen in Fig. 1.2.

1.2 Cloud Radio Access Network (C-RAN)

One of the main focus of this thesis is C-RAN. C-RAN was firstly proposed by

China Mobile [Mob11] in 2011 and quickly draws the attention from the researchers

worldwide [Par+13b; Par+14; SZL14; Wue+14; ZY14; Pen+15; Tao+16; Que+17]. By

incorporating the concept of the cloud computing into the traditional Radio Access

Network (RAN), it proves to be the most promising network architecture to meet

the challenging demands of 5G. In C-RAN, a traditional Base Station (BS), as well

as the functionalities it undertakes, is decoupled into two parts: the Remote Radio

Head (RRH) and the Base Band Units (BBU) pool, these two parts are connected

via the fronthaul.

• Remote Radio Head: The RRHs are low-cost Access Points (APs) for the User

Equipment (UE). They are densely and ubiquitous deployed within the net-

work. These stupid APs perform only basic RF functions, such as the Analog-

to-Digital conversion, the Digital-to-Analog conversion, etc.. Hence, they can

be deployed in a large scale but without incurring too much costs. Compared

with LTE, a large number of RRHs can provide a seamless network coverage

and greatly shorten the distances between the UEs and APs. Such a short dis-

tance is a straightforward and most effective approach to increase the per-link
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SE. Moreover, due to the attenuation properties of the mmWave [Ne15], the

densely distributed RRHs can also facilitate the realization of the mmWave

communication. Together with the massive number of low-cost APs, such a

deployment can greatly increase the area capacity to meet the demand of 5G

targets.

• The Base Band Units pool: It is remotely located in the cloud and in charge of

all RRHs. The centralization enables joint signal processing, coordinated inter-

ference management, optimized network resource allocation and scheduling,

etc.. From the viewpoint of the BBU pool, the RAN is actually a large-scale

virtual Multiple Input Multiple Output (MIMO) system. Hence, a Networked

Coordinated Multi-Point (CoMP) transmission can be easily realized.

• Fronthaul: A fronthaul connects a specific RRH and the BBU pool. It can

forward the RF signal from the RRH to the cloud and vice versa. The fron-

thaul can be constructed via different technologies, such as the optical fiber

communication (wired fronthauling), or the millimeter wave communication

(wireless fronthauling) [Pen+15]. The optical fiber connection provides high

capacity at the expense of higher cost and inflexible deployment of RRHs.

Compared with the optical fiber, the wireless fronthauling has lower capac-

ity, less reliability, and the resources have to be shared among RRHs, but it is

much cheaper and can facilitate a flexible deployment. According to [DC15],

for a dense or heterogeneous network, the wired fronthaul is usually not fea-

sible, its wireless counterpart is the practical solution in such scenarios.

An illustration of C-RAN is shown in Fig. 1.3, where its connectivity to the core

network is also depicted.

1.2.1 Uplink

The uplink transmission of C-RAN denotes the delivery procedure of the informa-

tion from the scheduled UEs, via RRHs and fronthauls, to the BBU pool in the cloud.

The whole procedure consists of two hops, i.e., the Radio Access Hop and the Fron-

thauling Hop, and two processing sites, i.e., the RRH Processing (edge) and the

BBU pool Processing (cloud).

1. Radio Access Hop: In this hop, the scheduled UEs encode and modulate their

independent information into analog signals, and send them. Such informa-

tion are intended for the cloud to decode. The radio resources, e.g., the time

and frequency resource, are shared among all UEs. Therefore, the UEs in-

terfere with each other, and all RRHs receive different superposition of the

signals from all scheduled UEs.
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Figure 1.3: An illustration of the Cloud Radio Access Network.

2. RRH Processing (edge): In the ideal case, the received superposed analog sig-

nals should be delivered by fronthauls in the next hop to the cloud, without

any further processing at RRHs. Obviously, the delivery of the analog sig-

nals without any distortion requires the fronthaul with infinite capacity. Thus,

sampling and Analog-to-Digital (A/D) conversion at RRHs are inevitable. Ac-

cording to [Par+14], even with the current LTE configurations, when a RRH

with two antennas serves three cell sectors using five carriers, and the A/D

converter adopts a standard scalar quantization technique with 15 bits/base-

band IQ sample, the capacity of the fronthaul link must at least 10 Gbit/s!

With the network configuration of 5G , such a value can be even much higher,

which is infeasible for low-cost and densely distributed RRHs. Therefore, in

addition to the A/D conversion, further compression of the digital signals at

RRHs is necessary. The compression procedure should be optimized to exploit

the available capacity of its connecting fronthaul, and retain as much useful

information at the destination as possible.

3. Fronthauling Hop: In this hop, the compressed signals are delivered via the

corresponding fronthauls to the cloud. For the wired fronthauls, e.g., the op-

tical fibers, these signals have their own fronthauling resources. However, for

the wireless fronthauls, e.g., the mmWave, the fronthauling resources have to

be shared among all RRHs. Thus in this scenario, the optimization of the re-
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source allocation shall also be taken into consideration. It should be noted that

the fronthaul resource allocation will also influence the optimization of com-

pression, i.e., the optimization of the compression process and the resource

allocation interact with each other. Hence, a joint consideration of them is re-

quired. As we are going to show later, this is also one of the main contributions

of this dissertation.

4. BBU pool Processing (cloud): At the BBU pool in the cloud, the received

compressed signals from all RRHs are decompressed firstly. Note that due

to the independent superposition of all UE signals at all RRHs, each com-

pressed signal received by the cloud contains certain information from each

UE. Hence, for a better information retrieval, the information from the same

UE shall be combined before decoding. In order to retrieve the information for

each UE from the combined signal, a specific detection step, e.g., Matched Fil-

ter (MF), Zero Forcing (ZF), or Minimum Mean Square Error (MMSE), is to be

performed. After the signal detection procedure, the decoding of the original

information is then followed. From the perspective of information theory, a

joint decompression, detection and decoding is optimal, which will, however,

definitely result in much higher complexity. More details will be given in the

coming chapters.

It is worth to mention that the global CSI should be accessible at the BBU pool

in the cloud, so as to obtain an optimal compression strategy, fronthaul resource

allocation, joint decompression and detection of signals. Therefore, a large amount

of overhead is inevitable, which is also a key difficult for the practical realization of

the C-RAN. We will address this issue later in detail.

1.2.2 Downlink

The downlink transmission of C-RAN features the delivery procedure of the infor-

mation from the BBU pool in the cloud, via the fronthauls and RRHs, to the sched-

uled UEs. Similar to the uplink, the whole procedure also consists of two hops, and

two processing sites. However, the signal processing tasks undertaken by each part

are far more different from that in the uplink.

1. BBU pool Processing (cloud): From the viewpoint of the cloud, all RRHs form

a virtual networked MIMO system. Hence, the cloud can process the infor-

mation intended for each UE as if a real MIMO system exists, e.g., the power

control, beamforming, etc., can be considered in a similar way. Moreover, the

signal construction procedure should also take the capacity-limited fronthauls

into consideration.
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2. Fronthauling Hop: In the downlink, according to how signals are processed

by the BBU pool, two modes of fronthauling strategies are adopted, i.e., the

soft transfer mode and the hard transfer mode. The soft transfer mode repre-

sents a compression-based strategy [DY16b]. Here, the BBU pool forms the

complete base-band signals to be transmitted by the RRHs. It includes the en-

coding and the modulation of the requested data, as well as the RRH specific

spatial precoding. These signals are superposed, compressed and transmitted

to RRHs via fronthauls. Obviously, such a signal compression step is required

to be optimized. Contrarily, the hard transfer mode refers to a data-sharing

strategy [DY16b]. Here, raw encoded data streams are separately forwarded

via fronthauls to different subsets of RRHs. This is due to the fact that, it might

be impossible to forward all data streams to all RRHs via capacity-limited

fronthauls. Hence, the cluster pattern, which describes which subset of RRHs

(cluster) should serve which UE, is subject to be optimized. The downlink sig-

nal compression in the soft transfer mode and the cluster formulation strategy

in the hard transfer mode will be intensively addressed in later chapters.

3. RRH Processing (edge): When the soft transfer mode is adopted, the RRHs

decompress the received signals and simply forward them to UEs, without

any further processing, as they have been already modulated and precoded

in the cloud. While with the hard transfer mode, the RRHs should decode the

received raw data streams, then beamform, modulate, and send them.

4. Radio Access Hop: In this hop, the signals are transmitted by RRHs and re-

ceived by the scheduled UEs.

Similar to the uplink, the global CSI is also required at the BBU pool in the cloud,

for the signal processing and the network optimization.

1.2.3 State of the Art

For the uplink of C-RAN, most works focus on how to design quantizers at RRHs

for the compression step. In [Par+14], the performance of the point-to-point com-

pression, distributed compression exploiting the Wyner-Ziv coding [WZ76], and

Compute-and-Forward (CF) are compared. It shows that the performance advan-

tage of the distributed compression over the point-to-point compression increases

as the Signal to Noise Ratio (SNR) becomes higher. Moreover, CF can outperform all

the other schemes, as the SNR falls into the regime where the fronthaul capacity be-

comes the main performance bottleneck. In [ZY14], a new optimization mechanism

for the Wyner-Ziv coding based compression is proposed, showing that by setting

the quantization noise levels to be proportional to the background noise levels, the
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compression steps can approach optimality. An OFDMA-based C-RAN system is

consider in [LBZ15], where a practical uniform scalar quantization mechanism in

the uplink is proposed. When it comes to multi-hop fronthauls, routing and in-

network processing schemes are discussed in [Par+14], and several compression

strategies are proposed and compared in [Par+16]. Considering the processing step

at the BBU pool, a joint decompression and decoding strategy is investigated in

[Par+13b].

For the downlink of C-RAN, the published works can be coarsely classified accord-

ing to the adopted fronthauling modes. When the hard transfer mode is considered,

the construction of beamformers is investigated in [SZL14], in which the algorithm

to optimize beamformers for energy efficient downlink C-RAN is proposed. The is-

sue of user-centric RRH clustering is discussed in [DY14]. For a given fixed cluster

pattern under per-RRH power constraints, the beamformer construction is consid-

ered in [DY15]. When it comes to the soft transfer mode, different compression

optimization schemes are proposed in [Par+13a; DY16b]. The performance com-

parison of these two modes can be found in [PDY15; DY16b]. When the fronthaul

network is multi-hop and has certain topology, the fronthauling scheme and the

network optimization are discussed in [AS16; LY17], where the beamformer con-

struction and a network coding based fronthauling are proposed respectively. The

issue of the Signal to Interference plus Noise Ratio (SINR) balancing in the downlink

is investigated in [LZ16].

1.3 Fog Radio Access Network (F-RAN)

Compared with the current wireless network architecture, although lots of benefits

provided by the C-RAN have been demonstrated [Pen+15; Que+17], some limi-

tations and disadvantages are also followed. One of the most significant issue of

C-RAN is its high demand on the fronthauls. This issue arises mainly from the fact

that, C-RAN pushes almost all base-band signal processing functionalities to the

BBU pool in the cloud. Although it can be partly overcome by the compression step

at RRHs, sometimes ultra-high capacity might still be required, in order to guaran-

tee certain level of Quality of Service (QoS) and QoE. As we have stated before, one

key feature of 5G network is the ultra densely deployed low-cost APs in order to

greatly increase the network coverage and decrease the distance between UEs and

APs. Thus, such a high demand on fronthauls would also result in difficulties on

such a deployment. Another problem of the C-RAN, is the requirement of the global

CSI knowledge at the BBU pool in the cloud, so as to make it possible, to perform

almost all steps of base-band signal processing in a coordinated manner, as well as

to design and optimize the whole network. Hence, a large amount of overhead is
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inevitable, and sometimes it might even counterbalance the benefits of the C-RAN

completely. Furthermore, the fully centralization puts also much computational

burden on the cloud server, and can incur unacceptable latency in delay-sensitive

services.

To overcome several disadvantages of the C-RAN, the Fog Radio Access Network

(F-RAN), exploiting the fog computing, or in another word, edge computing, has

been recently proposed and widely discussed [Bon+14]. Contrary to the cloud com-

puting, the fog computing enables certain functionalities still to be executed at the

network edge, e.g. APs or even UEs, instead of only at the remote servers. In partic-

ular, a substantial amount of storage, communication, control, configuration, mea-

surement and management are pulled back from the cloud to the network edge again

[Pen+16], the RRH becomes the so-called enhanced RRH (eRRH). Therefore, the

fog computing reduces the distance between the computing modules and UEs, and

this why Fog is used to name such an architecture. F-RAN can be regarded as a

combination or a compromise between the traditional network architecture and the

C-RAN. It can avoid several difficulties in the practical deployment of the C-RAN,

e.g., high burden on fronthauls and the cloud server, and retain several key fea-

tures and advantages of it, as the partial centralization is still kept. However, on

the other hand, a theoretical performance loss compared to the C-RAN is thus in-

evitable. Hence, the trade-off between the network performance, and the hardware

requirements as well as the computational complexity should be taken into consid-

eration when such networks are designed. Which and how many functionalities

can be pulled back and implemented at the network edge, are tightly dependent on

the service requirements, the hardware conditions, etc..

According to the descriptions above, the F-RAN can be constructed based on Fig.

1.3, as shown in Fig. 1.4. We see that the RRHs are equipped with either a cache

module or a processor. Actually these are two approaches that are widely discussed

to realize the fog computing.

1.3.1 Caching

Recent studies [Pou+16; Ara+17] show that popular multimedia streams with high

data rate requirement, e.g., the newly released HD movies, live sport matches, etc.,

would generate a significant portion of the whole network traffic. Moreover, this

is a typical user scenario in the future 5G system. The same contents might be re-

quested by many users simultaneously. Hence, introducing a cache module on edge

devices but retaining all other base-band processing functionalities still at the BBU

pool in the cloud is a cheap and easy, but an effective way for a specific realization of

F-RAN, as shown in Fig. 1.4: Some RRHs are equipped with a Cache Module, and
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Figure 1.4: An illustration of the Fog Radio Access Network evolved from the Cloud
Radio Access Network depicted in Fig. 1.3.

the other RRHs are equipped with a Processor, which can undertake certain amount

of base-band signal processing functionalities to realize the fog computing. In both

cases, RRHs evolve into eRRHs. Specifically in the first case, by caching some pop-

ularly requested contents at eRRHs at the off-peak time, the downlink transmission

of these contents would not consume the fronthaul resources anymore. As a con-

sequence, the traffic burden on fronthauls at the peak time can be greatly reduced

[Sha+13; Wan+14]. Moreover, the unequal popularity and the multi-cast nature, i.e.,

some contents can be rather probable to be requested by lots of UEs, make caching

some popular contents more reasonable. In addition to reducing the burden on

fronthauls, caching can also reduce the outage probability of QoS, and improve the

robustness of the network. More details will be given later.

In order to achieve an effective cache placement, M. A. Maddah-Ali and U. Niesen’s

pioneering work [MN14] provides the upper and lower bounds of the capacity

of the caching system, from the perspective of the information theory. It theoret-

ically confirms that the network capacity can be improved further with the help of

caching. In their work, two schemes are proposed, i.e., the uncoded caching and the

coded caching. With the uncoded caching, complete files are cached. While with the

coded caching, different fractions (e.g. parity bits) of the files are stored at different

cache modules using the Maximum Distance Separable (MDS) codes, e.g. Fountain

code. Furthermore, D. Gundüz etc. propose a proactive content caching strategy
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720 Mb/s
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360 Mb/s

cut D
180 Mb/s

cut E
27 Mb/s

Figure 1.5: The different functional splits and the corresponding required fronthaul
capacities: RE Demap.: Resource Element De-mapping; Rx Proc.: Receive Pro-
cessing (incl. frequency domain equalization, Inverse Discrete Fourier Transform
(IDFT), etc.); DEC: Forward Error Correction (FEC) decoding; MAC: Medium Ac-
cess Control Layer [Wue+14].

that can even outperform the reactive caching strategy [SGG18].

1.3.2 Flexible Functional Split

Besides caching contents at the network edge, a more general way to implement the

fog computing is to pull some functionalities back to the network edge again. Based

on the results from [Wue+14], in an OFDM-based C-RAN, when only basic RF and

A/D functions are performed at RRHs, the I/Q symbols including the Cyclic Pre-

fix (CP) should be transmitted by the fronthaul to the cloud. As almost no signal

processing procedures are executed at RRHs, they can be potentially constructed in

very small sizes and the costs can be quite low. This is equivalent to splitting the

whole signal processing chain at cut A in Fig. 1.5. According to the system con-

figuration and the corresponding computation described in [Wue+14], when the

function is split at this point, the required fronthaul capacity is at least 2.46 Gbit/s

per fronthaul link. When a RRH evolves into an eRRH, by undertaking the task of

removing CP and doing FFT, i.e., the function is split at cut B, the required fronthaul

capacity can be then reduced to 720 Mbit/s. Similarly, if more and more function-

alities are executed by the eRRHs, the required fronthaul capacity can be further

reduced, but the network becomes more and more close to the traditional network

architecture, and the performance benefits arising from the centralization will di-

minish. Hence, facing different demands of the 5G services in future, as well as the

variation of the network conditions, a flexible PHY (Physical Layer) functional split

in F-RAN is a promising technique to deal with these issues. Furthermore, it is also

an enabler to run NFV and SDN [OMM16].
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1.3.3 Uplink

Similar to the C-RAN, the uplink transmission of the F-RAN also consists of two

transmission hops and two processing sites.

1. Radio Access Hop: This procedure is similar to the C-RAN.

2. eRRH Processing (edge): Based on the configuration of the functional split,

eRRHs undertake the corresponding signal processing tasks. After this proce-

dure, the output data might be further compressed in order to accommodate

with the capacity of the fronthaul. It should be noted that the more function-

alities are undertaken by eRRHs, the higher costs of eRRHs are expected, but

the costs of the fronthauls can be reduced, as less capacity is required.

3. Fronthauling Hop: After the signals are processed by eRRHs, the fronthaul-

ing of these signals is similar to that of the C-RAN,

4. BBU pool Processing (cloud): The BBU pool decompresses the received sig-

nals jointly or separately at first, then it performs the rest functionalities that

are not executed at the eRRHs.

1.3.4 Downlink

Compared with the C-RAN, the downlink transmission of the F-RAN consists of

the same two transmission hops and two processing sites.

1. BBU pool Processing (cloud): Based on the configuration of the functional

split, the BBU pool undertakes the corresponding signal processing tasks.

Note that if the eRRHs are equipped with cache modules, and several re-

quested contents have been cached, the BBU pool do not need to construct

and process the signals for these contents. After the signal construction and

the processing steps, the output data should be further compressed in order

to accommodate to the capacity of the fronthaul.

2. Fronthauling Hop: After the signals are processed by the BBU pool, the fron-

thauling of these signals is similar to that of the C-RAN,

3. eRRH Processing (edge): After the eRRHs receive the signals from the fron-

thaul, they perform decompression to reconstruct the signals. Then all re-

maining functionalities that are not carried out by the BBU pool would be

performed on these signals. For all requested contents that are cached locally,
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Figure 1.6: An illustration of the cache-enabled F-RAN under the multi-cast sce-
nario. The UEs with the same color denote that they request the same content.
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the signal construction and the whole processing chain are to be done at eR-

RHs. It should be mentioned that as the cached contents are processed locally

at eRRHs, no signal distortion occurs compared to the other information that

are compressed and transmitted via the fronthauls.

4. Radio Access Hop: This procedure is similar to the C-RAN.

As we only investigate the F-RAN part without its connection to the core network,

we mainly focus on the left part of Fig. 1.4. Hence, we adopt Fig. 1.6 as the base

model for future investigation in this thesis.

1.3.5 State of the Art

Since caching can greatly reduce the computational burden on the BBU pool and

the transmission burden on fronthauls, and it is a simple and low-cost way to

achieve F-RAN, lots of work focus on the design of the cache-enabled F-RAN. In

[Pen+14], a joint design of the cache content placement and downlink beamformer

is investigated, aiming to minimize the network energy cost including both eR-

RHs and the fronthaul. A cooperative transmission and caching scheme are in-

vestigated in [Che+16]. From the perspective of the information theory, a proactive

caching scheme is proposed in [Gre+15]. For the multi-cast scenario, when the un-

coded caching scheme is adopted at eRRHs, an efficient high EE oriented networked

beamformer construction algorithm is proposed in [Tao+16]. For the coded caching

scheme, a similar algorithm is shown in [UAS16]. Furthermore, a joint optimization

of the cloud and fog processing procedures for F-RAN is summarized in [PSS16].

As for the functional split, different splitting options with the corresponding fron-

thaul requirements are computed and summarized in [Wue+14]. The performance

comparison of different splits can be found in [DLG16]. From the viewpoint of the

industry, the feasibility of both PHY and MAC layer functional split is investigated

in [Mou+17]. More intensive study for the functional split in 5G gNB can be found

in [Eri16a].

1.4 Massive MIMO

Another key technology for the 5G networks is Massive MIMO [Mar10; Mar+16],

where the number of antennas equipped on the BS is significantly larger than the

number of the served users or data streams, as shown in Fig. 1.7. It has been

demonstrated that a network operating in the regime of Massive MIMO has several
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Figure 1.7: A Base Station equipped with a 64-antenna Massive MIMO.

advantages [Mar+16]: Firstly, both SE and EE of the network can be significantly

increased, this is due to the fact that with so many antennas, the beams can be gen-

erated significantly narrow and more directed to each user. Hence, the interference

between different data streams can be greatly reduced, the energy consumption

can thus be decreased. Secondly, compared with the traditional multi-user MIMO,

where the CSI is required at both sides of the BS and the users, in the Time Divi-

sion Duplex (TDD) Massive MIMO, by exploiting the reciprocity of the channel, the

CSI is not necessary to be measured by users anymore. Such a property can sig-

nificantly reduce the amount of downlink pilot signals transmitted by the BS to the

users. Hence, a Massive MIMO system is scalable, as the number of pilot signals

relies only on the number of users, instead of the number of antennas [Mar+16].

Thirdly, when the number of antennas is sufficiently large, an effect known as chan-

nel hardening takes place, due to the law of large numbers. Under such a situation,

the effects of the small-scale fading and the frequency dependence will disappear.

Then from the perspective of a user, the radio link between itself and the BS becomes

rather close to a deterministic scalar channel, with known, frequency-independent

channel gain and additive noise [Mar+16]. Therefore, the signal processing proce-

dure, resource allocation, user scheduling, etc. can be greatly simplified. More de-

tailed introduction and demonstration of such advantages can be found in [Mar10;

Mar+16].
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However, one problem of Massive MIMO is the performance degradation when the

number of antennas decreases. If not so many antennas can be mounted on a BS,

the system becomes more and more close to a traditional multi-user MIMO, and

thus loses the properties and advantages of Massive MIMO. On the other hand, by

increasing the number of the equipped antennas, a more powerful Massive MIMO

system can thus be realized. Nevertheless, the size of a BS usually limits the maxi-

mum number of its antennas.

1.5 Networked Massive MIMO based F-RAN

As introduced above, both C-RAN/F-RAN and Massive MIMO have their advan-

tages and limitations. As for the C-RAN, although high SE and EE feature this

system, and the low-cost RRH can be easily deployed densely, the fully centralized

signal processing, scheduling and optimization would impose heavy computational

burden on the BBU pool, and extremely high capacity of the fronthaul is required.

Moreover, the request of the global CSI in the cloud leads to lots of overhead and

high latency. These issues become more severe when more RRHs exist in the net-

work. Although F-RAN can partially relieve such a burden, the global CSI is still re-

quired at the BBU pool to perform the network design and optimization. When the

number of eRRHs become larger, the introduced overhead might still overwhelm

the benefit of F-RAN [Par+14; Pen+16; PSS16; Tao+16]. Hence, a practical imple-

mentation approach for C-RAN and F-RAN, with which their theoretical benefits

can be kept and realized, is urgently needed.

Massive MIMO also features high SE and EE, as well as the simplified signal pro-

cessing procedure, scheduling, etc.. Moreover, the amount of overhead for the CSI

can be greatly reduced, as the influence of the small-scale fading disappears due

to the effect of channel hardening. However, as introduced above, the existence of

such advantages is closely dependent on the number of equipped antennas. When

less antennas are mounted, the benefits of Massive MIMO vanish rather rapidly.

Unfortunately, 5G network features a dense and low-cost deployment of BSs, which

might contradict with the requirements of Massive MIMO.

In order to overcome the disadvantages and difficulties of these two techniques,

and even to boost their advantages to each other as well, we consider a combina-

tion of them, as shown in Fig. 1.8. We call such a system a Networked Massive

MIMO based F-RAN, whose architecture is similar to F-RAN. However, each eRRH

is equipped with more antennas, but this number can be smaller than a single Mas-

sive MIMO system. Similar to the F-RAN, each eRRH has limited computational

capabilities to perform the fog computing. By exploiting the benefits of F-RAN,
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from the perspective of the BBU pool, all eRRHs actually form a networked Mas-

sive MIMO system, or a distributed Massive MIMO [SYC14; PCB15]. Hence, these

two techniques might benefit from each other and overcome their own shortcom-

ings. For example, too many antennas are not necessarily to be mounted on a single

eRRH, and as we are going to show later, we extend the works [SYC14; PCB15],

by proposing a low complexity and partially distributed network optimization and

signal processing mechanism, with which the amount of overhead and the compu-

tational burden on the BBU pool can be greatly reduced.

1.6 Outlines and Contributions

In Chapter 2, we are going to introduce some preliminary information and math-

ematical tools, which will be utilized later: The rate distortion theory and the In-

formation Bottleneck (IB) method are firstly introduced. Then we prepare some

optimization tools and techniques for designing and optimizing the network for

future use.

In Chapter 3, we investigate the network design for the uplink of C-RAN and F-

RAN. As introduced before, the high capacity requirement on the fronthaul is the

key limitation from putting C-RAN into practical use. Although F-RAN can lower

the traffic on fronthauls by exploiting the fog computing, compressing the signals

received by eRRHs is always beneficial for reducing the demand on it. Hence, the

quantizers used for realizing the compression play an important role in the alle-

viation of the fronthaul burden. As there are multiple eRRHs receiving correlated

signals in C-RAN/F-RAN, we extend the well-known IB method, which is used for

the case of single-quantizer, to a so-called Alternating Information Bottleneck (AIB)

method, with which a new algorithm for joint optimizing the compression steps ex-

ecuted at RRHs/eRRHs is proposed. Moreover, in case the fronthaul resources have

to be shared and dynamically allocated among RRHs/eRRHs, the AIB method can

also be adopted, for the optimization of the resource allocation on the fronthaul.

We also analyze the convergence behavior of the proposed algorithm, and provide

numerical results to demonstrate the effectiveness and correctness of it.

In Chapter 4, we consider the network optimization for the downlink of C-RAN

and F-RAN. As stated in Subsection 1.2.2, there are mainly two different data shar-

ing strategies in the downlink of fronthaul transmission, i.e., the hard and the soft

transfer mode. For the hard transfer mode, it is essential to optimize the cluster

formulation of RRHs/eRRHs for serving different UEs in the uni-cast scenario, or

for serving different groups of UEs in the multi-cast scenario. At the same time,

the resultant downlink traffic on each fronthaul must be supported. We propose an
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optimization algorithm, where the cluster formulation and the traffic balancing are

simultaneously taken into account. For the soft transfer mode, the key procedure is

the compression, and the precoder design. Again, a joint optimization mechanism

for the compression and the precoder generation is proposed. Furthermore, both

high EE and SE oriented network work design are considered in our work, in order

to accommodate to different service requirements. For high EE oriented design, we

consider not only the transmission power, but also all additional operation power

of an active RRH/eRRH. Therefore, it is shown that in some cases, switching off

some RRHs/eRRHs might save more power, even at the price of more transmis-

sion power consumption. The results can be a meaningful operational guideline

for the network provider. For high SE oriented design, joint power allocation and

beamformer construction approaches are investigated for different criteria, i.e., the

Throughput Maximization, and Max-Min Fairness. Additionally, the robust design

is also to be studied when only inaccurate CSI is available at the BBU pool. As we

are going to show later, the propose robust design mechanism can work for both

hard and soft transfer mode, and certain QoS can always be guaranteed even only

inaccurate CSI is present. In the end, some numerical results are provided based on

the proposed algorithms.

Up to now, the network design and the optimization are centrally executed by the

BBU pool for both C-RAN and F-RAN. Hence, the global CSI is required, which can

incur lots of overhead and greatly reduce the system capacity in practice. Moreover,

the complexity of the centralized design is rather high. Therefore, in Chapter 5, we

try to tackle these issues by introducing a combination of the concept from Massive

MIMO, and the F-RAN. We name it Massive MIMO based F-RAN. For this new

structure, a corresponding partially decentralized signal processing and optimiza-

tion approach is proposed, in which only partial CSI is needed by the BBU pool in

the cloud. Each eRRH just estimates the local CSI, with which the signals are further

processed in a distributed manner. The CSI exchange between eRRHs is thus not

necessary. With its limited signal processing capability resulting from the fog com-

puting, each eRRH can perform certain tasks, which can reduce the computational

burden on the BBU pool. Moreover, as we are going to show, such a design can even

save hardware costs of the network. We also prove that the proposed mechanism is

scalable, as the complexity is not dependent on the number of equipped antennas.

Hence, increasing the number of antennas for better performance will not increase

the computational complexity as well as the amount of overhead.

At the end of each Chapter, we summarize the contents and the contributions for

this chapter, and give some insights and outlook for possible investigation direc-

tions in future.

In the last chapter, we conclude our work.
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1.7 Related Publications and Copyright Information

As a cumulative dissertation, we would like to emphasize that several parts of

this work have already been published in [CK16a; CK16b; CK16c; CK16d; CK16e;

CK16f; CSK16; CK17a; CK17b; CK17c; Che18; Che+18], and these publications have

been listed in Section Publications on page xv.

These parts, up to some modifications, are identical to the above-mentioned pub-

lications. Hence, they are ©IEEE or ©VDE. We also enrich the content with more

intensive investigations that are not published yet, as well as more supportive sim-

ulation results. At the beginning of each chapter, we will clearly indicate which

publications are covered within this chapter.
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Chapter 2

Preliminary Information

This chapter contains
2.1 The Rate Distortion Theory . . . . . . . . . . . . . . . . 23

2.2 The Information Bottleneck Method . . . . . . . . . . . 26

2.3 Optimization Techniques and Tools . . . . . . . . . . . 31

In the chapter, we are going to introduce some mathematical preliminaries in order

to facilitate the future understandings and derivations.

2.1 The Rate Distortion Theory

The rate distortion theory was founded by Claude Shannon in his pioneering work

on the information theory [Sha48], it provides the theoretical foundation for the

lossy data compression. It determines the minimal number of bits per symbol,

denoted by rate R, which should be transmitted over a channel, such that the

original signal can be reconstructed at the receiver side without exceeding a given

distortion metric D.

Applications in this work: As introduced previously in Chapter 1, the compression

procedure plays an important role in both uplink and downlink of C-RAN/F-RAN:

In the uplink, the superposed signals from all UEs at each RRH/eRRH must be

compressed, before being sent to the BBU pool for further process, as the fronthaul

capacity is limited. In the downlink, when the soft transfer mode is adopted, the

contents intended for different UEs would be precoded, multiplexed, and modu-

lated at the BBU pool, the resultant signals are then compressed before being sent to
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Xn Compressor Qn(Xn) ∈ {1, 2, ..., 2nR} Decompressor Rn(Qn(Xn)) X̂n

Figure 2.1: The rate distortion flow chart.

RRHs/eRRHs via fronthauls. Therefore, the compression step has to be optimized

to increase the overall performance. The rate distortion theory gives the guideline

in terms of how to compress, from the perspective of the information theory.

2.1.1 Definitions

Based on the definitions in [CT91], we assume that there is a source producing a

sequence X1, X2, ..., Xn i.i.d.∼ p(x), x ∈ X . An encoder, acting as a compressor,

encodes (denoted by function Qn()) the source sequence Xn = {X1, X2, ..., Xn} into

an index Qn(Xn) ∈ {1, 2, 3, ..., 2nR}. The compression index of rate R is transmitted

over the channel. At the destination side, a decoder, acting as a decompressor, will

decompress the the received compression index, and based on which reconstruct

(denoted by function Rn()) the original sequence. We denote the reconstructed

sequence as X̂n ∈ X̂ n. The procedure above is illustrated in Fig. 2.1.

Definition: The measure of the distortion d between the original alphabet and the

reconstructed alphabet is a mapping

d : X × X̂ → R+, (2.1)

which is a mapping from the set of source-reconstruction alphabet pairs into the

set of non-negative real numbers. The distortion d(X, X̂) denotes the measurement

between the original symbol X and the reconstructed symbol X̂.

Definition: A distortion measurement is claimed to be bounded, if the maximal

distortion value is finite, i.e.,

dmax = max
X∈X ,X̂∈X̂

d(X, X̂) < ∞, (2.2)

Definition: The distortion between sequence Xn and sequence X̂n is defined by

d(Xn, X̂n) =
1
n

n

∑
i=1

d(Xi, X̂i), (2.3)

Definition: A (2nR, n) rate distortion code of rate R consists of the following encod-

ing (compression) function,

Qn : X n → {1, 2, ..., 2nR}, (2.4)



2

Pr
el

im
in

ar
yI

nf
or

m
at

io
n

25

Figure 2.2: The rate distortion function of a Gaussian distributed source with mean
squared error distortion.
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and a decoding (reconstruction) function,

Rn : {1, 2, ..., 2nR} → X̂ n. (2.5)

The distortion D associated with this code, or equivalently, this compression

method is defined as

D = E{d(Xn,Rn(Qn(Xn)))}. (2.6)

A rate distortion pair (R, D) is claimed to be achievable, if there exists a code

(Qn,Rn), or equivalently, a compression and decompression method, such that

lim
n→∞

E{d(Xn,Rn(Qn(Xn)))} ≤ D. (2.7)

The rate distortion region for a source is the closure of the set of achievable pairs

(R, D). The rate distortion function R(D) denotes the infimum of rates R, such that

(R, D) is in the rate distortion region of the source, for a given distortion measure-

ment D.

2.1.2 The Rate Distortion Function of a Gaussian Source

Based on the definitions above, it has been demonstrated in [CT91], that for a Gaus-

sian source, i.e., X ∼ N (0, σ2), with squared error distortion, the rate distortion
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X ∼ N (0, σ2 − D) X̂ ∼ N (0, σ2)

Z ∼ N (0, D)

Figure 2.3: The Gaussian test channel.

function R(D) can be formulated as follows and depicted in Fig. 2.2.

R(D) =


1
2

log
σ2

D
, 0 ≤ D ≤ σ2,

0, D > σ2.
(2.8)

If the scenario of communicating the source information via a capacity-limited chan-

nel is considered, it is straightforward from the figure that when higher distortion

level at the destination can be tolerated, i.e., the value of D becomes larger, the code

rate R can always be reduced, meaning that the source sequence can be compressed

further so as to accommodate to possible worse channel qualities.

In this case, as derived in [CT91], the relationship between the original symbol X

and the reconstructed symbol X̂, or equivalently the conditional probability p(X̂|X),

is as if the reconstructed symbol passes through a channel with additive white Gaus-

sian noise Z of variance D, i.e., Z ∼ N (0, D), as shown in Fig. 2.3. Due to such a

relationship and the simple analytical expression of R(D) in (2.8), in many exist-

ing works, the compression-decompression procedure is modeled by assuming the

source signal passes through a test channel with additive white Gaussian noise. Such

Gaussian noise acts as the distortion resulting from the compression. Then the com-

pressor is designed based on this simple model and the resultant system is analysed

from information theoretical point of view.

2.2 The Information Bottleneck Method

As described in the section above, the rate distortion theory reveals the relationship

between the minimal achievable compression rate and the tolerable distortion, from

the perspective of the information theory. However, in practice, the source informa-

tion might have arbitrary distributions, instead of only Gaussian distribution. For a

specific distribution, it is usually rather difficult to obtain the analytical expression

of the rate distortion function R(D). Moreover, the rate distortion theory does not

directly indicate how shall the code be constructed, or in other words, how shall the

compression procedure be designed, such that the rate of the compression indices

is minimized.
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X Y Ŷ

Maximize

Minimize

Figure 2.4: The information flow chart of the IB method.

In practice, a more meaningful concern is that, for a given rate of compression in-

dices that can be supported by the channel, after the compression, instead of the

distortion, how much relevant information between the source information and

the reconstructed information at the destination can still be preserved. More specif-

ically, in the network model considered in this work, the uplink information flow

can be depicted in Fig. 2.4: After the source information denoted by X with arbi-

trary distribution is sent by the UE, it is distorted by the wireless channel and ob-

served at the RRH, denoted by Y. As described in Subsection 1.2.1, the observed Y

should be compressed before being delivered to the cloud via the fronthaul. Hence,

Y is compressed via the compressor into a discrete compression index Ŷ, then with

Wyner-Ziv coding, the forwarding rate of Ŷ can be further reduced by generating

the binning index 1. At the BBU pool in the cloud, the source information X is going

to be retrieved based on the received binning index. According to the rate distortion

theory [WZ76; RHL13], the original information preserved at the BBU pool can be

expressed as I(X; Ŷ). Obviously, in order to maximize the uplink transmission rate,

I(X; Ŷ) shall be maximized. Furthermore, we would like to minimize I(Y; Ŷ), as it

represents the transmission rate of the binning index [WZ76; RHL13]. The higher

this value is, the more fronthaul capacity is required to deliver the binning index to

the cloud. We also would like to obtain an analytical expression of the conditional

probability p(ŷ|y), as it directly reveals how the compressor shall be designed for

the compression step.

In order to investigate the relationship between the minimized I(Ŷ; Y) and the maxi-

mized I(X; Ŷ), as well as the corresponding compression scheme, p(ŷ|y), N. Tishby

etc. proposed the so-called Information Bottle (IB) method in [TPB99]. The IB

method is actually a special case of the rate distortion theory, such that the Kullback-

Leibler divergence is adopted as the measurement of the distortion. Based on this

method, the maximized I(X; Ŷ) can be computed as a function of the minimal com-

1For the case of a single-compressor described up to now, as no side information is available,
binning has no effect on the compression rate, i.e., the transmission rate of the binning index is the
same as that of the compression index. But for the case of multiple-compression, e.g., C-RAN or
F-RAN, which will be introduced later, the binning can further reduce the compression rates.



2.
2.

Th
e I

nf
or

m
at

io
n

Bo
tt

le
ne

ck
M

et
ho

d

2

28

pression rate, i,e., minimized I(Y; Ŷ). In detail, the function

I(c) = sup
I(Y;Ŷ)≤c

I(X; Ŷ) (2.9)

can be computed and plotted. Hence, for a specific value of the compression rate c,

whose transmission can be supported by a channel, the corresponding maximized

mutual information I(X; Ŷ), denoted by I(c), can be numerically obtained via the

IB method. Symbol Y can be with an arbitrary distribution. Moreover, with the IB

method, the way to optimally compress the source signal, i.e., the conditional prob-

ability p(ŷ|y) that achieves compression rate c and the maximized I(X; Ŷ), can also

be derived. Hence, the IB method is a powerful practical tool for the compressor

design.

The relevant mutual information I(c) has been proved to be a concave and increas-

ing function for the optimized compression rate c ∈ [0, H(Ŷ)] [TPB99], an example

is illustrated in Fig. 2.5. The IB method is a deterministic annealing approach such

that the whole curve I(c) is obtained through a third parameter β, β > 0, where

1/β = dI(c)
dc corresponds to the slope of the curve at the point (c, I(c)). Actually β is

the Lagrange Multiplier used for the optimization. With the IB method, the following

functional with respect to the conditional distribution is minimized:

min
p(ŷ|y)

I(Y; Ŷ)− βI(X; Ŷ). (2.10)

We call β the trade-off factor between the compression rate c and the objective mu-

tual information I(c). By selecting an arbitrary value of β > 0 as the input of the

IB method, the point on the trade-off curve with slope 1/β can be obtained. Before

we briefly introduce how the IB method works, we firstly define the well-known

Kullback-Leibler divergence DKL(·||·) [RHL13] here: For discrete probability dis-

tributions P and Q, the Kullback-Leibler divergence between them is computed as

follows

DKL(P||Q) = ∑
x∈X

P(x) log
(

P(x)
Q(x)

)
, (2.11)

which is used as the distortion measurement to update the compression strategy in

each iteration of the IB method.

Briefly, the IB method works in the following iterative way:

1. Select a value β > 0 as input to the IB method, and a valid initial compression

strategy p(ŷ|y);
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Figure 2.5: An illustration of I(c) obtained via the IB method.
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2. With the compression strategy p(ŷ|y), as well as the known channel de-

scription p(y|x), we are able to compute the Kullback-Leibler divergence

DKL(p(x|y)||p(x|ŷ)). Then together with the input value β, a "distance" value

d(DKL(p(x|y)||p(x|ŷ)), β) shall be then computed, the analytical expression

for computing d can be found in [TPB99];

3. Use the computed value d to update the compression strategy p(ŷ|y). The

updating rule is also derived in [TPB99];

4. Compute the difference between the updated p(ŷ|y) with the one from the

last iteration. If it does not converge, go to step 2. Otherwise terminate the

method with the optimized p(ŷ|y).

Therefore, with the IB method, for any specific value of β > 0, we can iteratively

obtain the corresponding optimized compression strategy p(ŷ|y). With p(ŷ|y), the

corresponding compression rate I(Y; Ŷ), denoted by c, and the maximized mutual

information I(X; Ŷ) at the receiver side, denote by I(c), can also be computed. The

optimized trade-off curve Fig. 2.5 consists of different values of c and I(c). As

stated in [TPB99], I(c) is an increasing and concave function of c. Since both values

of c and I(c) are monotonically increased with the value of β, by ranging the value

of β from 0 to infinity as the input, the whole trade-off curve can be acquired by

running the IB method accordingly. In other words, we can say that the output of

the IB method for any specific value of β > 0 consists of two parts: The first part is

the optimized compression strategy, i.e., p(ŷ|y), with which the mutual information

I(Y; Ŷ), i.e., the compression rate c, is minimized. Moreover, the corresponding
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I(X; Ŷ) can be maximized with p(ŷ|y) , i.e., as much information is preserved at

the receiver side as possible. The second part is the exact value of the compression

rate I(Y; Ŷ), and the relevant information I(X; Ŷ), which are corresponding to the

optimized compression strategy. Hence, if the channel capacity C is known, the

compressor p(ŷ|y) shall be designed by the IB method, such that the corresponding

compression rate c = I(Y; Ŷ) is as close to C as possible, in order to fully exploit the

channel resource, and preserve as much relevant information at the receiver side as

possible.

Note that the IB method can generate the optimal trade-off curve by inputting dif-

ferent values of β , as shown in Fig. 2.5. When the compressor is designed, the

location of specific points on the curve should be known, as each point on the curve

corresponds to a specific optimized compression strategy, as well as the resultant

compression rate and the relevant information. Hence, in order to locate a specific

point (usually the point whose x-coordinate equals to the channel capacity), the

Bi-Section method shall be combined with the IB method. As each value of β corre-

sponds to a specific point on the trade-off curve, we can use the Bi-Section method

to search for a specific value of β, such that at this point, the compression rate I(Y; Ŷ)

can be exactly supported by the channel with capacity C, and the objective mutual

information is maximized. After locating the value of β, the corresponding optimal

compressor p(ŷ|y) at this point can be acquired. Briefly, in order to find an opti-

mal compression strategy for a channel with capacity C, the following steps shall be

executed:

1. Set βL = 0, βU = 100 2, compute β = (βL + βU)/2, execute the IB method

with input value β.

2. Compute the compression rate corresponding to β, i.e., I(Y; Ŷ). If I(Y; Ŷ) < C,

set βL = β. Otherwise set βU = β.

3. Update the value of β with β = (βL + βU)/2.

4. As long as β − βL > ε is fulfilled, where ε is a predetermined tolerance pa-

rameter for terminating the Bi-Section method, go to step 2 to execute the IB

method with the new value of β. Otherwise the searching procedure shall be

terminated, the value of β is located successfully and its corresponding com-

pression strategy is said to be optimized, with which the channel resource can

be fully exploited and the relevant information is maximized.

More details of the IB method, as well as the proofs and its convergence analysis are

addressed in [TPB99].
2Value 100 is just an example for the upper bound for the Bi-Section search here. For different

scenarios in practice, different upper bounds need to be set.
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Some examples of the IB method can be found in [Zei11] and [Win14]. In [Zei11], it

is adopted to design the CF compressor so as to maximize the achievable rate, for a

classical three-node relay network and a Multiple Access Relay Channel (MARC).

In [Win14], the authors combine the Network Coding (NC) with CF, and utilize the

IB method to optimize the compression process and the network encoding scheme.

Although there are various methods to realize the compression, within this work,

we adopt the widely used quantization scheme to achieve such a compression

procedure. Hence, we do not distinguish between quantization and compression

in this thesis.

Applications in this work: Mainly in Chapter 3. In the uplink of C-RAN and

F-RAN, the compression strategy for the superposed signals from UEs at each

RRH/eRRH has to be optimized. However, as the superposed signals between

RRHs/eRRHs are correlated with each other, the IB method will be extended to a

so-called Alternating IB method, so as to exploit the correlation for further improv-

ing the performance. With such an extension, the compression strategies among all

RRHs/eRRHs can be jointly optimized for C-RAN/F-RAN.

2.3 Optimization Techniques and Tools

The wireless system in practice is usually rather complicated. The abstracted prob-

lems resulting from the systems are non-convex in most cases. In order to investi-

gate the design and the optimization of the network, some approximation methods

and simplification schemes are widely used and have demonstrated good results.

Hence, in this section, we introduce some optimization concepts, techniques and

tools that will be adopted in the following chapters.

2.3.1 Convex Optimization

With the convex optimization, the solving procedures for minimizing convex func-

tions over convex sets [BV04], is addressed. In general, a convex problem has the

following form
minimize f0(x),

subject to fi(x) ≤ bi, i = [1 : M],
(2.12)

where vector x = {x1, x2, ..., xN} denotes the variables to be optimized in this prob-

lem. Function f0 : Rn → R denotes the objective function, which is to be mini-

mized. Functions fi : Rn → R ∀i denote M constraints. The objective function
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Figure 2.6: A convex function in the 2-dimensional space.

x1 θx1 + (1− θ)x2
x2

f (θx1 + (1− θ)x2)

f (x1)

θ f (x1) + (1− θ) f (x2)

f (x2)

f (x)

and all constraints are convex, thus they form a convex set. A vector xopt is said to

be optimal, if for any other vector x∗, which can satisfy all constraints, inequality

f0(x∗) ≥ f0(xopt) always holds.

Mathematically, a convex function indicates to a real-valued function, that is defined

in an n-dimensional (n ≥ 2) space, where the line segment between any two points

of the function, does not lie under the graph. More specifically, let f (x) be a convex

function in spaceRn, x1 ∈ Rn and x2 ∈ Rn denote arbitrary two points in this space,

then the following inequality must always hold:

f (θx1 + (1− θ)x2) ≤ θ f (x1) + (1− θ) f (x2), (2.13)

where the value of θ ∈ [0, 1] ∈ R can be arbitrarily selected [BV04]. A graphic

illustration of a convex function in the 2-dimensional space is depicted in Fig. 2.6.

When an optimization problem is shown to be convex, there are already sufficient

algorithms, methods and tools to solve it. Many of them are explained in [BV04].

Furthermore, with MATLAB, there is a useful tool called CVX [Res20], with which

the convex problems can be solved rather efficiently. By adopting CVX, MATLAB

can be turned into a modeling language. For more details, please refer to [Res20].

In this work, most of the simulation results are acquired with the help of CVX.

However, the systems studied in practice are usually rather complicated and not so

idealized. Thus, they are mostly non-convex. In order to investigate such scenarios

with many existing tools and algorithms, simplification, relaxation and approx-

imation techniques are necessary, with which the original non-convex problem

can be convexified. These techniques must be carefully designed, such that the
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relaxed, or the approximated version, can still capture the essential property of the

original problem. In the following parts, several widely-used convex optimization

techniques will be introduced, as well as some approximation methods which will

be adopted in future chapters of this thesis.

Applications in this work: The convex optimization will be utilized almost every-

where in the coming chapters. For example, in Subsection 4.2.1 of Chapter 4, the

total power consumption in the downlink of F-RAN is to be minimized, in the prob-

lem, the objective is the sum of all transmission power among all eRRHs, and the

constraints consist of the fronthaul capacity limitations, individual power limita-

tions, as well as the QoS targets. As the resultant problem is non-convex, several ap-

proximation techniques are adopted to convexify the problem, then it can be solved

by CVX.

2.3.2 The Bi-Section Method

The Bi-Section method is a root-finding method, i.e., locating the value of x̃ where

f (x̃) = 0 holds. It bisects an interval in a repeated and iterative manner. In each

step, a smaller sub-interval will be selected, where the root must be positioned.

More specifically, suppose f (x) is a continuous function in interval [a, b], where

the signs of f (a) and f (b) are opposite. Hence, according to the intermediate value

theorem, there must be at least one zero crossing within this interval, i.e., at least

one specific x̃ exists, such that f (x̃) = 0 can be satisfied. The Bi-Section method

is a useful tool to approach the location of this point. At the beginning, we must

define a tolerance factor ε for terminating the procedure, this factor also indicates

how precise we would like to achieve with this method. The smaller the value of

ε is, more iterations are needed, but the obtained result would be more close to the

theoretical value.

Briefly, the following steps are executed sequentially in each iteration:

1 Calculate and update the midpoint c of the current interval, i.e., c =
a + b

2
.

Then verify whether |c − a| > ε. If yes, proceed to the next step. If not,

terminate the procedure and return x̃ = c.

2 Calculate the value of f (c).

3 If the sign of f (a) and f (c) are same, update the value of a by setting a = c,

otherwise update the value of b by setting b = c. Hence, the searching interval

for the next iteration is updated.
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4 Repeat the above steps until it terminates.

Applications in this work: In this dissertation, it is used in combination with the IB

method, as well as the proposed Alternating IB method, in order to locate a specific

point on the trade-off curve/surface, from which the optimal compressors for the

uplink of C-RAN/F-RAN can be obtained.

2.3.3 The Sub-Gradient Method

The sub-gradient method is an iterative method for solving convex problems,

whose convergent behaviour is proved.

Assume that the objective function f0(x) is convex and we would like to obtain the

optimal point xopt which minimizes f0(x). With the sub-gradient method, an arbi-

trary valid starting x(start) is selected firstly, i.e., x(0) = x(start), where 0 indicates

that this is the initial value before the iteration procedure starts. Then in each itera-

tion, x is updated as follows:

x(`+ 1) = x(`)− ∆(`)g(`), (2.14)

where ` indicates the iteration index, and ∆(`) denotes the step size for this iteration.

In particular, g(`) denotes the sub-gradient of f0(x) at point x(`). When f0(x(`)) is

differentiable, g(`) is actually the gradient vector ∇ f0 at this point. Moreover, a list

shall be maintained and updated in each iteration as follows:

f opt
0 (`) = min{ f opt

0 (`− 1), f0(x(`))}. (2.15)

Actually, it denotes the optimal value (minimized value of the objective function)

we have found so far in all previous iterations. According to (2.14), in each iteration

step, besides the sub-gradient g(`), the value of the step size ∆(`) shall also be

determined and updated. There are various types of step-size determination rules

whose convergences are proved, as shown in [Ber15]. Fortunately, all these rules

can be determined off-line, i.e., before the iteration procedure starts. In this thesis,

we adopt the constant step size for simplicity, i.e., ∆(`) = ∆ ∀`.

Note that in the sub-gradient method introduced above, no constraints are assumed

to exist. For the more general case where several convex constraints exist, an exten-

sion of the sub-gradient method, i.e., the projected sub-gradient method [BV04], has

to be applied. The convex constraints in (2.12) can be denoted by

x ∈ C,
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where C represents the convex set described by all convex constraints. Then the

updating rule for each iteration becomes

x(`+ 1) = ΠC (x(`)− ∆(`)g(`)) , (2.16)

where = ΠC() indicates the projection on C. More details of these methods are

documented in [BV04].

Applications in this work: The sub-gradient method is utilized to optimize the

power allocation in the downlink of F-RAN in Subsection 4.2.4, where the network

multi-cast throughput is to be maximized.

2.3.4 The Semi-Definite Relaxation (SDR)

The Semi-Definite Relaxation (SDR) is a relaxation technique that can convert a non-

convex problem into a Semi-Definite Programming (SDP) problem, its effectiveness

as well as the correctness has been deeply studied by many works. A SDP prob-

lem can be efficiently solved by many existing tools, e.g., CVX. Such a technique is

widely used in the field of signal processing and wireless communication, e.g., the

problem of MIMO detection and transmit beamforming.

Suppose we have a problem with the following formulation

min
x∈RN

xTCx,

subject to xTAix ≤ bi, i = [1 : M],
(2.17)

where C and Ai ∀i are all positive semi-definite matrices, i.e., C, Ai � 0 ∀i, and

x ∈ RN×1 is the vector of variables that needs to be optimized. This problem is

non-convex and NP-hard.

In order to solve this problem, the SDR is an effective tool for convexification and

simplification. Note that we can express xTCx = Tr(xTCx) = Tr(CxxT) where Tr(·)
denotes trace of a matrix. Then by noting that X = xxT, we have xTCx = Tr(CX).

Hence, the original problem (2.17) can be equivalently reformulated as follows

min
x∈RN

Tr(CX),

subject to Tr(AiX) ≤ bi, i = [1 : M],

X � 0,

rank(X) = 1.

(2.18)
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The objective function, as well as the first two constraints are convex. However,

the last constraint, i.e., rank(X) = 1, makes the problem above non-convex and

NP-hard. The basic idea of SDR is to relax the problem by dropping the last

constraint, i.e., the rank limitation. Then the remaining objective and constraints

would form a convex SDP problem, which can be solved by many existing efficient

methods. After the solution of the relaxed SDP problem is acquired, it shall be

converted to an approximated solution of the original problem, by involving

the rank limitation again, which has been omitted in the relaxation procedure.

This can be done with, e.g., the EigenValue Decomposition (EVD) method or the

randomization and scaling method. The final solution is naturally sub-optimal. In

[KSL08] and [Luo+10], this technique and its application to signal processing and

wireless communication are intensively introduced and investigated.

Applications in this work: The SDR technique plays an important role in this dis-

sertation. As already introduced in Chapter 1, from the viewpoint of the BBU pool,

the C-RAN/F-RAN can be regarded as a networked MIMO system. Hence, when

the aggregated beamformers/precoders are to be designed, the SDR technique is

adopted to convexify and relax the original problem. As we are going to see in

Chapter 4, the SDR technique appears in both high EE and SE oriented design, as

well as the robust design of the network when only inaccurate CSI is available.

2.3.5 `0-norm Approximation

In many scenarios, we have to deal with optimization problems with discrete objec-

tive functions. In the downlink design of F-RAN for example, when how to cluster

different RRHs/eRRHs to serve multi-cast groups optimally is investigated, clus-

ters consisting of different sets of RRHs/eRRHs are obviously discrete functions,

and thus, non-convex. Such problems are called Mixed Integer Non-Linear Pro-

gramming (MINLP) problems [MFR20], which are NP-hard.

First of all, we introduce the mathematical definition of a norm for future investi-

gation. The `p-norm (p ≥ 1) of a vector x = (x1, x2, ..., xN), i.e., ||x||p is defined as

follows:

||x||p :=

(
N

∑
i=1
|xi|p

)1/p

. (2.19)

Specifically, the `0-norm of x is defined as an indicator to the number of non-zero

elements in the vector, i.e.,

|x|0 = #(xi) with xi 6= 0. (2.20)
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For problems we address in later chapters, we can equivalently rewrite the discrete

MINLP problem into the following form:

min
x∈RN

N

∑
i=1

ai|xi|0 + f0(x),

subject to
N

∑
i=1

bi,j|xi|0 + f j(x) ≤ cj, j = [1 : M],

(2.21)

where f j(x) ∀j ∈ [0 : M] are convex functions, and ai, bi,j, cj ∀i, j are real constant

values. Obviously, the `0-norms make the problem discrete, non-convex and NP-

hard. The technique to tackle such problems is an iterative `0-norm approximation

method, which is widely used in the field of Compressed Sensing [CWB08]. In this

method, the discrete `0-norm is approximated by a linear function of it. And in

each approximation iteration, the coefficient of this linear function is recalculated

and updated. More specifically, the `0-norm of xi is iteratively approximated as

|x(t+1)
i |0 ≈ w(t+1)

i x(t+1)
i , with w(t+1)

i =
1

x(t)i + τ
, (2.22)

where t denotes the iteration index, wi is called the re-weighted coefficient of xi,

and τ is the threshold parameter that shall be determined in advance by us, accord-

ing to the actual situation and the target we would like to achieve. With such an

approximation, the discrete non-convex term now becomes linear and convex. In

order to make it easier to follow, we firstly drop the superscript (t) and (t + 1) to

explain such an approximation: Now we have |xi|0 ≈ wi · xi =
xi

xi+τ . When xi � τ

holds, the approximation of `0-norm is rather close to 1. Contrarily, the approxi-

mation would rapidly approach 0, when xi � τ. Therefore, τ can be regarded as

a threshold parameter, which determines whether the value of xi is turned on (1),

or switched off (0). By carefully selecting the value of τ, this continuous and linear

approximation can capture the behavior of discrete non-convex `0-norm.

The superscripts in (2.22) reflect the iterative re-weighted procedure. In the t-th

iteration, the approximated minimization problem, which is convex according to

(2.21) (since we have convexified all non-convex terms with this approximation

method) can be solved, then x(t) will be obtained, and w(t+1) used for the next iter-

ation can be computed and updated accordingly. When the value of the obtained

x(t)i decreases in iteration t compared to the previous iteration, it must have larger

re-weighted coefficient w(t+1)
i in the next iteration. Hence, its value will be forced

to further decrease, and be encouraged to drop below the threshold value τ. By

continuing such a re-weighting procedure iteratively, some elements of x will be

finally forced to be rather close to 0 (they can be regarded as 0 as long as the value

of them fall below the value of the predetermined threshold parameter τ), and the

remaining elements can still satisfy all constraints. Therefore, the NP-hard MINLP
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problem can be avoided. More detailed introduction is documented in [CWB08].

Applications in this work: In the downlink of F-RAN, there are two eRRH selection

issues: The first one is the cluster formulation: As the fronthaul capacity is limited,

it might be not possible that all eRRHs serve for all scheduled UEs. Thus for each

requested content, a subset of eRRHs shall be selected to form a cluster for its trans-

mission. Hence, the BBU pool has to decide which eRRH shall be in which subset,

via the optimization procedure. The second one is when eRRH deactivation is con-

sidered to save power, the BBU pool shall determine which eRRHs can be switched

off, such that the remaining ones can still fulfill the requirements of the network.

For both cases, the `0-norm is utilized to denote such a selection. Hence, the cor-

responding optimization requires the iterative approximation method introduced

above.

2.3.6 S-Lemma

The S-Lemma [DM06] is an effective tool for tackling the problem of the robust

optimization, which is widely used in many field, e.g., the control theory. In this

work, we adopt this lemma to design the robust networks, in which the QoS of each

UE can still be guaranteed, even with inaccurate CSI. The S-Lemma is summarized

as follows:

S-Lemma: Let two functions f0(x), f1(x) defined as f0(x) = xHA0x + 2Re{xHb0}+
c0 and f1(x) = xHA1x + 2Re{xHb1}+ c1, where b0, b1 ∈ Cd×1 denote vectors, ma-

trices A0, A1 ∈ Cd×d are all Hermitian matrices; and c0, c1 are scalars. Suppose that

a specific vector x̂ ∈ Cd×1 exists, with which f1(x̂) < 0 is satisfied. Then f0(x) ≥ 0

and f1(x) ≤ 0 can be satisfied simultaneously, for arbitrary x ∈ Cd×1, as long as a

scalar λ ≥ 0 exists, which makes the following matrix positive semi-definite, i.e.,[
A0 b0

bH
0 c0

]
+ λ

[
A1 b1

bH
1 c1

]
� 0. (2.23)
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Chapter 3

Centralized Joint Design for the Uplink

This chapter contains
3.1 System Model . . . . . . . . . . . . . . . . . . . . . . . . 43

3.2 Alternating Information Bottleneck Optimization . . . 47

3.3 The Alternating Bi-Section Method . . . . . . . . . . . 53

3.4 Fronthaul Capacity Allocation . . . . . . . . . . . . . . 57

3.5 Numerical Results . . . . . . . . . . . . . . . . . . . . . 63

3.6 Summaries, Discussions and Outlooks . . . . . . . . . 72

1 When we talk about something like "5G is must faster than 4G...", we usually mean

the network throughput, i.e., the total achievable transmission rate of the network,

is much faster. More specifically, with 5G, the users can experience much faster

data transmission rates for both uplink and downlink. Concerning the uplink, it

denotes the slots, in which the UE has the opportunity to upload their own data to

the core network. For example, if we would like to share a photo with a friend via

some mobile Apps in a 5G environment, after we click send, this photo is going to

be sent from your mobile phone to the core network, via the uplink transmission.

Contrarily, in the downlink slots, the UE has the opportunity to receive data from

the network: The photo you have just sent, will be downloaded by your friend

via the downlink transmission. The uplink and downlink are orthogonal, i.e., they

share the network resources, consisting of time and frequency, in an orthogonal

way. In 5G TDD (Time Division Duplex) mode, the uplink and the downlink slots

arrive at different time slots. While in 5G FDD (Frequency Division Duplex) mode,

they arrive at different frequency bands.

1Parts of this chapter have been published in [CK16b; CK16c; CK16d; CK16e].
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When it comes to the optimal design of the C-RAN/F-RAN, the uplink and down-

link are two distinct stories. In this chapter, we will focus on investigating the uplink

transmission of C-RAN and F-RAN, which is sketched in Fig. 3.1. As seen from the

figure, in each uplink slot, some UEs will get scheduled 2, meaning that only these

UEs can upload their data for this time being, i.e., within this time slot, while the

others have to be silent.

After the scheduled UEs send their signals, all signals are independently super-

posed at each RRH/eRRH. As stated in Chapter 1, unlike the numerous tasks un-

dertaken by the BS in 4G network, the C-RAN/F-RAN architecture adopted in 5G

implements rather limited signal processing functionalities at RRHs/eRRHs, most

of them are pushed to the BBU pool in the cloud. Therefore, the fronthaul, which

links the RRH/eRRH and the BBU pool, has to transmit such almost raw signals.

We have already illustrated in Fig. 1.5 how much capacity is required at fronthauls.

Therefore, a large amount of hardware costs might be saved, if these signals can be

somehow efficiently compressed before being sent to the BBU pool. Moreover, at the

BBU pool, the compressed signals are expected to retain as much useful information

as possible. Such requirements have motivated us to consider the Information Bot-

tleneck method, introduced in Section 2.2, with which the compression strategies

can be optimized. We are going to investigate the application and extension of the

IB method in C-RAN/F-RAN in the coming parts of this chapter.

Obviously, in the uplink model considered in this chapter, RRH/eRRH is the only

place where some compression strategies are implemented. Thanks to the concept

of the fog computing, RRHs can evolve to eRRHs by being equipped with some

quantizers, for the execution of the compression step. The quantizers are designed,

such that the transmission of the compressed signals resultant from the quantization

step, can be supported by the fronthauls. Then after the BBU pool receives the

compressed signals, they shall be reconstructed in the cloud. Therefore, the design

of the quantization step is critical, when the uplink transmission is to be optimized.

The design of the quantizer at each eRRH is one of the main topics and contributions

of this chapter.

Note that in the discussion above, we assume that the fronthaul resource for each

eRRH is fixed. Thus, only the quantizers are to be optimized in order to meet the

fronthaul capacity constraints. However, when several eRRHs share the capacity

of fronthaul, the issue of the resource allocation on the fronthaul shall also be dis-

cussed. It can be regarded as an extension to the problem of the quantizer design

introduced above, due to the interaction between the compression step, and the

2The notifications of which UEs are get scheduled, are usually sent several slots ago in the UL-DCI
(Downlink Control Information) via PDCCH (Physical Downlink Control Channel). UL-DCI indicates
who will be scheduled, as well as in which uplink slots they are scheduled. More details can be found
in [3GP18].
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available fronthaul capacity. In such a scenario, how much capacity shall be allo-

cated to each eRRH will be addressed.

There are already considerable amount of works addressing the optimization of the

quantizers for the uplink of C-RAN. First of all, mainly two compression strate-

gies are investigated, i.e., Compress-and-Forward (CF) [CG79] and Noisy Network

Coding (NNC) [Lim+11]. When CF is performed, the Wyner-Ziv coding [WZ76]

is exploited at RRHs since the signals received by neighboring RRHs are statisti-

cally correlated. The BBU pool implements successive decompression and decod-

ing. When NNC is utilized, the RRHs perform quantization without the Wyner-Ziv

coding, and the BBU pool does simultaneous joint decompression and decoding

among all received blocks. Generally, the throughput of NNC is higher than that

of CF [Lim+11], while its complexity is much higher and the delay is much longer,

as it requests consecutive data blocks to be received before the decoding procedure

being executed, so as to approach the optimums. In many existing works, the opti-

mization of the quantizers is studied from an information theoretical point of view

by exploiting the rate distortion theory, i.e., only the Gaussian codebook adopted

by users is considered, and the quantization procedure is modeled by a Gaussian

test channel, see Fig. 2.3. Under such an assumption, the optimization of the quan-

tization noise levels for these two strategies is investigated. In [ZY14], an Alter-

nating Convex Optimization (ACO) approach is proposed for CF, and in [Par+13b],

an iterative algorithm based on the Majorization Minimization (MM) approach is

considered for NNC.

However, as stated in Chapter 2, the rate distortion theory, as well as the Gaussian

test channel cannot instruct the quantizers’ design for the F-RAN model considered

this work, when arbitrary codebooks are adopted and the target is to maximize the

preserved information. In the uplink of F-RAN, the quantization information flow

can be described as follows: The scheduled UE can use arbitrary codebook X with

a finite alphabet, and the received signal at each eRRH is discretized and sampled

firstly into finite alphabet Y , then based on the compression scheme described as

PŶ|Y, it will be further compressed into several quantization levels, denoted by Ŷ .

Usually its cardinality, i.e., |Ŷ |, is much smaller than |Y| due to the compression.

Then Ŷ is encoded and transmitted by the fronthaul with its limited capacity. After

the BBU pool decodes Ŷ, it tries to extract the useful information of each UE from

it. In such a scenario, the Information Bottleneck (IB) method [TPB99] is a useful

tool to optimize the quantizer PŶ|Y, such that the trade-off between the preserved

information I(X; Ŷ), and the compression rate I(Y; Ŷ) can be found. Hence, for the

uplink of C-RAN and F-RAN, we consider to use the IB method to design optimal

quantizers at RRHs.

However, the IB method is considered only for the case of single quantizer in most

works. When multiple quantizers exist, as in C-RAN and F-RAN, the optimization



3

Ce
nt

ra
liz

ed
Jo

in
tD

es
ig

n
fo

rt
he

Up
lin

k

43

Y1 : Ŷ1
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Figure 3.2: The abstract model for the uplink of F-RAN.

of the quantizers depends not only on its own received signal, but also on that at

other eRRHs, as well as their compression strategies. This is mainly due to the fact

that the received signals are correlated and thus the Wyner-Ziv coding is performed.

Thus a joint optimization among all quantizers is required, which is difficult to be

implemented in the conventional RAN. Thanks to the BBU pool with high com-

putational capability, such a joint optimization is possible in C-RAN and F-RAN.

Then the problem becomes, how to extend the conventional IB method to the case

of multi-quantizer, where the quantization steps performed by them are correlated

and influence with each other. In this work, we propose a so-called Alternating

Information Bottleneck (AIB) method and an alternating Bi-Section method, from

which all quantizers at eRRHs can be jointly optimized.

3.1 System Model

3.1.1 Overview

We consider the abstract uplink model depicted in Fig. 3.2, where UEs intent to send

their data to the cloud server via the uplink transmission. eRRHs at the other side

of the radio access channel observe different and independent linear combinations

of the original signals plus additive white Gaussian noise. In order to accommodate

to the limited fronthaul capacities, the quantizer at each eRRH compresses the su-

perposed signal into a compression index. As the signals received by neighboring
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eRRHs are correlated, Wyner-Ziv coding is adopted to further reduce the compres-

sion rates. The resultant binning indices are encoded and sent via the fronthauls.

The BBU pool decodes all binning indices and performs a joint decompression and

decoding, so as to extract the original message of each UE. In this work, we focus on

designing compression strategies among all eRRHs such that the BBU pool is able

to extract as much original information as possible. In other words, the end to end

achievable sum rate of the uplink is maximized.

3.1.2 Mobile Users and Remote Radio Heads

The network is assumed to have K single-antenna UEs sending independent mes-

sages with arbitrary codebooks and modulation schemes. Totally N eRRHs acting

as signal collectors are deployed within the whole network. For illustrative simplic-

ity, we only discuss the case of single-antenna eRRHs, but the proposed algorithms

and results can also be extended to the MIMO case, as we are going to show later

on.

3.1.3 Radio Access Channel

Let Xk denote the transmitted symbol from the k-th UE, with arbitrary modulation

scheme and power denoted by Pk = E{|Xk|2}, and hnk denote the complex channel

coefficient from the k-th UE to the n-th eRRH. Hence, at the n-th eRRH, the received

analog signal Yn,analog can be expressed as

Yn,analog =
K

∑
k=1

hnkXk + Zn, n ∈ {1, 2, ..N},

where Zn ∼ CN (0, σ2
n) is the additive white Gaussian noise with variance σ2

n . There-

fore, the radio access channel between the UEs and eRRHs is actually an N × K

interference channel.

3.1.4 Compression at eRRHs

The received analog signal Yn,analog is first sampled and discretized into Yn with

finite alphabets Yn. Actually, such a discretization, or in another word, analogue-

to-digital conversion, can be regarded as a pre-quantization step. Such a conversion

is essential in the current digital communication system. When we talk about the

compression step, which is performed by the quantizers at eRRHs, we indicate the

further quantization of the discretized signal Yn into Ŷn, so as to meet the fronthaul
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capacity constraint. More specifically, after the received analogue signal Yn,analog

is discretized into a digital signal Yn, the eRRH performs compress-and-forward

(CF) on it: Its quantizer compresses the signal Yn into Ŷn based on the compression

scheme PŶn|Yn
, which is going to be optimized in this chapter. The cardinality of the

alphabet of Ŷn, i.e., |Ŷn|, is assumed to be much smaller than the cardinality of the

alphabet of Yn, i.e., |Ŷn| � |Yn|. Since the received signals of the neighboring eR-

RHs are statistically correlated, the Wyner-Ziv coding is to be utilized, with which

binning indices are generated.

3.1.5 Fronthaul Transmission

The binning indices are then encoded and transmitted by fronthauls from each

eRRH to the BBU pool in the cloud. The capacity of the n-th fronthaul, i.e., the fron-

thaul connecting the n-th eRRH and the cloud, is denoted by CFH,n and known to

the BBU pool. Moreover, as we focus on the optimization of the compression strate-

gies, an error-free transmission of the binning indices via fronthauls is assumed, i.e.,

the encoded binning indices can be perfectly decoded by the BBU pool in the next

step.

3.1.6 Centralized Processing in the Cloud

The global CSI is supposed to be available at the BBU pool in the cloud. The BBU

pool adopts a successive two-stage decoding: It first decodes all binning indices

from all eRRHs, and then decodes UEs’ messages X = [X1, X2, ..., XK]
T based on

the decoded binning indices. Compared with the NNC, where a simultaneous joint

decoding of compressed signals and the desired messages over all received blocks

is required, the successive decoding nature of CF overcomes some difficulties in the

practical implementation of the NNC, such as the long latency and the high com-

putational complexity. Moreover, we assume that the modulation scheme of each

UE are available at the BBU pool 3, i.e., the probability distribution of X is known,

and the design of the optimized quantizers can be feed-backed to the corresponding

eRRHs.

Remark: Since the Wyner-Ziv coding is utilized, the decompression order π gener-

ally affects the achievable performance and shall be optimized upon. In this work

we will not address this problem. According to [Par+14], a generally sensible, and

close to optimal choice is to firstly decompress the signals coming from the eRRHs

3This is the usual case in the uplink, as the Modulation and Coding Scheme (MCS) of each sched-
uled UE is actually determined at various types of 5G BS, and is also notified by the UL-DCI via
PDCCH several slots before.
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with larger fronthaul capacities and then those with smaller ones. The rationale is

that the compressed information from the eRRH with large fronthaul capacity pro-

vides more relevant side information for the others. We adopt such an ordering in

this paper. Without loss of generality, we assume CFH,1 ≥ CFH,2 ≥ ... ≥ CFH,N and

the decompression ordering π is π(n) = n, n ∈ {1, 2, ..., N}.

3.1.7 Problem Statement

We aim to maximize the achievable sum rate [Par+14] in the uplink of F-RAN as

follows:

max
PŶ |Y

I(X; Ŷ),

subject to I(Yn; Ŷn|Ŷ1, ..., Ŷn−1) ≤ CFH,n, ∀n ∈ {1, 2, ..., N},
(3.1)

where X = {X1, X2, ..., XK}, Ŷ = {Ŷ1, Ŷ2, ...ŶN} and PŶ |Y =
N
∏
i=1

PŶi |Yi
. The mutual

information between the original message X from all UEs and the obtained com-

pressed information Ŷ determines how much information can be retrieved finally

by the BBU pool in the cloud. The rate of the binning indices for the signal received

by the n-th eRRH is I(Yn; Ŷn|Ŷ1, ..., Ŷn−1), as the Wyner-Ziv coding is utilized. Nat-

urally, ∑|ŷn| PŶn|Yn
= 1, ∀yi and PŶn|Yn

≥ 0, ∀ŷn, yn shall be satisfied. We see that

when the modulations schemes, capacities of the fronthaul links and the channel

configuration are fixed, the sum rate depends solely on how eRRHs compress their

received signals.

Note that the fronthaul capacities are finite, therefore, on the one hand, the quan-

tization cannot be too fine in the compression step, such that the compression rate

might exceed the fronthaul capacity, which will lead to decoding failure of the bin-

ning indices by the BBU pool. On the other hand, if the quantization is too coarse,

the capability of the fronthaul link might not be fully utilized, the overall perfor-

mance is thus limited by the coarse quantization. Hence, an optimal trade-off be-

tween the compression rates and the achievable sum rate must be found. As stated

in the chapter before, the Information Bottleneck (IB) method [TPB99] is an effective

tool to find such a trade-off as well as the corresponding optimized compression

strategy, in case of the single quantizer. In this work, we extend the conventional

IB method to an alternating IB method, which is able to deal with the case of the

correlated multiple quantizers in F-RAN.
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3.2 Alternating Information Bottleneck Optimization

In this section, we firstly derive the AIB method and show its application to the

joint optimization of the quantizers at eRRHs. Then we analyse the convergence

behaviour of the AIB method. A so-called alternating Bi-Section method will also

be proposed, with which a specific point on the trade-off surface can be obtained,

where the optimal quantizers can be derived which can fully utilize the fronthaul

resources and maximize the sum rate. Furthermore, we address the problem of re-

source allocation on the fronthaul with the help of the proposed algorithms. Finally

the numerical results obtained via the simulation will be given.

3.2.1 The Alternating Information Bottleneck Method

For ease of the illustration of the AIB method, and the analysis of its convergence

behavior, we start with the F-RAN consisting of two UEs and two eRRHs, each is

equipped with a single antenna. At the end of this section, we will show that our

proposed optimization algorithms can be conceptually easily extended 4 to the case

of more UEs with more antennas. According to (3.1), the problem becomes

max
PŶ1 |Y1

PŶ2 |Y2

I(X1, X2; Ŷ1, Ŷ2),

subject to I(Y1; Ŷ1) ≤ CFH,1,

I(Y2; Ŷ2|Ŷ1) ≤ CFH,2.

(3.2)

At first we set up the trade-offs between the compression rate pair of two eRRHs

and the corresponding maximized sum rate. It shall be emphasized that such trade-

offs form a curve or a surface, which consist of various optimal points. How to

locate a specific point on it, in order to accommodate to specific fronthaul capaci-

ties will be introduced in the next section. More specifically, the constraints in (3.2)

should be satisfied with equality, aiming to fully exploit the available fronthaul ca-

pacity, so as to maximize the sum rate.

In detail, we propose the AIB method, with which the trade-off between the

compression rate pair
(

I(Y1; Ŷ1), I(Y2; Ŷ2|Ŷ1)
)
, and the corresponding maximized

achieved sum rate I(X1, X2; Ŷ1, Ŷ2), can be derived, through the trade-off factor pair

(β1, β2). It is also worth to mention that when the AIB method is interpreted, we

select the decompression order Ŷ1 → Ŷ2, i.e., the signal Ŷ1 from eRRH 1 is decom-

pressed firstly, the signal Ŷ2 is then decompressed with Ŷ1 as the side information.

It is also possible to do it the other way around, but the derivation procedures are

4We say conceptually easily extended as the mathematical extension of the proposed algorithm is
straightforward. However, the computational complexity will increase exponentially.
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still the same. The optimal decompression order is out the scope of this thesis, but

in Subsection 3.4.1 and 3.5.1, more comments on the decompression order will be

given, and the results between different orders will be compared.

As we have mentioned before, in C-RAN/F-RAN, as the quantizers at eRRHs need

to be optimized jointly, the conventional IB method cannot be adopted directly.

However, in the two-eRRH scenario considered here, we notice that if one quan-

tizer is fixed, the remaining part is simply in a form, such that the conventional IB

method can be readily utilized. Basically, the main idea of the AIB method is that,

different quantizers are fixed alternatively: In each alternating step, only a spe-

cific quantizer is optimized, all other compression strategies at other quantizers are

fixed, except for the one that is to be optimized in the current step. Hence, the con-

ventional IB method can be applied now, as just one quantizer is to be optimized.

After the optimization, the updated compression strategy of this quantizer is fixed,

and the next one is to be optimized similarly. Such an alternating step will definitely

converge, as we are going to show later in this subsection.

Now we go back to the specific scenario stated above to illustrate the AIB method

in detail: In the algorithms proposed below, Function IB2 is the algorithm to op-

timize the compression strategy for the quantizer at eRRH 2, by assuming that the

compression strategy of eRRH 1 is known and fixed. Similarly, Function IB1 is

used to optimize the compression strategy for eRRH 1, by assuming a fixed com-

pression strategy of eRRH 2. These two functions are going to be called in different

alternating steps in Function AIB, which is the proposed Alternating Information

Bottleneck method. The AIB method is derived as follows:

1. If the first quantizer PŶ1|Y1
at eRRH 1 is fixed, then the job is reduced to

find the optimal trade-off between the compression rate c2 = I(Y2; Ŷ2|Ŷ1) and

max
PŶ2 |Y2

I(X1, X2; Ŷ1, Ŷ2) for the quantization operation executed at eRRH 2. Due to

the chain rule

I(X1, X2; Ŷ1, Ŷ2) = I(X1, X2; Ŷ1) + I(X1, X2; Ŷ2|Ŷ1),

then it is sufficient to compute the trade-off between I(Y2; Ŷ2|Ŷ1) and

max
PŶ2 |Y2

I(X1, X2; Ŷ2|Ŷ1), as the value of I(X1, X2; Ŷ1) is fixed. Now it is further reduced

to the problem solved in [Zei11] with the conventional IB method, as shown in

Function IB2. In this function, the fixed quantizer at eRRH 1, i.e., Pfixed
Ŷ1|Y1

is the in-

put and a local invariant when optimizing the quantizer at eRRH 2, i.e., PŶ2|Y2
. As

already introduced in Subsection 2.2, the IB method requires an initial compression

strategy, then it is iteratively updated and optimized. In Function IB2, Pinit
Ŷ2|Y2

de-

notes such an initial mapping. Moreover, it is assumed that the CSI knowledge and
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Function IB2(Pfixed
Ŷ1|Y1

, Pinit
Ŷ2|Y2

, PY1,Y2|X1,X2
, |Ŷ2|, β2, ε2)

Input : Pfixed
Ŷ1|Y1

, Pinit
Ŷ2|Y2

, PY1,Y2|X1,X2
, |Ŷ2|, β2, ε2

Output : [Poptimal
Ŷ2|Y2

, c2, Rsum]

1 begin
Initialization: Set t← 0, then set the initial mapping P(0)

Ŷ2|Y2
← Pinit

Ŷ2|Y2
.

2 do
3 Based on Pfixed

Ŷ1|Y1
and newly obtained P(t)

Ŷ2|Ŷ2
, compute and update

d(t)(y2, ŷ2)← β2 ∑
ŷ1

PŶ1|Y2
DKL

(
PX1X2|Ŷ1Y2

||P(t)
X1X2|Ŷ1Ŷ2

)
−

∑
ŷ1

PŶ1|Y2
log2

(
P(t)

Ŷ2|Ŷ1

)
+ log2

(
P(t)

Ŷ2

)
.

4 Set P(t+1)
Ŷ2|Y2

← P(t)
Ŷ2

2−d(t)(y2,ŷ2)/ ∑
ŷ2

P(t)
Ŷ2

2−d(t)(y2,ŷ2).

5 Set t← t + 1.

6 while ∑
y2,ŷ2

∣∣∣P(t)
Ŷ2|Y2
− P(t−1)

Ŷ2|Y2

∣∣∣ /(|Y2| · |Ŷ2|) ≥ ε2

7 Set Poptimal
Ŷ2|Y2

← P(t)
Ŷ2|Y2

, then compute

c2 = I(Y2; Ŷ2|Ŷ1) and Rsum = I(X1, X2; Ŷ1, Ŷ2) based on it.

Function IB1(Pinit
Ŷ1|Y1

, Pfixed
Ŷ2|Y2

, PY1,Y2|X1,X2
, |Ŷ1|, β1, ε1)

Input : Pinit
Ŷ1|Y1

, Pfixed
Ŷ2|Y2

, PY1,Y2|X1,X2
, |Ŷ1|, β1, ε1

Output : [Poptimal
Ŷ1|Y1

, c1, Rsum]

1 begin
Initialization: Set t← 0, then set the initial mapping P(0)

Ŷ1|Y1
← Pinit

Ŷ1|Y1
.

2 do
3 Based on Pfixed

Ŷ2|Y2
and newly obtained P(t)

Ŷ1|Ŷ1
, compute and update

d(t)(y1, ŷ1)← β1 ∑
ŷ2

PŶ2|Y1
DKL

(
PX1X2|Y1Ŷ2

||P(t)
X1X2|Ŷ1Ŷ2

)
.

4 Set P(t+1)
Ŷ1|Y1

← P(t)
Ŷ1

2−d(t)(y1,ŷ1)/ ∑
ŷ1

P(t)
Ŷ1

2−d(t)(y1,ŷ1).

5 Set t← t + 1.

6 while ∑
y1,ŷ1

∣∣∣P(t)
Ŷ1|Y1
− P(t−1)

Ŷ1|Y1

∣∣∣ /(|Y1| · |Ŷ1|) ≥ ε1

7 Set Poptimal
Ŷ1|Y1

← P(t)
Ŷ1|Y1

, then compute

c1 = I(Y1; Ŷ1) and Rsum = I(X1, X2; Ŷ1, Ŷ2) based on it.
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the noise level can be estimated by the BBU pool, where the optimization is per-

formed. Hence, the probability distribution PY1,Y2|X1,X2
, which describes the radio

access channel between UEs and eRRHs is known and acts as an input parameter.

Before the optimization starts, the cardinality of the compression index, i.e., |Ŷ1|
shall also be predetermined. It is usually determined by how much fronthaul ca-

pacity is available: When the fronthaul has more capacity, the cardinality can be

set larger, which can support finer quantization and preserve more relevant infor-

mation. Parameter ε2 denotes a predetermined tolerance factor, which is used to

determine when to terminate the algorithm.

β2 > 0 is the input trade-off factor. As introduced in Subsection 2.2, when the con-

ventional IB method is adopted, β is the input parameter of the method. Different

values of β > 0 will yield different optimal points on the trade-off curve, via the IB

method. Hence, different optimal trade-off points
{

I(Y2; Ŷ2|Ŷ1), I(X1, X2; Ŷ1, Ŷ2)
}

can be acquired, by inserting different values of β2 to Function IB2. Steps 2 to 6

in Function IB2 are the iterative optimization steps for PŶ2|Y2
until reaching the

convergence, which follows the instructions of the IB method [TPB99]. Based

on the input probability distributions of Function IB2, all required probability

distributions used in step 3 to calculate d(t)(y2, ŷ2), can be derived with basic rules

introduced in the probability theory. Then in step 7, the optimized compression

rate c2, which is associated with the input value of β2, and the corresponding

maximized I(X1, X2; Ŷ1, Ŷ2) are acquired. As the derivation of these iterative steps

are the same as the conventional IB method, it is omitted here, mathematical details

can be found in [TPB99] or [Zei11]. In Fig. 3.3, we fix a valid PŶ1|Y1
, by ranging β2

from 0.1 to 50 and running proposed Function IB2 repeatedly, the concave trade-off

curve in blue is plotted.

2. Similarly, when the second quantizer PŶ2|Y2
is fixed and the chain rule is adopted,

the trade-off between max
PŶ1 |Y1

I(X1, X2; Ŷ1, Ŷ2) = I(X1, X2; Ŷ2) + max
PŶ1 |Y1

I(X1, X2; Ŷ1|Ŷ2)

and the compression rate c1 = I(Y1; Ŷ1) can also be obtained with the conventional

IB method, as summarized in Function IB1. In this case, the fixed quantizer of

eRRH 2, i.e., Pfixed
Ŷ2|Y2

, becomes the input, and β1 > 0 denotes the trade-off factor. In

Fig. 3.3, the corresponding concave trade-off curve is plotted in red.

Remarks on Fig. 3.3: As introduced above, by running Function IB1 and IB2, a

specific value of β1 corresponds only to a specific point on the red curve, and a

specific value of β2 will generate a specific point on the blue curve. In this figure,

when we set β1 = β2 = 0.1 as the input parameter to Function IB1 and IB2, the

leftmost points on the red and blue curve can be obtained, respectively. When we

increase their values, more optimal trade-off points are acquired towards right. We

say they are optimal trade-off points, as with a specific compression rate (x-axis),
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Figure 3.3: The trade-off between the preserved information I(X1, X2; Ŷ1, Ŷ2) and
the compression rates. BPSK modulation, h11 = 1, h12 = 0.4, h21 = 0.6, h22 =
0.9, P1 = 1, P2 = 0.5, σ2

n = 1, |Ŷ1| = |Ŷ2| = 8, ε1 = 0.0003, β1, β2 ∈ [0.1, 50].

the curve depicts the upper-bound such that how much relevant information can

be preserved. In the C-RAN/F-RAN model considered in this work, by increasing

the value of β1 and β2, the fronthauls have to support the transmission of higher

compression rate, but more relevant information can be finally preserved for the

uplink transmission.

Then we go back to the original problem (3.2). As the signals received at two eR-

RHs are correlated and the Wyner-Ziv coding is executed for compression, the two

quantizers shall be optimized jointly. In other words, the optimization of one quan-

tizer always influences the optimization of the other, i.e., I(Ŷ1|Y1) depends also

on PŶ2|Y2
, and vice versa. We tackle this problem in an alternating manner: The

trade-off between the correlated compression rate pair
(

I(Ŷ1; Y1), I(Ŷ2; Y2|Ŷ1)
)
, and

I(X1, X2; Ŷ1, Ŷ2) can be obtained, by running Function IB1 and IB2 alternatively,

such that the optimized quantizer obtained from one IB function is the input fixed

quantizer of the other, until reaching the convergence. Such an Alternating Infor-

mation Bottleneck (AIB) method is summarized in Function AIB.

Similarly to the conventional IB method, in the AIB method proposed for the two-

eRRH case, a specific trade-off factor pair (β1, β2) corresponds to a specific com-

pression rate pair of the two eRRHs. Furthermore, the corresponding upper-bound

of the preserved information with this compression rate pair can be acquired via the
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Function AIB(|Ŷ1|, |Ŷ2|, PY1,Y2|X1,X2
, β1, β2, ε1, ε2, εAIB)

Input : |Ŷ1|, |Ŷ2|, PY1,Y2|X1,X2
, β1, β2, ε1, ε2, εAIB

Output : [c1, c2, Rsum]

OptionalOutput: [Poptimal
Ŷ1|Y1

, Poptimal
Ŷ2|Y2

]

1 begin
Initialization : Randomly select a valid initial mappings P(0)

Ŷ1|Y1
and

P(0)
Ŷ2|Y2

, then set t← 0.

2 do
3 Execute Function IB1: P(t+1)

Ŷ1|Y1
= IB1(P(t)

Ŷ1|Y1
, P(t)

Ŷ2|Y2
, |Ŷ1|, β1, ε1).

4 Execute Function IB2: P(t+1)
Ŷ2|Y2

= IB2(P(t+1)
Ŷ1|Y1

, P(t)
Ŷ2|Y2

, |Ŷ2|, β2, ε2).

5 Set t← t + 1.
6 while

∑
y1,ŷ1

∣∣∣P(t)
Ŷ1|Y1
− P(t−1)

Ŷ1|Y1

∣∣∣ /(|Y1| · |Ŷ1|) + ∑
y2,ŷ2

∣∣∣P(t)
Ŷ2|Y2
− P(t−1)

Ŷ2|Y2

∣∣∣ /(|Y2| · |Ŷ2|) ≥

εAIB

7 Set Poptimal
Ŷ1|Y1

← P(t)
Ŷ1|Y1

, Poptimal
Ŷ2|Y2

← P(t)
Ŷ2|Y2

, then compute

c1 = I(Y1; Ŷ1), c2 = I(Y2; Ŷ2|Ŷ1) and Rsum = I(X1, X2; Ŷ1, Ŷ2) based on
them.

AIB method. If the value of β1 or β2 is increased, higher corresponding compression

rate at eRRH 1 or eRRH 2, and its associated compression strategy can be obtained

with the AIB method, respectively. Moreover, the maximized preserved informa-

tion can also be increased. Therefore, by inserting different value pairs of (β1, β2)

into the AIB method, the optimal trade-off surface can be plotted. In step 7 of Func-

tion AIB, the optimized compression strategies for quantizers are acquired, which

correspond to a specific point on the trade-off surface, i.e., the compression rate

pair
(

I(Y1; Ŷ1), I(Y2; Ŷ2|Ŷ1)
)
, that is associated with the trade-off factor pair (β1, β2)

input to the algorithm, and the corresponding maximized preserved information

I(X1, X2; Ŷ1, Ŷ2). Such a trade-off surface will be given later in Fig. 3.6 of Subsection

3.5.1, where numerical results are provided. Before that, the convergence analysis

of the AIB method shall be discussed.

3.2.2 Convergence Analysis

The proposed AIB method will definitely converge to at least a local optimal point.

Note that in Function IB2, for the any fixed PŶ1|Y1
, it will definitely converge to the

point where I(X1, X2; Ŷ2|Ŷ1) is at least locally maximized, due to the convergence

analysis of the conventional IB method [TPB99]. Therefore, the sum rate, or equiva-

lently the preserved information of two UEs, i.e., I(X1, X2; Ŷ2, Ŷ1) = I(X1, X2; Ŷ1) +

I(X1, X2; Ŷ2|Ŷ1) is also at least locally maximized, as the first term is temporarily

fixed in the current alternating step. Then in the next step of the AIB method, the
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optimized PŶ2|Y2
is set as the fixed input parameter for Function IB1, with which

PŶ1|Y1
can be optimized, in order to further maximize I(X1, X2; Ŷ1|Ŷ2), and thus

I(X1, X2; Ŷ1, Ŷ2). Hence, for specific compression rates, the value of I(X1, X2; Ŷ1, Ŷ2)

will at least not decrease in each alternating step, and thus can definitely converge

to a local optimal point [RHL13]. As the problem is generally non-convex, similar to

the convectional IB method, we can start with different initial points, i.e., different

initial mappings P(0)
Ŷ1|Y1

and P(0)
Ŷ2|Y2

, in the AIB method to acquire better results.

3.2.3 Extension to More UEs and eRRHs with Multiple Antennas

When more than two UEs and two eRRHs exist in the network, such an alterna-

tive mechanism can still be utilized, and as stated before, it is conceptually easy to

be extended. In this scenario, for each eRRH, we still fix all the other quantizers,

and optimize the quantizer of this specific eRRH with the conventional IB method.

Then the optimized result is set as the fixed input, so as to optimize the next one.

We can definitely do these steps alternatively until reaching the convergence, as the

proof of the convergence for this case is similar to what we have introduced above.

When multiple antennas are mounted on each eRRH, the received signals at differ-

ent antennas of each eRRH are also correlated with each other, thus the Wyner-Ziv

coding can still be utilized for the compression of them. In such a scenario, for any

specific eRRH, the received signal at different antennas can be compressed by differ-

ent quantizers. Each multiple-antenna eRRH can be regarded as being composed

of several single-antenna sub-eRRHs. Hence, the proposed algorithm can still be

adopted. But we must comment again that although such a conceptual extension is

straightforward, the computational complexity increases exponentially.

3.3 The Alternating Bi-Section Method

Note that the AIB method can generate the optimal trade-off surface via inputting

different values of the Lagrange multiplier vector β exhaustively. As we have stated

several times above, each specific β corresponds to a specific compression rate vec-

tor, optimized compression strategies among all eRRHs, and the maximized pre-

served mutual information. For a specific network where the capacity of each fron-

thaul is know and fixed, it is better to know the exact value of vector β, whose corre-

sponding compression rate vector can exactly equal to the fronthaul capacity vector,

in order to fully exploit the fronthaul capacity resources for preserving as much rele-

vant information as possible. For locating vector β that exactly matches the available

fronthaul capacity, we introduce a so-called alternating Bi-Section method, which is

originated from the conventional Bi-Section method.
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To be more specifically, we still take the scenario of two-UE two-eRRH as an ex-

ample for simpler introduction. After setting up the trade-off surface numerically

through the input trade-off pair (β1, β2) with the AIB method, we have to locate

the point such that the constraints in (3.2) can be fulfilled simultaneously. Obvi-

ously, in order to fully exploit the fronthaul resource, the trade-off point where

I(Y1; Ŷ1) = CFH,1 and I(Y2; Ŷ2|Ŷ1) = CFH,2 is to be found, then the correspond-

ing maximized preserved information I(X1, X2; Ŷ1, Ŷ2), as well as the compression

strategies described by PŶ1|Y1
and PŶ2|Y2

, are the solution for (3.2). Of course, we can

achieve this by inserting different trade-off factor pairs (β1, β2), over a sufficiently

fine grid of values in an exhaustive manner, until the point where c1 = CFH,1 and

c2 = CFH,2 hold is finally found. Such an approach is apparently rather inefficient.

As we have illustrated before, in the case of one quantizer, the compression rate c,

which is resultant from the optimized compression strategy by the convectional IB

method, increases by inputting larger value of β to the IB method [TPB99]. Thus,

we can use the conventional Bi-Section method to locate any specific value of β,

such that at the point on the trade-off curve where slope is 1/β, the corresponding

compression rate c exactly equals to the available capacity of the constraint link.

For details please refer to [Zei11]. However, in C-RAN/F-RAN, there are multiple

correlated quantizers, such that the resultant compression rate of a quantizer also

depends on the achievable compression rates of the others. Therefore, the conven-

tional one-dimensional Bi-Section method can not be directly utilized here. In order

to deal with such a correlated compression scenario, we extend it to the alternating

Bi-Section method below.

For a better illustration of the proposed algorithm, we execute the AIB function

firstly, with different values of input trade-off factor pairs (β1, β2), and plot the re-

sultant compression rate c1 as the function of it, as depicted in Fig. 3.4. We see

that the compression rate at eRRH 1, i.e., c1, depends mainly on the input value

of β1: When β2 is fixed, the value of c1 is monotonically increasing with that of

β1, e.g., (3, 1, 0.6581) − −(9, 1, 1.3357) − −(17, 1, 1.7892), which is the same as the

conventional one quantizer scenario. Thus, we state that the value of c1 is in direct

association with the value of β1. However, as the compression strategies between

quantizers influence each other, the value of β2 also slightly affects the value of

c1, as shown by the marked points in Fig. 3.4, e.g., (9, 1, 1.3357)−−(9, 4, 1.2709)−
−(9, 18, 1.1718). Thus, we state that the value of c1 is in indirect association with that

of β2. If we adopt the conventional Bi-Section method to locate β1 and β2 individu-

ally, i.e., the value of β1 is located where c1(β1) = CFH,1 fulfills, then we fix this β1

and locate the value of β2 until obtaining c2(β2) = CFH,2, the newly located value of

β2 (the indirect trade-off factor of c1) will make c1 slightly deviate from the previous

value, and vice versa. Hence, the trade-off factor pair must be located somehow

jointly, instead of independently with the conventional Bi-Section method. Similar

to the AIB method, an alternating approach is proposed to achieve such a target: By
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Figure 3.4: The relationship between the input trade-off factor pair (β1, β2) and the
output compression rate c1. The same channel setup of Fig. 3.3 is assumed.

fixing the value of the indirect associated trade-off factor β j, j ∈ {1, 2}\{i} for com-

pression rate ci, locating βi and its directly associated compression rate ci becomes

the same as the one quantizer scenario, where the conventional Bi-Section method

can be adopted. After the specific value of βi is located, its associated compression

rate now fulfills ci = CFH,i, under the condition that the other indirect trade-off

factor is fixed. In the next alternating step, this newly located trade-off factor is

fixed and the conventional Bi-Section method is adopted to locate the value of the

other one. Such steps are executed alternatively until reaching convergence. The

alternating Bi-Section method for the two-eRRH scenario is summarized in Alg. 1.

In the algorithm, [βimin, βimax] indicates the searching range of βi. CFH,i denotes the

target compression rate for the i-th eRRH, which equals to its fronthaul capacity.

η, ζ are the tolerance parameters used for terminating the Bi-Section search. From

step 5 to step 13, the value of β2 is fixed, and the Bi-Section method is executed

to locate the value of β1: At this point, its associated compression rate c1 fulfills

c1 = CFH,1. Then the value of β2 is located, by fixing the value of β1 from step 14 to

step 22. These steps are executed repeatedly and alternatively until reaching con-

vergence. After the trade-off factor pair is located via such an alternating manner,

the AIB method is executed again in step 25, with which the corresponding opti-

mal quantizers and the maximized sum rate are calculated. The optional output

in Alg. 1 yields the compression rate pair (c1, c2), which is associated with the lo-
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Algorithm 1: the alternating Bi-Section method

Input : PY1,Y2|X1,X2
, |Ŷ1|, |Ŷ2|, β1max, β1min, β2max, β2min

Input : CFH,1, CFH,2, ε1, ε2, εAIB, η, ζ

Output : Rsum, Poptimal
Ŷ1|Y1

, Poptimal
Ŷ2|Y2

OptionalOutput: c1, c2
1 begin
2 Set t← 0, β

(0)
1 ← (β1max + β1min)/2,

3 β
(0)
2 ← (β2max + β2min)/2.

4 do
5 Set β1U ← β1max, β1L ← β1min
6 while β1U − β1L > η do
7 Set β̃1 ← (β1U + β1L)/2
8 Execute Function AIB: [c1,∼,∼]=AIB

(|Ŷ1|, |Ŷ2|, PY1,Y2|X1,X2
, β̃1, β

(t)
2 , ε1, ε2, εAIB)

9 if c1 < CFH,1 then
10 Set β1L ← β̃1
11 else
12 Set β1U ← β̃1

13 Set β
(t+1)
1 ← (β1U + β1L)/2

14 Set β2U ← β2max, β2L ← β2min
15 while β2U − β2L > η do
16 Set β̃2 ← (β2U + β2L)/2
17 Execute Function AIB: [∼, c2,∼]=AIB

(|Ŷ1|, |Ŷ2|, PY1,Y2|X1,X2
, β

(t+1)
1 , β̃2, ε1, ε2, εAIB)

18 if c2 < CFH,2 then
19 Set β2L ← β̃2
20 else
21 Set β2U ← β̃2

22 Set β
(t+1)
2 ← (β2U + β2L)/2

23 Set t← t + 1

24 while |β(t)
1 − β

(t−1)
1 |+ |β(t)

2 − β
(t−1)
2 | ≥ ζ

25 Execute Function AIB: [c1, c2, Rsum, Poptimal
Ŷ1|Y1

, Poptimal
Ŷ2|Y2

]=AIB

(|Ŷ1|, |Ŷ2|, PY1,Y2|X1,X2
, β

(t)
1 , β

(t)
2 , ε1, ε2, εAIB)
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cated trade-off factor pair (β1, β2). We can easily verify whether such an algorithm

generates correct results, by testing if (c1, c2) = (CFH,1, CFH,2) holds.

3.4 Fronthaul Capacity Allocation

As already stated in Section 1.2 when we introduce C-RAN, the fronthaul can be

constructed via different technologies, e.g., the optical fiber communication, or the

millimeter wave communication. The former one usually corresponds to the wired

fronthaul, such that the capacity of each fronthaul is fixed and the infrastructures

are deployed in advance. The fronthauling procedures to or from different eRRHs,

do not have influences on each other. In the last subsection, where the quantizers

are optimized via the proposed AIB method and the alternating Bi-Section method,

such a network configuration is assumed: The fronthaul capacity for eRRH 1 and

eRRH 2 are predetermined and fixed. Thus, we can locate value of (β1, β2), whose

corresponding compression rate pair (c1, c2) can fully exploit the available fron-

thaul capacity (CFH,1, CFH,2). In contrast, the latter case usually corresponds to the

wireless fronthaul, which is probably the only feasible realization, for the dense or

heterogeneous 5G network [DC15]. In this case, it is usually not possible to deploy

a large amount of fronthauls with, e.g., optical fibre, in advance. This is on one

hand due to the high costs, it also might be, on the other hand, not efficient, as the

traffic load on different fronthauls are not known in advance, and might even vary

drastically over time. Therefore, a predetermined fronthaul capacity might lead to

an inefficient operation of a practical network. Thanks to the wireless fronthaul, the

fronthaul resources can be dynamically shared among all eRRHs. However, such

non-dedicated fronthaul resources render the problem above much more compli-

cated. As the capacity of each fronthaul is not predetermined, the allocation is also

subject to optimization. Hence, no compression rate target is available to the pro-

posed alternating Bi-Section method. Then the question is: How can we utilize the

AIB method and the alternating Bi-Section method to locate any point, when it is

even not known? Moreover, the fronthaul capacity allocation scheme to each eRRH

apparently influences the design of the optimal compression strategies for quantiz-

ers, and different design of the quantizers also results in different resource allocation

schemes. Such an interaction between the optimization of the compression strate-

gies, and the fronthaul resource allocation scheme generates a more complicated

problem, in which a joint optimization of both compression and resource allocation

seems to be necessary, i.e., the BBU pool has to jointly optimize the compression pro-

cedure for each eRRH, as well as how much fronthaul capacity has to be allocated

to it. This is the topic we are going to address in this subsection.

Furthermore, when it comes to the problem of the resource allocation, another issue

is usually quite important: The QoS weights for different UEs: The QoS requirement



3.
4.

Fr
on

th
au

lC
ap

ac
ity

Al
lo

ca
tio

n

3

58

Y1 : Ŷ1
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Figure 3.5: The abstract model for the uplink of F-RAN with non-dedicated fron-
thaul.

of a specific UE can be higher than that of the others. Hence, a finer compression

strategy is expected for this UE, and the transmission of the information for this UE

needs more biased fronthaul resource allocation. In this subsection, we further ex-

tend the proposed two methods, and utilize the Outer Linearization Method (OLM)

[BSS16], to tackle such a complicated problem.

3.4.1 System Model and Problem Formulation

The system model we considered is illustrated in Fig. 3.5, where all fronthauls share

the total capacity of CFH. Different UEs have different predetermined QoS weights

or priorities, according to the contents of their message. Such weights are assumed

to be known at the BBU pool. We adopt wk to denote the QoS weight of UE k.

The larger the value of wk is, the higher QoS requirement of this UE has. All other

notations and assumptions are the same as in Subsection 3.1.7.

We aim to maximize the achievable weighted uplink sum rate [Par+14] for a F-RAN

as follows:

max
PŶ |Y

K

∑
k=1

wkRk,

subject to I(Y ; Ŷ) ≤ CFH,

(3.3)

where PŶ |Y =
N
∏

n=1
PŶn|Yn

. Rk denotes the achievable uplink rate of UE k. By manip-

ulating the value of w = {w1, w2, ..., wK}, different QoS priorities can be granted to

different UEs.
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From the perspective of the BBU pool, the network acts as a MIMO-MAC, the

capacity-achieving strategy in the MIMO-MAC is based on the well-known Succes-

sive Interference Cancellation (SIC) scheme [Gol12]. However, the optimal detec-

tion order for SIC is NP-hard. In practice, some predetermined fixed detection order

is usually executed according to some criteria. According to [BW06], the solution

of (3.3) is given by the detection order π that sorts the weights in a non-decreasing

order

wπ1 ≤ wπ2 ≤ · · · ≤ wπk−1 ≤ wπk .

The UE with smaller QoS target is decoded before the UE with larger QoS weight

coefficient, and all decoded symbols act as side information when the next symbols

are decoded, so as to achieve higher rates for UEs with higher QoS targets. As in

[BW06], such a decoding order has been shown to be close to optimal , we just adopt

it here, as the the optimization for the SIC detection order is beyond the scope of this

work.

Without loss of generality, we assume wK ≥ wK−1 ≥ · · · ≥ w1, i.e., symbol X1 from

UE 1 with the lowest QoS requirement is to be decoded at first, symbol XK from UE

K with the highest QoS requirement is to be decoded at last. Thus, the achievable

rate for UE k can be written as

Rk = I(Xk; Ŷ |X1, X2, ..., Xk−1), ∀k ∈ {1, 2, ..., K}. (3.4)

The constraint of (3.3) can also be expressed as

I(Yn; Ŷn|Ŷ1, Ŷ2, ..., Ŷn−1) ≤ CFH,n, ∀n ∈ {1, 2, ..., N},
N

∑
n=1

CFH,n = CFH.
(3.5)

where CFH,n denotes the fronthaul capacity allocated to eRRH n, which is subject to

be optimized at the BBU pool. Obviously, a joint optimization of all compression

strategies and the fronthaul capacity allocation is required. In order to make this

problem more tractable and easier to be solved, we optimize them in a sequential

and iterative way: Generally speaking, we suppose that the capacity of each fron-

thaul is predetermined at first, and optimize all quantizers jointly, via the proposed

AIB method and the alternating Bi-Section method with the steps proposed in the

previous subsections. Then we utilize the Outer Linearization Method (OLM), with

which a mechanism is proposed, for the optimization of capacity allocation under

the newly optimized compression strategies. Then in the next loop, the resultant

fronthaul capacity allocation from OLM is regarded as known and predetermined,

under which the compression strategies will be further updated.
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3.4.2 Optimization with Predetermined Capacity Allocation

In this subsection, we will focus on the procedures to maximize the weighted up-

link sum rate, by assuming that the fronthaul capacity allocation scheme is prede-

termined and known to the BBU pool. We will address the joint optimization of the

resource allocation and the compression in the next subsection. Here, the proposed

AIB method and the alternating Bi-Section method can be readily utilized to opti-

mize the compression strategies, for UEs with different QoS requirements, under

the current predetermined resource allocation scheme.

Similar to Subsection 3.2.1, for the ease of the introduction, we still assume that the

F-RAN consists of two UEs and two eRRHs, and each is equipped with a single

antenna. Moreover, as the resource allocation is supposed to be predetermined and

known, the problem (3.3) can be expressed as follows:

max
PŶ1 |Y1

PŶ2 |Y2

w1 I(X1; Ŷ1, Ŷ2) + w2 I(X2; Ŷ1, Ŷ2|X1),

subject to I(Y1; Ŷ1) ≤ CFH,1,

I(Y2; Ŷ2|Ŷ1) ≤ CFH,2.

(3.6)

For the starting point, the resource allocation scheme, i.e., the value of CFH,1 > 0

and CFH,2 > 0 can be selected arbitrarily, as long as CFH,1 + CFH,2 = CFH is fulfilled.

By expressing Rwsum = w1 I(X1; Ŷ1, Ŷ2) + w2 I(X2; Ŷ1, Ŷ2|X1) and adopting the chain

rule and the proposed AIB method, we summarize the function to optimize the

compression strategy for each eRRH as follows, which is quite similar to Function

IB1 and IB2 in Subsection 3.2.1. Therefore, they are introduced here without deriva-

tions in detail, but the differences compared to Function IB1 and IB2 in Subsection

3.2.1 are highlighted in red.

After acquiring these two functions, we can adopt the corresponding AIB method

to construct the optimal trade-off surface, and utilize the proposed alternating Bi-

Section method to locate specific points on the trade-off surface. The procedure is

the same as introduced in Subsection 3.2.1 and Section 3.3.

3.4.3 The Overall Algorithm for Fronthaul Capacity Allocation

In the last subsection, the fronthaul capacity allocated to each eRRH is supposed to

be predetermined and known to the BBU pool. Then we adopted the AIB method

and the alternating Bi-Section method to optimize the compression strategies, such

that the corresponding compression rate vector can exactly fully exploit the prede-

termined fronthaul capacities simultaneously. In this subsection, we address the
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Function wIB1(Pinit
Ŷ1|Y1

, Pfixed
Ŷ2|Y2

, PY1,Y2|X1,X2
, |Ŷ1|, β1, ε1)

Input : Pinit
Ŷ1|Y1

, Pfixed
Ŷ2|Y2

, PY1,Y2|X1,X2
, |Ŷ1|, β1, ε1

Output : [Poptimal
Ŷ1|Y1

, c1, Rwsum]

1 begin
Initialization: Set t← 0, then set the initial mapping P(t)

Ŷ1|Y1
← Pinit

Ŷ1|Y1
.

2 do
3 Based on Pfixed

Ŷ2|Y2
and newly obtained P(t)

Ŷ1|Y1
, compute and update

d(t)(y1, ŷ1)← w1β1 ∑
ŷ2

PŶ2|Y1
DKL

(
PX1X2|Y1Ŷ2

||P(t)
X1X2|Ŷ1Ŷ2

)
+

(w2 − w1)β1 ∑
ŷ2

PŶ2X2|Y1
DKL

(
PX1|Y1Ŷ2X2

||P(t)
X1|Ŷ1Ŷ2X2

)
.

4 Set P(t+1)
Ŷ1|Y1

← P(t)
Ŷ1

2−d(t)(y1,ŷ1)/ ∑
ŷ1

P(t)
Ŷ1

2−d(t)(y1,ŷ1).

5 Set t← t + 1.

6 while ∑
y1,ŷ1

∣∣∣P(t)
Ŷ1|Y1
− P(t−1)

Ŷ1|Y1

∣∣∣ /(|Y1| · |Ŷ1|) ≥ ε1

7 Set Poptimal
Ŷ1|Y1

← P(t)
Ŷ1|Y1

, then compute c1 = I(Y1; Ŷ1) and Rwsum based on it.

Function wIB2(Pfixed
Ŷ1|Y1

, Pinit
Ŷ2|Y2

, PY1,Y2|X1,X2
, |Ŷ2|, β2, ε2)

Input : Pfixed
Ŷ1|Y1

, Pinit
Ŷ2|Y2

, PY1,Y2|X1,X2
, |Ŷ2|, β2, ε2

Output : [Poptimal
Ŷ2|Y2

, c2, Rwsum]

1 begin
Initialization: Set t← 0, then set the initial mapping P(t)

Ŷ2|Y2
← Pinit

Ŷ2|Y2
.

2 do
3 Based on Pfixed

Ŷ1|Y1
and newly obtained P(t)

Ŷ2|Y2
, compute and update

d(t)(y2, ŷ2)←
w1β2 ∑

ŷ1

PŶ1|Y2
DKL

(
PX1X2|Ŷ1Y2

||P(t)
X1X2|Ŷ1Ŷ2

)
−∑

ŷ1

PŶ1|Y2
log2

(
P(t)

Ŷ2|Ŷ1

)
+

log2

(
P(t)

Ŷ2

)
+ (w2 − w1)β2 ∑

ŷ1

PŶ1X2|Y2
DKL

(
PX1|Ŷ1Y2X2

||P(t)
X1|Ŷ1Ŷ2X2

)
.

4 Set P(t+1)
Ŷ2|Y2

← P(t)
Ŷ2

2−d(t)(y2,ŷ2)/ ∑
ŷ2

P(t)
Ŷ2

2−d(t)(y2,ŷ2).

5 Set t← t + 1.

6 while ∑
y2,ŷ2

∣∣∣P(t)
Ŷ2|Y2
− P(t−1)

Ŷ2|Y2

∣∣∣ /(|Y2| · |Ŷ2|) ≥ ε2

7 Set Poptimal
Ŷ2|Y2

← P(t)
Ŷ2|Y2

, then compute c2 = I(Y2; Ŷ2|Ŷ1) and Rwsum based on
it.
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optimization of the fronthaul capacity allocation, where the total capacity is to be

allocated among eRRHs, so as to maximize the weighted uplink sum rate of the

F-RAN. The proposed mechanism combines the AIB method, the alternating Bi-

Section method, and the Outer Linearization Method (OLM) [BSS16].

Note that in the original problem (3.3), the objective function is concave, with re-

spect to the compression rates. Moreover, the sum of all compression rates is lim-

ited by the sum capacity CFH, which is also a linear inequality constraint. Thus, the

original problem (3.3) is actually a convex optimization problem, with respect to the

eRRH compression rate vector c. As the proposed AIB method and the alternating

Bi-Section method can be utilized for calculating the value of the objective function,

for different vectors c, the original problem (3.3) can be solved by standard convex

optimization methods in an iterative manner. Here, similar to [Zei11], we can utilize

the OLM to achieve this target. The overall procedures are listed as follows:

1. Select an arbitrarily valid capacity allocation, C(0) =
[
C(0)

FH,1, C(0)
FH,2, ..., C(0)

FH,N

]T
,

such that ∑N
n=1 C(0)

FH,n = CFH is fulfilled. Set ` = 0, fLB = −1 and fUB to be

large enough. Set δ be the predetermined tolerance factor for terminating the

algorithm.

Repeat step 2 to step 4 as below until fUB − fLB ≤ δ.

2. Use the proposed AIB and the alternating Bi-Section method to update the

trade-off factor vector β(`) =
(

β
(`)
1 , β

(`)
2 , ..., β

(`)
N

)
, which is associated with the

current capacity allocation scheme C(`).

3. From step 2, the corresponding maximized weighted uplink sum rate

R(`)
wsum can be acquired. Set fLB = R(`)

wsum and the sub-gradient g(`) =(
1/β

(`)
1 , 1/β

(`)
2 , ..., 1/β

(`)
N

)
and b(`) = R(`)

wsum − C(`) · (g(`))T.

4. Then construct and solve the linear problem below

max
C

s, (3.7)

s.t. C · (g(l))T + b(l) ≥ s, l = 0, 1, ..., `− 1, (3.8)
N

∑
n=1

CFH,n = CFH. (3.9)

Let (s∗, C∗) be the maximizer, set fUB = s∗, C(`+1) = C∗, and ` = `+ 1.

In step 2 and 3 of the algorithm above, the optimized quantizers for a specific fron-

thaul capacity allocation scheme is obtained. Then in step 4, we fix the quantization
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scheme but optimize only the fronthaul capacity allocation. Note that when the

quantizers are all fixed, the original problem (3.3) is just a Linear Programming (LP)

problem with respect to C = [CFH,1, CFH,2, ..., CFH,N ]
T. Moreover, we can easily ac-

quire the sub-gradient by inverting β. The second constraint (3.9) guarantees that

the newly generated allocation scheme fulfills the total capacity constraint. The

constraints (3.8), together with the objective (3.7), aim to re-distribute the fronthaul

capacity to reach a point, such that higher Rwsum can be achieved.

3.5 Numerical Results

In order to evaluate the performance of the proposed algorithms, in this section,

some numerical results will be given. The environment is set up and simulated

using MATLAB. For solving the optimization problems, we adopt CVX.

3.5.1 The AIB Method and the Alternating Bi-Section Method

In this subsection the performance of the proposed AIB method and the alternating

Bi-Section method are to be evaluated, with which we are able to investigate its

performance for the uplink transmission of the F-RAN, and derive some design

guidelines.

General Setup: A network consisting of two-UE and two-eRRH is considered, each

device is equipped with a single antenna. BPSK modulation is adopted for sim-

plicity. The received analogue signal at each eRRH is sampled and discretized with

7 bits/sample, thus we have |Yi| = 128 before the compression executed by the

quantizers. Then each eRRH will quantize the signals into eight quantization lev-

els. i.e., at most 3 bits/sample, and then we have |Ŷi| = 8. Moreover, we set β1max =

β2max = 260, β1min = β2min = 0.1, ε1 = ε2 = 3× 10−4, εAIB = 10−5, η = ζ = 0.01,

which are the predetermined parameters required in the proposed algorithms.

At first the effectiveness and correctness of the proposed AIB method is to be veri-

fied, as shown in Table 3.1. We input different trade-off factor pairs (β1, β2) to the

AIB function (in column 2), then the output are the compression rate pairs (c1, c2)

(in column 3), which are associated with the input trade-off factor pairs (β1, β2), as

well as the corresponding maximized uplink sum rates Rsum (in column 4). In other

words, the data in column 3 and column 4 are the points on the trade-off surface,

which is calculated via the proposed AIB method by inserting the factor pairs listed

in column 1. Then we set (c1, c2), which is generated by the AIB method, as the

input target rate pair to the alternating Bi-Section method, and utilize it to locate
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Table 3.1: The comparison between the located points with the original ones, with
h11 = 1, h12 = 0.4, h21 = 0.6, h22 = 0.9, P1 = 1, P2 = 0.5 and σ2

n = 1.
No. (β1, β2) (c1, c2) Rsum (c?1 , c?2) R?

sum
1 (5, 8) (0.7886, 0.9386) 0.5599 (0.7887, 0.9389) 0.5600
2 (25, 15) (1.9244, 1.3326) 0.7107 (1.9243, 1.3328) 0.7107
3 (50, 50) (2.3920, 2.1718) 0.7578 (2.3920, 2.1718) 0.7578
4 (10, 250) (1.2306, 2.7249) 0.7057 (1.2305, 2.7249) 0.7057
5 (230, 20) (2.8843, 1.5341) 0.7424 (2.8843, 1.5342) 0.7424
6 (260, 260) (2.9003, 2.7049) 0.7705 (2.9003, 2.7049) 0.7705

them. The AIB method can be claimed to work as expected and generate the correct

results, as long as the output of the alternating Bi-Section method, i.e., (c?1 , c?2) (in

column 5) and R?
sum (in column 6) equals to the compression rate targets (c1, c2) and

Rsum, respectively. From the results in Table 3.1, we observe that the algorithm has

the capability, to locate the target compression rate pairs with high precision. There-

fore, if the F-RAN adopts these algorithms to design the compression strategies, the

resultant compression rates are able to meet the fronthaul capacities exactly to fully

exploit the available fronthaul resources.

In the next step, we set different target compression rate pairs (c1, c2), and utilize

the proposed AIB method to acquire the optimal trade-off surface, between the com-

pression rate pair
(

I(Y1; Ŷ1), I(Y2; Ŷ2|Ŷ1)
)

and the corresponding maximized uplink

sum rate I(X1, X2; Ŷ1, Ŷ2), as shown in Fig 3.6. From the figure we can easily observe

that it is a convex and increasing surface with respect to the compression rate pair,

which is in line with the theory. The maximal uplink sum rate can be increased,

if either compression rate is increased. In other words, if the fronthaul has higher

capacity, the quantization steps can be finer, more relevant information can be pre-

served at the destination, and thus the uplink sum rate will be more and more close

to the theoretical limit I(X1, X2; Y1, Y2) = 0.9203 (when no quantization needed,

i.e., the fronthauls can support the transmission of the un-quantized signals) of this

case. In particular, if the compression rate pair (2.9, 2.7) can be supported by the

fronthauls of eRRH 1 and eRRH 2, respectively, the total achievable rate will reach

0.9135, which we have marked on the trade-off surface.

As stated in Subsection 3.4.1, at the BBU pool, the decompression order of the com-

pressed signals from different eRRHs can generally affect the achievable perfor-

mance. We adopt the strategy such that the signals coming from the eRRHs with

larger fronthaul capacity are decompressed at first, and then those with smaller

ones. Now, the proposed algorithms are to be used for investigating the relation-

ship between the decompression orders and the fronthaul capacities, as well as the

reliability of the signals received by eRRHs. Hence, we manually allocate the total

fronthaul resources to different eRRHs, in order to know the performance of the

same decompression order for different capacity allocation schemes. Moreover, dif-
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Figure 3.6: The trade-off surface between the compression rates and the preserved
information I(X1, X2; Ŷ1, Ŷ2), with h11 = 1, h12 = 0.4, h21 = 0.6, h22 = 0.9, P1 =
P2 = 1, w1 = w2 = 1.

ferent noise levels are set at different eRRHs, i.e., σ2
n,i denotes the noise power at

eRRH i. According to different assignments of noise power, we group the simula-

tions into four cases, as shown in Fig. 3.7. The four groups are classified by different

noise power and different SNR regimes at different eRRHs:

• Group 1: eRRH 1 and eRRH 2 experience the same noise level of 0.5, but

different decompression orders are executed at the BBU pool (e.g., 1 → 2

denotes that the compressed signal from eRRH 1 is decompressed at first).

• Group 2: eRRH 1 and eRRH 2 experience different noise levels, the signal

received by eRRH 2 is more reliable, as its noise power is lower.

• Group 3: Similar to group 1, but with higher noise levels at both eRRHs.

Hence, the network works in lower SNR regime.

• Group 4: Similar to group 2, but the signal received by eRRH 1 is more reli-

able. Moreover, both eRRHs experience higher noise levels. Hence, the net-

work works in lower SNR regime.

Furthermore, we use θ ∈ [0, 1] to denote the proportion of the total fronthaul capac-

ity, that are manually allocated to the first eRRH, before the network start to operate.
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Then the proposed algorithms are adopted to compute the maximal achievable sum

rate in each case, with which the best fronthaul capacity allocation scheme, under a

certain decompression order, can be derived. In Fig. 3.7, the marked points denote

the optimal capacity allocations where the sum rate is maximized. By comparing

the results of group 2, 3 and 4, we see that if the observation at one eRRH is more re-

liable than the other, allocating more fronthaul resources to this eRRH is preferred,

so as to achieve higher uplink sum rate. Moreover, by comparing group 1 and 3, it

can be concluded that when the capacity allocation factor θ is fixed somewhere al-

ready, and the reliability of the observations at two eRRHs are more or less the same,

decompressing the signal from the eRRH with larger fronthaul capacity at first can

yield better performance: When θ < 0.5, i.e., more fronthaul capacity is allocated to

eRRH 2, the decoding order 2 → 1 is better as a higher rate can be achieved than

the other way around. When θ > 0.5, i.e., more fronthaul capacity is allocated to

eRRH 1, the results in Fig. 3.7 then demonstrate that the decoding order 1→ 2 shall

be preferred in this case. Moreover, we observe that the performance gap between

these two decompression orders becomes more pronounced in higher SNR regime,

i.e., when the noise power σ2 is smaller. This is due to the fact that, the useful signal

becomes more and more dominant over the additional noise in this regime, thus

the decompression order imposes more impact on the overall performance. Fur-

thermore, we can also conclude that if the BBU pool has the flexibility to allocate

capacity, i.e., it can manipulate the value of θ to maximize the uplink sum rate, the

maximal achievable rates of these two orders are nearly the same. In the next sub-

section, the numerical results when the BBU pool has the ability to optimize the

fronthaul capacity allocation will be given, instead of the manual allocation here.

Next, the performance of the Wyner-Ziv (WZ) coding with that of the Single Unit

(SU) compression are compared. The Single Unit compression indicates that the

compression strategy performed by each quantizer, ignores the correlation between

the signals of the neighboring eRRHs. The BBU pool optimizes the quantizer of

each eRRH in parallel, individually and independently: It only aims to maximize

its own relevant information retrieval, without the consideration of exploiting the

correlated information from other eRRHs. For example, for the n-th eRRH, the

quantizer is designed such that I(X1, X2; Ŷn) can be maximized with the compres-

sion rate I(Yn; Ŷn). Due to the individual and independent optimization steps in

this scenario, the conventional IB method and the Bi-Section method can be directly

applied. When the Wyner-Ziv coding is performed, the proposed AIB method for

jointly optimizing the compression strategies is to be adopted. In the simulation, we

change the available sum capacity and try different allocation factors θ until finding

the optimal one for both cases. Moreover, different available power levels of the UE

are also considered. The results are plotted in Fig. 3.8.

From this figure, we see that the WZ approach can uniformly outperform the SU ap-
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Figure 3.7: The relationship between the capacity allocation, decompression order
and the maximal achievable sum rate. i → j denotes the signal from eRRH i is
decompressed before that from eRRH j.
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Figure 3.8: The comparison between the Wyner-Ziv coding with joint optimization,
and the Single Unit compression, for different power levels of UE, and different
fronthaul capacities.
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proach, but at the cost of higher computational complexity: 1. The WZ approach has

higher complexity from the aspect of implementation, as in the compression step,

the correlations between the received signals from eRRHs are taken into consider-

ation; 2. The optimization of the compression processes must be executed jointly

in a centralized way, with the proposed AIB method and the alternating Bi-Section

method. From the figure, it can be observed that the advantage of the Wyner-Ziv

coding with joint optimization over the Single Unit compression becomes more ap-

parent, as the available power levels of the UE get higher, which is in consistence

with the theoretical analysis in [Sha14]. This is due to the fact that, the correla-

tions between the received signals at neighboring eRRHs become more pronounced,

when the network works in high SNR regimes. Moreover, when the sum capacity

of the fronthaul becomes larger, such an advantage will be less prominent, which

is in consistence with the theoretical analysis in [ZY14]. The reason is that in this

scenario, the fronthaul capacity is not the main performance bottleneck anymore,

sufficient available capacity exists already for the transmission of the compressed

information, i.e., making better use of the fronthaul resources is not that urgent.

3.5.2 Fronthaul Capacity Allocation

In this subsection, we provide the numerical results when the BBU pool also has the

freedom for the fronthaul resource allocation. The general set up of the network is

similar to that of the last subsection, but we consider a F-RAN consisting of three
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UEs and three eRRHs, each UE is with different QoS weights for their uploaded data

streams. We set w3 = 3, w2 = w1 = 1, i.e., the transmission of the data stream from

the third UE is more prioritized than that of the other two. Moreover, the radio ac-

cess channel is configured as h11 = 1, h12 = 0.3, h13 = 0.2, h21 = 0.2, h22 = 1, h23 =

0.3, h31 = 0.2, h32 = 0.1, h33 = 0.5, σ2
n,1 = σ2

n,2 = σ2
n,3 = 1. The decompression

order is set as 1→ 2→ 3.

At first the results for three different cases are compared:

• Case 1: The quantizers as well as the fronthaul capacity allocation are jointly

optimized with the proposed AIB method, in order to maximize the sum rate

without weighting, i.e., the priority of UE 3 is not considered.

• Case 2: The capacity allocation obtained from the results of Case 1 is adopted,

the AIB method and the alternating Bi-Section method are adopted to opti-

mize the quantizers only, so as to maximize the weighted sum rate, i.e., the

joint optimization for compression and the fronthaul capacity allocation is not

considered.

• Case 3: Both the quantizers and the capacity allocation are optimized jointly

for maximizing the weighted sum rate. Hence, both issues, i.e., the fronthaul

capacity allocation, and different significance of the data streams are taken

into account.

By executing the proposed algorithms with the different configuration cases listed

above, the achievable uplink rates for different UEs are documented, as well as the

sum rate, with respect to the sum capacity of the fronthaul. The results are shown

in Fig. 3.9 - 3.12.

From the figures we can easily observe that when the quantizers and the capacity

allocation are optimized in order to maximize the sum rate, without considering

the QoS weights, i.e., Case 1, the individual achievable rate of the third UE R3 is the

smallest, although it should have the most significance. If the QoS weight w3 = 3

for R3 is considered, but only the quantizers are to be optimized accordingly but

without the resource allocation, i.e., Case 2, we see that it is not sufficient as shown

in Fig. 3.11: The improvement of R3 in Case 2 compared to the Case 1 is not signif-

icant. This is because the received signals at different eRRHs are the superposition

of the signals from all UEs, only optimizing the compression strategies can not im-

pose a significant impact on the individual achievable rates. In order to further

improve the individual rate with larger QoS requirement, it is necessary to consider

a simultaneous optimization of both fronthaul capacity allocation and the compres-

sion. From Fig. 3.11, we observe that the improvement of R3 in Case 3 is much more
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Figure 3.9: R1 with respect to different sum capacities of the fronthaul.
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Figure 3.10: R2 with respect to different sum capacities of the fronthaul.
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Figure 3.11: R3 with respect to different sum capacities of the fronthaul.
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Figure 3.12: The sum rate with respect to different sum capacities of fronthaul.
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prominent than that of Case 2. However, by comparing the results of other figures,

i.e., the value of R1, R2 and Rsum for three cases, it can be concluded that such an

improvement is at the cost of larger performance degradation of UE 1 and UE 2,

as well as the sum rate Rsum. This is due to the fact that, more network resources

are biased to support the data transmission for UE 3. Although it is beneficial to

improve the QoS of UE 3, it leads to negative impacts on the overall performance of

the network, as well as on other UEs.

Finally, by considering the same model as above, the optimal fronthaul capacity

allocations obtained from the proposed algorithm for different optimization objec-

tives, i.e., different QoS weights among UEs, is compared. The results are shown in

Fig. 3.13 and Fig. 3.14. We see that when the compression strategies and the fron-

thaul capacity allocation are optimized for maximizing the uplink sum rate, only

18% of the capacity shall be allocated to eRRH 3. While if UE 3 is given more prior-

ity by maximizing the weighted sum rate (with w3 = 3, w1 = w2 = 1), 38% of the

capacity shall now be allocated to eRRH 3. For avoiding confusions, we emphasize

here that eRRH 3 is not solely responsible for UE 3. Actually, each eRRH receives

a superposed signals from all UEs, i.e., the signal received by each eRRH contains

useful information of each UE. The only difference between eRRHs is that, some

eRRHs might receive more powerful signal from a specific UE, e.g., this UE is more

close to them. Hence, if more fronthaul capacity resources are allocated to these eR-

RHs, more information of this specific UE can be preserved finally at the BBU pool.

Then we go back to the simulation results, the reason why more fronthaul capacity

is allocated to eRRH 3, when UE 3 is considered to have higher priority, is that the

signal from UE 3 at eRRH 3 is the strongest (note that we configure the channel gain

as h13 = 0.2, h23 = 0.3, h33 = 0.5), and at eRRH 1 it is the weakest. Hence, the

observation of the signal from UE 3 is most reliable at eRRH 3. Better compression

strategy shall be considered at this eRRH if preserving more information from UE

3 is desired. For this specific F-RAN realization in the simulation, there are more

fronthaul resources allocated to this eRRH, when UE 3 has larger QoS weight. On

the other hand, if the capacity allocation is optimized to maximize the uplink sum

rate, the fronthaul capacity allocated to eRRH 3 is the smallest.

3.6 Summaries, Discussions and Outlooks

In this chapter we have investigated the optimal network design for the uplink

transmission of C-RAN and F-RAN. As many existing works have already indi-

cated, the core difficulty for uplink transmission is how to exploit the limited fron-

thaul capacity resources. The signal compression is one of the key techniques to

deal with this problem. Hence, we mainly focus on designing optimal compression
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Figure 3.13: The optimal capacity allocation for maximizing the sum rate.
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strategies at eRRHs. Furthermore, when the capacity can be shared between dif-

ferent fronthauls, the resource allocation is also worth to be considered for better

performance. In order to handle this complicated problem step by step, we firstly

assume fixed and known fronthaul capacities, and focus on how to jointly design

optimal compression strategies at each eRRH, in order to accommodate to its avail-

able resource. Although this problem has been investigated by many works, most

of them evaluate it from the perspective of the information theory, by assuming

the Gaussian codebook and modeling the compression process by adding artificial

additive Gaussian quantization noise. But how shall a practical quantizer that can

work for arbitrary codebooks is still left blank. We tackle this problem by extending

the conventional IB method and the Bi-Section method to the AIB method and the

alternating Bi-Section method. With the proposed AIB method, the trade-off surface

for the case of multiple quantizers exploiting the Wyner-Ziv coding can be obtained.

And with the alternating Bi-Section method, the specific point on this surface can

be efficiently located, at which the corresponding optimal quantizers are acquired,

and the fronthaul capacity resources are fully utilized. Then we further consider the

scenario where eRRHs share the capacity resource of a common fronthaul. In this

case, how to allocate capacity resources to different eRRHs is also a problem, which

interacts with the optimal design of the compression strategies for eRRHs. By com-

bining the proposed AIB method and the alternating Bi-Section method with the

outer linearization method, we proposed an algorithm to jointly optimize the re-

source allocation and quantizers. Moreover, we also investigate the network design

when different UEs have different QoS targets.

It should be noted that although the proposed algorithms show promising results,

the realization of them requires global CSI knowledge at the BBU pool in the cloud.

Hence, a large amount of overhead are expected. Moreover, a centralized joint opti-

mization can incur huge computational burden and latency at the BBU pool. There-

fore, an outlook for future research direction is a more simplified or distributed

mechanism, where even partial CSI is sufficient. Moreover, as we have already

stated when introducing this mechanism, although it can be extended to more

eRRHs and to multiple antennas conceptually straightforward, the computational

complexity, as well as the memory required, will increase exponentially when more

and more eRRHs are deployed in the network, or more antennas are mounted on

each eRRH. Hence, another promising research direction for the future work might

be algorithms based on the concept of the proposed AIB method, but with lower

complexity.
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Chapter 4

Centralized Joint Design for the Downlink

This chapter contains
4.1 System Model . . . . . . . . . . . . . . . . . . . . . . . . 80

4.2 Joint Optimization for Different Criteria . . . . . . . . 94

4.3 Robust Design based on Inaccurate CSI . . . . . . . . . 147

4.4 Discussions, Summaries, and Outlooks . . . . . . . . . 162

1 After considering the uplink transmission, this chapter focus on the design for

the downlink. Nowadays, the downlink of most existing networks requires much

higher data rate than the uplink. This is mainly due to the fact that most people ac-

quire much more information via the network through the downlink transmission

compared with the information shared by them via the uplink. Hence, a proper de-

sign of the downlink contributes more to the overall performance of the network.

When we talk about the downlink transmission of F-RAN, as shown in Fig. 4.1, we

mean the overall procedure that the scheduled UEs acquire contents from the core

network. As we only focus on the F-RAN, we consider only the transmission part

starting from the BBU pool, until the UE end. As shown in the figure, the BBU pool

sends the requested contents, which have already been processed in the cloud, to

eRRHs via fronthauls. Then the eRRHs can execute some further signal processing

steps on the received signals, with its fog computing capability. At last the eRRHs

transmit the processed signals to UEs, and the scheduled UEs then receive and de-

code the contents that are intended to themselves. Note that only the scheduled UEs

can be active in a specific downlink slot. Similar to the uplink, they have already

been notified to be scheduled by the DL-DCI via PDCCH, before the downlink data

transmission starts.
1Parts of this chapter have been published in [CK16a; CK16f; CSK16; CK17a; CK17b; CK17c;

Che+18].
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Figure 4.1: The downlink transmission of F-RAN, which consists of eRRHs with
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specific downlink slot. The content requested by the multi-cast group depicted in
blue has already been cached at eRRHs, but the other requested content has to be
fetched via the fronthaul.
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In this chapter, we are going to investigate the optimal design for the downlink

transmission of F-RAN. Similar to the uplink case investigated in the previous chap-

ter, the network design and optimization of the downlink are also done centrally at

the BBU pool in the cloud. Similarly, the capacity-limited fronthaul is still a signif-

icant bottleneck for the downlink. However, the downlink scenario is more com-

plicated. For example, in the uplink, as each eRRH receives a superposed signal

from all scheduled UEs, the design for the compression strategy is the main issue

that shall be considered. However, as we are going to show in next sections, there

are much more issues required to be considered in the downlink. As the fronthaul

capacity is limited, the BBU pool has the freedom to decide, for a specific requested

content, to which eRRHs it shall be sent. When more eRRHs receive this content and

participate in the transmission of it, more capacity resources are needed, but better

performance can be realized: From the viewpoint of the BBU pool, higher aggregate

array gain when transmitting this content is realized. As stated in Section 1.3, there

are various approaches considered to realize the fog computing capability at eR-

RHs, one of them is to equip each RRH with a cache module, which is an easy and

low-cost way to reduce the requirements on fronthauls. Such a network is called the

cache-enabled F-RAN [Tao+16], and it is the main topic we are going to investigate

in this chapter. In such a system, at each eRRH, some popularly requested contents

can be downloaded and locally cached at the off-peak time. When UEs request such

contents, they are not necessary to be fetched remotely again and again from the

cloud. Hence, the burden on fronthauls can be relieved, and its capacity is not the

performance bottleneck for UEs requesting these contents. Moreover, the overall

latency might also be greatly reduced. In this case, via the functional split, the eR-

RHs need to implement certain amounts of signal processing functionalities, which

are executed at the BBU pool in the conventional C-RAN. Obviously, this strategy

is efficient and can achieve some benefits only when the popularity of different con-

tents varies significantly for most UEs. Some recent predictions and research results

from both industry and academia [Cis12; Int12; Sha+13] indicate that, multimedia

streaming services will generate a significant portion of the traffic in 5G. For exam-

ple, some newly released HD Clips or live sport matches might be rather popular

in some specific periods of time. When these contents are requested by many UEs

simultaneously, a multi-cast scenario is thus formed. Obviously, the larger mem-

ory size the cache module has, the more contents it can store, and the transmission

burden on fronthauls can thus be relieved more significantly. In particular, the con-

ventional C-RAN can also be regarded as a special version of it, but with the cache

memory size of 0. Hence, we can focus only on the problem of the network op-

timization for the downlink of cache-enabled F-RAN, whose results can be simply

applied and extended to the conventional C-RAN, via setting all cache-related items

to be 0.

Concerning the issue of adopting the concept of cache for the realization of F-RAN,
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several totally different topics are worth to be investigated. For example: What

to cache; When to cache; Where to cache and How to cache. These topics can be

generalized to the cache placement problem. There have been sufficient works ad-

dressing such a problem, in which the efficiency of different caching strategies from

the perspective of the information theory, and how to distribute the contents at

different eRRHs, so as to fulfill different objective criteria, are investigated. With

the pioneering work [MN14], the upper and lower bounds of the capacity for the

caching system are characterized. Moreover, the fact that the network capacity can

be further increased with the coded multi-casting, is mathematically proved. In

their work, two fundamental caching strategies are proposed : Uncoded caching

and coded caching. With the uncoded caching strategy, complete files are cached

everywhere (in our F-RAN scenario, it denotes all eRRHs). While with the coded

caching strategy, distinct fractions (e.g. parity bits) of the same file can be cached at

different places (in our F-RAN scenario, it denotes different eRRHs). The fractions

can be obtained by using MDS codes (e.g. Fountain code). Considering the problem

of content distribution, several schemes are proposed and investigated in [DY16a;

Liu+17].

As we mainly focus on the optimal design of the network, we will not go deeply into

the cache placement problem in this work. From the perspective of the RAN de-

sign, besides the cached contents that are requested, the delivery of the non-cached

contents also need to be investigated, as the transmission of them still consumes re-

sources of the network, although the burden on the fronthaul can be greatly released

due to the existence of the cache. Hence, under this topic, one important issue for

the downlink is the fronthauling strategies for transmission, i.e., how to deliver the

requested contents, that are not cached at eRRHs, from the cloud to UEs. Or in an-

other word, how to achieve the optimal downlink performance of the F-RAN, with

the help of the cache modules equipped at eRRHs. In order to answer this question,

different downlink transmission strategies are proposed and investigated, for meet-

ing different performance criteria for the network. Before we go deeply into this

issue, we firstly give a short overview to the state-of-the-art: Regarding the prob-

lem of the downlink content delivery, i.e., how to deliver the requested contents

from the core network to the UE, via fronthauls, eRRHs and the radio links, there

are basically two transmission strategies up to now: The data-sharing strategy, or

in another word, the hard transfer mode, and the compressed-based strategy, or

in another word, the soft transfer mode. The details will be introduced in the next

section. For the conventional C-RAN, they are introduced and studied in [PDY15;

DY16b]. In these works, only the minimal network energy consumption of these

two strategies are compared. However, some important issues for the C-RAN, e.g.,

the traffic scheduling on fronthauls, and the resultant clustering manner, is not in-

tensively discussed. In [PSS16], the soft and hard transfer modes are compared

for the F-RAN. Particularly, how to maximize the minimum-user achievable rate
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is studied. For the radio access hop, i.e., the transmission from the RRHs to UEs,

the beamforming strategies are well investigated in [DY14; SZL14; DY15; Tao+16;

UAS16]. It should be noted that all literature listed above and most existing works

assume perfect CSI knowledge available at the BBU pool in the cloud, and based on

which the network design is executed. However, in the practical implementation

of C-RAN or F-RAN, the CSI are usually estimated and collected at each RRH or

eRRH at the network edge, such information are then compressed and delivered

to the cloud. Therefore, the distortion of CSI is inevitable, and the introduced CSI

error is unknown.

Besides the issues introduced above, a recent report [Cla19] shows that for a typical

5G base station, 300% to 350% more electricity power can be consumed, compared

with the energy consumption of a typical LTE base station! Moreover, due to the

much denser deployment of the 5G base stations, the total energy consumption of a

specific 5G RAN can be unimaginable. A recent reports [New20] states that, China

Unicom, one of the biggest 5G network operator in the world, even put many 5G

base stations into the sleep mode overnight, in order to save energy. Therefore, the

issue of the energy consumption, might be almost the same significant as the issue

of the throughput for 5G RAN. According to 3GPP TS 38.211 [3GP18], the number

of the slots allocated to the downlink is usually a multiple of that allocated to the

uplink. Hence, as stated before, a proper design of downlink can dominate the

overall performance of the network to achieve specific criteria, no matter whether

we would like to achieve a RAN with maximal throughput at peak times with QoS

requirements, or to achieve a greener network at off-peak times or scenarios with

limited power supply.

Therefore, in this chapter, both high Energy Efficient (EE) oriented network design,

targeting at minimizing the energy consumption, while the required QoS can still be

guaranteed, and high Spectral Efficient (SE) oriented network design, focusing on

higher throughput or balanced QoS, will be investigated. In either network design,

we manage to fill some gaps between the existing mechanisms and some critical

issues still left blank for the practical implementation. For example, we investi-

gate the issue of the traffic load balancing between different fronthauls, according

to their individual available capacities, and the resultant eRRH clustering manner,

i.e., which eRRHs shall serve which UEs. Considering the high EE oriented design,

not only the power consumption for the transmission is to be taken into account,

but also the additional operational power when a RRH or eRRH is actively serv-

ing UEs. Therefore, in several circumstances, it might be better to switch off some

RRHs or eRRHs so as to save more energy, and the rest ones can still fulfill the UEs’

requirements. Thus, we are going to propose an mechanism, which can optimally

select which RRH or eRRH can be switched off. Furthermore, the case when only

inaccurate CSI knowledge is available will also be addressed. In this scenario, an
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algorithm which can robustly design the network is proposed, with which the re-

quested QoS can still be guaranteed for each UE. Additionally, similar to the case

of uplink in the previous chapter, the optimal fronthaul resource allocation for the

downlink will also be discussed, when it is shared by multiple eRRHs. Here we em-

phasize again that we will not address the problem of cache placement in this work,

since our main focus is the real-time network design and optimization. The cache

placement is usually non real-time and done at the off-peak time [Sha+13; Wan+14].

Moreover, we assume the well-known uncoded caching scheme [MN14] is adopted

in the network, i.e., all eRRHs cache the same complete contents, which is simple to

be executed in practice.

4.1 System Model

4.1.1 Overview

As we stated before, the C-RAN can be regarded as a special case of F-RAN, so it

is sufficient to consider the F-RAN model depicted in Fig. 4.1. The BBU pool in

the cloud intends to multi-cast2 different contents to different UE groups via the

downlink of F-RAN. The requested data contents, that are not cached at eRRHs,

are fronthauled via the above-mentioned hard or soft transfer mode to the network

edge. After receiving these contents, the eRRHs will firstly perform several specific

signal processing procedures, which will be introduced later in detail, and then send

the processed signals further to UEs via the radio access channel.

More specifically, the BBU pool connects to N eRRHs via fronthauls. The capacity

of the fronthaul from BBU pool to eRRH n ∈ N = {1, 2, ..., N} is denoted by CFH,n.

Each eRRH is equipped with L antennas and a cache module. In each downlink slot,

K single-antenna UEs, which are uniformly and independently distributed within

the network, are scheduled. The BBU pool knows which content is requested by

which scheduled UE in advance 3. Let M denote the number of distinct contents

being requested, UEs requesting the same content (depicted in the same color in

Fig. 4.1) form a multi-cast group. In particular, if UE k requests content f m, m ∈
M = {1, 2, ..., M}, it is classified to multi-cast group Gm, i.e., k ∈ Gm. We assume

that each UE can request at most one content at its scheduled downlink slot. Hence,

for any i, j ∈ M, G i ∩ G j = ∅, ∀i 6= j, and ∑M
m=1 |Gm| ≤ K must hold. The m-th

multi-cast group Gm is cooperatively served by a cluster of eRRHs, denoted by Cm

2The uni-cast scenario can also be regarded as as special case of the multi-cast: Each multi-cast UE
group consists of only one UE.

3The requirements of each UE should have been already sent to the BBU pool in previous uplink
slots, the time interval between the uplink and corresponding downlink slot can refer to 3GPP TS
38.211 [3GP18].
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with Cm ⊆ N . Unlike the multi-cast group Gm, which is predetermined and known

to the BBU pool based on UEs’ requests, the cluster Cm, ∀m ∈ M = {1, 2, ..., M} is to

be dynamically optimized, and the clusters can overlap with each other, in another

word, a eRRH can serve several multi-cast groups by delivering different requested

contents simultaneously, i.e., for any i, j ∈ M, C i ∩ C j is not necessary empty.

4.1.2 Content and Cache Model

Firstly we give an introduction to the content model adopted in this work. In a

downlink slot, totally M distinct contents are assumed to be requested among Mtotal

contents. Each of them is supposed to have a normalized size and is available at

the BBU pool in the cloud. However, they might have different probabilities (i.e.,

popularity) to be requested by the scheduled UEs. Without loss of generality, the

requested contents are sorted in the order from the most to the least popular with

indices, i.e., the most probable requested content is tagged with index f 1, and the

least one is with index f m. The popularity is modeled by the well-known Zipf distri-

bution [Sha+13], which is widely used in many works: The probability that content

f m is requested can be expressed as

Pr( f m) =
m−α

∑M
j=1 j−α

, m = {1, 2, ..., Mtotal}. (4.1)

Parameter α is related to the skewness of the distribution, larger α indicates a more

biased popularity distribution.

Now we introduce the cache model. Similar to [PSS16; Tao+16], the uncoded

caching scheme is adopted, i.e., each content is stored in its original form without

coding or multiplexing with other contents. Let integer Sn ∈ N denote the cache

memory at the n-th eRRH. Each cache module stores the contents according to its

popularity until the memory is full. Hence, contents with indices smaller than or

equal to Sn will be cached at eRRH n. Let c f m

n ∈ {1, 0} indicate whether content f m,

which is requested by multi-cast group Gm, is cached at eRRH n or not, i.e.,

c f m

n =

1 content f m is cached at eRRH n,

0 content f m is not cached at eRRH n.
(4.2)

Obviously, for C-RAN, we have c f m

n = 0 ∀ m, n. The cached contents are assumed

to be predetermined and known to the BBU pool, as the caching procedure has

been completed at the off-peak time. The requested contents that are not cached are

firstly transmitted from the BBU pool to eRRHs via fronthauls, then all requested

contents are sent to UEs by eRRHs via multi-casting. Compared with the coded
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caching scheme, as introduced in Subsection 1.3.1, where different eRRHs cache

different fractions of a file, the uncoded caching has lower content diversity but can

achieve higher spatial diversity by the cooperative transmission of the same con-

tent, which potentially leads to less power consumption. However, the drawback is

the higher burden on fronthauls, as the uncached contents has to be fronthauled to

multiple eRRHs. Hence, the traffic load handling is a significant issue especially for

the uncoded caching. This issue has not been intensively addressed in the previous

works concerning F-RAN. After the UEs submit their content requests according to

the Zipf distribution (4.1), then at the downlink slots, the cached contents are trans-

mitted directly from eRRHs without consuming the fronthaul resources. Contrarily,

all uncached contents being requested must be fetched remotely, from the cloud to

each eRRH of the cluster serving the corresponding multi-cast group.

4.1.3 Power Model

In [Ae11], it is shown that for a typical micro base station in LTE, the average trans-

mission power is usually only 6.3 Watt. However, all additional operational power

(incl. the power consumed by cooling system, ADC circuits, etc.) can be as high

as 56 Watt! Moreover, F-RAN is featured by its relatively large fronthaul capacity,

and the fronthaul might also consume considerable power. Hence, the scheme used

in [Pen+16; PSS16; Tao+16; UAS16], i.e., activating all eRRHs for higher potential

aggregated array gain, so as to decrease the total transmission power of the net-

work, might not necessarily pay off finally: The introduced operational power can

be much higher than the saved transmission power. In such scenarios, it is wiser to

switch off some eRRHs: Although less cooperative transmission can result in higher

transmission power consumption, the saved operational power might compensate

it completely. Thus, in order to design greener networks, it is more reasonable to

consider the power consumption at the system level, instead of only focusing on

how to decrease the transmission power.

Similar to [Ae11; SZL14; TTJ15], the total power consumption of eRRH n is modeled

as

Pn =


Pactive,n =

1
ξ

PTX,n + Po, when PTX,n > 0,

Psleep, when PTX,n = 0,
(4.3)

where PTX,n denotes power consumed by transmission. It is assumed to be limited

by the maximal transmission power Pn,max. The power amplifier efficiency is de-

noted by ξ ∈ (0, 1). When eRRH n is activated, i.e., PTX,n > 0 holds, its fronthaul

and itself are in active mode. Let Po denote all additional operational power con-

sumed by an active eRRH. When eRRH n is deactivated, it is in sleep mode and does

not serve UEs, thus PTX,n = 0. Psleep is usually much lower than Po.
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4.1.4 Fronthauling Strategies

As stated before, the requested contents that are not cached at eRRHs are to be

conveyed through fronthauls. In general, the fronthaul resource allocation can be

classified into two categories: dedicated and non-dedicated. As introduced in Chap-

ter 1, when the fronthaul is constructed, e.g., using the optical-fiber, the capacity

of each fronthaul, i.e., the capacity between each eRRH and the BBU pool, is fixed.

In this case, the fronthaul transmissions are usually wired communication, e.g., the

optical fiber communication. Each eRRH does not need to share the capacity with

others. Obviously, the dedicated fronthaul can provide high-capacity communica-

tion to each eRRH. However, the price of it is its extreme high cost, especially when

micro eRRHs are densely deployed in some urban areas. Moreover, the dedicated

fronthaul makes the deployment of eRRHs rather inflexible. As stated in [DC15],

for dense and heterogeneous network, such a dedicated fronthaul is not feasible.

A counterpart of it can be called as the non-dedicated fronthaul. From the name,

we can easily get the point that eRRHs are sharing the total available capacity. As

studied in [DC15] and [Gre+15], the wireless fronthaul can be a specific realization

of such a sharing manner. Compared with its dedicated brother, the non-dedicated

fronthaul can have much lower costs, and the deployment of eRRHs can be rather

flexible. Hence, for the dense and heterogeneous network, the non-dedicated fron-

thaul with wireless communication seems to be the only choice [DC15]. Everything

has a price, the price for the non-dedicated fronthaul is that, eRRHs contest with

each other for limited capacity resources, thus an efficient capacity resource alloca-

tion mechanism between eRRHs is necessary. A straightforward mechanism might

be Time-Division (TD) or Frequency-Division (FD) of the resources. Although they

are not optimal from information theoretical point of view, the practical implemen-

tation of them is rather simple and the cost is low. When the non-dedicated fron-

thaul is discussed in this chapter, we suppose such an orthogonal implementation.

For different design targets, e.g., high EE or high SE, the corresponding optimal

resource allocation schemes are worth to be investigated.

Another interesting issue related to the fronthaul transmission is, how to deliver

the requested contents that are not cached at eRRHs. As introduced before, there

are mainly two fronthauling strategies in general, we call them the hard transfer

mode and the soft transfer mode. Briefly, the difference between them mainly lies in

how to split the signal processing functionalities between the cloud and the network

edge:

• When the hard transfer mode is adopted, nearly all signal processing proce-

dures executed on the requested contents are performed at eRRHs on the net-

work edge. The BBU pool only needs to guarantee the reliable transmission

of the raw data streams from the cloud to eRRHs;
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• When the soft transfer mode is adopted, most signal processing procedures

executed on the requested contents are performed directly at the BBU pool, in-

cluding even the modulation step. The resultant signals are then compressed

and delivered to the network edge. The eRRHs only decompress the received

signals and send them without further processing.

When cache modules are equipped at eRRHs, the soft transfer mode introduced

above becomes more complicated, as the requested contents that are locally cached

at eRRHs cannot be processed at the BBU pool. In this case, the eRRHs have to

undertake the execution of all corresponding processing steps on them.

Before we deep into these two modes, several expressions for easier explanation

must be introduced: At the BBU pool, let sm be a transmitted symbol of content f m,

it has normalized power E{|sm|2} = 1 ∀m ∈ M .

4.1.4.1 Hard Transfer Mode

In Fig. 4.2, the abstract model of the downlink transmission is illustrated, when

the hard transfer mode is adopted. In this case, the raw data streams of different

contents, that are not cached at eRRHs, are firstly encoded (the Gaussian codebook

is assumed for simplicity) separately and independently at the BBU pool, then the

encoded raw data streams are sent to different subset of eRRHs (clusters). Besides

the encoding step to ensure the reliable delivery of these contents to eRRHs, noth-

ing more is to be implemented at the BBU pool. As stated before, UEs in multi-

cast group Gm are served by eRRHs in cluster Cm with Cm ⊆ N . A specific eRRH

might be involved in several clusters, the multi-cast groups {Gm}M
m=1 are fixed and

known while eRRH clusters {Cm}M
m=1 are to be optimized. In more detail, when

eRRH n ∈ N is involved in several clusters, i.e., it is responsible for transmitting

the several requested contents, Function Block ENC n at the BBU pool in Fig. 4.2

represents the parallel and independent encoding of these requested but uncached

contents, which eRRH n should be responsible for. Then these encoded data streams

are transmitted via the fronthaul of capacity CFH,n to eRRH n. At eRRH n, Function

Block DEC n represents the parallel and independent decoding of these data streams.

Here we assume an error-free fronthaul transmission for simplicity. Afterwards, to-

gether with the locally cached requested contents, Function Block BF n undertakes

the corresponding beamforming of all contents that are transmitted by eRRH n. In

the end, the beamformed data streams are multiplexed with each other and mod-

ulated into the appropriate signal, via Function Block MUX n and Function Block

MOD n, respectively.
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Note that eRRHs in the same multi-cast cluster form a distributed MIMO

system and allow Cooperative Multi-Point (CoMP) transmission. Let vm =

[{vm
1 }H, {vm

2 }H, ..., {vm
N}H ]H ∈ CNL×1 denote the aggregated beamformer con-

structed among all eRRHs for content f m, where vm
n = [vm

n,1, vm
n,2, ..., vm

n,L]
T ∈ CL×1

indicates the beamformer constructed at eRRH n. If eRRH n is not involved in

cluster Cm, we have vm
n = 0 , or equivalently, the `0-norm of its power is 0, i.e.,∣∣||vm

n ||22
∣∣
0 = 0. Otherwise it is a non-zero vector, and the `0-norm of its power is 1.

When content f m is delivered to UEs with rate Rm, then for the dedicated fronthaul,

the capacity requirement of the fronthaul connected to eRRH n, i.e., Chard
req,n, must

satisfy

Chard
req,n =

M

∑
m=1

(1− c f m

n )
∣∣||vm

n ||22
∣∣
0Rm ≤ CFH,n dedicated. (4.4)

Specifically, when eRRH n is involved in cluster Cm, we must have
∣∣||vm

n ||22
∣∣
0 = 1. If

content f m is not cached, then we have c f m

n = 0. Only in this case, i.e., eRRH n shall

transmit f m and this content is not cached at eRRH n, at least rate Rm for content

f m has to be supported by the fronthaul between the BBU pool and eRRH n. By

summing up all contents inM, we can achieve the inequality above.

Similarly, for the non-dedicated fronthaul, the following constraint needs to be sat-

isfied:

Chard
req,n =

N

∑
n=1

M

∑
m=1

(1− c f m

n )
∣∣||vm

n ||22
∣∣
0Rm ≤ CFH non-dedicated. (4.5)

Here, CFH denotes the total capacity of the fronthaul to be shared.

Via optimizing the beamformers, as shown later, the cluster for the hard mode can

also be optimized, and traffic on fronthauls are scheduled according to their indi-

vidual capacities. Moreover, we can become aware of whether switching off some

eRRHs is beneficial.

As stated before, when a specific content can be delivered to more eRRHs, i.e., the

corresponding multi-cast cluster becomes larger, the transmission power for this

content can be reduced, or the QoS of this content can be improved, due to higher

spatial diversity gain. But it also consumes more fronthaul resources, and might

lead to an otherwise sleeping eRRH to be active again, which further results in

more operation power consumption. Hence, there is an interaction between the

transmission power, the operation power, the QoS target, and the available fron-

thaul capacity.

4.1.4.2 Soft Transfer Mode
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As introduced in the previous subsection, when the hard transfer mode is adopted,

most signal processing procedures are executed at the network edge. However,

when the soft transfer mode is adopted, it is the other way around: If some con-

tents have to be fetched from the cloud, i.e., they are requested but not cached at

eRRHs, the precoding, multiplexing, as well as the modulation are to be applied on

them directly at the BBU pool. The modulated signal have to be then compressed,

in order to satisfy individual fronthaul capacity constraints. The compressed sig-

nals are sent to the corresponding eRRHs. At eRRHs, besides the reconstruction of

the received compressed signals, no further processing shall be implemented on the

uncached contents, the reconstructed signals are directly forwarded to UEs. How-

ever, for the requested contents that are locally cached at eRRHs, no compression

and soft fronthauling are required: They are precoded, multiplexed, and modulated

locally before being sent to UEs. An abstract model of the soft transfer mode is illus-

trated in Fig. 4.3. In more detail, Function Block PRC n at the BBU pool represents

the parallel and independent precoding of all requested but uncached contents, that

shall be transmitted by eRRH n ∈ N . Function Block MUX n represents the multi-

plexing of the previously precoded data streams for eRRH n at the BBU pool. The

resultant data stream is then modulated with Function Block MOD n. In the end,

Function block COMP n compresses the modulated signal for eRRH n, with which

the fronthaul of capacity CFH,n can support the transmission of it. Then at eRRH n,

Function Block DECOMP n represents the decompression and reconstruction of the

fronthauled signal. We must emphasize that Function block COMP n and Function

Block DECOMP n also incorporate the encoding and decoding procedure of the com-

pression indices, respectively. Together with Dashed Function Block PRC n, MUX n,

and MOD n, which should be applied only on the locally cached contents, eRRH n

then transmit all requested contents to UEs.

Let wm = [{wm
1 }H, {wm

2 }H, ..., {wm
N}H ]H ∈ CNL×1 be the aggregated precoders for

Gm, where wm
n = [wm

n,1, wm
n,2, ..., wm

n,L]
T ∈ CL×1 indicates the precoder intends for

eRRH n. After the multiplexing step, the superposed signal x̃n constructed at the

BBU pool for eRRH n is

x̃soft
n =

M

∑
m=1

(1− c f m

n )wm
n sm. (4.6)

For the modulation step, we consider the ideal Gaussian alphabet with infinite car-

dinality for simplicity, as the modulation scheme is not the topic investigated in this

work. Therefore, the modulation step is supposed not to introduce further distor-

tions to x̃soft
n .

Due to the fronthaul capacity constraints, x̃soft
n must be compressed before trans-

mission: We assume independent compression procedures for each antenna in this

work, i.e., no Wyner-Ziv coding is performed, although this is not optimal from
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the information-theoretical perspective, as the correlation between antennas is not

exploited, it is a practical solution and causes much less delay and complexity. A

joint compression strategy is also studied, details can be found in [Par+13a]. Let

ecomp
n = [ecomp

n,1 , ecomp
n,2 , ..., ecomp

n,L ]T ∈ CL×1 denote the artificial quantization noise vec-

tor for eRRH n. Specifically, ecomp
n ∼ CN

(
0, Diag

(
[q2

n,1, q2
n,2, ..., q2

n,L]
))

. Namely,

ecomp
n,l constructed for the l-th antenna of eRRH n is Gaussian distributed with 0

mean and variance q2
n,l . The signal to be delivered to eRRH n becomes

xsoft
n = x̃soft

n + ecomp
n =

M

∑
m=1

(1− c f m

n )wm
n sm + ecomp

n , (4.7)

with the l-th element for antenna l of eRRH n being expressed as

xsoft
n,l = x̃soft

n,l + ecomp
n,l =

M

∑
m=1

(1− c f m

n )wm
n,ls

m + ecomp
n,l . (4.8)

By exploiting chain rule and the independence assumption, for the dedicated fron-

thaul, the fronthaul resource consumption of eRRH n, Csoft
req,n should satisfy

Csoft
req,n = I(xsoft

n ; x̃soft
n ) =

L

∑
l=1

I(xsoft
n,l ; x̃soft

n,l )

=
L

∑
l=1

log2

1 +
∑M

m=1(1− c f m

n )|wm
n,l |2

q2
n,l

 ≤ CFH,n dedicated. (4.9)

It means that as long as (4.9) is satisfied, eRRH n is able to theoretically reconstruct

xsoft
n , and further forward it to UEs. And for the non-dedicated fronthaul, we can

arrive at a similar inequality as follows

Csoft
req =

N

∑
n=1

I(xsoft
n ; x̃soft

n ) =
N

∑
n=1

L

∑
l=1

I(xsoft
n,l ; x̃soft

n,l )

=
N

∑
n=1

L

∑
l=1

log2

1 +
∑M

m=1(1− c f m

n )|wm
n,l |2

q2
n,l

 ≤ CFH non-dedicated. (4.10)

Obviously, when coarser quantization is to be expected, the quantization noise shall

be set larger, i.e., the value of qn,l is increased, less fronthaul resources are to be

consumed. However, more distortions are introduced to the final signals delivered

to UEs.

4.1.5 Signal Processing at eRRH

As stated in the previous subsection, when the hard transfer mode is adopted, each

eRRH can obtain the raw data of the uncached contents that are fronthauled from
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the cloud, then they are encoded and beamformed before further sending to UEs.

The cached contents are encoded and beamformed directly at the corresponding

eRRHs. The beamformers are delivered to each eRRH via pilot signals transmitted

by fronthauls, thus certain dedicated fronthaul capacity consumption must be taken

in to account when the available fronthaul capacities CFH,n/CFH in (4.4) and (4.5) is

calculated, i.e., the dedicated fronthaul capacity used for pilots has to be deducted

from the total available capacity, in order to obtain the values of CFH,n/CFH. The

transmitted signal from eRRH n for the multi-cast group Gm that requests content

f m is

xm,hard
n = vm

n sm. (4.11)

By summing up the signals for all multi-cast groups, the transmitted signal con-

structed at eRRH n can be written as

xhard
n =

M

∑
m=1

xm,hard
n =

M

∑
m=1

vm
n sm. (4.12)

Before the signal is sent from eRRH n to UEs, the following transmission power

constraint has to be satisfied (Note that symbol sm ∀m ∈ M has normalized power)

Phard
TX,n =

M

∑
m=1
||vm

n ||22 ≤ Pmax
TX,n. (4.13)

When the soft transfer mode is adopted, for all n ∈ N , eRRH n decompresses and

reconstructs the received signal xsoft
n according to (4.7). As stated before, it only

consists of the information that are not cached at eRRHs. For content f m that is

cached at eRRH n, i.e., c f m

n = 1, signal wm
n sm shall be constructed locally at eRRH

n. Similarly to the hard transfer mode, the precoders for the cached contents are

also delivered to each eRRH via pilot signals transmitted by fronthauls. Hence,

certain dedicated fronthaul capacity shall be reserved similarly, when the value of

CFH,n/CFH in (4.9) and (4.10) are computed. After the signals are reconstructed (for

the non-cached contents) or constructed (for the cached contents), the eRRH sends

them further to UEs. Although the recovered signals will not be further processed,

the transmission power constraints of each eRRH still need to be respected when

designing the precoders:

Psoft
TX,n =

M

∑
m=1

(1− c f m

n )||wm
n ||22 + ||qn||22 +

M

∑
m=1

c f m

n ||wm
n ||22

=
M

∑
m=1
||wm

n ||22 + ||qn||22 ≤ Pmax
TX,n, (4.14)
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with qn = [qn,1, qn,2, ..., qn,L]
T.

Remark: Note that when the soft transfer mode is adopted, only the requested con-

tents that are not cached are distorted, and such a distortion introduces extra trans-

mission power consumption, as shown in the second term of (4.14). Although some

power is wasted compared with the hard transfer mode, it can save certain fron-

thaul capacity resources: Only the precoders for the cached contents need to be

transmitted via pilots using dedicated capacities. However, for the hard transfer

mode, all beamformers have to be transmitted via pilots.

4.1.6 Radio Access Channel

Usually, the CSI-RS (Channel State Information - Reference Signal) is sent via the

downlink to each UE for estimating the channel quality. Then the UEs will feed-

back the CSI to eRRHs and the BBU pool via the PUCCH (Physical Uplink Control

Channel) in uplink slots [3GP18]. Hence, we can suppose the channel informa-

tion is always available to the BBU pool. Let hk
n = [hk

n,1, hk
n,2, ..., hk

n,L]
T ∈ CL×1 be

the actual downlink channel vector between eRRH n and UE k. Thus, the aggre-

gated actual downlink channel vector from all eRRHs to UE k can be written as

hk = [hk
1

H, hk
2

H, ..., hk
N

H
]H ∈ CNL×1. When perfect global CSI is assumed to be

known, we say {hk}K
k=1 is available at the BBU pool. Hence, when the hard transfer

mode is adopted and Gaussian alphabet with infinite cardinality is assumed for the

modulation step, the SINR at UE k can be expressed as

SINRhard
k =

|hH
k vm|2

∑M
i 6=m |hH

k vi|2 + σ2
k

, k ∈ Gm, (4.15)

where σ2
k denotes variance of the i.i.d additive complex Gaussian noise with zero

mean at UE k. From (4.15), the desired signal of each UE is interfered by other

uninteresting signals as well as the additive white Gaussian noise.

Similarly, when the soft mode is adopted, the SINR at UE k is

SINRsoft
k =

|hH
k wm|2

|hH
k q|2 + ∑M

i 6=m |hH
k wi|2 + σ2

k

, k ∈ Gm, (4.16)

where q = [qT
1 , qT

2 , ..., qT
N ]

T denotes the aggregated vector of the quantization noise

across all eRRHs. Obviously, the desired signal of each UE is also interfered by the

quantization noise.
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4.1.7 Inaccurate CSI

When inaccurate CSI is considered, we adopt a widely used additive error model

[Pon+11; GCW12; NN14; SZL15] to describe the inaccurate CSI as follows:

h̃k = hk + eCSI
k , (4.17)

with Pr
{
||eCSI

k ||22 ≤ ε2
k

}
≥ 1− δk, ∀k ∈ {1, 2, ..., K}. (4.18)

Vector hk ∈ CNL×1 represents the inaccurate aggregated channel vector for UE k. We

assume only such inaccurate information is available at the BBU pool, and based on

which the network is optimized. Vector eCSI
k ∈ CNL×1 denotes the aggregated CSI

error vector of UE k. It is assumed to be bounded in the spherical region with radius

εk with the probability of at least 1− δk. δk is said to be the outage probability. Similar

to many existing works [Pon+11; GCW12; NN14; SZL15], we take such a sphere

model, instead of the well-known Gaussian model to describe the error pattern.

This is mainly due to the fact that such a model is more general, the Gaussian model

can be regarded as a special case of it, as long as δ > 0. Obviously, all algorithms

proposed later for this sphere model are valid for the Gaussian model. For UE

k ∀k ∈ {1, 2, ..., K}, the BBU pool knows only the value of εk, instead of the exact

aggregated error vector eCSI
k , hence, the exact channel knowledge h̃k is not available.

Note that the CSI error also introduces interference to the desired signal. By substi-

tuting (4.17) into (4.15) and (4.16), and treating all interference as noise, including

the additional one resulting from the inaccuracy of the CSI, the actual achievable

effective SINR for UE k ∈ Gm for both fronthauling strategies can be expressed as

eSINRhard
k (eCSI

k ) =

∣∣hH
k vm

∣∣2∣∣∣eCSI
k

Hvm
∣∣∣2 + ∑M

i 6=m

∣∣∣(hH
k + eCSI

k
H
)

vi
∣∣∣2 + σ2

k

, (4.19)

eSINRsoft
k (eCSI

k ) =

∣∣hH
k wm

∣∣2∣∣∣(hH
k + eCSI

k
H
)

q
∣∣∣2 + ∣∣∣eCSI

k
Hwm

∣∣∣2 + ∑M
i 6=m

∣∣∣(hH
k + eCSI

k
H
)

wi
∣∣∣2 + σ2

k

.

(4.20)

The items in the denominator of (4.20) denote the interference resulting from the

signal compression, inaccuracy of the CSI, and the contents intended to all other

multi-cast groups, as well as the noise. For the hard transfer mode, there is no quan-

tization noise resulting from the compression, as shown in (4.19). We see that the

achievable effective SINRs of both transfer modes are functions of the aggregated

error vectors {eCSI
k }K

k=1. Here we emphasize again that the BBU pool does not know

them. Hence, the exact value of the achievable effective SINRs can not be derived,

due to their dependence on random {eCSI
k }K

k=1.
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4.1.8 Summary

Up to now, we have introduced the models and the signal processing procedures

adopted in the cache-enabled F-RAN. The requirements of the whole systems are

derived, for different transfer modes and different fronthaul resource sharing poli-

cies. Then in the next step, we are going to propose feasible and low complexity

algorithms to optimize the network for different targets, e.g., whether achieving the

maximal throughput of the network the top priority, or a greener networks is pre-

ferred. In summary, in order to achieve the performance targets of the network, the

results of the proposed algorithms must tell each eRRH:

1. Which UEs shall be served? Or in another word, which contents shall each eRRH

transmit?

2. If eRRHs have to share the fronthaul resources with others, how much capacity can be

assigned to each one?

3. For the hard transfer mode, how shall each content be transmitted? Specifically, how

shall each eRRH beamform each content?

4. For the soft transfer mode, after the uncached precoded contents are decompressed and

forwarded , how shall the cached contents be transmitted? Specifically, how shall each

eRRH precode the cached contents locally?

5. How shall each eRRH allocate its limited power for different multi-cast groups that it

serves? Or in another word, how much power shall be allocated to each content?

5. Is it possible to deactivate some eRRHs to save power?

We are going to answer all questions from the next subsection. By comparing (4.4)

and (4.5) for the hard transfer mode, (4.9) and (4.10) for the soft transfer mode, it

can be seen that the inequality constraints for the dedicated and the non-dedicated

fronthaul resources have similar forms. As will be shown in the next subsections,

similar techniques can be applied to deal with these two scenarios. Hence, in order

to avoid unnecessary repetitions, for each design target, we only select one specific

scenario for intensive investigation. For example, when high EE oriented cache-

enabled F-RAN is the target, only algorithms and numerical results for the scenario

of dedicated fronthaul will be introduced in detail, as the algorithms for the non-

dedicated case can adopt the same techniques and, of course, with some straightfor-

ward modifications. Naturally, we will elaborate on how such modifications shall

happen for other scenarios, after a detailed derivation of the algorithm for a specific

scenario is given.
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4.2 Joint Optimization for Different Criteria

In this section, the central optimization method for the downlink is to be investi-

gated. We will start with the case when perfect global CSI is available at the BBU

pool, then we will proceed to methods dealing with the case when only inaccurate

CSI exists. For both cases, we focus on both high Energy Efficiency (EE) oriented de-

sign and high Spectral Efficiency (SE) oriented design. When high EE is the target,

minimizing the energy consumption of the network is the main objective, of course

under the condition that the QoS of each UE can be guaranteed, and the constraints

of the network must be satisfied. More specifically, we consider both cases of mini-

mizing only the transmission power, and its extension where the operational power

of an active eRRH is taken into account. In the latter case, as we are going to see

next, switching off some eRRHs is able to compensate the increasing of the trans-

mission power resulting from less spatial diversity. When high SE is considered,

there are two different variations: The first one is to maximize the network multi-

cast throughput, such that the capability for the downlink multi-casting rate of this

network can be squeezed to the limit. However, it can happen that some UEs with

poor channel conditions never get scheduled. This is mainly due to the fact that,

increasing the achievable rate for these bad UEs will consume much more resources

of the network, comparing to the ones with good channel qualities. Hence, in order

to fully utilize the available network resources for the maximization of the overall

network throughput, these good UEs are prioritized, which definitely leads to un-

fairness between UEs. The second variation is to achieve the (weighted) Max-Min

Fairness between all UEs. In this case, the lowest QoS of each requested content is

maximized, in order to achieve the (weighted) fairness between them.

Although the criteria of network design are far different from each other, in each

scenario, the problem of the traffic load balancing, cluster formulation and com-

pression etc. will be intensively discussed. Furthermore, we will then investigate

how to guarantee the network performance, in terms of the different design metrics

listed above, in the presence of only inaccurate CSI.

4.2.1 High EE oriented Design — TX Power Minimization

In this subsection, in order to make the descriptions and the derivations of the algo-

rithms easy to follow, we start with the simplest case: Only minimizing the trans-

mission power (TX power), without considering the possibility to switch off eRRHs

to save the additional operational power. Afterwards we extend the scenario by

taking the additional operational power into account, and propose a mechanism

for minimizing the total power to make the network greener. For both scenarios,
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two different fronthauling strategies, i.e., the hard and the soft transfer modes, are

investigated separately, as the signal processing procedures of them, as well as the

techniques utilized to deal with the optimization of them, are quite different.

4.2.1.1 Design for the Hard Transfer Mode

When the hard transfer mode is adopted by the network based on (4.4), (4.5), (4.13),

(4.15) and the previous introductions, the problem can be formulated as follows:

PHard original : min
{vm}M

m=1

M

∑
m=1
||vm||22, (4.21)

s.t. SINRhard
k ≥ Γm, ∀k ∈ Gm, ∀Gm, (4.22)

M

∑
m=1

(1− c f m

n )
∣∣||vm

n ||22
∣∣
0Rm ≤ CFH,n ∀n ∈ N dedicated, (4.23)

N

∑
n=1

M

∑
m=1

(1− c f m

n )
∣∣||vm

n ||22
∣∣
0Rm ≤ CFH non-dedicated, (4.24)

M

∑
m=1
||vm

n ||22 ≤ Pmax
TX,n, ∀n ∈ N . (4.25)

Eq. (4.21) describes the transmission power consumption of the network, which is

the sum of the transmission power consumed for each multi-cast group among all

eRRHs. Constraint (4.22) guarantees the QoS of each UE in each multi-cast group,

where Γm denotes the target SINR of the content requested by Gm and SINRhard
k is

defined in (4.15). When each eRRH is assigned with dedicated fronthaul resource,

constraint (4.23) guarantees that the traffic on each fronthaul does not exceed its ca-

pacity: As stated in the previous section, we use the `0-norm to denote whether the

beamforming vector vm
n is a zero vector or not, i.e., if eRRH n is involved in cluster

Cm serving multi-cast group Gm, it is a non-zero vector and thus
∣∣||vm

n ||22
∣∣
0 = 1 holds,

otherwise the `0-norm is zero. We see that UEs in multi-cast group Gm consumes

the capacity resource of the fronthaul to eRRH n only if the requested content is not

cached, i.e., c f m

n = 0, and this eRRH indeed contributes to multi-cast group Gm, i.e.,∣∣||vm
n ||22

∣∣
0 = 1. In this case, the fronthaul capacity resource consumption for this

uncached content can be written as

Rm = log2 (1 + Γm) (4.26)

at a minimum, when the Gaussian codebook is used. For all the computations from

now on, we assume the Gaussian codebook for simplicity unless otherwise stated.

By summing up all multi-cast groups, we obtain the total fronthaul resource con-

sumption of eRRH n in (4.23), which should be smaller than its capacity. Similarly,

the capacity constraint for the non-dedicated case is expressed in (4.24). Constraint
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(4.25) ensures that at each eRRH, the transmission power does not exceed its maxi-

mal allowable power.

The descriptions above indicate that the clustering and the beamformers interact

with the requested contents, the cached contents, the fronthaul link capacities, the

maximal allowable power, and the radio channel conditions between all eRRHs and

scheduled UEs. For different scheduling intervals, i.e., different downlink slots,

the parameters above (except for the fronthaul capacities and maximal allowable

power of each eRRH) change independently and dynamically, thus an efficient opti-

mization scheme is required. Although we do not explicitly optimize the clustering

scheme, i.e., which subset of eRRHs shall serve which multi-cast group, it is implic-

itly optimized and determined by the resulting value
∣∣||vm

n ||22
∣∣
0 of the problem.

Then the question becomes how to solve the problem above. As stated in the last

part of the previous subsection, a specific fronthaul sharing strategy is to be se-

lected for illustrating the solution of the problem raised above. Here we select the

dedicated case, i.e., solving the problem consisting of (4.21), (4.22), (4.23) and (4.25).

After completing the introduction of the solution, a short description will be given

for amending it to the non-dedicated case.

Note that the objective function (4.21) and the LHS of constraints (4.22) and (4.23)

are non-convex functions. Moreover, the `0-norm in (4.23) makes the correspond-

ing function be step-like and similar to a Mixed Integer Non-Linear Programming

(MINLP) problem [MFR20]. Hence, this problem is in general non-convex and NP-

hard. Then the first step is to develop methods to convexify the original problem.

At first we adopt the Semi-Definite Relaxation (SDR) technique introduced in Sub-

section 2.3.4 to convexify (4.22). Let Vm = vm(vm)H and Hk = hkhH
k , ∀m, k, where

both Vm, Hk ∈ CNL×NL are positive semidefinite matrices. We further define a selec-

tion matrix at eRRH n as Jn = Diag
([

0H
(n−1)L×1, 1H

L×1, 0H
(N−n)L×1

])
. Therefore, the

following expressions can be derived: ||vm||22 = tr(Vm), ||vm
n ||22 = tr(VmJn), and

|hH
k vm|2 = tr(VmHk). Then together with (4.15) and (4.26), the original problem

(4.21) - (4.25) can be equivalently reformulated as follows
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PHard : min
{Vm}M

m=1

M

∑
m=1

tr(Vm), (4.27)

s.t. Γm

(
σ2

k +
M

∑
i 6=m

tr(ViHk)

)
− tr(VmHk) ≤ 0, ∀k ∈ Gm, ∀Gm, (4.28)

M

∑
m=1

(1− c f m

n )
∣∣tr(VmJn)

∣∣
0 log2 (1 + Γm) ≤ CFH,n, ∀n ∈ N , (4.29)

M

∑
m=1

tr(VmJn) ≤ Pmax
TX,n, ∀n ∈ N , (4.30)

Vm � 0, ∀m ∈ M, (4.31)

rank (Vm) = 1, ∀m ∈ M. (4.32)

For the problem above, it is convex with respect to {Vm}M
m=1 except for (4.29) and

(4.32). As stated in Subsection 2.3.4, the relaxation step of SDR technique is to drop

the rank-one constraint, which is non-convex, and to consider only the remaining

relaxed version of the original problem. If the obtained optimal Vm has rank 1, the

EigenValue Decomposition (EVD) can be used to obtain the corresponding optimal

beamforming vector vm. Otherwise randomization and scaling method is used to

generate a sub-optimal solution. Details can be found in [KSL08].

After dropping the non-convex constraint (4.32), constraint (4.29) is still non-convex

due to the `0-norm operation inside. In order to convexify it, we utilize the `0-norm

approximation technique introduced in Subsection 2.3.5, i.e., the `0-norm is approx-

imated in an iterative manner. In each iteration step, a weighted `1-norm, which

is convex, is utilized to approximate the discrete and non-convex `0-norm, based

which a standard Semi Definite Programming (SDP) problem can be generated. By

solving the resultant SDP problem, the results are used to recalculate the weights of

the `1-norms so as to refine the approximation. Specifically, in the (t + 1)-th itera-

tion,
∣∣tr(Vm(t+1)Jn)

∣∣
0 is approximated as a linear function of tr(Vm(t+1)Jn), i.e.,

∣∣tr(Vm(t+1)Jn)
∣∣
0 ≈ km(t+1)

n tr(Vm(t+1)Jn), (4.33)

where scalar km(t+1)
n is calculated via the result of the previous iteration as

km(t+1)
n =

1
τ + tr(Vm(t)Jn)

. (4.34)

As said in Subsection 2.3.5, km(t+1)
n is called the re-weighted coefficient. The value of

τ is predetermined and regarded as a threshold parameter that determines whether

this `0-norm is turned on (1) or off (0). Please review Subsection 2.3.5 for more

details. In each iteration step, the value of km
n shall be updated based on the results

of the previous iteration by using (4.34). Then the `0-norm is approximated for
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this iteration via (4.33), which is linear and convex. Therefore, in each iteration

step, constraint (4.29) is convexified by such an approximation technique. After

the resultant approximated convex problem is solved, we go to the next iteration

step with the updated value of km
n , then a similar convex problem is formed for

the new iteration. As shown in [CWB08], such an iterative approximation of `0-

norm is effective and can converge very fast. The convergence behaviour is also

demonstrated in our numerical results, which will be given later.

Therefore, for (t + 1)-th iteration, the original non-convex problem (4.27)-(4.32) can

be relaxed and approximated as

P (t+1)
Hard : min

{Vm(t+1)}M
m=1

M

∑
m=1

tr(Vm(t+1)), (4.35)

s.t. Γm
M

∑
i 6=m

tr(Vi(t+1)Hk)− tr(Vm(t+1)Hk) + Γmσ2
k ≤ 0, ∀k ∈ Gm, ∀Gm,

(4.36)
M

∑
m=1

am(t+1)
n tr(Vm(t+1)Jn)− CFH,n ≤ 0, ∀n ∈ N , (4.37)

M

∑
m=1

tr(Vm(t+1)Jn) ≤ Pmax
TX,n, ∀n ∈ N , (4.38)

Vm(t+1) � 0, ∀m ∈ M, (4.39)

where am(t+1)
n = km(t+1)

n (1− c f m

n ) log2 (1 + Γm), with km(t+1)
n being calculated accord-

ing to (4.34), which depends on the results from the previous iteration.

The reformulated problem (4.35)-(4.39) in each iteration consists of only a linear ob-

jective function, K + 2N linear inequality constraints, and M positive-semidefinite

constraints. It is a standard SDP problem [Fre09] and can be efficiently solved by

many solvers, such as SDPT3[TT11] and SeDuMi[PL03].

One important issue is the problem formulation of the initial step, as no previous

results exist for the calculation of the value of km(0)
n . The initial value acquisition

in this iterative approximation procedure for `0-norm is circumvented by dropping

the constraints that containing the `0-norm in the initial step. Therefore, for the

initial iteration, the following problem shall be solved:

P (0)
Hard : min

{Vm(0)}M
m=1

M

∑
m=1

tr(Vm(0)), (4.40)

s.t. Γm
M

∑
i 6=m

tr(Vi(0)Hk)− tr(Vm(0)Hk) + Γmσ2
k ≤ 0, ∀k ∈ Gm, ∀Gm, (4.41)

M

∑
m=1

tr(Vm(0)Jn) ≤ Pmax
TX,n, ∀n ∈ N , (4.42)

Vm(0) � 0, ∀m ∈ M. (4.43)
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By solving the initial problem above, which is also a SDP problem, we can obtain

{Vm(0)}M
m=1 which are used to start the iteration steps.

After the last iteration, the final {Vm(last)}M
m=1 can be acquired, and the correspond-

ing beamformers are derived via EigenValue Decomposition (EVD) method or the

randomization and scaling method, as introduced in Subsection 2.3.4.

In summary, the overall algorithm for high EE oriented network design with the

hard transfer mode for minimizing the transmission power is as follows:

Algorithm 2: The Iterative Optimization Steps for TX power Minimization
(For the hard transfer mode)

1 Initialization: Solve the standard SDP problem P (0)
Hard (4.40)-(4.43) to obtain

{Vm(0)}M
m=1. Compute km(1)

n based on (4.34), ∀m, n. Construct the problem
P (1)

Hard according to (4.35)-(4.39), and set t← 1.
2 repeat
3 Solve the standard SDP problem P (t)

Hard for obtaining {Vm(t)}M
m=1.

4 Update the values of km(t+1)
n based on (4.34), ∀m, n. Then formulate the

problem P (t+1)
Hard according to (4.35)-(4.39), and set t← t + 1.

5 until convergence or reaching the max iteration number;
6 if rank(Vm(last)) = 1 then
7 Perform EVD to obtain the optimal {vm}M

m=1.

8 else
9 Use Gaussian randomization and scaling [KSL08] method to obtain the

approximate solution {vm}M
m=1.

Extension to the non-dedicated case: When the fronthaul capacity is shared

among eRRHs, we can still use the same techniques proposed above to solve the

problem. Comparing the inequality between (4.24) and (4.23), they have almost

the same formulation. Hence, we can adopt the same iterative `0-norm approxi-

mation method to convexify the capacity constraint of the non-dedicated fronthaul.

The algorithm above is still valid. After the final optimized beamforming vectors

{vm,opt}M
m=1 are obtained via the algorithm, the fronthaul capacity Chard,opt

FH,n that shall

be allocated to eRRH n can be derived by calculating

Chard,opt
FH,n =

M

∑
m=1

(1− c f m

n )H
(
||vm,opt

n ||22, τ
)

log2 (1 + Γm) , (4.44)

where the unit step function H(x, τ) used here is defined as

H(x, τ) :=

0 for x ≤ τ

1 for x > τ
(4.45)
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τ is the predetermined threshold parameter that has been used for the `0-norm ap-

proximation.

4.2.1.2 Design for the Soft Transfer Mode

For soft transfer mode, we formulate the problem to be solved according to (4.9),

(4.10), (4.14) and (4.16), as follows:

PSoft original : min
{wm}M

m=1,{qn}N
n=1

(
M

∑
m=1
||wm||22 +

N

∑
n=1
||qn||22

)
, (4.46)

s.t. SINRsoft
k ≥ Γm, ∀k ∈ Gm, ∀Gm, (4.47)

L

∑
l=1

log2

1 +
∑M

m=1(1− c f m

n )|wm
n,l |2

q2
n,l

 ≤ CFH,n ∀n ∈ N dedicated, (4.48)

N

∑
n=1

L

∑
l=1

log2

1 +
∑M

m=1(1− c f m

n )|wm
n,l |2

q2
n,l

 ≤ CFH non-dedicated, (4.49)

M

∑
m=1
||wm

n ||22 + ||qn||22 ≤ Pmax
TX,n, ∀n ∈ N . (4.50)

Due to the inevitable quantization error introduced by the compression procedure

in the soft transfer mode, each eRRH has to reserve some power for the transmission

of the quantization noise. Hence, when minimizing the total transmission power

in (4.46), besides optimizing the precoders, the optimal design of the introduced

quantization noise shall also be taken into account.

Similarly to the hard transfer mode, constraint (4.47) guarantees the QoS of each

UE in each multi-cast group, where Γm denotes the target SINR of the content re-

quested by multi-cast group Gm. SINRsoft
k has been derived in (4.16). Constraints

(4.48) and (4.49) guarantee that fronthaul can support the soft transfer of the data

streams to eRRHs, for the dedicated and the non-dedicated scenarios, respectively.

Constraint (4.50) ensures that the transmission power of each eRRH does not exceed

its maximal allowable power.

The solution of the problem above will not only give the optimal precoder design,

but also the optimal compression strategy for the soft transferring of data streams

to each eRRHs from the BBU pool. Obviously, this problem is also non-convex.

Similar to the solving strategy of the hard transfer mode, we relax, reformulate, ap-

proximate and then convexify the original problem to make it solvable. Similarly,

we take the dedicated case as the example to illustrate the solving procedure, i.e.,

(4.46)-(4.48) and (4.50). The extension to the non-dedicated case will be given after-

wards.
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By comparing the problem formulation of the soft transfer mode, with the one for

the hard transfer mode (4.21)-(4.25), we see that the SDR technique can be adopted

to convexify (4.46), (4.47) and (4.50). The problem becomes how to convexify (4.48).

We adopt an iterative approximation method for the convexification of it, whose

convergence and effectiveness are proved and shown in [DW16]. Specifically, by

adopting the SDR technique, the Left Hand Side (LHS) of (4.48) can be reformulated

as follows and be upper-bounded:

L

∑
l=1

log2

1 +
∑M

m=1(1− c f m

n )|wm
n,l |2

q2
n,l


=

L

∑
l=1

log2

q2
n,l + ∑M

m=1(1− c f m

n )|wm
n,l |2

q2
n,l


=

L

∑
l=1

log2

(
tr (QJn,l) + ∑M

m=1(1− c f m

n )tr (WmJn,l)

tr (QJn,l)

)

=
L

∑
l=1

log2

(
tr (QJn,l) +

M

∑
m=1

(1− c f m

n )tr (WmJn,l)

)
−

L

∑
l=1

log2 tr (QJn,l)

≤
L

∑
l=1

(
log2 ηn,l +

tr (QJn,l) + ∑M
m=1(1− c f m

n )tr (WmJn,l)

ηn,l ln 2

)

− L
ln 2
−

L

∑
l=1

log2 tr (QJn,l) , (4.51)

rank (Wm) = 1, ∀m ∈ M, (4.52)

rank (Q) = 1, (4.53)

where Wm = wmwm H ∈ RNL×NL ∀m ∈ M and Q = qqH ∈ RNL×NL are positive

semidefinite matrices, i.e., Q, Wm � 0. The antenna selection matrix Jn,l ∈ RNL×NL

is a diagonal matrix, whose ((n− 1)L + l)-th diagonal element is 1, all others are 0.

The main point lies in how can we obtain the inequality in (4.51). Note that accord-

ing to Bernoulli’s Inequality, for any x ∈ R, we have

1 + x ≤ ex, (4.54)

thus,

ln x ≤ x− 1. (4.55)

We achieve the equality in (4.55) when x = 1.

By introducing an auxiliary parameter ηn,l to the LHS of (4.51) and adopting (4.55),
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we have

ln
tr (QJn,l) + ∑M

m=1(1− c f m

n )tr (WmJn,l)

ηn,l
≤ tr (QJn,l) + ∑M

m=1(1− c f m

n )tr (WmJn,l)

ηn,l
− 1,

(4.56)

then,

1
ln 2

ln
tr (QJn,l) + ∑M

m=1(1− c f m

n )tr (WmJn,l)

ηn,l
≤ 1

ln 2
tr (QJn,l) + ∑M

m=1(1− c f m

n )tr (WmJn,l)− ηn,l

ηn,l
.

(4.57)

By adopting the conversion

loga b =
ln b
ln a

,

we further have

log2

(
tr (QJn,l) +

M

∑
m=1

(1− c f m

n )tr (WmJn,l)

)
− log2 ηn,l

≤ 1
ln 2

tr (QJn,l) + ∑M
m=1(1− c f m

n )tr (WmJn,l)− ηn,l

ηn,l
, (4.58)

and finally

log2

(
tr (QJn,l) +

M

∑
m=1

(1− c f m

n )tr (WmJn,l)

)

≤ log2 ηn,l +
tr (QJn,l) + ∑M

m=1(1− c f m

n )tr (WmJn,l)

ηn,l ln 2
− 1

ln 2
, (4.59)

the equality in (4.59) holds if and only if

ηn,l = tr (QJn,l) +
M

∑
m=1

(1− c f m

n )tr (WmJn,l) , ∀l ∈ {1, 2, ..., L}. (4.60)

Hence, we can finally upper bound the LHS of (4.51) and obtain the corresponding

inequality.

For fixed values of {ηn,l}L
l=1 ∀n ∈ N , the Right Hand Side (RHS) of (4.51) is a convex

function with respect to Q and Wm, which motivates a successive solving strategy

of the original problem: By replacing the LHS of (4.48) with the RHS of (4.51) for

specific {ηn,l}L
l=1∀n ∈ N , whose values are obtained from the results of the problem

from the previous iteration. Then in each iteration, a relaxed convex optimization

problem can be formulated, by temporarily dropping the non-convex constraint

(4.52) and (4.53).

Specifically, after such a convex problem is solved in each iteration, the values of

{ηn,l}L
l=1 ∀n ∈ N are to be updated according to (4.60), which are then utilized to
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formulate the problem of the next iteration. This technique is very similar to how

we dealt with the non-convex `0-norm previously.

Similarly, the final {wm}M
m=1 and q can be derived via EVD or Gaussian randomiza-

tion and scaling, as introduced several times in previous subsections.

In detail, by combining the SDR technique and the iterative approximation tech-

nique proposed above, for the (t + 1)-th iteration, the problem is formulated as

follows:

P (t+1)
Soft : min

{Wm(t+1)}M
m=1,Q(t+1)

M

∑
m=1

tr
(

Wm(t+1)
)
+

N

∑
n=1

tr
(

Q(t+1)Jn

)
, (4.61)

s.t. Γmtr(Q(t+1)Hk) + Γm
M

∑
i 6=m

tr(Wi(t+1)Hk)− tr(Wm(t+1)Hk) + Γmσ2
k ≤ 0,

∀k ∈ Gm, ∀Gm,

(4.62)

L

∑
l=1

log2 ηn,l +
tr
(

Q(t+1)Jn,l

)
+ ∑M

m=1(1− c f m

n )tr
(

Wm(t+1)Jn,l

)
ηn,l ln 2


−

L

∑
l=1

log2 tr
(

Q(t+1)Jn,l

)
− L

ln 2
− CFH,n ≤ 0, ∀n ∈ N , (4.63)

M

∑
m=1

tr(Wm(t+1)Jn) + tr(Q(t+1)Jn) ≤ Pmax
TX,n, ∀n ∈ N , (4.64)

Wm(t+1) � 0, ∀m ∈ M, (4.65)

Q(t+1) � 0. (4.66)

The reformulated problem (4.61)-(4.66) in each iteration consists of a linear objec-

tive function, K + 2N linear inequality constraints, and M + 1 positive-semidefinite

constraints. Hence, it is also a SDP problem and can be solved by SDPT3 or SeDuMi

introduced previously.

Similarly, an initial step is required to compute values of {ηn,l}L
l=1 ∀n ∈ N that are

to be used in next iterations. Same as the initial step for solving the problem of the

hard transfer mode, the constraints where {ηn,l}L
l=1 ∀n ∈ N appear are temporarily

dropped, i.e., the initial problem of iteration 0 is formed as follows without the
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fronthaul constraints (4.63):

P (0)
Soft : min

{Wm(0)}M
m=1,Q(0)

M

∑
m=1

tr
(

Wm(0)
)
+

N

∑
n=1

tr
(

Q(0)Jn

)
, (4.67)

s.t. Γmtr(Q(0)Hk) + Γm
M

∑
i 6=m

tr(Wi(0)Hk)− tr(Wm(0)Hk) + Γmσ2
k ≤ 0,

∀k ∈ Gm, ∀Gm, (4.68)
M

∑
m=1

tr(Wm(0)Jn) + tr(Q(0)Jn) ≤ Pmax
TX,n, ∀n ∈ N , (4.69)

Wm(0) � 0, ∀m ∈ M, (4.70)

Q(0) � 0. (4.71)

After solving the initial SDP problem above, all required initial values to compute

{ηn,l}L
l=1 ∀n ∈ N for further iterations can be obtained according to (4.60). The

overall algorithm is summarized as follows:

Algorithm 3: The Iterative Optimization Steps for TX power Minimization
(For the soft transfer mode)

1 Initialization: Solve the standard SDP problem P (0)
Soft (4.67)-(4.71) to obtain

{Wm(0)}M
m=1 and Q(0). Compute η

(1)
n,l based on (4.60), ∀n, l. Construct the

problem P (1)
Soft according to (4.61)-(4.66), and set t← 1.

2 repeat
3 Solve the standard SDP problem P (t)

Soft for obtaining {Vm(t)}M
m=1 and Q(t).

4 Compute the values of η
(t+1)
n,l based on (4.60), ∀n, l. Then formulate the

problem P (t+1)
Soft according to (4.61)-(4.66), and set t← t + 1.

5 until convergence or reaching the max iteration number;
6 if rank(Wm(last)) = 1 and rank(Q(last)) = 1 then
7 Perform EVD to obtain the optimal {wm}M

m=1 and q.

8 else
9 Use Gaussian randomization and scaling [KSL08] method to obtain the

approximate solution {wm}M
m=1 and q.

With the obtained q from the algorithm, the BBU pool acquires the statistical knowl-

edge for the quantization step of the soft transfer mode, more details can be back-

tracked to Subsection 4.2.1.2.

Extension to the non-dedicated case: When the fronthaul capacity is shared

among eRRHs, by comparing the constraints (4.48) and (4.49), it can be concluded

that the technique introduced above can still be adopted to solve the problem. Thus,

the same iterative approximation method can be utilized to convexify the capacity

constraint of the non-dedicated fronthaul (4.49), and Alg. 3 is thus still valid. After
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BBU

. . . . . .

. . .. . . . . .

. . .. . .

. . .

eRRH cache UE

1 2

43 5

76

Figure 4.4: The cache-enabled F-RAN consisting of seven hexagonal cells used for
simulation in Subsection 4.2.1.3 and several later subsections. Dots with the same
color denote UEs requesting the same contents, which are randomly and uniformly
distributed within the whole network. The index for each eRRH/cell lies at the
bottom of each hexagon.

the final optimized {wm,opt}M
m=1 and qopt are obtained by solving the algorithm, the

fronthaul capacity Csoft,opt
FH,n that shall be allocated to eRRH n can be derived by

Csoft,opt
FH,n =

L

∑
l=1

log2

1 +
∑M

m=1(1− c f m

n )|wm,opt
n,l |2

(qopt
n,l )

2

 . (4.72)

4.2.1.3 Numerical Results

It is time to have a pause here before we continue our algorithm adventure. The

numerical results of the two algorithms proposed above will be provided in this

subsection to verify their correctness and effectiveness. Furthermore, the perfor-

mance of the hard and soft transfer modes will also be compared. A hexagonal

F-RAN is selected as illustrated in Fig.4.4, the wireless environment is setup with

the parameters listed in Table 4.1 4, all simulation results are based on these param-

eters unless otherwise stated. We adopt the system model, including the network

model, cache and content model, etc., according to the descriptions in Section 4.1.

All UEs are randomly and uniformly distributed within this hexagonal network.

Our simulation results are to be compared with some existing algorithms in other

works, with which the benefit and effectiveness of the proposed ones can be demon-

strated.
4For the fronthaul capacity CFH,n, we assume the dedicated capacity for the pilot signals have been

deducted.
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Number of eRRHs (Hexagonal Cell): N 7
Number of antennas per eRRH: L 2

Distance between adjacent eRRHs: deRRH 0.5 km
Transmit Antenna Gain 10 dBi

Total number of UE: Ktotal 200
Number of scheduled UEs per DL slot: K 12

Background noise -172 dBm/Hz
3GPP LTE-A path loss model 148.1 + 37.6 log10(d)

Log-normal shadowing 8 dB
Rayleigh small scale fading 0 dB

Network bandwidth: B 10 MHz
SINR target for each UE: Γ 10 dB

Total number of contents: Mtotal 100
Skew parameter of the Zipf distribution: α 1.5

Cache Memory Size: S 3 Units
Individual fronthaul capacities: CFH,n ∀n ∈ {1, 2, ..., N} 70Mbps

Threshold parameter used in (4.34): τ -50dBm
Maximal iteration number: Nmax: 30

Table 4.1: The simulation parameters for F-RAN.

Firstly, we test the proposed algorithm for the hard transfer mode, i.e., Alg. 2. In the

specific downlink slot selected in our simulation, according to the network config-

uration, twelve scheduled UEs are allowed to submit their requests. The BBU pool

realizes that totally seven different contents are requested, thus seven multi-cast

groups are formed. Among seven requested contents, two of them have already

been cached at eRRHs, whose indices are 1 and 2, respectively. Although the cache

memory size S is 3, the cached content with index 3 is not requested by any UE

in this downlink slot. Without loss of generality, we name the two requested con-

tents that are cached as f (1) and f (2) for multi-cast group 1 and 2, respectively.

The remaining five requested contents, which are named by f (3) to f (7), have to

be fetched from the cloud via fronthauls. After the BBU pool knows such knowl-

edge, Alg. 2 is executed to optimize the network. As a comparison to our proposed

algorithm, the algorithm proposed in [Tao+16] is also implemented. Moreover, we

record the value of Pm
n = ||vm

n ||22 in each iteration. It denotes how much power

is allocated for transmitting content f (m) at eRRH n, in order to serve the UEs in

multi-cast group Gm. Moreover, the optimal clustering pattern, i.e., which subset of

eRRHs shall serve which multi-cast group, can be derived.

In Fig. 4.5 - Fig. 4.8, the clustering patterns are illustrated from the perspective of the

requested contents. In Fig. 4.5 and Fig. 4.6, the y-axis denotes the allocated power

for the cached file f (2)[C] at all seven eRRHs, which are plotted with solid lines. The

x-axis indicates the iteration number of the running algorithms. Fig. 4.7 and Fig. 4.8

illustrate the allocated power for the uncached content f (6)[U], which are plotted

as dotted-dashed lines. For both contents, the results are acquired by executing the
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Figure 4.5: The cluster for cached content f (2)[C] resulting from Alg. 2.
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Figure 4.6: The cluster for cached content f (2)[C] resulting from the benchmark
Alg. in [Tao+16].
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Figure 4.7: The cluster for uncached content f (6)[U] resulting from Alg. 2.
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Figure 4.8: The cluster for uncached content f (6)[U] resulting from the benchmark
Alg. in [Tao+16].
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proposed Alg. 2, and the benchmark algorithm from [Tao+16], respectively.

Note that the threshold parameter τ is set to −50 dBm. Hence, for cached content

f (2)[C], we see that all seven eRRHs from the results of both algorithms shall par-

ticipate in transmitting this content, as no one drops below −50 dBm. This is just

what we expected: As the cached contents do not consume fronthaul resources, in-

volving all eRRHs in this cluster can always increase the spatial diversity and thus

reduce the transmission power consumption. Hence, for the cached contents, the

clustering results are the same for both algorithm. Additionally, we see that the

proposed algorithm converges and yields stable outcomes just after about five iter-

ations. However, when it goes to uncached content, involving all eRRHs in a clus-

ter for a single content might be not possible any more: As the fronthaul resources

are consumed, delivering the uncached contents to all eRRHs so as to increase the

spatial diversity might not be supported. Hence, for each uncached content, some

eRRHs shall be expelled out of the participation for the transmission of them. We

take uncached content f (6)[U] as an example: By comparing Fig. 4.7 and Fig. 4.8, it

can be observed that the resultant clustering pattern are different: In Fig. 4.7, in or-

der to meet each individual fronthaul capacity constraint, our proposed algorithm

expels three eRRHs, i.e., eRRH 4, eRRH 5 and eRRH 6, out of the cluster for trans-

mitting content f (6)[U], after about six iterations. However, with the benchmark

algorithm, only two eRRHs, i.e., eRRH 5 and eRRH 6, are expelled from the eRRH-

cluster to serve f (6)[U]. In order to illustrate these results more intuitive and easier

to understand, we plot the final cluster formulation in Fig. 4.9, which is resultant

from the outcome of Fig. 4.5 - Fig. 4.8. Obviously, for uncached content f (6)[U],

the eRRH-cluster formed via these two algorithms are different, as we are going to

show next, the cluster formed via the benchmark algorithm actually causes traffic

problems.

For demonstrating how the proposed algorithm regulates the traffic on fronthauls,

Fig. 4.10 - Fig. 4.13 are plotted. These figures are obtained with the same simu-

lation realization as Fig. 4.5 - Fig. 4.8, however, the cluster formulation is plotted

from the perspective of eRRHs. As stated before, each eRRH might participate in

several clusters for serving different multi-cast groups. Note that the fronthaul ca-

pacity of each eRRH is set to be 70 Mbps, thus, besides supporting two cached

contents without consuming the fronthaul resources, each eRRH can support at

most two uncached data streams, via a simple computation: B log2(1 + Γ) × 2 =

10× log2(1+ 10) ≈ 70 Mbps. In Fig. 4.10 and Fig. 4.12, it can be observed that with

the proposed algorithm, the cluster is formulated such that exactly two data streams

of the uncached contents are transmitted by eRRH 3 and 5, i.e., f (5)[U], f (6)[U] are

supported by eRRH 3, and f (4)[U], f (5)[U] are supported by eRRH 5. They all

participate in transmitting two cached contents, plus additional two uncached con-

tents. However, with the algorithm proposed in [Tao+16], as shown in Fig. 4.11 and
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(c) Cluster for uncached f (6) (Proposed)
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(d) Cluster for uncached f (6) (Benchmark)
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(a) Cluster for cached f (2) (Proposed)
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(b) Cluster for cached f (2) (Benchmark)
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6 7

Figure 4.9: An illustration of the final cluster formulation for f (2)[C] and f (6)[U]
with the proposed Alg. 2 and the benchmark Alg. in [Tao+16]. Colored cell denotes
that the eRRH mounted within this cell is determined to be in the cluster to serve
the corresponding content/multi-cast group. Cells colored with light gray indicates
that the eRRH mounted within this cell shall not be involved in this cluster.
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Figure 4.10: The cluster involvement of eRRH 3 for all contents resulting from Alg.
2.
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Figure 4.11: The cluster involvement of eRRH 3 for all contents resulting from the
benchmark Alg. in [Tao+16].
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Figure 4.12: The cluster involvement of eRRH 5 for all contents resulting from Alg.
2.
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Figure 4.13: The cluster involvement of eRRH 5 for all contents resulting from the
benchmark Alg. in [Tao+16].
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Fig. 4.13, eRRH 3 has to support three data streams of the uncached contents, i.e.,

f (4)[U], f (5)[U] and f (6)[U], but eRRH 5 supports only one uncached data stream,

i.e., f (4)[U]. Hence, the results obtained by [Tao+16] cause traffic congestion, e.g.,

at eRRH 3, and resource waste, e.g., at eRRH 5. Similarly, to be more intuitive and

for easier understanding, we plot the final clustering results of this two eRRHs for

this specific slot in Fig. 4.14, where the results from both algorithms are presented.

Now we have shown the iterative behaviour of the proposed algorithm, and how

clusters are formed to satisfy the fronthaul capacity constraints. Next, let’s look at

the resultant minimized transmission power, the results are shown in Fig. 4.15.

In Fig. 4.15, the total transmission power consumption for different individual

fronthaul capacities 5 and different number of requested contents that have been

cached, are compared. Obviously, the results demonstrate that the transmission

power consumption can be reduced either by caching more contents, or by increas-

ing the fronthaul capacity, due to more cooperation among eRRHs becoming possi-

ble. However, it should be noted that the transmission power consumption of the

proposed algorithm is always higher than that of [Tao+16], this is due to the in-

dividual fronthaul capacity constraints are taken into account and respected here.

Hence, the traffic load among each fronthauls are allocated according to their avail-

able resources, while in the algorithm proposed in [Tao+16], such regulations are

ignored.

The results up to now only reflect the performance of a specific slot, the overall

performance must also be investigated. In order to do this, 500 independent real-

izations are set up, i.e., 500 consecutive downlink slots are considered, and in each

slot twelve UEs are randomly and independently selected within the network to

be scheduled, each is with random content requests according to the Zipf distri-

bution. The channel coefficients between UEs and eRRHs are also independently

obtained using the channel model listed in Table 4.1. The proposed algorithm is

then executed for optimizing the network for each downlink slot. The results of

each realization are documented in terms of whether the network can be optimized

to satisfy all UEs’ demands, under the specific channel conditions of this slot, as

well as the network resource configurations. In some realizations, it is infeasible to

satisfy all UEs’ requests. This is either due to many uncached contents happen to

be requested, or the limited individual fronthaul capacities leading to non-sufficient

cooperation between eRRHs so as to counteract the bad channel conditions within

this slot. We compute the outage probability 6 based on 500 realizations and the

results are depicted Fig. 4.16. It can be seen that with larger cache memory size

5As the algorithm proposed in [Tao+16] does not consider the individual fronthaul capacity con-
straints, we compute its average individual capacity for a fair comparison.

6It denotes the probability such that the QoS of each UE cannot be satisfied simultaneously under
the channel conditions for the current slot.
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(a) Cluster of eRRH 3 (Proposed)
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(b) Cluster of eRRH 3 (Benchmark)
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(c) Cluster of eRRH 5 (Proposed)
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. . .. . .
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(d) Cluster of eRRH 5 (Benchmark)

. . . . . .

. . . . . .. . .

. . .. . .

1 2

3 4 5

6 7

Figure 4.14: An illustration of the final cluster involvements of eRRH 3 and eRRH
5, which are obtained via the proposed Alg. 2 and the benchmark Alg. in [Tao+16].
Beams indicate that this eRRH is involved in the cluster to transmit the correspond-
ing contents. Different beam colors denote different contents it shall transmit. The
colors used here are in consistency with the legends used in Fig. 4.10 - Fig. 4.13, for
distinguishing different contents.
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Figure 4.15: The comparison of the network TX power consumption. Bench-
mark scheme: Full cooperation between all eRRHs for all multi-cast groups. Case
1: 70 Mbps, 2 Contents Cached; Case 2: 104 Mbps, 2 Contents Cached, Case 3:
104 Mbps, 3 Contents Cached.
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Figure 4.16: The outage probabilities for different fronthaul capacities and cache
memory sizes.
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Figure 4.17: The minimized TX power obtained via the proposed algorithms for the
hard and soft transfer modes.
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and larger fronthaul capacity, the outage probability can be significantly reduced,

because the transmission cooperation among more eRRHs becomes possible: If eR-

RHs have larger cache memory sizes, more contents can be cached without consum-

ing the fronthaul resources, then more eRRHs can participate in transmitting these

contents, which leads to higher spatial diversity either to decrease the transmission

power, or to counteract the bad channel conditions. When the network has larger

fronthaul capacity, the uncached contents can be delivered to more eRRHs, which

also increase the possibility of the cooperation.

Next, the results for the soft transfer mode are collected. Similar to the simulation

method introduced above, for each network configuration, i.e., any specific target

SINR Γ and cache memory size S, we also set up 500 independent realizations: 500

consecutive downlink slots with independent and different scheduled UEs, chan-

nel conditions, requested contents, etc.. Then we adopt the proposed algorithms

for both transfer modes and document the resultant minimized TX power of each

realization. Finally, the obtained results are averaged and plotted in Fig. 4.17. The

x-axis denotes different values of target SINRs and the y-axis denotes the minimized

network TX power, which is averaged over 500 realizations. It can be observed that

in most cases, the soft transfer mode is superior to the hard transfer mode, in terms

of the TX power. Moreover, when the target SINR Γ becomes higher, or the cache

memory size S becomes smaller, the gap between them becomes more prominent.

The rationale of such a behaviour is easy to discover: Compared with the hard

transfer mode, the soft transfer mode has higher data delivery efficiency from the

BBU pool to each eRRH, as the compression is performed before sending them. In
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Figure 4.18: The comparison of the outage probabilities for the hard and soft trans-
fer mode.
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contrast, for the hard transfer mode, raw data streams almost without any process-

ing are sent to eRRHs, which has lower efficiency in terms of the utilization of the

fronthaul resources. When the fronthaul resources can be exploited more efficiently,

a specific uncached content can be delivered to more eRRHs, leading to higher spa-

tial diversity and thus lower transmission power. Such an efficiency gap becomes

more apparent, when the fronthaul resources becomes scarcer: For example, when

the cache memory size gets smaller, less contents can be cached, thus more contents

have to be fetched remotely via the fronthauls. Another example is when the target

SINR gets larger, more eRRHs have to participate in each cluster to increase the spa-

tial diversity to generate narrower beams for higher achievable SINRs. Hence, the

uncached contents have to be delivered to more eRRHs. In both cases, more fron-

thaul resources are required, the advantage of the soft transfer mode over the hard

one, in terms of exploiting the fronthaul resources, becomes more prominent. How-

ever, when the fronthaul resources are abundant, e.g., when Γ = 3 dB and S = 3, the

TX power of the soft transfer mode is even higher. This is due to the quantization er-

ror introduced by the soft transfer mode, see (4.14). So it can be concluded that if the

fronthaul resources are not the performance bottleneck, the introduced quantization

error from the soft transfer mode might counteract its advantage. Such results can

give some insights and be generalized to some guidelines when a real F-RAN is set

up.

In Fig. 4.18, the outage probabilities are compared between these two transfer

modes, for different fronthaul capacities and cache memory sizes. At first, it must

be emphasized that such a comparison (actually also including the comparison in
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Fig. 4.17) is a little unfair to the soft transfer mode: Remember that we have stated

in the last paragraph of Subsection 4.1.5, the soft transfer mode has the potential

to use less dedicated capacity for transmitting pilots, than the hard one, since only

the precoders for the cached contents are to be transmitted via pilots. Hence, when

these two schemes are compared with the same available fronthaul capacity (after

deducting the dedicated capacity for pilots), the soft transfer mode actually requires

less total fronthaul capacity than the hard transfer mode. However, the soft scheme

still outperforms the hard one under such an unfair comparison. It can be seen from

Fig. 4.18, due to higher data transmission efficiency, the soft transfer mode can ex-

ploit the available network resources better. Hence, it can achieve lower outage

probability, or in other words, less probable to fail to serve all UEs with the target

QoS, especially when the resources are limited. When the fronthaul capacity or the

cache memory size gets larger, the gap between them becomes smaller.

Furthermore, it should be noted that the soft transfer mode has higher complex-

ity, in both network operation and optimization: The BBU pool needs to multiplex

and modulate the data streams and then performs the compression, and the eRRHs

must do decompression in order to reconstruct the uncached data stream before be-

ing sent the to UEs. For the cached contents, eRRHs have to perform similar signal

processing procedures compared with the hard transfer mode. Moreover, by com-

paring Alg. 2 and Alg. 3, we see that the proposed algorithm for the soft transfer

mode has higher complexity, as more parameters are to be optimized, and more

constraints exist.

By investigating Fig. 4.16 - Fig. 4.18, it is also worth to mention that, especially

from the practical point of view, increasing the cache memory size, increasing the

fronthaul capacity, or reducing the target QoS have similar effect on the reduction of

the TX power or the outage probability. This is due to the fact that, all of them make

more cooperation between eRRHs easier to happen. In practice however, the target

QoS cannot be adjusted easily, and the deployment of the fronthaul with higher

capacity is quite expensive and difficult. Hence, cache is a quite cheap and easy

way to improve the overall performance, which can be a useful hint to the network

providers.

4.2.2 High EE oriented Design — Total Power Minimization

In the previous subsection, only the transmission power of the network is mini-

mized. Hence, all eRRHs must be active to achieve the highest spatial diversity for

reducing the transmission power. However, as we have introduced in Subsection

4.1.3, the operational power of an eRRH, including the power consumed by circuits,

cooling system and an active fronthaul, might be much higher than its transmission
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power. If the total power consumption of the network is considered at the system

level, activating all eRRHs to lower only the transmission power might not pay off,

as much more operational power can be consumed. Hence, it is worth to investigate

whether the network can be optimized in terms of not only the transmission power,

but also the operational power. The results can tell the network providers: Is it pos-

sible to switch off some eRRHs to save power, especially at the off-peak time, while

the remaining ones can still fulfill the service requirements. In this subsection, we

are going to propose the corresponding algorithms to answer this question.

4.2.2.1 Problem Formulation and Solving Procedures

The problem formulation for minimizing the total power of the network is straight-

forward, as the constraints are same as (4.22)-(4.25) (for the hard transfer mode),

or (4.47)-(4.50) (for the soft transfer mode). The difference lies only at the objective

function: The operational power of an active eRRH should be taken into account.

By adopting the power model described in Subsection 4.1.3, the problem for the

hard transfer mode can be formulated as follows:

PHard original : min
{vm}M

m=1

1
ξ

(
M

∑
m=1
||vm||22

)

+
N

∑
n=1

Po

∣∣∣ M

∑
m=1
||vm

n ||22
∣∣∣
0
+

N

∑
n=1

Psleep

(
1−

∣∣∣ M

∑
m=1
||vm

n ||22
∣∣∣
0

)
, (4.73)

s.t. SINRhard
k ≥ Γm, ∀k ∈ Gm, ∀Gm, (4.74)

M

∑
m=1

(1− c f m

n )
∣∣||vm

n ||22
∣∣
0 log2 (1 + Γm) ≤ CFH,n ∀n ∈ N dedicated, (4.75)

N

∑
n=1

M

∑
m=1

(1− c f m

n )
∣∣||vm

n ||22
∣∣
0 log2 (1 + Γm) ≤ CFH non-dedicated, (4.76)

M

∑
m=1
||vm

n ||22 ≤ Pmax
TX,n, ∀n ∈ N . (4.77)
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For the soft transfer mode, it is as follows:

PSoft original : min
{wm}M

m=1,q

1
ξ

(
M

∑
m=1
||wm||22 +

N

∑
n=1
||qn||22

)

+
N

∑
n=1

Po

∣∣∣ M

∑
m=1
||wm

n ||22
∣∣∣
0
+

N

∑
n=1

Psleep

(
1−

∣∣∣ M

∑
m=1
||wm

n ||22
∣∣∣
0

)
, (4.78)

s.t. SINRsoft
k ≥ Γm, ∀k ∈ Gm, ∀Gm, (4.79)

L

∑
l=1

log2

1 +
∑M

m=1(1− c f m

n )|wm
n,l |2

q2
n,l

 ≤ CFH,n ∀n ∈ N dedicated, (4.80)

N

∑
n=1

L

∑
l=1

log2

1 +
∑M

m=1(1− c f m

n )|wm
n,l |2

q2
n,l

 ≤ CFH non-dedicated, (4.81)

M

∑
m=1
||wm

n ||22 + ||qn||22 ≤ Pmax
TX,n, ∀n ∈ N . (4.82)

The objective expression (4.73) denotes the total power consumption for the hard

transfer mode. The first term of it indicates the total power consumption re-

lated to transmission, where ∑M
m=1 ||vm||22 denotes the total transmission power, and

ξ ∈ (0, 1) denotes the power amplifier efficiency, please refer to Subsection 4.1.3 for

more details. The second term denotes the total operational power consumption of

all active eRRHs, and the third term indicates the total power consumption of all

inactive eRRHs (if any). Remember that the `0-norm
∣∣||vm

n ||22
∣∣
0 has been adopted

to denote whether eRRH n is involved into transmitting the content requested by

multi-cast group Gm. By executing the proposed algorithm, the optimized beam-

former vm,opt
n can be obtained, from which we finally know if eRRH n should serve

multi-cast group Gm by computing the value of
∣∣||vm,opt

n ||22
∣∣
0

7. Here, the same tech-

nique can be utilized: By summing up all multi-cast groups that eRRH n serves,

i.e., ∑M
m=1 ||vm

n ||22, the total transmission power of this eRRH is derived. Hence,

the `0-norm of it can be used to indicate whether it is active or not. When eRRH

n should be involved in serving at least one multi-cast group,
∣∣∣∑M

m=1 ||vm
n ||22

∣∣∣
0

is

1, meaning that it must be activated and the operational power Po is consumed.

Otherwise, the value of the `0-norm is 0, this eRRH can be deactivated and only

power Psleep in sleep mode is consumed. If this problem can be solved, the value

of
∣∣∣∑M

m=1 ||v
m,opt
n ||22

∣∣∣
0

can tell (together with the unit step function as we have intro-

duced before) whether eRRH n can be switched off to save more power.

Similarly, the objective expression (4.78) for the soft transfer mode adopts the same

method. The only difference is that the precoders {wm}M
m=1 are designed at the

BBU pool, and a part of the transmission power ∑N
n=1 ||qn||22 is consumed by the

quantization noise introduced by the compression.

7As introduced in Subsection 4.2.1.1, we use the unit step function to determine whether∣∣||vm,opt
n ||22

∣∣
0 is 0 or 1 with the predetermined threshold parameter τ.
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Both objectives make deactivating some eRRHs possible: If the operational power

saved by deactivating an eRRH can compensate the increased transmission power

among all others (as the aggregated array gain/spatial diversity is decreased), and

the remaining eRRHs can still satisfy the QoS of each UE and fulfill other con-

straints, this eRRH shall be switched off. Namely, for both transfer modes, the

decrease of the second terms of the objectives must lead to an increase of the first

terms, and vice versa.

As the same methods have been adopted in formulating the problem of minimiz-

ing the total transmission power, and the constraints remain unchanged, the same

techniques, i.e., SDR, the iterative `0-norm approximation, EVD, etc., can be uti-

lized to solve the new problem. In order to avoid repetitions, here we only briefly

introduce the solving procedures for the hard transfer with dedicated fronthaul, i.e.,

(4.73)-(4.75) and (4.77). Extensions to other cases is straightforward by referring to

previous sections with minor modifications.

Note that the objective (4.73) can be equivalently written as

min
{vm}M

m=1

M

∑
m=1
||vm||22 +

N

∑
n=1

∆P
∣∣∣ M

∑
m=1
||vm

n ||22
∣∣∣
0
+ξNPsleep, (4.83)

where ∆P = ξ(Po − Psleep). As the last term is a constant, it is sufficient to consider

only the first and second terms as the equivalent objective. The first step is still to

reformulate the problem to the form that SDR can be applied:

PHard : min
{Vm}M

m=1

M

∑
m=1

tr(Vm) +
N

∑
n=1

∆P
∣∣ M

∑
m=1

tr(VmJn)
∣∣
0, (4.84)

s.t. Γm

(
σ2

k +
M

∑
i 6=m

tr(ViHk)

)
− tr(VmHk) ≤ 0, ∀k ∈ Gm, ∀Gm, (4.85)

M

∑
m=1

(1− c f m

n )
∣∣tr(VmJn)

∣∣
0 log2 (1 + Γm) ≤ CFH,n, ∀n ∈ N , (4.86)

M

∑
m=1

tr(VmJn) ≤ Pmax
TX,n, ∀n ∈ N , (4.87)

Vm � 0, ∀m ∈ M, (4.88)

rank (Vm) = 1, ∀m ∈ M. (4.89)

Obviously, the approximation of the `0-norm in the second term of objective

(4.84) is required. This can also be achieved in an iterative manner, which is

similar to what we have done with (4.33) and (4.34): In the (t + 1)-th iteration,∣∣∑M
m=1 tr(Vm(t+1)Jn)

∣∣
0 is approximated as a linear function of ∑M

m=1 tr(Vm(t+1)Jn) as

∣∣ M

∑
m=1

tr(Vm(t+1)Jn)
∣∣
0 ≈ u(t+1)

n

M

∑
m=1

tr(Vm(t+1)Jn), (4.90)
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where the re-weighted coefficient u(t+1)
n is calculated via the result of the previous

iteration:

u(t+1)
n =

1
τ + ∑M

m=1 tr(Vm(t)Jn)
. (4.91)

With SDR, and dropping the constraint (4.89), the problem to be solved in (t + 1)-th

iteration can be formulated as

P (t+1)
Hard : min

{Vm(t+1)}M
m=1

M

∑
m=1

tr(Vm(t+1)) + ∆P
N

∑
n=1

u(t+1)
n

M

∑
m=1

tr(Vm(t+1)Jn), (4.92)

s.t. Γm
M

∑
i 6=m

tr(Vi(t+1)Hk)− tr(Vm(t+1)Hk) + Γmσ2
k ≤ 0, ∀k ∈ Gm, ∀Gm,

(4.93)
M

∑
m=1

am(t+1)
n tr(Vm(t+1)Jn)− CFH,n ≤ 0, ∀n ∈ N , (4.94)

M

∑
m=1

tr(Vm(t+1)Jn) ≤ Pmax
TX,n, ∀n ∈ N , (4.95)

Vm(t+1) � 0, ∀m ∈ M, (4.96)

where

am(t+1)
n = km(t+1)

n (1− c f m

n ) log2 (1 + Γm) (4.97)

with km(t+1)
n calculated according to (4.34).

The relaxed and reformulated problem above consists of a linear objective func-

tion, K + 2N linear inequality constraints, and M positive-semidefinite constraints,

which is also a standard SDP problem.

Similarly, an initial problem shall be formulated to obtain the initial values of

{un}N
n=1. We assume all eRRHs are activated in the very beginning, hence, the

second term of (4.92) is temporarily dropped since minimizing the total power is

equivalent to minimizing only the transmission power in this case. Therefore, the

initial problem P (0)
Hard is the same as (4.40)-(4.43), and the solving procedure is sum-

marized in Alg. 4.

After the initial step, where all eRRHs are activated, the second term of (4.92)

and the fronthaul constraint (4.94) are added again to formulate the problem for

next iterations. Two re-weighted coefficient sets, i.e., u(t+1)
n and km(t+1)

n , ∀m, n, are

amended gradually in each iteration. eRRH i might be switched off (deactivation)

gradually, as long as its transmission power PTX,i = ∑M
m=1 tr(VmJi) falls below the

threshold parameter τ. Similarly, an active eRRH j might be gradually excluded

from cluster Cm for serving multi-cast group Gm, when its corresponding power for
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this multi-cast group PTX,j, f (m) = tr(VmJj) falls below τ 8. The objective of the min-

imization problem (4.92) and constraints (4.93)-(4.96) ensure that such deactivation

and exclusion happen, only when the resultant total power consumption can be de-

creased, and the new clustering pattern can meet the QoS of each UE, the load on

each fronthaul does not exceed its capacity, and the individual power constraint of

each eRRH can be respected.

Algorithm 4: The Iterative Optimization Steps for Total Power Minimiza-
tion (For the hard transfer mode)

1 Initialization: Solve the standard SDP problem P (0)
Hard (4.40)-(4.43) to obtain

{Vm(0)}M
m=1. Compute am(1)

n based on (4.97), ∀m, n, and the values of u(1)
n

based on (4.91), ∀n. Construct the problem P (1)
Hard according to (4.92)-(4.96),

and set t← 1.
2 repeat
3 Solve the standard SDP problem P (t)

Hard for obtaining {Vm(t)}M
m=1.

4 Update the values of am(t+1)
n based on (4.97), ∀m, n, and the values of

u(t+1)
n based on (4.91), ∀n. Then formulate the problem P (t+1)

Hard
according to (4.92)-(4.96), and set t← t + 1.

5 until convergence or reaching the max iteration number;
6 if rank(Vm(last)) = 1 then
7 Perform EVD to obtain the optimal {vm}M

m=1.

8 else
9 Use Gaussian randomization and scaling [KSL08] method to obtain the

approximate solution {vm}M
m=1.

Extension to the soft transfer mode and non-dedicated fronthaul: Such exten-

sions are straightforward. Extension to the scenario of the non-dedicated fronthaul

is the same as what introduced in Subsection 4.2.1.1. For the extension to the soft

transfer mode, we only need to combine the technique introduced in Subsection

4.1.4.2, with the `0-norm iterative approximation method introduced above to con-

vexify the second and third term of (4.78). Alg. 4 can be amended in a straightfor-

ward way to solve the resultant problem.

4.2.2.2 Numerical Results

In this subsection the numerical results of the proposed algorithms are to be pro-

vided via the simulations. The network setup and the simulation environment are

the same as the description in Subsection 4.2.1.3. The same simulation parameters

listed in Table 4.1 are adopted, but the total power consumption, instead of only

8We can set different values of the threshold parameter τ used for these two iterative approxima-
tion procedures. Here we select the same value for simplicity.
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transmission power as previously, will be documented. Moreover, the power ampli-

fier efficiency ξ of each four-antenna eRRH is set to be 0.25, and each active eRRH is

assumed to consume 35 Watt to maintain its operation, i.e., Po = 35 W. The eRRH in

sleep mode is suppose to consume 5 Watt for monitoring potential commands, i.e.,

Psleep = 5 W. The results are to be compared with the ones proposed in [Tao+16],

which is set as a benchmark. In the benchmark algorithm, only the transmission

power is minimized, and individual fronthaul capacity constraints, as well as the

operational power of an active eRRH, are not considered.

Two representative scenarios are selected to illustrate the results respectively.

Representative Scenario 1 (Abundant local resources): In this specific downlink

slot, after twelve scheduled UEs submit their requests according to the Zipf distri-

bution (4.1), the BBU pool finds that only four different contents are requested, and

three of them have been already cached at eRRHs. In scenarios like this, i.e., most

requested contents have already been available at local caches without the need of

being delivered remotely from the cloud via fronthauls, there are comparatively suf-

ficient caching and fronthaul capacity resources. For the proposed and benchmark

algorithms, the transmission power of eRRH n, PTX,n = ∑M
m=1 ||vm

n ||22, ∀n ∈ N , are

recorded and illustrated in Fig. 4.19 and Fig. 4.20. The total power consumed by

transmission, which is 1
ξ PTX,tot =

1
ξ ∑N

n=1 PTX,n, and the total operational power con-

sumption, Po,tot = ∑active eRRHs Po + ∑inactive eRRHs Psleep are shown in Fig. 4.22. The

total power consumption by computing Ptot =
1
ξ PTX,tot + Po,tot is shown in Fig. 4.23.

Representative Scenario 2 (Limited local resources): In another downlink slot, af-

ter twelve scheduled UEs submit their requests, unfortunately, seven different con-

tents are requested, only three of them are cached. In scenarios like this, i.e., most

requested contents have to be delivered via fronthauls, there are comparatively tight

and limited caching and fronthaul capacity resources. Thus, less cooperative trans-

mission is expected. Similar power comparisons are shown in Fig. 4.24 - Fig. 4.28.

Analysis of Fig. 4.19 - Fig. 4.23: We firstly discuss Representative Scenario 1 (abun-

dant local resources), and the corresponding results acquired via the proposed algo-

rithm. As most requested contents have been cached, abundant caching resources

result in low traffic load on fronthauls. Thus, there are sufficient fronthaul capacities

for the delivery of the uncached contents to as many eRRHs as possible. In another

word, it is easy to form larger clusters to achieve more cooperation between eRRHs

so as to decrease the transmission power. Therefore, switching off some eRRHs and

fronthauls for saving the operational power is more probable, as the remaining eR-

RHs can still fulfill the UEs’ demands. As we see from Fig. 4.19, the transmission

power of three eRRHs, i.e., eRRH 1, eRRH 5 and eRRH 7, fall below -150 dBm in

less than ten iterations, meaning that these eRRHs are determined to be switched
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Figure 4.19: Representative Scenario 1: eRRH Deactivation (Proposed)

0 5 10 15 20 25 30
−200

−150

−100

−50

0

50

iteration

TX
po

w
er

(d
Bm

)

PTX,1
PTX,2
PTX,3
PTX,4
PTX,5
PTX,6
PTX,7

Figure 4.20: Representative Scenario 1: eRRH Deactivation (Benchmark)
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(a) eRRH Deactivation (Proposed)

. . . . . .

. . .. . . . . .

. . .. . .

1 2

3 4 5

6 7

(b) eRRH Deactivation (Benchmark)
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Figure 4.21: An illustration of the final eRRH deactivation results of Representative
Scenario 1, with the proposed Alg. 4 and the benchmark Alg. in [Tao+16]. Cell
colored with gray denotes that the eRRH within this cell is deactivated.

Figure 4.22: Representative Scenario 1: Power Evolution
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Figure 4.23: Representative Scenario 1: Total Power Consumption
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off by the BBU pool via executing our proposed algorithm. For better illustration,

the eRRH deactivation results of the proposed algorithm are depicted in Fig. 4.21

(a). Due to the deactivation behaviour, in Fig. 4.22, the total operation power Po,tot

drops. The total power consumed by transmission, i.e., 1
ξ PTX,tot, continuously in-

creases in the first seven iterations, then it converges into a relatively steady state.

The reason behind is straightforward: Remember that we start with solving the ini-

tial problem by temporarily dropping individual capacity constraints (4.94), and the

term of the operational power in the objective expression (4.92), in order to obtain

the initial values for `0-norm approximation. In next iterations, they are added, and

the re-weighted coefficients are computed and amended in each iteration. Several

eRRHs are gradually forced to be switched off, or be excluded from some specific

clusters. Hence, the transmission power from the proposed algorithm in Fig. 4.22

is increased mainly due to the two factors described above, i.e., 1. The individual

fronthaul capacity constraints are added; 2. Less potential aggregated array gain

resulting from deactivation of some eRRHs. Moreover, after about ten iterations,

the proposed algorithm converges and reaches a stable phase.

Now we discuss the results obtained by the benchmark scheme. As only the trans-

mission power is minimized, all eRRHs are kept to be active for increasing the po-

tential spatial diversity to reduce the transmission power, as shown in Fig. 4.20.

As a comparison to the proposed algorithm, the eRRH deactivation results of the

benchmark algorithm are also plotted in Fig. 4.21 (b). Since no eRRH is deacti-

vated, the total operational power remains the same, as shown in Fig. 4.22. This is

also true for the total power consumption shown in Fig. 4.23, the results from the

benchmark do not vary significantly, as both the operational power and the trans-
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Figure 4.24: Representative Scenario 2: eRRH Deactivation (Proposed)
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mission power among all eRRHs stay nearly unchanged. From this figure, we can

observe the effectiveness of the proposed algorithm in saving the network power

when the operational power is considered. However, we must say that the total

power consumption with the proposed algorithm is not always less than that of the

benchmark, as a more stringent problem to balance the traffic load on each active

fronthaul is solved by us. Hence, in scenarios where less or even no eRRHs can be

deactivated (e.g., Representative Scenario 2), the total power consumption might be

higher than that of the benchmark algorithm, as we show next.

Analysis of Fig. 4.24 - Fig. 4.28: The results of Representative Scenario 2 are depicted

in these figures, where most requested contents have to be delivered via fronthauls,

resulting in heavy traffic load on them. The fronthaul capacity becomes a bottle-

neck, and forming larger clusters for more cooperation between eRRHs becomes

more difficult. In such scenarios, with the proposed algorithm, it can be observed

that only eRRH 6 and its fronthaul can be switched off after 16 iterations, as shown

in Fig. 4.24. In Fig. 4.25, all eRRHs are still active as the operational power consump-

tion is not considered in the benchmark scheme. Such deactivation behaviours are

also plotted in Fig. 4.26 in a more intuitive way. Furthermore, Fig. 4.27 shows

that the transmission power of the both algorithms increase after adding capacity

constraints from the second iteration. However, the increasing rate of the proposed

algorithm is much higher, due to the necessity of balancing the traffic load on very

limited fronthaul resources. Hence, although one eRRH is switched off with the

proposed algorithm, the total power consumption of it is still higher than the bench-

mark based on this unfair comparison, as shown in Fig. 4.28. Despite higher total

power consumption, the traffic on each fronthaul is guaranteed to be supported. It
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Figure 4.25: Representative Scenario 2: eRRH Deactivation (Benchmark)
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(a) eRRH Deactivation (Proposed)
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(b) eRRH Deactivation (Benchmark)
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Figure 4.26: An illustration of the final eRRH deactivation results of Representative
Scenario 2, with the proposed Alg. 4 and the benchmark Alg. in [Tao+16]. Cell
colored with gray denotes that the eRRH within this cell is deactivated.
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Figure 4.27: Representative Scenario 2: Power Evolution
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Figure 4.28: Representative Scenario 2: Total Power Consumption
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Figure 4.29: The comparison between the averaged total power consumption.
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is also worth to mention that in Fig. 4.28, the sharp drop of the total power with

the proposed algorithm is due to the deactivation of eRRH 6 around iteration 16, as

also shown in Fig. 4.24.

Analysis of Fig. 4.29: At last, we configure the network such that eRRHs have vari-

able individual fronthaul capacities and cache memory sizes. For each configu-

ration, 300 independent realizations are set up, and the resultant total power con-

sumption of the proposed and benchmark algorithm are documented. By averaging

the results for each specific network configuration, Fig. 4.29 is acquired. It can be

seen that by increasing either the individual fronthaul capacity or the cache mem-

ory size, the power consumption resulting from both algorithms decrease. Larger

CFH or S can make the local network resources more abundant, thus more coop-

eration becomes possible, and the realizations similar to Representative Scenario 1

is also more probable: More eRRHs are possible to be switched off with the pro-

posed algorithm, leading to far less total power consumption than the benchmark

scheme. However, when CFH or S is smaller, it is likely that more realizations works

in scenarios similar to Representative Scenario 2: Less or even no eRRHs can be

switched off, and the traffic handling on active fronthauls becomes an significant

issue. The load balancing makes the solution of proposed algorithm consume more

total power than that of the relaxed benchmark problem. Furthermore, when CFH

and S get large enough, the solution of both algorithms enter the saturation region,

since the current network resources have been sufficient to allow full cooperation

for most requests, increasing local resources further cannot further increase the pos-

sibility of cooperation in order to further decrease the power significantly. With the

proposed algorithm, it is also not possible to deactivate more eRRHs. However, it
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shows that the power consumption in this region can be greatly reduced with the

proposed algorithm, compared with the benchmark, due to the huge operational

power saved by deactivation. Moreover, we emphasize again that increasing the

cache memory is usually much easier and cheaper compared with increasing the

fronthaul capacity.

4.2.3 High SE oriented Design — wMMF Metric

After the intensive discussion of the high EE oriented design of the cache-enabled F-

RAN, it is time to investigate the high SE oriented design. In this subsection and the

next one, we are going to address the optimization strategies for high SE based on

two distinct metrics: One concerns the multi-cast Throughput Maximization (TP-

Max) of the network, and the other one concerns the (weighted) Max-Min Fairness

(wMMF). The metric of the multi-cast throughput is easy to be understood, as high

throughput is almost the synonym of high SE. However, maximizing the network

throughput might render individual achievable rates far more different among UEs,

especially when some UEs have poor channel qualities (e.g., at cell edges), as more

network resources tend to be prioritized on UEs with good channel qualities, so as

to fully exploit the limited resources for maximizing the throughput. In this case,

the QoS of some UEs cannot be guaranteed. In order to avoid such unfairness, the

metric of Max-Min Fairness (MMF) intends to maximize the minimized achievable

rate. Moreover, it is possible to add weights to different UEs, addressing different

significance and priorities. Obviously, although the network throughput of the sec-

ond design target is not maximized, it guarantees a predetermined fairness among

all scheduled UEs.

As we are going to see, the solving procedure of maximizing the (weighted) min-

imized achievable rate, can be derived from the solving procedure of the high EE

oriented design introduced in the previous subsections. Therefore, we start with

addressing the problem of wMMF. The solving procedure for maximizing the multi-

cast throughput will be discussed in the next subsection, as it is more complicated

and some new techniques are to be introduced. To avoid repetitions, we consider

only the hard transfer mode with dedicated fronthaul, as the extensions to other

cases are similar to the methods we have introduced before.

When wMMF is considered, the QoS of each UE is guaranteed to achieve some

extent of fairness, according to its predetermined weighting coefficient. In our F-

RAN model, the UE with the worst channel conditions within a multi-cast group

determines achievable rate of the content requested by all UEs of this group. If

a specific content need to be prioritized, the weighting coefficient of it has to be
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selected carefully. The problem of weighted Max-Min rate fairness is formulated as

follows:

Foriginal
wMMF (s, P) : max

{vm}M
m=1

min
m∈M

min
k∈Gm

1
sm SINRk, (4.98)

s.t.
M

∑
m=1
||vm

n ||22 ≤ Pn, ∀n ∈ N , (4.99)

M

∑
m=1

(1− c f m

n )
∣∣||vm

n ||22
∣∣
0 log2

(
1 + min

k∈Gm
SINRk

)
≤ CFH,n, ∀n ∈ N . (4.100)

As the hard transfer mode is assumed to be adopted, the achievable SINR at

UE k can be referred to (4.15). The same notations are used as before: vm =

[{vm
1 }H, {vm

2 }H, ..., {vm
N}H ]H ∈ CNL×1 denotes the aggregate beamforming vector

for content f m requested by multi-cast group Gm, and vm
n denotes the part of this

beamformer that is constructed at eRRH n. The scaling vector s = [s1, s2, ..., sM]T

consists of M predetermined weighting coefficients for different contents that are

requested by M multi-cast groups. In the objective function (4.98), we see two min

operations: One is for UEs within the multi-cast group Gm, and the other is among

all existing multi-cast groups. The first one, i.e., min
k∈Gm

, is due to the worst UE de-

termines the achievable rate of the content requested by its multi-cast group. The

second one, i.e., min
m∈M

, together with the weighting coefficients sm, aims to achieve

the predetermined weighted fairness among all requested contents. For the content

requiring higher QoS expectation at the UE side, its weighting coefficient is set to be

larger. Hence, the achievable SINR of this content is scaled by 1/sm in the objective

function (4.98). The network resources will be biased to give more priority on this

content. The max operation outside guarantees that the networks resources should

be fully exploited. The transmission power vector P = [P1, P2, ..., PN ]
T indicates

the maximal allowable transmission power of each eRRH 9. As already stated and

adopted in previous subsections, constraints (4.99) and (4.100) denote the power

and fronthaul resource consumption at eRRH n. Note that we aim to maximize the

SE of the network, thus the operational power consumption is not necessary to be

considered anymore, since all eRRHs must be activated to maximize the achievable

spectral efficiency.

Obviously, by introducing a scalar f , the problem above can be equivalently refor-

9We set the maximal allowable transmission power vector as an input variable of this problem, for
the solving procedure to be introduced in this subsection later.
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mulated as:

FwMMF(s, P) : max
{vm}M

m=1

f , (4.101)

s.t.
Γm

sm ≥ f , ∀k ∈ Gm, ∀Gm, (4.102)

with Γm =
|h̃H

k vm|2
σ2

k + ∑M
i 6=m |h̃H

k vi|2
,

M

∑
m=1
||vm

n ||22 ≤ Pn, ∀n ∈ N , (4.103)

M

∑
m=1

(1− c f m

n )
∣∣||vm

n ||22
∣∣
0 log2 (1 + Γm) ≤ CFH,n, ∀n ∈ N . (4.104)

It can be easily noticed that both the objective function and the constraints of the

problem above are non-convex and NP-hard. Solving it directly is difficult. How-

ever, as we are going to show, the problem can be solved in a tortuous manner: By

introducing and solving a related problem, which is similar to a dual problem of the

original one, some insights into the problem above can be obtained. Then together

with the Bi-Section method and the solution of the introduced related problem, the

solution of problem (4.101)-(4.104) can be finally reached.

The related problem is actually the transmission power minimization problem of

the same network, i.e., the problem (4.21)-(4.23) and (4.25), introduced in Subsection

4.2.1.1 for the high EE oriented design. We just need to substitute the target SINR

for content f m in (4.22) with the scaling factor of it, i.e., sm. For ease of further

interpretation, the related problem is formulated as follows 10:

PTX(s) min
{vm}M

m=1

M

∑
m=1
||vm||22, (4.105)

s.t.
Γm

sm ≥ 1 ∀k ∈ Gm, ∀Gm, (4.106)

with Γm =
|h̃H

k vm|2
σ2

k + ∑M
i 6=m |h̃H

k vi|2
,

M

∑
m=1

(1− c f m

n )
∣∣||vm

n ||22
∣∣
0 log2 (1 + Γm) ≤ CFH,n, ∀n ∈ N , (4.107)

M

∑
m=1
||vm

n ||22 ≤ Pmax
TX,n, ∀n ∈ N . (4.108)

The solving procedure for problem (4.105)-(4.108) is shown in Alg. 2. Then the

crucial question is: What is the relationship between problem FwMMF(s, P) and

PTX(s)? How can we solve the first problem with the help of the second one? Let

P = [P1, P2, ..., PN ]
T denote the minimized transmission power of the network,

10{Pmax
TX,n}N

n=1 in this problem is predetermined and fixed.
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which is the result 11 by solving problem PTX(s) with Alg. 2. Such a relationship is

expressed as P = PTX(s). Similarly, let f be the result of the problem FwMMF(s, P),

we have f = FwMMF(s, P). Before we proceed to solve the wMMF problem, the

following lemmas must be introduced firstly:

Lemma 1: Problem F and P are related as follows:

f = FwMMF(s,PTX( f s)); (4.109)

P = PTX(FwMMF(s, P)s). (4.110)

For (4.109), it denotes that for an arbitrary scalar f , and an arbitrary valid weighting

coefficients vector f s, we can definitely obtain the corresponding minimized power

allocation scheme P resulting from solving PTX( f s). Then by setting s and P as the

input parameter to the problem FwMMF, the same value of f can be obtained by

solving it. For (4.110), such a relationship can be interpreted similarly.

Proof: The contradiction is used for the proof. For equation (4.109), let {vm,opt}M
m=1

and Popt = [Popt
1 , Popt

1 , ..., Popt
N ]T denote the optimal beamformers and the optimal

(minimized) power consumption of problem PTX( f s) respectively, where f s

represents the SINR requirements. Then for problem FwMMF(s, Popt), beamformers

{vm,opt}M
m=1 must be a feasible solution with objective value f . If another feasible

solution {ṽm}M
m=1 with objective value f̃ > f exists, then a constant c < 1 must also

exist, such that it can further scale down the solution, e.g., {cṽm}M
m=1, with which

the SINR requirements of PTX( f s), as well as the fronthaul capacity and power con-

straints are still fulfilled. Thus, {cṽm}M
m=1 must result in lower power consumption

than Popt, which contradicts the optimality assumption of {vm,opt}M
m=1. Equation

(4.110) can be proved similarly.

Lemma 2: For a given valid vector s, the minimized total transmission power

∑N
n=1 Popt

n of problem PTX( f s), is monotonically non-decreasing when the value

of f is increased. And the value of f resultant from FwMMF(s, P) is monotonically

non-decreasing when ∑N
n=1 Pn is increased.

Proof: When the value of f is increased, the SINR requirements in PTX( f s) become

more stringent, thus the feasible set for the solution cannot be enlarged. When

higher power budget is available, it can always be evenly distributed among all

beamformers to increase all SINR, as long as the noise power σ2
k is larger than 0.

Corollary: Lemma 1 suggests that, for a fixed scaling vector s , the solution of

11The solution of the problem PTX is actually the optimized beamforming vectors {vm}M
m=1, based

on which the power allocation can be obtained for each eRRH, i.e., Pn = ∑M
m=1 |v

m,opt
n ||22 ∀n ∈ N .
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f = FwMMF(s, P) can always be found by solving problem P′ = PTX( f ′s) via

checking different values of f ′, exhaustively until ∑N
n=1 Pn = ∑N

n=1 P′n satisfies.

Thanks to Lemma 2, such an exhaustive search is not necessary, as the value of f

can be located much more efficiently with the Bi-Section method. Moreover, due

to the interaction between f = FwMMF(s, P) and PTX( f ′s), individual eRRH power

constraints can always be satisfied due to (4.108).

Hence, based on the lemmas and corollary introduced above, together with the

Bi-Section method, the solving procedure for the original wMMF problem (4.98)-

(4.100), can be converted to solving several TX power minimization problems, each

of them is constructed via location of the Bi-section method. In other words, prob-

lemFwMMF is not solved directly, but it is solved by solving its related problems PTX

instead, with known algorithms. By adopting the Bi-section method, the solution of

the original problem FwMMF can be approached. The overall steps are summarized

in Alg. 5:

Algorithm 5: Weighted Max-Min Fairness Optimization Steps

1 Initialization: Set fL and fU as the lower and upper bound of the searching
range.

2 repeat
3 Set f ← ( fL + fU)/2. Solve the problem P = PTX( f s) with Alg. 2.
4 if ∑N

n=1 Pn > ∑N
n=1 Pmax

TX,n or the problem is infeasible then
5 Set fU ← f .

6 else
7 Set fL ← f .

8 until fU − fL < ε, where ε denotes the tolerance;
9 Solve the standard the SDP problem PTX( f s) with Alg. 2, then perform

EVD or use Gaussian randomization and scaling [KSL08] method to obtain
the approximated solution {vm}M

m=1.

Remark 1: For the lower bound and upper bound used for the Bi-Section search, the

value of fL and fU is initialized as follows:

fL = 0, (4.111)

fU = min
k∈{1,2,...,K}

1
sk∈Gm

||hk||22 ∑N
n=1 Pmax

TX,n

σ2
k

. (4.112)

Actually, the upper bound is set to be the minimal achievable SINR, when all eRRHs

contributes all their available power towards a single group, i.e., no multi-cast and

interference exist in this case.

Remark 2: Note that the wMMF problem f = FwMMF(s, P) is always feasible, i.e., a

positive maximized minimal weighted SINR f always exists for any valid s and P.

However, the power minimization problem P = PTX(s) is not necessarily feasible.
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In some cases, the SINR targets s can not be achieved simultaneously for all multi-

cast groups, with the instantaneous channel states, cache hitting status, individual

fronthaul and power constraints. This can be due to many uncached contents being

requested by UEs, such that the fronthaul capacities are not sufficient to deliver all

of them to sufficient number of eRRHs, leading to lower array gain between eRRHs.

In such cases, we also need to reduce the value of the upper bound fU , as in Step 5

of Alg. 5.

For investigating the properties of the wMMF metric, some numerical results will

be provided based on Alg. 5, but it would be better that they appear together with

that of the TP-Max metric for comparison. Hence, we will firstly elaborate on the

solving procedure for maximizing the multi-cast throughput in the coming subsec-

tion, which is then followed with the numerical results of both design metrics.

4.2.4 High SE oriented Design — TP-Max Metric

When we talk about the network throughput here, we mean the sum achievable

rate among all requested contents 12. As stated many times before, the achievable

rate of a specific content is determined by the worst UE within the multi-cast group

requesting it, i.e., for all UEs in the multi-cast group Gm, they experience a downlink

rate of log2

(
1 + min

k∈Gm
SINRk

)
. Hence, the sum multi-cast rate of the network (multi-

cast throughput) can be calculated by summing up the achievable rate among all

requested contents. The problem formulation for maximizing the network through-

put is straightforward as follows:

T : max
{ṽm, pm}M

m=1

M

∑
m=1

log2

(
1 + min

k∈Gm
SINRk

)
, (4.113)

s.t.
M

∑
m=1

pm||ṽm
n ||22 ≤ Pmax

TX,n, ∀n ∈ N , (4.114)

M

∑
m=1

(1− c f m

n )
∣∣||ṽm

n ||22
∣∣
0 log2

(
1 + min

k∈Gm
SINRk

)
≤ CFH,n, ∀n ∈ N , (4.115)

with

SINRk =
pm|h̃H

k ṽm|2

∑M
i 6=m pi|h̃H

k ṽi|2 + σ2
k

, k ∈ Gm. (4.116)

Compared with the problem formulations in previous subsections, there is a mi-

nor modification here: We adopt the normalized aggregate beamformers ṽm =

12For some different definitions, it usually indicates the sum achievable rate among all UEs. How-
ever, in the multi-cast scenario, like many existing works, the achievable rate of each content is con-
sidered, in order to ensure each UE requesting it can finally be served.
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[{ṽm
1 }H, {ṽm

2 }H, ..., {ṽm
N}H ]H ∈ CNL×1 among all eRRHs, such that ||ṽm||22 =

∑N
n=1 ||ṽm

n ||22 = 1, where ṽm
n = [ṽm

n,1, ṽm
n,2, ..., ṽm

n,L]
T ∈ CL×1 indicates the part of

the normalized beamformer constructed at eRRH n. pm is used to denote the

power allocated to content f m for all UEs in multi-cast group Gm, and vector

p = [p1, p2, ..., pM]T indicate the power allocation scheme to all M multi-cast groups.

Hence, the relationship between the aggregated beamformer, which is always used

in previous problems, and the normalized aggregated beamformer is

vm =
√

pmṽm =
√

pm[{ṽm
1 }H, {ṽm

2 }H, ..., {ṽm
N}H ]H ∈ CNL×1, ∀m ∈ M. (4.117)

The reason to introduce such normalized beamformers with power allocation vec-

tor is, when the multi-cast throughput maximization is considered, the power allo-

cated for each requested content shall also be directly optimized. By splitting the

beamformers into the part of the power and the part of the normalized beamform-

ers, we have the chance to directly manipulate the power allocation, as well as the

beamformer directions. By optimizing both {ṽm, pm}M
m=1, the optimal eRRH cluster

formulation (via computing the `0-norm of the optimized normalized beamform-

ers) and the power allocation can be obtained to maximize the multi-cast network

throughput.

In constraint (4.114), pm||ṽm
n ||22 denotes the power at eRRH n, which is allocated to

serve the multi-cast group Gm. Hence, the LHS of (4.114) indicates the total trans-

mission power of eRRH n, which shall not exceed its maximal allowable power.

Constraint (4.115) guarantees the fronthaul connected to each eRRH can support

the data streams that deliver the uncached contents.

Unfortunately, the problem above is rather difficult to solve. Although we have

known how to use the SDR and the iterative `0-norm approximation method to con-

vexify several parts of the problem, the difficulty mainly lies at (4.113) and (4.115),

where the min operation makes them no longer differentiable. Hence, compared

with the problem solved in [KPS12; CCO14], where only a single RRH exists in C-

RAN, the multi-cast throughput maximization in the cache-enabled F-RAN is much

more complicated. However, thanks to the clever heuristic ideas used there, their

thoughts are extended to solve the problem here.

For a better understanding, we firstly sketch the idea of the proposed algorithm,

which gives an intuitive explanation about how and why it works. The algorithm

will be introduced in detail afterwards.

4.2.4.1 Basic Idea and Sketch of the Algorithm

Due to the interaction between two types of optimization variables, i.e., the

normalized multi-cast beamformers {ṽm}M
m=1 and the power allocation scheme p in
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problem (4.113)-(4.115), a simultaneous optimization of these two types of variables

is difficult. Thus, the solving procedure is designed to perform in an alternating

way: Each alternating step consists of two sub-steps, i.e., the Re-Design sub-step

and the Re-Allocation sub-step. In each sub-step, one specific variable type is

fixed and the other is to be optimized. Then in the next sub-step, the one is fixed,

which is just optimized, and the other variable type which is fixed in the previous

sub-step is to be optimized.

1. At the t-th alternating step, the aggregated multi-cast beamformers

{vm(t−1)}M
m=1 =

{√
pm(t−1) · ṽm(t−1)

}M

m=1
are supposed to be known from the

last alternating step. Hence, the current achievable SINRs {Γm(t−1)}M
m=1 ={

min
k∈Gm

SINR(t−1)
k

}M

m=1
of all contents can be computed according to (4.116).

2. Re-Design sub-step:. Now Γ(t−1) = {Γm(t−1)}M
m=1 is set to be the SINR target,

then a related power minimization problem P (t)(Γ(t−1))13 is constructed and solved

to optimize and obtain new multi-cast beamformers {vm}M
m=1 (Re-Design), such that

the same multi-cast sum rate (network throughput (4.113)) can be achieved 14, but

with less power consumption. It worth to mention that although the transmission

power is to be minimized here, such a target is achieved by optimizing the beam-

forming vectors. Thus, this sub-step redesigns the beamformers, which will be used

in the next sub-step. The reduction of the power consumption in this sub-step is

always possible for the multi-cast case: Note that the achievable rate of each multi-

cast group is limited by SINR of the UE with the worst channel conditions in this

group, thus the actual SINR at other UEs of the same group might be much higher.

Hence, by re-designing the beamformers via solving problem P (t)(Γ(t−1)), such use-

less higher SINRs at side of other UEs in this multi-cast group can be reduced to

the same level of the worst UE. At the same time, the multi-cast throughput can

still stay unchanged. In summary, with the re-designed beamformers {vm}M
m=1, the

same network performance in terms of the multi-cast throughput can be achieved,

but with less power consumption, compared with the scheme {vm(t−1)}M
m=1 from

the last alternating step.

3. Now we see that the newly generated {vm}M
m=1 = {√pm · ṽm}M

m=1 can save power

compared with {vm(t−1)}M
m=1, without the performance loss in terms of the multi-

cast throughput. Hence, the beamformers of alternating step t can be updated as

{vm(t)}M
m=1 = {vm}M

m=1, and the corresponding normalized beamformers are up-

dated by computing
{

vm(t)/
√
||vm(t)||22

}M

m=1
.

13This is actually the problem (4.21)-(4.25)
14We have set the achieved SINR for realizing the multi-cast throughput from the last sub-step as

the new SINR targets in this problem, thus the new problem is definitely feasible and solvable.
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4. Re-Allocation sub-step: As some power is saved in the previous sub-step, some

extra power budget is now available. If the extra power budget can be somehow

re-distributed to simultaneously increase all SINRs, the multi-cast throughput can

be further increased. Thus, in this sub-step, all available power is to be re-allocated

among eRRHs. We will show that such a goal can be achieved by using the sub-

gradient method [BV04]. Let {pm}M
m=1 be the resultant power allocation of this

method, the power allocation scheme is updated as {pm(t)}M
m=1 = {pm}M

m=1. Al-

though the new power allocation further increases the multi-cast throughput, it gen-

erates some useless higher SINRs at some UEs in each multi-cast group again, which

cannot contribute to the increase of the multi-cast throughput, due to the worst UE

in this group. Then the (t + 1)-th alternating step starts, and the Re-Design sub-step

will update the beamformers to save power.

After the general introduction of the basic idea, we now deep into each sub-step.

4.2.4.2 Beamformer Updates via the Re-Design Sub-step

As discussed above, in the Re-Design sub-step, a power minimization problem is

to be solved for re-designing the beamformers, such that the same network per-

formance in terms of the multi-cast throughput can still be achieved, but with less

transmission power. Obviously, it is just the problem that we have solved in Sub-

section 4.2.1.1, but with Γ computed from the last alternating step as the input pa-

rameter 15. The power minimization problem for t-th alternating step is:

P (t)(Γ(t−1)) : min
{vm}M

m=1

M

∑
m=1
||vm||22, (4.118)

s.t. SINRhard
k ≥ Γm(t−1), ∀k ∈ Gm, ∀Gm, (4.119)

M

∑
m=1

(1− c f m

n )
∣∣||vm

n ||22
∣∣
0 log2

(
1 + Γm(t−1)

)
≤ CFH,n, ∀n ∈ N , (4.120)

M

∑
m=1
||vm

n ||22 ≤ Pmax
TX,n, ∀n ∈ N . (4.121)

After solving the problem above with Alg. 2 introduced in Subsection 4.2.1.1, the

resultant re-designed beamformers are set to {vm(t)}M
m=1, which is the re-designed

beamformers of the t-th iteration, and will be used in the Re-Allocation sub-step for

optimizing the power allocation.

4.2.4.3 Power Allocation via the Re-Allocation Sub-step

The algorithm for the power allocation is something fresh new! As in

the original problem T (4.113)-(4.115), when the beamformers are known,
15We still take the hard transfer mode with dedicated fronthaul as the example.
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the multi-cast throughput depends solely on the power allocation scheme p.

Hence, in this sub-step, the normalized aggregated beamformers {ṽm(t)}M
m=1 ={

vm(t)/
√
||vm(t)||22

}M

m=1
are fixed, which are obtained from the Re-Design sub-step,

and the power budget saved from the previous sub-step will be redistributed, so

as to further increase the throughput. The power allocation problem for the t-th

alternating step can be formulated as follows:

R(t)({ṽm(t)}M
m=1) : max

p

M

∑
m=1

log2

(
1 + min

k∈Gm
SINRk(p)

)
, (4.122)

s.t.
M

∑
m=1

pm||ṽm(t)
n ||22 ≤ Pmax

TX,n, ∀n ∈ N , (4.123)

M

∑
m=1

(1− c f m

n )
∣∣||ṽm(t)

n ||22
∣∣
0 log2

(
1 + min

k∈Gm
SINRk(p)

)
≤ CFH,n, ∀n ∈ N . (4.124)

As seen from (4.116), the achievable SINR for each UE is a function of the power

allocation scheme p. Obviously, as the aggregated normalized beamformers result-

ing from the last sub-step are the input parameters and fixed, constraint (4.123) is

linear with respect to p, and both objective (4.122) and constraint (4.124) are linear

with respect to log2

(
1 + min

k∈Gm
{SINRk(p)}

)
. In order to deal with the non-convex

and non-differentiable term log2

(
1 + min

k∈Gm
{SINRk(p)}

)
, we firstly introduce

the following Proposition, with which this nasty term can be approximated and

convexified.

Proposition [KPS12]: Let ωm > 0 ∀m be constants, and vector s = [s1, s2, ..., sM]T be

parameters input to the function, then

f (s) =
M

∑
m=1

ωmψ

(
min
k∈Gm

SINRk(es)

)
(4.125)

is a non-differentiable convex function of s, as long as

1. ψ is continuous differential and strictly decreasing;

2. the inversion of −ψ, i.e., (−ψ)−1 is log-convex 16.

As this proposition has been proved in [KPS12], we just adopt it here without proof.

For ease of further discussion, R(p) is used to denote the multi-cast throughput

under the specific power allocation scheme p, i.e.,

R(p) =
M

∑
m=1

log2

(
1 + min

k∈Gm
SINRk(p)

)
. (4.126)

16A function f(x) is said to be log-convex on interval [a, b] when f (x) > 0 and ln f (x) is convex on
[a, b].
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By comparing (4.125) and (4.126), it can be observed that if we set s = ln p and

ψ(x) = − log2(x), the multi-cast throughput maximization problem via power

allocation p, i.e. max
p

R(p), can be well approximated by searching for s, which

minimizes f (s). Such an approximation is more precise in the high SINR regime.

Thanks to the F-RAN architecture, where a BBU pool and multiple eRRHs can form

a distributed MIMO structure, much more concentrated beams are possible. Thus,

much higher SINRs than the single BS scenario [KPS12] can be achieved more prob-

able. Thus, such an approximation is particular suitable for the F-RAN scenario.

As f (s) is non-differentiable convex, the sub-gradient method shall be exploited.

Once the optimal sopt is obtained, the optimal power allocation can be computed

via popt = exp (sopt). However, the power and the fronthaul capacity constraints

make the problem much more complicated. By setting {ṽm}M
m=1 as the fixed input

parameters, and adopting the proposition introduced above, the original power al-

location problem (4.122)-(4.124) can be approximated as follows:

R({ṽm(t)}M
m=1) : min

s
f (s), (4.127)

s.t.
M

∑
m=1

ν
m(t)
n pm − Pmax

TX,n ≤ 0, ∀n ∈ N , (4.128)

hn(s)− CFH,n ≤ 0, ∀n ∈ N , (4.129)

where ψ(x) = − log2(x), p = exp(s), (4.130)

f (s) =
M

∑
m=1

ψ

(
min
k∈Gm

SINRk(es)

)
, (4.131)

hn(s) =
M

∑
m=1

ω
m(t)
n ψ

(
min
k∈Gm

SINRk(es)

)
, ∀n ∈ N , (4.132)

ν
m(t)
n = ||ṽm(t)

n ||22 ≥ 0, ∀m ∈ M, ∀n ∈ N , (4.133)

ω
m(t)
n = −(1− c f m

n )
∣∣||ṽm(t)

n ||22
∣∣
0 ≤ 0, ∀m ∈ M, ∀n ∈ N . (4.134)

Constraints (4.128) and (4.129) result from (4.123) and (4.124), which ensure that the

solution popt, as well as the resultant fronthaul requirements can be supported at

each eRRH. Coefficients ν
m(t)
n and ω

m(t)
n are constants computed via the beamform-

ers, which are obtained in the Re-Design sub-step, and are fixed here.

According to the proposition, the objective (4.127) is a non-differentiable convex

function of s. Constraints (4.128) are linear functions of p and thus form a convex

set. However, constraints (4.129) are concave due to ω
m(t)
n ≤ 0. The sub-gradient

method (with general convex constraints) cannot be applied directly. Fortunately,

by reviewing f (s) and hn(s), it can be observed that they have the same structure

but with different coefficients. Therefore, when the LHS of (4.129) equals 0 with a

specific s, i.e., the fronthaul resources have been completely exhausted, the multi-

cast throughput in (4.127) cannot be increased further via re-distributing the power,
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as it will inevitably lead to the violation of (4.129). When there are still available

fronthaul resources, i.e., the LHS of (4.129) is smaller than 0, the sub-gradient evo-

lution can be executed further on (4.127) as long as the step size is small enough,

until the constraints (4.129) are violated.

To fulfill the linear constraints (4.128), the projected sub-gradient [BV04] can be ex-

ploited, which is also used in [CCO14] to fulfill the per-antenna power constraints.

More details of this method has already been introduced in Subsection 2.3.3. The

convex set C
(
{ṽm(t)

n }M
m=1

)
defined by (4.128) and (4.133) can be expressed as:

C
(
{ṽm(t)

n }M
m=1

)
=
{

p ∈ RM×1
+ |ν(t)p ≤ Pmax

TX

}
, (4.135)

where ν(t) ∈ RN×M
+ with (n, m)-th element as ν

m(t)
n .

Here vector Pmax
TX = [Pmax

TX,1, Pmax
TX,2, ..., Pmax

TX,N ]
T indicates the maximal allowable trans-

mission power of each eRRH. Now we summarize the projected sub-gradient

searching steps for problemR({ṽm(t)
n }M

m=1) as follows:

1. Perform the `-th sub-gradient evolution

s̃ = s(`)− ∆ · g(`), (4.136)

where g(`) = [g1(`), g2(`), ..., gM(`)]T denotes the sub-gradients of f (s(`)) at s(`),

which are expressed in (4.137), in which the predetermined factor ∆ denotes the

step size.

gm(`) = exp(sm(`))

qκm(s(`))− ∑
i 6=m
i∈M

|hH
κi ṽm(t)|2SINRκi(es(`))qκi(s(`))

|hH
κi ṽi(t)|2

 , (4.137)

with κm = arg min
k∈Gm

SINRk(es(`)), qκm(s(`)) =
ψ′
(

SINRκm(es(`))
)
|hH

κm ṽm(t)|2

∑ i 6=m
i∈M

esi(`)|hH
κm ṽi(t)|2 + σ2

κm
, ∀m ∈ M.

(4.138)

2. Check if hn(s̃)− CFH,n ≤ 0, ∀n ∈ N are fulfilled. If yes, compute p̃ = exp (s̃),

and perform the Euclidean projection [BV04] to the convex set C
(
{ṽm(t)

n }M
m=1

)
, then

update s(`+ 1) and continue the sub-gradient search, i.e.,

s(`+ 1) = ln (ΠC(p̃)) . (4.139)

where ΠC denotes the Euclidean projection to convex set C. If it is not fulfilled, set

popt = p(`) = exp(s(`)) be the solution, then terminate the projected sub-gradient

search.
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3. Perform the two steps above iteratively until convergence or reaching the maxi-

mal step limit, output popt = exp(s(last)).

4.2.4.4 The Alternating Optimization Procedure

As illustrated previously, in order to maximize the multi-cast throughput, the ag-

gregated beamformers and the power allocation scheme are optimized alternatively.

Hence, after the elaboration of each optimization step, the overall alternating steps

are summarized in Alg. 6:

Algorithm 6: Alternating Steps for Multi-cast Throughput Maximization

1 Initialization: Set ṽm(0) ←

√
∑N

n=1 Pmax
TX,n

LM
1L×1, compute

Γm(0) = min
k∈Gm
{SINRk} ∀m according to (4.116). Check if

∑M
m=1 log2

(
1 + Γm(0)

)
≤ CFH,n are fulfilled. If not, further scale down and

update all initial beamformers until they can be fulfilled. Set t← 1.
2 repeat
3 Set Γ(t−1) = [Γ1(t−1), Γ2(t−1), ..., Γm(t−1)]T be the SINR target, then

construct the power minimization problem P (t)(Γ(t−1)) according to
(4.118)-(4.121) and solve it using Alg. 2. Let {vm}M

m=1 be the solution.
4 Update the normalized beamformers:

{ṽm(t)}M
m=1 ←

{
vm/

√
||vm||22

}M

m=1
.

5 Fix {ṽm(t)}M
m=1 and construct the power re-distribution problem

R
(
{ṽm(t)}M

m=1

)
according to (4.127)-(4.134), perform the projected

sub-gradient search according to the descriptions (4.135)-(4.139). Let p
be the solution.

6 Update the power allocation {pm(t)}M
m=1 = {pm}M

m=1, as well as the

beamformers {vm(t)}M
m=1 = {

√
pm(t) · ṽm(t)}M

m=1.

7 Compute the newly achieved SINRs Γ(t) based on (4.116).
8 Set t← t + 1.
9 until Convergence or reaching max iteration number;

Convergence Analysis: The convergence of Alg. 6 is guaranteed: The power mini-

mization problem P (t)(Γ(t−1)) solved in Step 3 is always feasible, since the target

SINR Γ(t−1) is computed based on the newly generated normalized beamformers

and the power allocation scheme from the last alternating step (see Step 7), and

such a design fulfills the fronthaul resource and individual power constraints due

to the operations done in the Euclidean projection steps (see Step 5). As previously

stated, the main purpose ofP (t)(Γ(t−1)) is to reduce some useless high SINRs at some

UEs in each multi-cast group while keep the multi-cast throughput unchanged, via

the re-design of beamformers. Hence, the resultant network power consumption

must be at least not higher. If some power can be saved, the re-distribution of the
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Figure 4.30: The multi-cast throughput obtained for the TP-Max metric and the
wMMF metric.
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power must at least not lower multi-cast throughput, than the previous iteration.

Therefore, such alternating procedures will definitely converge.

4.2.5 Numerical Results for wMMF Metric and TP-Max Metric

In this subsection, some numerical results of the proposed algorithms will be pro-

vided via simulation, for both wMMF and TP-Max. The same simulation environ-

ment, as well as the simulation parameters are adopted as before, unless otherwise

stated. The results are based on averaging the outcome of 300 independent realiza-

tions.

In Fig. 4.30, the averaged multi-cast throughput is plotted for two metrics of high

SE: wMMF resultant from Alg. 5, and TP-Max via Alg. 6. In this simulation all

weight coefficients are set to be 1, i.e., each multi-cast group has the same priority.

By comparing the multi-cast throughput of these two algorithms, not surprisingly,

TP-Max is always higher than wMMF, as wMMF tries to balance the QoS difference

between different UEs. The network might consume lots of resources to counter-

act the channel conditions of the bad UEs. However, we see that when network

resources become more abundant, i.e., either more fronthaul capacity resources, or

larger cache memory sizes are available, the difference between these two metrics

decreases. Here we pick up some representative network configurations, under

which the ratios of the throughput achieved by the wMMF metric, to that achieved

by the TP-Max metric are documented. The results are listed in Table. 4.2.
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Table 4.2: The ratio of the achieved multi-cast throughput: wMMF/TP-Max.

S
CFH 50 Mbps 200 Mbps 400 Mbps

1 29.2% 43.0% 64.6%
3 46.2% 60.9% 82.2%

It can be observed from the table, the gap between wMMF and TP-Max becomes

smaller as the network resources becomes more abundant: When cache memory has

only size 1 and the fronthaul capacity is only 50 Mbps, the wMMF metric can only

achieve 29.2% multi-cast throughput of the TP-Max metric. When it goes to S = 3

and CFH = 400 Mbps, such a ratio can achieve 82.2%. The rationale is straight-

forward: When the network resources are limited, there are less eRRHs in each

cluster for serving a specific multi-cast group. Hence, the wMMF oriented design

is harder to combat against the bad channel conditions of some UEs. In this case,

most resources have to be prioritized only for these bad UEs, although the resources

are already rather limited! However, in the TP-Max oriented design, such bad UEs

might be even skipped, most resources are prioritized to good UEs for improving

the multi-cast throughput. Hence, the gap between these two metrics is rather large.

When the network resources become more abundant, each eRRH can participate in

more clusters to serve more UEs. In this case, the aggregated array gain is large

enough, such that it can counteract the bad channel conditions easily. Hence, the

gap between these two metrics becomes smaller.

However, when we inspect the achievable rate of the UE with the worst channel

conditions, it is another story. In Fig. 4.31, the averaged minimal achieved rates for

these two metrics are compared. For the same network configuration, the wMMF

oriented design always outperforms the TP-Max oriented design. It is also observed

that when more network resources are available, their performance become closer.

The reason is the same as previously stated. By comparing Fig. 4.30 and Fig. 4.31,

we can conclude that both design metrics have their own significance, depending

on different service objectives. With the proposed algorithms, the BBU pool has the

ability to dynamically change the performance target.

It is also worth to mention that by increasing the cache memory size, the SE perfor-

mance of both metrics can also be improved significantly. Similarly, this is also due

to more cooperation between eRRHs becomes more probable. Hence, besides EE,

the cache is also a cheap and low-cost solution when high SE is the design target.

Before we close this subsection, we would like to illustrate the simulated conver-

gence behaviour of Alg. 6, i.e., how such alternating steps behave. We set Pmax
TX,n = 1

W (0 dBW) ∀n ∈ N and total CFH = 400Mbps, each fronthaul is assumed to has

the same capacity. Moreover, two different sub-gradient step sizes ∆ are selected
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Figure 4.31: The achieved rate for the UE with the worst channel condition, for the
TP-Max metric and the wMMF metric with different fronthaul capacities and cache
memory sizes.
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to compare the outcome. Then Alg. 6 is executed step by step, and the multi-cast

throughput in each alternating step is recorded, based on the normalized beam-

formers and the power allocation scheme computed in the two sub-steps. The re-

sults are shown in Fig. 4.32.

The results validate our convergence analysis of Alg. 6. In each alternating step, the

multi-cast throughput indeed not decreases. It converges after about 19 iterations

when ∆ = 0.2, and about 27 iterations when ∆ = 0.15. While in this example, within

ten iterations, 90% of the optimal performance for both cases can be achieved. By

reducing the value of ∆, the algorithm requires more iterations to converge, but

the resultant multi-cast throughput when it converges becomes higher. Hence, the

selection of ∆ reflects a trade-off between precision and complexity .

4.3 Robust Design based on Inaccurate CSI

Up to now, we have intensively discussed the optimal design of the cache-enabled

F-RAN. For both high EE and SE oriented design, several algorithms have been

introduced for the optimization. The numerical results demonstrated not only the

effectiveness and correctness of them, but also the benefits of introducing cache

modules at the network edge to perform the fog computing. However, all of the

discussions and results above assume perfect CSI available at the BBU pool. In

practice, the downlink CSI is actually estimated by UEs and feed back to the BBU
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Figure 4.32: The convergence behaviour of the multi-cast throughput for different
sub-gradient steps.

0 5 10 15 20 25 30

4

6

8

10

12

iteration

M
ul

ti
-c

as
tt

hr
ou

gh
pu

t (
bp

s/
H

z)
∆ = 0.15
∆ = 0.2

pool via the PUCCH. Therefore, the distortion is inevitable. Then some questions

arise naturally: Is it possible to guarantee the network performance in the presence

of only inaccurate CSI? If so, how shall the BBU pool deal with the inaccuracy in

the cache-enabled F-RAN? Are the proposed algorithms in previous subsections

extendable to such scenarios? Fortunately, the answer is yes, and this problem will

be addressed in this subsection. Similar to the scenarios with perfect CSI, both high

EE and SE oriented design under inaccurate CSI will be discussed.

4.3.1 High EE oriented Robust Design

At first, the minimization of the total power consumption is to be investigated, i.e.,

both transmission power and all other operational power are considered, with in-

accurate CSI knowledge at the BBU pool. The power model and the inaccurate CSI

model have already been introduced in Subsection 4.1.3 and Subsection 4.1.7 re-

spectively. Moreover, the expressions of the achievable effective SINR for each UE

are also given for the hard transfer mode (4.19), and the soft transfer mode (4.20).

For ease of further illustration, we list them here again:

eSINRhard
k (eCSI

k ) =

∣∣hH
k vm

∣∣2∣∣∣eCSI
k

Hvm
∣∣∣2 + ∑M

i 6=m

∣∣∣(hH
k + eCSI

k
H
)

vi
∣∣∣2 + σ2

k

, (4.140)

eSINRsoft
k (eCSI

k ) =

∣∣hH
k wm

∣∣2∣∣∣(hH
k + eCSI

k
H
)

q
∣∣∣2 + ∣∣∣eCSI

k
Hwm

∣∣∣2 + ∑M
i 6=m

∣∣∣(hH
k + eCSI

k
H
)

wi
∣∣∣2 + σ2

k

.

(4.141)
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Obviously, the achievable effective SINR at each UE depends on the CSI error vec-

tor {eCSI
k }K

k=1, which is unknown. The BBU pool only knows that such errors are

bounded within a sphere with radius εk, with the probability of at least 1− δk, as

shown in (4.17) and (4.18). Since only inaccurate {hk}K
k=1 CSI knowledge and the

value of {εk}K
k=1 are available, the network has to be somehow optimized based on

such inaccuracies, while the resultant network can still guarantee the QoS of each

UE, as well as fulfill its constraints in terms of power and fronthaul capacity. In

other words, the network must be robust to the uncertainty of the CSI knowledge.

Hence, we can formulate the problems to be solved as follows, for both hard and

soft transfer mode:

PHard
Inaccurate CSI : min

{vm}M
m=1

1
ξ

(
M

∑
m=1
||vm||22

)
+

N

∑
n=1

Po

∣∣∣ M

∑
m=1
||vm

n ||22
∣∣∣
0

+
N

∑
n=1

Psleep

(
1−

∣∣∣ M

∑
m=1
||vm

n ||22
∣∣∣
0

)
, (4.142)

s.t. min
||eCSI

k ||22≤ε2
k

eSINRhard
k (eCSI

k ) ≥ Γm, ∀k ∈ Gm, ∀m ∈ M, (4.143)

M

∑
m=1

(1− c f m

n )
∣∣||vm

n ||22
∣∣
0 log2 (1 + Γm) ≤ CFH,n ∀n ∈ N dedicated,

(4.144)
N

∑
n=1

M

∑
m=1

(1− c f m

n )
∣∣||vm

n ||22
∣∣
0 log2 (1 + Γm) ≤ CFH non-dedicated,

(4.145)
M

∑
m=1
||vm

n ||22 ≤ Pmax
TX,n, ∀n ∈ N . (4.146)
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PSoft
Inaccurate CSI : min

{wm}M
m=1,q

1
ξ

(
M

∑
m=1
||wm||22 +

N

∑
n=1
||qn||22

)
+

N

∑
n=1

Po

∣∣∣ M

∑
m=1
||wm

n ||22
∣∣∣
0

+
N

∑
n=1

Psleep

(
1−

∣∣∣ M

∑
m=1
||wm

n ||22
∣∣∣
0

)
, (4.147)

s.t. min
||eCSI

k ||22≤ε2
k

eSINRsoft
k (eCSI

k ) ≥ Γm, ∀k ∈ Gm, ∀m ∈ M, (4.148)

L

∑
l=1

log2

1 +
∑M

m=1(1− c f m

n )|wm
n,l |2

q2
n,l

 ≤ CFH,n ∀n ∈ N dedicated,

(4.149)

N

∑
n=1

L

∑
l=1

log2

1 +
∑M

m=1(1− c f m

n )|wm
n,l |2

q2
n,l

 ≤ CFH non-dedicated,

(4.150)
M

∑
m=1
||wm

n ||22 + ||qn||22 ≤ Pmax
TX,n, ∀n ∈ N . (4.151)

By investigating (4.142)-(4.151), it can be observed that the objectives and most con-

straints are the same as the case when perfect CSI is available. The only difference

lies at the QoS requirements (4.143) and (4.148). They guarantee that, as long as the

CSI error is bounded, even in the worst case, the QoS targets can still be achieved

for each UE, even though the error is not known exactly. It can also be interpreted

in another way: For UE k, as the error is bounded within the sphere of radius εk

with the probability of at least 1− δk, the QoS requirement (4.143) and (4.148) en-

sure that the QoS can be achieved, with the probability of at least 1− δk. By solving

the problems above, a robust design of the network can be acquired. However, as

the random and unknown {eCSI
k }K

k=1 cannot be manipulated, getting rid of these pa-

rameters is necessary, in order to make the problems solvable. To avoid repetitions,

we select the soft transfer mode with dedicated fronthaul as an example to elaborate

on the algorithm, the extension to other cases can be followed by the way we have

introduced before.

When the problem consisting of (4.147)-(4.149) and (4.151) is to be solved, the

only difficulty lies in (4.148), as the others can be easily convexified with SDR

and the iterative `0-norm approximation method, which have been introduced in

previous sections. The key to deal with (4.148) is the adoption of the S-Lemma,

which has been introduced in Subsection 2.3.6. For ease of explanation, we repeat

the S-Lemma here.

S-Lemma: Let two functions f0(x), f1(x) defined as f0(x) = xHA0x + 2Re{xHb0}+
c0 and f1(x) = xHA1x + 2Re{xHb1}+ c1, where b0, b1 ∈ Cd×1 denote vectors, ma-
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trices A0, A1 ∈ Cd×d are all Hermitian matrices; and c0, c1 are scalars. Suppose that

a specific vector x̂ ∈ Cd×1 exists, with which f1(x̂) < 0 is satisfied. Then f0(x) ≥ 0

and f1(x) ≤ 0 can be satisfied simultaneously, for arbitrary x ∈ Cd×1, as long as a

scalar λ ≥ 0 exists, which makes the following matrix positive semi-definite, i.e.,[
A0 b0

bH
0 c0

]
+ λ

[
A1 b1

bH
1 c1

]
� 0. (4.152)

At first, with the SDR technique, (4.148) can be reformulated into the following form

where the S-Lemma can be applied:

1
Γm hH

k Wmhk − σ2
k − max

||eCSI
k ||22≤ε2

k

((
hH

k + eCSI
k

H
)

Q
(

hk + eCSI
k

)
+ eCSI

k
H

WmeCSI
k

+
M

∑
i 6=m

(
hH

k + eCSI
k

H
)

Wi
(

hk + eCSI
k

))
≥ 0, ∀k ∈ Gm, ∀m ∈ M. (4.153)

Similarly, in the expression above, Wm = wmwm H ∈ RNL×NL ∀m ∈ M and

Q = qqH ∈ RNL×NL are positive semidefinite matrices, i.e., Q, {Wm}M
m=1 � 0.

For any fixed eCSI
k , the LHS of (4.153) is a convex function with respect to Q and

{Wm}M
m=1. Note that (4.153) is only a relaxed version of (4.148), as the non-convex

constraints rank (Wm) = 1 ∀m ∈ M and rank (Q) = 1 are temporarily dropped.

Then we adopt the S-Lemma: By introducing scalar auxiliary variables {αk, βk, γk},
the inequality (4.153) can be equivalently expressed as

1
Γm hH

k Wmhk − σ2
k − αk − βk − γk ≥ 0, (4.154)

−
(

hH
k + eCSI

k
H
)

Q
(

hk + eCSI
k

)
+ αk ≥ 0, (4.155)

− eCSI
k

H
WmeCSI

k + βk ≥ 0, (4.156)

−
(

hH
k + eCSI

k
H
)( M

∑
i 6=m

Wi

)(
hk + eCSI

k

)
+ γk ≥ 0, (4.157)

eCSI
k

H
eCSI

k − ε2
k ≤ 0, ∀k ∈ Gm, ∀m ∈ M. (4.158)

Then by adopting the S-Lemma to (4.155)-(4.158) 17, the original constraint (4.153)

17For example, by regarding eCSI
k as x in the S-Lemma, the LHS of (4.155) as f0(x) and the LHS of

(4.158) as f1(x), (4.155) is equivalent to (4.160) and λk ≥ 0.
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can be further equivalently expressed with the following constraints:

1
Γm hH

k Wmhk − σ2
k − αk − βk − γk ≥ 0, (4.159)

Dk =

[
λkINL×NL −Q −Qhk

−hH
k QH −λkε2

k + αk

]
� 0, (4.160)

Ek =

[
µkINL×NL −Wm 0NL×1

0H
NL×1 −µkε2

k + βk

]
� 0, (4.161)

Fk = λkINL×NL −∑M
i 6=m Wi

(
−∑M

i 6=m Wi
)

hk

hH
k

(
−∑M

i 6=m Wi H
)
−νkε2

k − hH
k

(
∑M

i 6=m Wi
)

hk + γk

 � 0, (4.162)

λk, µk, νk ≥ 0, ∀k ∈ Gm, ∀m ∈ M. (4.163)

Obviously, with constraints (4.159)-(4.163), we finally get rid of the unknown{
eCSI

k

}K
k=1, but replace them with the known {εk}K

k=1. Moreover, these constraints

are convex with respect to both the parameters to be optimized, and the introduced

auxiliary parameters. Together with adopting the techniques introduced in previ-

ous sections, for the convexification of the objective (4.147) and the other constraints

(4.149)-(4.151), the original problem can be equivalently reformulated as follows:
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PSoft
Inaccurate CSI : min

{Wm}M
m=1,Q

M

∑
m=1

tr(Wm) +
N

∑
n=1

tr(QJn) +
N

∑
n=1

∆P
∣∣ M

∑
m=1

tr(WmJn)
∣∣
0,

(4.164)

s.t.
1

Γm hH
k Wmhk − σ2

k − αk − βk − γk ≥ 0, (4.165)

Dk =

[
λkINL×NL −Q −Qhk

−hH
k QH −λkε2

k + αk

]
� 0, (4.166)

Ek =

[
µkINL×NL −Wm 0NL×1

0H
NL×1 −µkε2

k + βk

]
� 0, (4.167)

Fk = λkINL×NL −∑M
i 6=m Wi

(
−∑M

i 6=m Wi
)

hk

hH
k

(
−∑M

i 6=m Wi H
)
−νkε2

k − hH
k

(
∑M

i 6=m Wi
)

hk + γk

 � 0, (4.168)

L

∑
l=1

log2 ηn,l +
tr
(

Q(t+1)Jn,l

)
+ ∑M

m=1(1− c f m

n )tr
(

Wm(t+1)Jn,l

)
ηn,l ln 2


−

L

∑
l=1

log2 tr
(

Q(t+1)Jn,l

)
− L

ln 2
− CFH,n ≤ 0, ∀n ∈ N , (4.169)

M

∑
m=1

tr(WmJn) + tr(QJn) ≤ Pmax
TX,n, ∀n ∈ N , (4.170)

Wm � 0, ∀m ∈ M, (4.171)

Q � 0, (4.172)

rank (Wm) = 1, ∀m ∈ M (4.173)

rank (Q) = 1, (4.174)

λk, µk, νk ≥ 0, ∀k ∈ Gm, ∀m ∈ M, (4.175)

where ξ in (4.164) denotes the power amplifier efficiency and ∆P = ξ(Po − Psleep).

The constraints (4.169) are obtained with the same upper-bounding technique used

in Subsection 4.2.1.2, for details please refer to (4.51)-(4.60).

After dropping the rank constraints (4.173) and (4.174), the problem above is again

a standard SDP problem, whose solving procedure is in line with Alg. 3. Similarly,

an initial SDP problem has to be constructed and solved, which shall be expressed
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as follows:

PSoft (0)
Inaccurate CSI : min

{Wm(0)}M
m=1,Q(0)

M

∑
m=1

tr(Wm(0)) +
N

∑
n=1

tr(Q(0)Jn), (4.176)

s.t.
1

Γm hH
k Wm(0)hk − σ2

k − α
(0)
k − β

(0)
k − γ

(0)
k ≥ 0, (4.177)

D(0)
k =

[
λ
(0)
k INL×NL −Q(0) −Q(0)hk

−hH
k Q(0)H −λ

(0)
k ε2

k + α
(0)
k

]
� 0, (4.178)

E(0)
k =

[
µ
(0)
k INL×NL −Wm(0) 0NL×1

0H
NL×1 −µ

(0)
k ε2

k + β
(0)
k

]
� 0, (4.179)

F(0)
k = λ

(0)
k INL×NL −∑M

i 6=m Wi(0)
(
−∑M

i 6=m Wi(0)
)

hk

hH
k

(
−∑M

i 6=m Wi(0)H
)

−ν
(0)
k ε2

k − hH
k

(
∑M

i 6=m Wi(0)
)

hk + γ
(0)
k

 � 0, (4.180)

M

∑
m=1

tr(Wm(0)Jn) + tr(Q(0)Jn) ≤ Pmax
TX,n, ∀n ∈ N , (4.181)

Wm(0) � 0, ∀m ∈ M, (4.182)

Q(0) � 0, (4.183)

λ
(0)
k , µ

(0)
k , ν

(0)
k ≥ 0, ∀k ∈ Gm, ∀m ∈ M, (4.184)

And for the (t + 1)-iteration afterwards, the problem PSoft (t+1)
Inaccurate CSI to be solved is

constructed according to (4.164)-(4.175), but without (4.173) and (4.174).

In summary, the robust design procedure for the soft transfer mode is documented

in Alg. 7.

4.3.2 High SE oriented Robust Design

By reviewing the two algorithms proposed for the high SE oriented design with per-

fect CSI, Alg. 5 and Alg. 6, we see that both of them rely on solving a related power

minimization problem. Obviously, Alg. 5 is rather easy to be extended to the case

with inaccurate CSI, as it is only a combination of the Bi-Section method, and the

solution for the power minimization problem. Hence, when only inaccurate CSI is

available, we can just replace the constructed power minimization problem in Alg.

5, with the power minimization problem with inaccurate CSI. The algorithm for

solving such a problem has been provided in the last subsection, where we took the

soft transfer mode as an example. However, when the multi-cast throughput maxi-

mization is considered, two sub-problems are constructed and solved: The first one

is in the Re-Design sub-step, which is also a power minimization problem. How-

ever, in the Re-Allocation sub-step, the power allocation algorithm cannot be easily
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Algorithm 7: The Iterative Optimization Steps for Robust TX power Mini-
mization (For the soft transfer mode)

1 Initialization: Solve the standard SDP problem PSoft (0)
Inaccurate CSI (4.176)-(4.184)

to obtain {Wm(0)}M
m=1 and Q(0). Compute η

(1)
n,l based on (4.60), ∀n, l.

Construct the problem PSoft (1)
Inaccurate CSI according to (4.164)-(4.175) without

(4.173) and (4.174), and set t← 1.
2 repeat
3 Solve the standard SDP problem PSoft (t)

Inaccurate CSI for obtaining {Vm(t)}M
m=1

and Q(t).
4 Compute the values of η

(t+1)
n,l based on (4.60), ∀n, l. Then formulate the

problem PSoft (t+1)
Inaccurate CSI according to (4.164)-(4.175) without (4.173) and

(4.174), and set t← t + 1.
5 until convergence or reaching the max iteration number;
6 if rank(Wm(last)) = 1 and rank(Q(last)) = 1 then
7 Perform EVD to obtain the optimal {wm}M

m=1 and q.

8 else
9 Use Gaussian randomization and scaling [KSL08] method to obtain the

approximate solution {wm}M
m=1 and q.

adapted with inaccurate CSI, as in the sub-gradient method, exact values of SINR

need to be computed, as shown in (4.137) and (4.138). With unknown
{

eCSI
k

}K
k=1, it

is impossible to compute the value, as shown in (4.140) and (4.141). Therefore, Alg.

6 is not possible to be used for scenarios with inaccurate CSI. Fortunately, as shown

in Subsection 4.2.5, when the network resources are abundant, i.e., with large cache

memory size S or fronthaul capacity CFH, the results of wMMF are close to TP-Max.

So the low-complexity Alg. 5 can be adopted to approach the results for the multi-

cast throughput maximization, in scenarios where CSI is inaccurate and network

resources are abundant.

4.3.3 Numerical Results

In this subsection the numerical results for the robust design are to be provided.

Again, the same simulation parameters and methods are adopted as before. In sim-

ulations, the hard transfer mode is adopted and the same distortion level is assumed

for all UEs, i.e., ε = εk ∀k. Moreover, we select δk = 0 ∀k for easier illustration, i.e.,

the distortion is assumed to be always bounded without outage probability. For the

case when δk > 0, the proposed algorithm will run into outage with the probability

of δ, but all conclusions below are still valid and the algorithm keeps the same.

At first we show how such a robust design influences the network power consump-

tion: Among all independent realizations, we randomly pick up one, and compare

the recorded transmission power of each eRRH for each iteration of our algorithm.
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Figure 4.33: eRRH deactivation for perfect CSI.
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Figure 4.34: eRRH deactivation for inaccurate CSI with ε = 0.1.
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(a) eRRH Deactivation (Perfect CSI)
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(b) eRRH Deactivation (ε = 0.1)
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Figure 4.35: An illustration of the final eRRH deactivation results for the case when
perfect CSI is available and CSI is distorted with ε = 0.1. Cell colored with gray
denotes that the eRRH within this cell is deactivated.

Remember that when the value of the transmission power of a specific eRRH drops

below the threshold parameter τ (in our case it is −50 dBm), this eRRH is deter-

mined to be deactivated, more details have been stated in Subsection 4.2.2. In Fig.

4.33 and Fig. 4.34, the results are compared for the case of perfect CSI and the case of

inaccurate CSI with distortion level ε = 0.1, which is a relatively large value when

measuring the distortion.

It can be observed that with the proposed algorithm, all eRRHs are active at the

beginning, but some of them are deactivated gradually for saving power. From the

figure, we see that four eRRHs (eRRH 1, eRRH 2, eRRH 4 and eRRH 5) are switched

off in 15 iterations, as the corresponding power falls far below the threshold −50

dBm, when perfect CSI is available. However, when the robust design is executed

with inaccurate CSI knowledge, only two eRRHs (eRRH 1 and eRRH 4) can be de-

activated. This is due to more network resources (incl. power, fronthaul capaci-

ties, caches, etc.) are required, in order to counteract the network uncertainties to

guarantee the robustness. Based on the results above, a more intuitive comparison

between this these cases is illustrated in Fig. 4.35.

Then the overall performance is investigated instead of a specific slot realization:

We set up 200 independent realizations and execute the algorithms for both cases of

perfect and inaccurate CSI, then the number of eRRHs that are still active after the

algorithms terminate, i.e., after 20 iterations, are documented. After averaging these

numbers, the probability distribution of the number of active eRRHs is computed

and depicted in Fig. 4.36. Obviously, when perfect CSI is available, more eRRHs
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have better chance to be deactivated, which is in line with the results shown in Fig.

4.33 for that specific realization. For example, when the cache memory size S = 0

and perfect CSI is available, the network has nearly 40% probability to turn off two

eRRHs, such that the remaining five can still fulfill the QoS targets of all UEs. There

is only a probability of 20%, such that all eRRHs must be activated, which means

that some eRRHs (at least one) can be deactivated to save power with the proba-

bility of 80%. However, when only inaccurate CSI is available, such a probability

decreases to about 20%. In most cases (∼ 80%), all seven eRRHs have to keep ac-

tive. Furthermore, we can also observe that when there are more available network

resources, e.g., larger cache memory size S, more eRRHs have the possibility to be

switched off, and it holds for both perfect and inaccurate CSI scenarios.

Next, we verify whether with the proposed algorithm, the network is indeed robust,

such that even perfect CSI is not known, the QoS at each UE can still be guaranteed.

Firstly, a new metric called the normalized rate is set up :

RNorm
k =

log2(1 + SINRk)

log2(1 + Γm)
, (4.185)

in which SINRk is the actually achieved SINR of UE k, which is calculated according

to (4.15) and (4.16) for the hard and soft transfer mode. Note that such a value is

not available at the BBU pool as exact CSI is not known (but each UE can measure

it), the robust beamformers/precoders are optimized by the BBU pool with inac-

curate CSI. By substituting the resultant robust beamformers/precoders from the

proposed algorithm, and the actual channel vectors into (4.15) and (4.16), the actual

SINRs that are achieved at each UE can be computed. The normalized rate of UE

k, i.e., RNorm
k , is the ratio of the actually achieved rate log2(1 + SINRk) to the QoS

target log2(1 + Γm). If RNorm
k ≥ 1 ∀n ∈ N is satisfied, it can be claimed that the

proposed algorithm indeed ensures the robustness, as the QoS of each UE is guar-

anteed. The normalized rate for each independent realization for different channel

distortion levels are documented, and the probability distributions of them are il-

lustrated in Fig. 4.37. As a comparison, the results of the non-robust algorithms are

also provided. For such a non-robust design, the BBU pool just regards the distorted

CSI as the exact one and optimize the network accordingly, with the algorithms in-

troduced in Subsection 4.2.2. From the results depicted in Fig. 4.37, it is obvious

that the robust algorithm always guarantees the QoS of each UE, as the normalized

rates are 100% equal or larger than 1. These values are often larger than 1, since

the robust design guarantees the worst case scenario: As long as the distortion is

bounded, the QoS can be satisfied. By increasing the distortion level ε, the distri-

bution becomes more spread in x-axis, as the uncertainty of the CSI knowledge is

increased. However, the price to counteract more uncertainty is more power con-
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Figure 4.36: The probability distribution of the averaged number of active eRRHs,
with different cache memory sizes and channel distortion levels.
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Figure 4.37: The probability distribution of the normalized rate for the robust and
the non-robust design with different CSI distortion levels (QoS target Γ = 5 dB).

0.65 0.7 0.75 0.8 0.85 0.9 0.95 1 1.05 1.1 1.15 1.2
0

0.2

0.4

The normalized rate

Pr
ob

ab
ili

ty

Robust, ε = 0.05

0.65 0.7 0.75 0.8 0.85 0.9 0.95 1 1.05 1.1 1.15 1.2
0

0.2

0.4

The normalized rate

Pr
ob

ab
ili

ty

Robust, ε = 0.1

0.65 0.7 0.75 0.8 0.85 0.9 0.95 1 1.05 1.1 1.15 1.2
0

0.2

0.4

The normalized rate

Pr
ob

ab
ili

ty

Non-Robust, ε = 0.05

0.65 0.7 0.75 0.8 0.85 0.9 0.95 1 1.05 1.1 1.15 1.2
0

0.2

0.4

The normalized rate

Pr
ob

ab
ili

ty

Non-Robust, ε = 0.1



4

Ce
nt

ra
liz

ed
Jo

in
tD

es
ig

n
fo

rt
he

D
ow

nl
in

k

161

Figure 4.38: The maximized minimal SINR for different network configurations and
CSI distortion levels.
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sumption, which will be shown later. When it goes to the non-robust design, i.e.,

the BBU pool optimizes the network based on inaccurate CSI but regards them as

accurate, the QoS of each UE cannot be guaranteed: When ε = 0.05, only about

5% UEs among all, can get its desired QoS fulfilled. When ε = 0.1, such a value

decreases to around 3%. The results demonstrate the significance of the proposed

robust design approach when only inaccurate CSI is available.

Concerning the robust high SE oriented design, Fig. 4.38 illustrates the maximized

minimal SINR among all UEs, by averaging the results from all independent real-

ization. We see that with higher maximal allowable power or larger cache memory

size, higher achievable rates can be guaranteed for the UE with the worst channel

conditions. The benefit of increasing the cache memory size becomes more and

more manifest, as more power becomes available. This is because when less trans-

mission power is available, the performance is limited by the radio access hop from

the eRRHs to UEs, instead of the fronthaul. In such cases, the fronthaul resources

are abundant, such that fronthauling contents to more eRRHs, in order to increase

the array gain, is more probable, thus the benefit of caching contents is less signifi-

cant. When more power is available, the performance is more and more limited by

the fronthaul, which makes caching more beneficial. When only inaccurate CSI is

available, more power is required at each eRRH to combat against the channel un-

certainty, the network becomes more probable, to be limited by the power, instead

of the fronthaul. Hence, in the case of inaccurate CSI, for a given power budget,

the performance gap between whether cache exists, is smaller than the case with

perfect CSI. While we can still conclude that, introducing cache module is a cheap
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Figure 4.39: The minimized power consumption for different CSI distortion levels
and SINR targets (The curve of perfect CSI coincides with that of ε = 0).

2 4 6 8 10
0

5

10

15

20

25

30

35

Target SINR Γ (dB)

To
ta

lp
ow

er
co

ns
um

pt
io

n
(M

bp
s)

perfect CSI
ε = 0

ε = 0.05
ε = 0.1
ε = 0.2

solution with low-complexity, to increase the robustness of the network.

Fig. 4.39 illustrates the price that the network pays for such a robust design: Higher

power consumption. When CSI becomes less accurate, i.e., the value of ε gets larger,

much more transmission power is required to counteract the uncertainty, when the

network aims to guarantee the same target SINR at the UE side. Sometimes the

problem becomes even infeasible: With the current network configuration, it is not

possible to robustly guarantee the QoS at each UE. For example, when ε = 0.2,

the problem becomes infeasible if the target SINR Γ larger than 4 dB, meaning that

the current maximal allowable power and the fronthaul capacity cannot robustly

support the QoS of each UE anymore, when Γ > 4 dB. Moreover, it should be noted

that the results of perfect CSI are compared with that of ε = 0: For perfect CSI, the

algorithms proposed in Subsection 4.2.2 is executed, while for ε = 0, the robust

algorithm proposed in Subsection 4.3.1 is executed, but just by setting ε = 0. The

results of them, as expected, coincide with each other.

4.4 Discussions, Summaries, and Outlooks

In this chapter, the optimal network design for the downlink of F-RAN is investi-

gated: Both high Energy Efficiency (EE) and Spectral Efficiency (SE) oriented design

are discussed. Moreover, the robust design scheme is also studied, when only inac-

curate CSI is available.
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We start with the simplest case: Transmission power minimization for high EE ori-

ented design with perfect CSI, in which both the hard and the soft transfer mode

on fronthauls, as well as both dedicated and non-dedicated fronthauls, are intro-

duced and studied. The main technique to tackle this problem is the SemiDefinite

Relaxation (SDR) method and the iterative `0-norm approximation scheme, with

which the problem can be convexified into a standard SDP problem, which can be

efficiently solved by many existing solvers. Then we extend the case to the min-

imization of the total power of the network: Not only the transmission power is

taken into account, but also all other operational power. In this case, we show that

it is possible to switch off some eRRHs for saving the overall power of the network,

instead of activating them all to decrease only the transmission power. With the

proposed algorithm, the eRRH deactivation can also be dynamically optimized by

the BBU pool.

Then the high SE oriented design is considered. Two different design metrics are in-

vestigated: The weighted Max-Min Fairness (wMMF) and the multi-cast Through-

put Maximization (TP-Max). We propose algorithms for both of them, and each

one relies on the previously discussed power minimization problem. When wMMF

is the target, it is shown that by combining the solving of the power minimization

problem and the Bi-Section method, the corresponding problem can be solved in a

tortuous manner. For the TP-Max, as both beamformers/precoders and the power

allocation are to be optimized, an alternating mechanism is proposed, such that

one variable type is alternatively fixed, and the other is to be optimized. When the

power allocation scheme is optimized, the sub-gradient method is adopted. Both

theoretic analysis and numerical results are given, in order to show the convergence

behaviour of such alternating steps.

Furthermore, the performance of the hard and the soft transfer mode are also com-

pared. The results demonstrate that the soft transfer mode has better capability to

exploit the networks resources in most cases. When the network resources get more

limited, the benefit of the soft transfer mode becomes more apparent. However, the

price of it is its higher implementation and optimization complexity.

At last, we address the robust design for both high EE and SE oriented design, i.e.,

when only inaccurate CSI is available at the BBU pool, the network design that

can still guarantee the QoS of each UE. The S-Lemma is adopted to deal with this

problem. With the S-Lemma, the original problem can also be converted into a SDP

problem, which is then solved with the techniques adopted in earlier sections.

Apart from the algorithms, the benefits of introducing the cache module at eRRHs

are also demonstrated by many numerical results. With caches, the aggregated net-

worked array gain can be increased for achieving higher spatial diversity, which
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has the same effect as if higher allowable power budgets, or larger fronthaul capac-

ities, are available. Note that the increase of the power budgets and the fronthaul

capacities are usually rather expensive. Hence, with the low-cost and flexible cache

module, both EE and SE of the network can be easily improved. Moreover, it also

proved to have the capability to increase the robustness of the network, when only

inaccurate CSI is available.

However, there is still some issues that need further research. For example, as de-

scribed in Subsection 4.3.2, the proposed algorithms for the robust design cannot be

extended to maximizing the network multi-cast throughput. What we have done

there is to use the robust algorithm of the wMMF to approximate it when the net-

work resources are abundant, i.e., when large cache memory size S or fronthaul

capacity CFH is available. Hence, for the TP-Max, an efficient algorithm is required

for the robust design. Moreover, all the proposed algorithms have to be executed

in an iterative manner. Although most of them can converge within ten iterations,

it might be still not feasible for some real-time applications that require extremely

low latency. Hence, algorithms with less computational requirements are worth to

be investigated in future.
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Chapter 5

Partially Decentralized Design with Partial CSI

This chapter contains
5.1 Introduction and System Model . . . . . . . . . . . . . 166

5.2 Decentralized Approach and Algorithm . . . . . . . . 170

5.3 Numerical Results . . . . . . . . . . . . . . . . . . . . . 183

5.4 Discussions, Summaries, and Outlooks . . . . . . . . . 187

1 In the last two Chapters, we have completely characterized the optimal design for

both uplink and downlink of the cache-enabled F-RAN. In this chapter, we move

one step further. Remember that in all proposed algorithms in last chapters, the

BBU pool in the cloud requires the knowledge of the global CSI, so as to perform

the centralized optimization. When the network is reciprocal, the BBU pool can

use the same global CSI knowledge for both uplink and downlink. For nonrecipro-

cal channels, the uplink CSI knowledge is acquired via Channel Sounding. Each UE

must send the Sounding Reference Signal (SRS) [3GP18] via eRRHs to the BBU pool,

with which the BBU pool can estimate the global channel quality. For the down-

link, the BBU pool sends the CSI-RS signal for UEs to estimate the channel quality.

Then all UEs have to feedback the estimated results via PUCCH to the BBU pool.

Obviously, the estimation of the global CSI requires lots of overhead used for the

reference signals and the feedback. Besides the huge amount of the overhead, the

overall latency introduced by theses schemes is also a critical problem, especially for

some real-time applications. Moreover, the centralized optimization procedures at

the BBU pool might put a high computational burden on it. When more and more

UEs are to be scheduled in each slot, the complexity might become unacceptable.

Although such a burden can be relieved by introducing the fog computing, with

which eRRHs can execute storage and computation tasks (e.g., the compression task

1Parts of this chapter have been published in [Che18].
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in the uplink, or the recovery of the compressed signals in the downlink when the

soft transfer mode is adopted), a centralized optimization is still needed. The com-

plexity of such a centralized optimization grows exponentially with the number of

eRRHs, as well as the number of antennas equipped on each eRRH. Hence, when

more eRRHs are deployed in F-RAN to increase the coverage of the network, or

equipping eRRHs with more antennas to further improve the performance, the ac-

tual performance of the network might not be as expected, since the complexity can

exceed the capability of the BBU pool, and the increased overhead can overwhelm

the benefit they bring. Hence, such drawbacks limit the network capability for more

UE’s coverage and performance improvement.

The purpose of this chapter is to overcome some of the drawbacks listed above. We

will give some first trials by developing a partially decentralized algorithm with

only partial CSI knowledge. Several parts of the computation tasks are carried

by eRRHs via their fog computational capabilities, and based on only its local CSI

knowledge. Hence, as we are going to show, the amount of overhead, as well as

the computational burden at the BBU pool, can be greatly reduced. In particular,

the computational complexity does not depend on the number of eRRHs within the

network, as well as the number of antennas per eRRH. Instead, the complexity of

the mechanism going to be proposed in this chapter, depends only on the number

of UEs to be scheduled.

We emphasize here that the contents in this chapter cannot cover all topics, that

have been discussed for the centralized approach in previous chapters. Only some

first ideas will be presented and analyzed, so as to shed some lights on how to

overcome some difficulties of the centralized design. More intensive work on this

topic requires more research in future.

5.1 Introduction and System Model

5.1.1 Introduction

The key technology to achieve the partially decentralized algorithm is the concept

of Massive MIMO, as have been introduced in Section 1.4. With Massive MIMO,

a Base Station (BS) is equipped with a large number of antennas (e.g., 128 or 256).

Such a technique relies on the law of large numbers: The large number of anten-

nas can eliminate the effects of the small-scale fading and frequency dependence

[Mar10; Mar+16]. From the perspective of an UE, the channel is hardened (chan-

nel hardening effect) to be a deterministic scalar channel, with known channel gain

and additive noise. In another word, the exact CSI knowledge from the UE to each
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antenna of the BS is not necessary anymore, when the achievable rate for this UE

is considered. As a comparison, for all algorithms proposed in last chapters, such

knowledge is necessary when the optimization is implemented. Then a natural

question is: If such a property can be somehow adopted into the F-RAN, is it possi-

ble to reduce the requirements of delivering global CSI?

However, one significant issue of Massive MIMO is that its expected performance

degrades rather rapid when the number of antennas is decreased. Hence, a single

BS needs to be equipped with a large number of antennas in order to ensure the

effectiveness of Massive MIMO. Such a requirement is hardly to be met for a micro

BS. As much higher frequency bands are used by the 5G network, the 5G BS should

be much more densely distributed to decrease the distances. Therefore, a 5G BS

tends to be small enough for an easy and dense deployment, which might contradict

with the requirements to achieve the desired performance of Massive MIMO. On

the other hand, a F-RAN, consisting of a BBU pool and multiple eRRHs connected

via fronthauls, forms a networked MIMO system in the charge of the cloud server.

Now a natural question arises: Is it possible to achieve a networked Massive MIMO

system with the help of the BBU pool, and multiple eRRHs? If yes, each eRRH might

not need to be equipped with too many antennas, and some benefits of Massive

MIMO can still be preserved.

Obviously, if these two techniques can be combined, i.e., F-RAN and Massive

MIMO, they can potentially benefit from each other and overcome the drawbacks

and limitations of themselves. We name such a combination Networked Massive

MIMO based F-RAN, which is shown in Fig. 1.8. Similar to the F-RAN, it consists

of a BBU pool in the cloud and multiple eRRHs at the network edge. They commu-

nicate with each other via fronthauls. However, each eRRH here is equipped with

more antennas, such that the whole network can be regarded as a Massive MIMO

system. But compared with a single Massive MIMO Base Station, each eRRH in

this architecture does not need to be equipped with so many antennas. Then from

the perspective of the BBU pool, some properties of the Massive MIMO can still be

kept. In summary, such a combination has the following advantages, which we are

going to elaborate next in detail:

1. It can reduce the amount of the data streams delivered by fronthauls, which

scales with the number of the scheduled UEs, i.e., K, instead of the number

of antennas L, and the number of eRRHs N, improving the performance with

more antennas or eRRHs will not put much more burdens on the network;

2. The global instantaneous CSI knowledge is not required anymore at the BBU

pool. Therefore, the amount of overhead exchanged within the network can

be greatly reduced, especially when the number of antennas L, or the number

of eRRHs N is large;
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3. Compared with the centralized mechanisms introduced in last chapters, the

proposed decentralized signal processing mechanism at eRRHs with its fog

computing capability, can greatly reduce the complexity of the optimization,

as well as the triggered latency;

4. The hardware costs at eRRHs can also be reduced as less compressors are

needed.

5.1.2 System Model

We consider the uplink of the Massive MIMO based F-RAN, as depicted in Fig.

1.8. Totally K single-antenna UEs are scheduled to upload their contents to the BBU

pool in the cloud, via N eRRHs and fronthauls. Each eRRH in N = {1, 2, ..., N} has

limited signal processing capabilities, with which some distributed fog computing

tasks can be executed. Each eRRH is equipped with a moderate numbers of anten-

nas (e.g., 32), which is denoted by L. Such a value needs not to be so large compared

with a typical Massive MIMO . Similarly, eRRH n connects to the BBU pool in the

cloud with the fronthaul of capacity CFH,n.

Let ρul be the maximal allowable uplink transmission power among all UEs, and sk

denote a realization of the transmitted symbol from UE k ∈ K = {1, 2, ..., K} with

normalized power, ηk ∈ [0, 1] denote the power control factor for UE k, i.e., how

much power are used for UE k for the uplink transmission. Then the transmitted

signal xk from UE k, and the aggregated transmitted vector x ∈ CK×1 among all UEs

can be expressed as follows:

xk =
√

ρulηksk,

x =
√

ρulD1/2
η s, (5.1)

where Dη = Diag
(
[η1, η2, ..., ηK]

T), s = [s1, s2, ..., sK]
T.

Let the channel gain from UE k to l-th antenna of eRRH n be gl
n,k. According to

[Mar+16], it can be further expressed as

gl
n,k = hl

n,k

√
βn,k, (5.2)

which consists of a large scale fading coefficient βn,k and a small scale fading coef-

ficient hl
n,k. Coefficient βn,k is determined by the distance between eRRH n and UE

k (path loss), shadowing, etc. It varies relatively slow compared with the other co-

efficient, and it can be regarded the same between all antennas of eRRH n and UE k

[Mar+16], as the distance between antennas of an eRRH is negligible compared with
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the distance between an UE and an eRRH. In contrast, the small scale fading coef-

ficient hl
n,k varies much faster and is independent among all antennas of an eRRH.

Moreover, hl
n,k ∀n, k, l are usually supposed to be Rayleigh distributed, i.e., i.i.d.

CN (0, 1) random variables, so we also adopt such assumptions here. The chan-

nel gains gl
n,k ∀n, k, l are estimated at each antenna of each eRRH via the Sounding

Reference Signal (SRS). Perfect CSI estimations are assumed here, as in this chap-

ter, we only focus on the introduction of a low complexity partially decentralized

algorithm. The inaccurate scenario is left for future work.

5.1.3 Problem Statement

For the interpretation of the partially decentralized mechanism, we select the trans-

mission power minimization problem as the example: The network aims to mini-

mize the weighted sum energy consumption of all UEs, with guaranteed achievable

rate for each UE, i.e.,

P : min
K

∑
k=1

ukηk (5.3)

s.t. Rk (η) ≥ Rk, ∀k ∈ K (5.4)

rFH,n (η) ≤ CFH,n, ∀n ∈ N (5.5)

where parameter uk is the predetermined weight factor of UE k, which, for example,

can be determined by the remaining battery level of this UE. When an UE has

lower battery level, its weight factor shall be set larger, so as to obtain more

biased resource allocation from the network to reduce its transmit power. The

power allocation vector among all UEs is denoted by η = [η1, η2, ..., ηN ]
T. Rk(η)

in (5.4) indicates the achievable rate of UE k, which is a function of the power

allocation scheme, as well as the channel coefficients. Rk denotes the target rate.

Furthermore, rFH,n in (5.5) denotes the fronthaul capacity required for the delivery

of the superposed signals from eRRH n to the BBU pool. The analytical expressions

of Rk and rFH,n depend on the decentralized mechanism we are going to propose,

and will be given in next subsections.

Remark: Such a power minimization problem is particular suitable for the Offload-

ing (Mobile Edge Computing) scenario [Mao+17], in which the tasks (e.g., VR tasks)

of an UE are not executed locally. However, these tasks are offloaded via the uplink

transmission to some BSs or the cloud with huge computational capabilities. Such a

procedure is beneficial to UEs, as long as the energy consumed by the uplink trans-

mission, is smaller than the energy consumed by executing the computation locally.

Moreover, the rate for offloading tasks must be guaranteed, in order to ensure the

overall latency at least not larger than the local execution latency.
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5.2 Decentralized Approach and Algorithm

In this section, we are going to elaborate on how to solve the problem raised above

in a partially decentralized manner. The conventional centralized approach will be

compared with the proposed partially decentralized one.

5.2.1 The Conventional Approach

It seems that the problem P (5.3)-(5.5), or some related problems, shall be solved

in a centralized manner, as introduced in Chapter 3, and in many existing works

[Par+13a; Par+13b; Par+14; SYC14; SZL14; ZY14; LBZ15; DY16b]. This is mainly

due to the fact that, for any scheduled UE, in either uplink or downlink, its achiev-

able rate depends not only on itself, but also on all other UEs, as the uplink data

streams can interfere with each other. Obviously, this is also true in our problem

P . Hence, a centralized optimization procedure is required, as long as an optimal

solution is the target. Before we deep into the introduction of the new mechanism,

we firstly review the signal processing procedure for the uplink of C-RAN, in which

the conventional centralized approach is adopted, as shown in Fig. 5.1, where the

tasks executed at each component of the network are listed.

In such a widely adopted conventional centralized approach, the instantaneous CSI

knowledge from all UEs to each antenna are estimated at RRHs. The superposed

analog signals at each antenna are then compressed. Hence, a compressor must

be configured for each antenna. The compressed signals are then forwarded via

fronthauls to the cloud. At the BBU pool, a joint decompression, detection and de-

coding (JDD) procedure is executed. Moreover, the whole network optimization

is also performed there, with the global CSI knowledge collected from each RRH

based on SRS. It has been claimed in [Par+13b; Par+14; ZY14], that such a central-

ized signal processing and optimization strategy is optimal, from the perspective of

the information theory.

As stated before, there are several drawbacks of such a centralized mechanism:

1. Considering the delivery of the global CSI knowledge via pilots to the BBU

pool, it is apparent that such a procedure introduces huge amount of over-

head, as well as occupies a certain amount of the fronthaul resources, espe-

cially when there is a large number of antennas.

2. Some distortions to the CSI are inevitably introduced during such a delivery

process. Hence, the BBU pool cannot obtain perfect CSI knowledge.
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3. The complexity for implementing the optimization procedure scales super-

exponentially with the total number of antennas.

The last item listed above prevents us from realizing a simple combination of Mas-

sive MIMO with C-RAN, i.e., replacing each eRRH with a Massive MIMO system

and then applying the same centralized optimization algorithms introduced in last

chapters. Even with moderate number of antennas [Par+13b], the complexity of

such a JDD mechanism depicted in Fig. 5.1 has already been extremely high. Hence,

such a theoretically optimal centralized strategy is not scalable to more antennas

and more eRRHs for better performance. For example, in some existing work like

[SYC14], the compression process is optimized per antenna, then for a large num-

ber of antennas, the complexity becomes unacceptable. Even if the fog computing

capability is adopted, e.g., as in [Pen+16; PSS16; Tao+16], the global CSI knowl-

edge is still requested by the BBU pool, the huge amount of overhead and the high

complexity of the optimization still makes it difficult to be implemented in practice.

Therefore, some new signal processing mechanisms and optimization algorithms

are needed, for the practical realization of the Massive MIMO based F-RAN.
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5.2.2 The Proposed Approach

In this subsection, we will propose a new signal processing mechanism by adopt-

ing the fog computing capabilities of each eRRH. The overall signal processing flow

chart is shown in Fig. 5.2. With this new mechanism, the amount of overhead, the

complexity of the optimization, as well as the hardware costs, can be greatly re-

duced, especially when there are a large number of antennas. Of course everything

has its price, the numerical results, which will be presented later, show that the pro-

posed mechanism introduces some minor performance degradation. However, the

much less computational complexity compared with the conventional centralized

approach, can make such a minor degradation quite worthy.

From now on we describe the signal processing process for each function block in

Fig. 5.2 in detail. Each subsection below corresponds to a single function block.

Let’s start with the very beginning on the left.

5.2.2.1 Superposed Signals Received at eRRH

After the scheduled UEs have sent their signals, at each eRRH, the received signal is

a superposition of them, which are distorted independently by the channel vectors

between UEs and eRRHs as well as the noise. Together with (5.1) and (5.2), the

received signal vector yn ∈ CL×1 at eRRH n can be expressed the same way as in

the conventional approach, i.e.,

yn = Gnx + zn =
√

ρulHnD1/2
βn

D1/2
η s + zn, (5.6)

where the additive white Gaussian noise vector at eRRH n is denoted by zn =

[z1
n, z2

n, ..., zL
n ]

T ∈ CN (0, σ2IL×L). The small scale fading matrix consisting of all

small scale fading coefficients between UEs and eRRHs is constructed as Hn =

[hn,1, hn,2, ..., hn,K] ∈ CL×K with hn,k = [h1
n,k, h2

n,k, ..., hL
n,k]

T. Similarly, the large scale

fading matrix can be expressed as Dβn
= Diag

(
[βn,1, βn,2, ..., βn,K]

T).
5.2.2.2 UE-based MRC Detection Process at eRRH

In contrast to the centralized mechanism, where a joint detection procedure is exe-

cuted in the cloud, this new approach adopts the fog computing capabilities of the

eRRHs, and pulls the detection procedure from the BBU pool back to the eRRHs.

Here the Maximal Ratio Combining (MRC) detection is adopted at each eRRH for

different UEs. The MRC detection has the following advantages:
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1. The complexity of MRC detection is quite low. Moreover, it allows for dis-

tributed detection executed locally and independently at each eRRH. Hence,

the local CSI knowledge obtained from SRS is sufficient, without the necessity

of exchanging the CSI among all eRRHs and delivering them to the BBU pool.

Thus, the amount of overhead can be greatly reduced.

2. For the asymptotically favorable propagation scenario with a large number of

antennas, the MRC detection is close to be optimal. For details please refer to

[Mar10; Mar+16],

By regarding D1/2
βn

D1/2
η s in (5.6) as the equivalent transmit matrix from all UEs to

eRRH n, the MRC detection matrix DMRC,n ∈ CL×K for eRRH n actually becomes

DMRC,n = Hn (5.7)

Obviously, the MRC detection matrix can be constructed locally at eRRH n by using

the local CSI knowledge. Moreover, as we are going to show later, it is not necessary

to deliver {Hn}N
n=1 to the BBU pool. Hence, as stated before, compared with the

conventional approach, a huge amount of overhead can be eliminated.

After the MRC detection is executed by eRRH n, the estimated symbol dn,k for UE k

is expressed in (5.8).

dn,k =
[
DH

MRC,nyn

]
k
=
√

ρulβn,kηk||hn,k||2sk︸ ︷︷ ︸
desired

+ hH
n,k

 K

∑
k′=1
k′ 6=k

√
ρulβn,k′ηk′hn,k′sk′ + zn


︸ ︷︷ ︸

residual interference and noise

.

(5.8)

Obviously, in addition to the additive noise, some residual interference from the

symbols of other UEs are still incorporated at each estimated symbol. According

to [Mar10], when the number of antennas becomes larger and larger, such residual

interference would become more and more negligible compared with the desired

symbol. It should be noted that after the MRC detection procedure for each UE,

there are K parallel data streams constructed at each eRRH, instead of L in the con-

ventional centralized approach, i.e., independent of the number of antennas.

5.2.2.3 UE-based Compression Process at eRRH

Similar to the conventional approach, due to the limited fronthaul capacity, the esti-

mated symbols from the previous process should be compressed before being fron-

thauled to the BBU pool. Specifically, in the proposed approach, eRRH n compresses
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the estimated {dn,k}K
k=1 to {d̃n,k}K

k=1. The compression procedure is performed per

UE, instead of per antenna in the conventional approach. We also adopt the quan-

tization to realize the compression. Hence, for each eRRH, only K quantizers are

required to perform the compression, instead of scaling with the value of L. At the

side of the BBU pool, only the quantized signal, i.e., {d̃n,k}K
k=1 can be reconstructed.

For ease of analysis, we adopt the widely used (e.g. in [GK11; Par+14; ZY14; PSS16])

method to model the quantization process, i.e., it is modeled by adding artificial

quantization noise to the original signal, as shown in (5.9): The quantized symbol

is obtained by superposing the Gaussian distributed quantization noise qn,k with

variance Qn,k, which is independent of dn,k, to the estimated symbol dn,k. Note that

we do not use the well-known Wyner-Ziv coding to model the quantization, thus

the AIB method proposed in Subsection 3.2.1 will also not be adopted for the opti-

mization, as such specific quantization schemes will complicate the analysis below.

We only want to introduce a decentralized approach and show its benefit from the

perspective of information theory. The quantization model adopted here is a gen-

eral tool to analyse the information-theoretic performance. Any specific quantiza-

tion scheme obtained via the AIB method, can be regarded as a special case of this

model. According to the rate distortion theory [GK11], the compression rate rn,k for

symbol dn,k can be expressed in (5.10).

d̃n,k = dn,k + qn,k, with qn,k ∼ CN (0, Qn,k) (5.9)

rn,k = log2

(
1 +

Var(dn,k)

Qn,k

)
(5.10)

If the fronthaul can support rate rn,k, then the BBU pool can definitely reconstruct

d̃n,k via the UE-based decompression in next steps. A stronger compression for UE

k at eRRH n will lead to a larger value of the variance qn,k and a higher distortion

level, but a lower compression rate rn,k can be achieved.

Before directly computing the analytical expression of Var(dn,k), we reformulate

(5.8) as follows

dn,k =
√

ρulβn,kηkE
{
||hn,k||2

}
sk

+
√

ρulβn,kηk
(
||hn,k||2 −E

{
||hn,k||2

})
sk

+ hH
n,k

 K

∑
k′=1
k′ 6=k

√
ρulβn,k′ηk′hn,k′sk′ + zn

 . (5.11)
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A similar method introduced in [Mar+16] is adopted here to compute Var(dn,k)

based on (5.11): The variance of each term of Var(dn,k) will be computed separately,

then they will be added together.

The first term in (5.11) denotes the desired symbol. Note that E{sk} = 0 and

Var(sk) = 1, ∀k, its variance can be expressed as

Var
(√

ρulβn,kηkE
{
||hn,k||2

}
sk

)
= ρulβn,kηk

(
E
{
||hn,k||2

})2
= L2ρulβn,kηk, (5.12)

by noting that the second-order moment E
{
||hn,k||2

}
= L.

The second term has variance

Var
(√

ρulβn,kηk
(
||hn,k||2 −E

{
||hn,k||2

})
sk

)
= ρulβn,kηk

(
E
{
||hn,k||4

}
−
(
E
{
||hn,k||2

})2
)

= Lρulβn,kηk, (5.13)

by noting that the fourth-order moment E
{
||hn,k||4

}
= L(L + 1).

The third term denotes the interference from the non-orthogonality of the channel

and the additive noise, it has variance

Var

hH
n,k

 K

∑
k′=1
k′ 6=k

√
ρulβn,k′ηk′hn,k′sk′ + zn




= ρul

K

∑
k′=1
k′ 6=k

βn,k′ηk′E
{
||hn,k||2

}
+E

{
||zn||2

}
E
{
||hn,k||2

}

= Lρul

K

∑
k′=1
k′ 6=k

βn,k′ηk′ + σ2L. (5.14)

Therefore, the analytical expression of Var(dn,k) can be expressed as

Var(dn,k) = L2ρulβn,kηk + Lρulβn,kηk + Lρul

K

∑
k′=1
k′ 6=k

βn,k′ηk′ + σ2L

= L2ρulβn,kηk + Lρul

K

∑
k′=1
k′ 6=k

βn,k′ηk′ + σ2L. (5.15)

Similar to the conventional centralized approach, the compression process in this

scheme is also determined by the value of Qn,k ∀n, k. Thus it is also subject to be op-

timized. Note that with this new approach, the number of variables and constraints

are linearly dependent on K, instead of L. In scenarios when K � L, it has much

lower complexity than the conventional antenna-based approach.
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5.2.2.4 Fronthauling from eRRHs to the BBU pool

As stated before, there are K data streams compressed at each eRRH. For eRRH n,

the compression rate rFH,n of the compressed signals can be expressed as:

rFH,n =
K

∑
k=1

rn,k =
K

∑
k=1

log2

1 +

L2ρulβn,kηk + Lρul ∑K
k′=1
k′ 6=k

βn,k′ηk′ + σ2L

Qn,k

 . (5.16)

5.2.2.5 UE-based Reconstruction at the BBU pool

According to the rate distortion theory [GK11], which is also introduced in Section

2.1, the quantized signal from eRRH n, i.e., {d̃n,k}K
k=1, can be reconstructed at the

BBU pool, as long as rFH,n ≤ CFH,n is fulfilled.

5.2.2.6 Decoding Process at the BBU pool

We see that the signal from the same UE is independently received and compressed

at all eRRHs. Therefore, after the decompression and reconstruction procedure ex-

ecuted at the BBU pool, the signals from the same UE can be combined. Specif-

ically, by adding the reconstructed signals of UE k from all eRRHs together, i.e.,

{d̃n,k}N
n=1 ∀n, we obtain

d̃k =
N

∑
n=1

d̃n,k =
N

∑
n=1

√
ρulβn,kηk||hn,k||2sk︸ ︷︷ ︸

desired

+
N

∑
n=1

hH
n,k

 K

∑
k′=1
k′ 6=k

√
ρulβn,k′ηk′hn,k′sk′ + zn

+
N

∑
n=1

qn,k

︸ ︷︷ ︸
residual interference and noise

. (5.17)

From (5.17), we see that the signal d̃k incorporates both the desired part gathered

from all eRRHs, as well as the residual interference, the additive noise, and the

quantization noise introduced by the compression procedure. By treating all in-

terference as noise, the BBU pool can decode sk from d̃k. Again, by adopting the

technique when (5.15) is computed, the achievable SINR for UE k, as well as the
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corresponding achievable rate can be computed as follows:

SINRk =

(
∑N

n=1 L
√

ρulβn,kηk

)2

∑N
n=1

(
Lρul ∑K

k′=1
k′ 6=k

βn,k′ηk′ + σ2L + Qn,k

)

=

(
∑N

n=1 L
√

ρulβn,k

)2
ηk

∑N
n=1

(
Lρul ∑K

k′=1
k′ 6=k

βn,k′ηk′ + σ2L + Qn,k

) , (5.18)

Rk = log2 (1 + SINRk) . (5.19)

5.2.3 Final Problem Formulation and Solution

With the analytical expressions derived above, original problem P (5.3)-(5.5) can be

reformulated as follows

P : min
{ηk}K

k=1,{Qn,k}N,K
n=1,k=1

K

∑
k=1

ukηk, (5.20)

s.t. log2 (1 + SINRk) ≥ Rk, ∀k ∈ K, (5.21)

rFH,n ≤ CFH,n, ∀n ∈ N (5.22)

0 ≤ ηk ≤ 1, Qn,k ≥ 0, ∀k ∈ K, ∀n ∈ N . (5.23)

The objective (5.20) is linear with respect to {ηk}K
k=1, and thus convex. And con-

straints (5.23) are also convex.

For (5.21), it can be equivalently expressed as (5.24). Obviously, it is also linear with

respect to {ηk}K
k=1 and {Qn,k}N,K

n=1,k=1 and thus convex.

(2Rk − 1)

Lρul

K

∑
k′=1
k′ 6=k

βn,k′ηk′ + σ2L + Qn,k

−( N

∑
n=1

L
√

ρulβn,k

)2

ηk ≤ 0, ∀k ∈ K.

(5.24)

However, the LHS of (5.22) is still not convex. Fortunately, we can adopt the same it-

erative approximation method for convexification, which has already been derived

and used in the previous chapter: By introducing auxiliary variables {`n,k}, the LHS

of (5.22) can be expressed as (5.25), and it is upper-bounded by (5.26). For known

values of {`n,k}, (5.26) is a linear with respect to {ηk} and {Qn,k}, and thus convex.

Hence, the LHS of (5.22) can be approximated iteratively by (5.26). At the start of

each iteration, the value of {`n,k} will be updated according to (5.27), based on the

results from the previous iteration. For more details please refer to the derivations

(4.51)-(4.60) in Subsection 4.2.1.2.
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K

∑
k=1

log2

Qn,k + L2ρulβn,kηk + Lρul

K

∑
k′=1
k′ 6=k

βn,k′ηk′ + σ2L

− K

∑
k=1

log2 (Qn,k) (5.25)

≤
K

∑
k=1

log2 `n,k +

Qn,k + L2ρulβn,kηk + Lρul ∑K
k′=1
k′ 6=k

βn,k′ηk′ + σ2L

`n,k ln 2


− K

ln 2
−

K

∑
k=1

log2 (Qn,k) , (5.26)

the equality holds when `n,k = Qn,k + L2ρulβn,kηk + Lρul

K

∑
k′=1
k′ 6=k

βn,k′ηk′ + σ2L.

(5.27)

Therefore, with the techniques introduced above, problem (5.20)-(5.23) can be fur-

ther approximated as the following convex problem. For the (t + 1)-th iteration, the

problem can be written as

P (t+1) : min
{η(t+1)

k }K
k=1,{Q(t+1)

n,k }N,K
n=1,k=1

K

∑
k=1

ukη
(t+1)
k , (5.28)

s.t. (2Rk − 1)

Lρul

K

∑
k′=1
k′ 6=k

βn,k′η
(t+1)
k′ + σ2L + Q(t+1)

n,k


−
(

N

∑
n=1

L
√

ρulβn,k

)2

η
(t+1)
k ≤ 0, ∀k ∈ K, (5.29)

K

∑
k=1

log2 `
(t+1)
n,k +

Q(t+1)
n,k + L2ρulβn,kη

(t+1)
k + Lρul ∑K

k′=1
k′ 6=k

βn,k′η
(t+1)
k′ + σ2L

`
(t+1)
n,k ln 2


− K

ln 2
−

K

∑
k=1

log2

(
Q(t+1)

n,k

)
− CFH,n ≤ 0, ∀n ∈ N , (5.30)

0 ≤ η
(t+1)
k ≤ 1, Q(t+1)

n,k ≥ 0, ∀k ∈ K, ∀n ∈ N . (5.31)

The auxiliary parameter `(t+1)
n,k is calculate from the results from the previous itera-

tion, i.e.,

`
(t+1)
n,k = Q(t)

n,k + L2ρulβn,kη
(t)
k + Lρul

K

∑
k′=1
k′ 6=k

βn,k′η
(t)
k′ + σ2L, ∀k ∈ K, ∀n ∈ N . (5.32)

In order to obtain the initial value of `n,k, constraint (5.22) is temporarily dropped
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to form the initial problem:

P (0) : min
{η(0)

k }K
k=1,{Q(0)

n,k}
N,K
n=1,k=1

K

∑
k=1

ukη
(0)
k , (5.33)

s.t. (2Rk − 1)

Lρul

K

∑
k′=1
k′ 6=k

βn,k′η
(0)
k′ + σ2L + Q(0)

n,k


−
(

N

∑
n=1

L
√

ρulβn,k

)2

η
(0)
k ≤ 0, ∀k ∈ K, (5.34)

0 ≤ η
(0)
k ≤ 1, Q(0)

n,k ≥ 0, ∀k ∈ K, ∀n ∈ N . (5.35)

Obviously, with the proposed signal processing mechanism, the original problem

is reformulated and approximated as a convex optimization problem, whose most

constraints are linear. By solving this problem, the power control and the com-

pression procedure are optimized jointly. We summarize the solving steps of the

problem in Alg. 8:

Algorithm 8: The iterative optimization steps for the uplink of Massive
MIMO based F-RAN
1 Initialization: Construct and solve the Linear Programming (LP) initial

problem P (0) according to (5.33)-(5.35), base on the solutions the initial
values of {`(1)n,k}N,K

n=1,k=1 can be obtained according to (5.32). Construct the
problem P (1) according to (5.28)-(5.31), and set t← 1.

2 repeat
3 Solve the problem P (t).

4 Compute the values of {`(t+1)
n,k }N,K

n=1,k=1 based on (5.32).
5 Formulate the problem P (t+1) according to (5.28)-(5.31), and set

t← t + 1.
6 until Convergence or reaching max iteration number;

5.2.4 Comparison with the Conventional Centralized Approach

In order to demonstrate the benefits of the proposed approach, in this subsection,

we give a brief comparison between the proposed approach (P), and the conven-

tional centralized approach (C):

Alg. Overhead Compression Complexity

P KQ/Tβ K parallel O(K4)

C LQ/Th L parallel O(L4)
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1. Overhead: As analyzed in the previous subsection, with the proposed ap-

proach, the global CSI knowledge is not required at the BBU pool anymore,

only the large scale fading coefficients β = {βn,k}N,K
n,k=1 need to be delivered.

The small scale fading coefficients h = {hl
n,k}N,K,L

n,k,l=1 are collected and used lo-

cally at the distributed eRRHs, for executing the MRC detection. Let Q be the

number of bits required to describe the CSI, and Tβ be the duration that the

large scale fading coefficients stay unchanged, then we can approximate the

bits of overhead delivered from each eRRH to the BBU pool as KQ/Tβ per

second. However, in the conventional centralize approach, the BBU pool have

to execute all signal processing functionalities, thus the instantaneous CSI be-

tween each UE and each antenna, must be available at the BBU pool in the

cloud. Hence, the corresponding overhead can be approximated as LQ/Th

per second. In general, the small scale fading coefficients vary much faster

than the large scale fading coefficients, i.e., we usually have Tβ � Th.

2. Compression: As stated before, due to the UE-based detection in our proposed

approach, there are K parallel data streams needed to be compressed. Hence,

only K quantizers are required at each eRRH, instead of L in the antenna-based

compression with the conventional approach.

3. Complexity: The complexity for solving the problem P is O(K4), instead of

O(L4) with the centralized antenna-based approach.

From such a brief comparison we see that, by utilizing the fog computing capabil-

ities at eRRHs, with which many signal processing functionalities can be executed

at distributed eRRHs in a decentralized way, the amount of overhead, the number

of quantizers as well as the complexity of the overall algorithm will scale with the

number of the scheduled UEs, i.e., K, instead of scaling with the number of antennas

among eRRHs, i.e., L, in the conventional centralized approach. Hence, increasing

the number of antennas L will not increase the complexity, the amount of the over-

head, as well as the latency and the hardware cost related to the compression. Such

a property makes a scalable architecture of the Massive MIMO based F-RAN pos-

sible, i.e., the network providers can simply equip the eRRH with more antennas

for better performance, but without the need to worry about higher complexity and

cost.

We must emphasize that in the proposed approach, all analytical expressions and

derivations above are valid for arbitrary values of L. Similar to Massive MIMO, the

performance approaches the theoretical limits only when L is sufficient large, by

virtue of more effective channel hardening effect[Mar+16].
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Table 5.1: The simulation parameters for Massive MIMO based F-RAN.

Scenario Dense urban
Cell radius rcell 0.5 km

Number of eRRHs N 7
Number of antennas per eRRH L 32, 64, 128, 256

Fronthaul capacity CFH 1.5 Gbps
Total number of UE: Ktotal 64

Number of scheduled UEs per UL slot K 32
Maximal transmission power per UE 20 dBm

Carrier frequency fc 1.9 GHz
Network bandwidth B 20 MHz

Uplink rate target per UERpu 20, 40, 50 Mbps
eRRH antenna height 30 m

UE antenna height 1.5 m
Wireless path loss model COST Hata[AA16]

Shadow fading standard deviation 8 dB
Noise temperature 300 K

eRRH receiver noise figure 9 dB
UE antenna gain 6 dBi

eRRH antenna gain 0 dBi

5.3 Numerical Results

In this section, the proposed partially decentralized mechanism will be tested via

simulations. A single-cell dense urban scenario [Mar+16] is considered, and all sim-

ulation parameters are listed in Table 5.3. In the simulation scenario, seven eRRHs

are positioned in the cell, each of them are equipped with L antennas to realize a

networked Massive MIMO F-RAN system. An eRRH is mounted at the center of

the cell, and the other six eRRHs are uniformly positioned on the circle with radius

rcell/
√

2. There are 64 UEs randomly distributed within the cell. In each time slot,

half of them, i.e., 32 UEs are scheduled to upload their tasks to the cloud server

for remote computing. The scheduled UEs would like to experience guaranteed

QoS, but with as less energy consumption as possible. For simplicity, we set the

weight factors in (5.3) as uk = 1 ∀k. At each eRRH and the BBU pool, the proposed

partially decentralized approach is implemented for signal processing and network

implementation. The results will be compared with the conventional approach. In

our simulation, 200 independent random realizations are set up, each of them is

with random and independent UE positions and shadow fading profiles.

At first we would like to know, how much performance degradation is introduced

by the proposed partially decentralized approach, with only partial CSI knowledge,

compared with the centralized joint optimization with full knowledge of global CSI

[Par+13b; Par+14], which is theoretically optimal. Hence, we set up the same UE
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Figure 5.3: The comparison of the CDFs for the power consumption between the
centralized approach and the proposed decentralized approach (L = 128).

target rate, as well as the same available power for 200 independent realizations.

For each realization, the results of both schemes are documented after the corre-

sponding algorithms are executed. Then the Cumulative Distribution Functions

(CDF) 2 of the optimized power consumption for UEs between the two schemes are

compared. The results are shown in Fig 5.3.

From the results we observe only minor degradation i.e., more power is consumed

by the scheduled UEs in average. Such a degradation mainly comes from two as-

pects: 1. The MRC detection is performed at the eRRHs in a distributed manner,

with only local CSI knowledge. Compared with the optimal joint detection and de-

coding [Par+14] process executed at the BBU pool, the performance loss is thus in-

evitable; 2. The UE-based compression process is less efficient, compared with the

antenna-based compression together with the joint decompression process. Note

that after executing the MRC detection at each eRRH, some residual interference

(see (5.8)) is still contained at each estimated symbol. However, such interference

is also compressed and thus consumes some the fronthaul resources. When higher

2CDF of a real-valued random variable X, or just distribution function of X, evaluated at x, is the
probability that X will take a value less than or equal to x [DFO20].
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Figure 5.4: The performance comparison between different number of antennas for
Rpu = 20 Mbps.

Rpu is configured, the performance becomes more and more limited by the fron-

thaul resources, the advantage of the conventional approach is then more promi-

nent, due to its more efficient utilization of the fronthaul resources.

Next, the influence of the number of antennas equipped at each eRRH is investi-

gated. Fig. 5.4 - Fig. 5.6 illustrate the comparison of the results between different

number of antennas for different per user target rates. For lower target rate Rpu,

the power consumption can be reduced to more or less the same extent, when the

number of antennas is doubled, as shown in Fig. 5.4. For higher Rpu, more an-

tennas are needed so as to guarantee the target QoS. For instance, when Rpu = 40

Mbps and L = 32 antennas are at each eRRH, even the maximal allowable power

of UEs cannot support their required QoS anymore. Therefore, no corresponding

curve for L = 32 in Fig. 5.5. Moreover, the saturation effect can be observed for

higher Rpu when doubling the number of antennas, i.e., doubling the number of

antennas cannot achieve the same extent of the performance improvement, which

is the case when the target rate is lower. This is mainly due to the limitations result-

ing from the fronthaul capacity, when a higher target rate is required. It is worth to

emphasize here again that with the proposed mechanism, the amount of overhead,

the computational complexity, the hardware cost relating to the compression, etc.,

still remain unchanged when the number of antennas is doubled, as they scale only

with the number of the scheduled UEs K. However, in the conventional centralized

approach, it is rather difficult and expensive to double the number of antennas for

achieving better performance, as they scale with the number of antennas L, as stated

in Subsection 5.2.4.
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Figure 5.5: The performance comparison between different number of antennas for
Rpu = 40 Mbps.
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Figure 5.6: The performance comparison between different number of antennas for
Rpu = 50 Mbps.
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5.4 Discussions, Summaries, and Outlooks

In this chapter, we give a trial on developing a scheme with which the heavy com-

putational burden on the BBU pool can be relieved. As seen from Chapter 3 and

Chapter 4, all proposed algorithms, as well as most existing schemes, require a cen-

tralized optimization step. Apart from the computational burden imposed on the

BBU pool, the global CSI knowledge is also required to be available. Thus the large

amount of the overhead, as well as the introduced latency, might impair the actual

performance of the network in practice. The key proposed in this chapter to over-

come such difficulties, is the combination of the concept of Massive MIMO, and the

fog computing. As Massive MIMO can realize the channel hardening effect with

the law of large numbers, with which the channel between UE and eRRHs can be

regarded as a scalar deterministic channel. Hence, when Massive MIMO is com-

bined with F-RAN, the instantaneous global CSI is not required by the BBU pool

anymore, it needs only the information related to such hardened scalar channels.

As a result, the amount of the overhead that convey the CSI can be greatly reduced.

Moreover, as the F-RAN is actually a networked MIMO structure, such a combina-

tion can also relieve the demands on the number of antennas for a single Massive

MIMO, especially when more eRRHs exist in F-RAN.

The proposed scheme consists of a decentralized signal processing mechanism ex-

ecuted at eRRHs, and a centralized optimization algorithm. Hence, we name it as

a partially decentralized approach. The signal detection and estimation, instanta-

neous CSI acquisition, as well as the processing of the estimated signal are all ex-

ecuted locally at each eRRHs in a decentralized manner, with the help of their fog

computing capabilities. By exploiting the benefit of the channel hardening effect,

the BBU pool can implement a centralized optimization but with much lower com-

putational complexity. Therefore, the combination of these two hot 5G techniques,

has the potential to overcome their own limitations, and boost the performance to

each other.

Although such a combination seems to be rather promising, further issues need to

be analysed but cannot be addressed here. As already stated at the beginning of this

chapter, the purpose of this chapter is just to pave a new way for future work. Our

proposed scheme considers only the uplink of the Massive MIMO based F-RAN,

targeting at the minimization of the (weighted) sum power consumption, with per-

fect CSI estimation at each eRRH. Hence, some interesting research directions for

future are straightforward:

1. The development of a similar partially decentralized scheme for high Spec-

tral Efficiency (SE) oriented design in the uplink, aiming to maximize the

(weighted) sum rate with the power budget of each UE;
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2. For high SE oriented design, wMMF between uplink UEs is also worth to be

investigated, but is achieved in a decentralized manner;

3. The development of similar partially decentralized schemes, for both high SE

and EE oriented design for the downlink of the Massive MIMO based F-RAN.

but with performance comparable to the centralized approach proposed in

Chapter 4;

4. How inaccurate CSI influences the algorithm? Is robust design possible?

5. With the proposed algorithm, a centralized optimization still needs to be ex-

ecuted by the BBU pool, but with less computational complexity and less re-

quirements on the acquisition of the CSI knowledge. Is it possible to achieve a

fully distributed mechanism? If possible, how about the performance degra-

dation?
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Chapter 6

Conclusions

This dissertation is a summary of our research results, in terms of how to efficiently

utilize the fog computing capability in the Fog Radio Access Network (F-RAN),

which is an evolution of the Cloud Radio Access Network (C-RAN). For C-RAN,

nearly all computation and signal processing procedures are executed at the BBU

pool in the cloud, the Remote Radio Head (RRH) just acts as Access Point (AP) of

the network without almost any computation capability. While with the fog com-

puting, the RRH evolves into the so-called enhanced RRH (eRRH), such that it can

also perform some light computation tasks, as well as has the storage capability.

The resultant network structure, as well as the signal processing techniques and its

optimization, are the main topics studied in this work.

In Chapter 1, we have illustrated the basic idea of the network, covering the tasks

of each components. Then in Chapter 2, we introduced all mathematical tools, and

information theories that are required in the coming chapters that investigate F-

RAN.

The trunk of the story started from Chapter 3. In this chapter, the uplink is investi-

gated. In the uplink of both C-RAN and F-RAN, one core problem is the signal pro-

cessing procedure at RRH/eRRH, i.e., how to efficiently compress the superposed

signals from all scheduled UEs, such that the delivery of the compressed signal to

the BBU pool, can be supported by the fronthaul and the performance, e.g., the

achievable rate, is maximized. Our main contribution is the introduction of a prac-

tical quantization scheme, that can work for arbitrary codebooks, instead of only

the Gaussian codebook from the perspective of information theory. The proposed

quantization scheme is derived, via the execution of the proposed Alternating Infor-

mation Bottleneck (AIB) method, and the alternating Bi-Section method by the BBU
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pool. Furthermore, with the Outer Linearization method, the optimal fronthaul re-

source allocation can be obtained, when it has to be shared among RRHs/eRRHs of

the network.

We put more emphasis on investigating the downlink, as in general, there are much

more downlink slots than the uplink slots. The downlink performance contributes

to the overall performance of the network in greater measure. As the 5G network

consists of densely deployed micro Base Stations (BS), the energy consumption

of a BS becomes more significant from the perspective of the network provider.

Hence, we have proposed several algorithms, with which the clustering pattern of

RRHs/eRRHs, the load balancing between fronthauls, and the transmission power

of each RRH/eRRH can be jointly optimized, in order to minimize the transmission

power under the condition that the QoS of each UE can be satisfied. The algo-

rithms can cover different network configurations such as whether the hard or the

soft transfer mode is adopted on fronthauls, or whether the fronthaul resources are

dedicated to each eRRH or not. When the fronthaul resources are not dedicated,

the algorithm can also provide the optimal resource allocation scheme. Based on

the proposed algorithms, we also demonstrated that equipping RRHs with low-

cost cache modules is a rather cheap and easy way to realize a specific type of fog

computing, which can greatly improve the network performance. With caching,

the cached contents can be transmitted by all eRRHs simultaneously, thus much

more concentrated beams can be formed to serve UEs, which can potentially lower

the power consumption and reduce the interference to others. Moreover, caching

can greatly reduce the burden on fronthauls as less contents are to be conveyed by

them. Hence, the available fronthaul resources can be saved for delivering other

uncached contents to more eRRHs, which can further reduce the network power

consumption, or increase the achievable rates.

Another significant contribution for the downlink transmission is the introduction

of an algorithm, with which several eRRHs have the possibility to be switched off to

save more power, and the remaining ones can still fulfill the network requirements.

The eRRH deactivation has been shown to be completed within several iterations

of the proposed algorithm.

When concerning the high SE oriented design, two different metrics have been stud-

ied: Multi-cast throughput maximization and weighted Max-Min Fairness. The for-

mer one is able to completely exploit the network resources but might be unfair to

UEs staying at cell edges or with bad channel qualities. While the latter one can

achieve the fairness, but with the price of lower throughput. Our proposed algo-

rithms cover both scenarios. Once more, the cache module has shown its potential

to increase the SE of the network in a low-cost way.
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The robust design is also a contribution of this work. When only inaccurate CSI is

available, with the proposed algorithm, the network achieve a robust performance:

As long as the CSI inaccuracy can be bounded to some extent, even in the worst case,

the network QoS can still be guaranteed. However, we have shown that the price

for such robustness is higher power consumption. But the good news is that, as we

have also shown, introducing the cache module can help to improve the robustness

and ease the power requirements.

At last, we have a trial on developing a scheme, such that the heavy computational

burden at the BBU pool, which is imposed by all proposed algorithms, can be re-

lieved. We take an initial step by combining the technique of Massive MIMO and

F-RAN. In the proposed approach, the fog computing is fully exploited to achieve

some decentralized operations at eRRHs, with which less computational require-

ments on the BBU pool, less amount of overhead, less hardware costs, as well as

shorter latency can be achieved.

Although many aspects have been covered in terms of the optimal design for F-

RAN, there are always more blanks to be filled. In the last subsection of each chap-

ter, we always listed some interesting topics that we have not solved or intensively

investigated, and are worth to be studied further. With this dissertation, we would

like to show some charming aspects of F-RAN, as well as to provide some design

guidelines. Above all, we hope that it can help to shed some lights on possible

research directions in the future.
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