49 research outputs found

    A Secure and Distributed Architecture for Vehicular Cloud and Protocols for Privacy-preserving Message Dissemination in Vehicular Ad Hoc Networks

    Get PDF
    Given the enormous interest in self-driving cars, Vehicular Ad hoc NETworks (VANETs) are likely to be widely deployed in the near future. Cloud computing is also gaining widespread deployment. Marriage between cloud computing and VANETs would help solve many of the needs of drivers, law enforcement agencies, traffic management, etc. The contributions of this dissertation are summarized as follows: A Secure and Distributed Architecture for Vehicular Cloud: Ensuring security and privacy is an important issue in the vehicular cloud; if information exchanged between entities is modified by a malicious vehicle, serious consequences such as traffic congestion and accidents can occur. In addition, sensitive data could be lost, and human lives also could be in danger. Hence, messages sent by vehicles must be authenticated and securely delivered to vehicles in the appropriate regions. In this dissertation, we present a secure and distributed architecture for the vehicular cloud which uses the capabilities of vehicles to provide various services such as parking management, accident alert, traffic updates, cooperative driving, etc. Our architecture ensures the privacy of vehicles and supports secure message dissemination using the vehicular infrastructure. A Low-Overhead Message Authentication and Secure Message Dissemination Scheme for VANETs: Efficient, authenticated message dissemination in VANETs are important for the timely delivery of authentic messages to vehicles in appropriate regions in the VANET. Many of the approaches proposed in the literature use Road Side Units (RSUs) to collect events (such as accidents, weather conditions, etc.) observed by vehicles in its region, authenticate them, and disseminate them to vehicles in appropriate regions. However, as the number of messages received by RSUs increases in the network, the computation and communication overhead for RSUs related to message authentication and dissemination also increases. We address this issue and present a low-overhead message authentication and dissemination scheme in this dissertation. On-Board Hardware Implementation in VANET: Design and Experimental Evaluation: Information collected by On Board Units (OBUs) located in vehicles can help in avoiding congestion, provide useful information to drivers, etc. However, not all drivers on the roads can benefit from OBU implementation because OBU is currently not available in all car models. Therefore, in this dissertation, we designed and built a hardware implementation for OBU that allows the dissemination of messages in VANET. This OBU implementation is simple, efficient, and low-cost. In addition, we present an On-Board hardware implementation of Ad hoc On-Demand Distance Vector (AODV) routing protocol for VANETs. Privacy-preserving approach for collection and dissemination of messages in VANETs: Several existing schemes need to consider safety message collection in areas where the density of vehicles is low and roadside infrastructure is sparse. These areas could also have hazardous road conditions and may have poor connectivity. In this dissertation, we present an improved method for securely collecting and disseminating safety messages in such areas which preserves the privacy of vehicles. We propose installing fixed OBUs along the roadside of dangerous roads (i.e., roads that are likely to have more ice, accidents, etc., but have a low density of vehicles and roadside infrastructure) to help collect data about the surrounding environment. This would help vehicles to be notified about the events on such roads (such as ice, accidents, etc.).Furthermore, to enhance the privacy of vehicles, our scheme allows vehicles to change their pseudo IDs in all traffic conditions. Therefore, regardless of whether the number of vehicles is low in the RSU or Group Leader GL region, it would be hard for an attacker to know the actual number of vehicles in the RSU/GL region

    Secure Authentication and Privacy-Preserving Techniques in Vehicular Ad-hoc NETworks (VANETs)

    Get PDF
    In the last decade, there has been growing interest in Vehicular Ad Hoc NETworks (VANETs). Today car manufacturers have already started to equip vehicles with sophisticated sensors that can provide many assistive features such as front collision avoidance, automatic lane tracking, partial autonomous driving, suggestive lane changing, and so on. Such technological advancements are enabling the adoption of VANETs not only to provide safer and more comfortable driving experience but also provide many other useful services to the driver as well as passengers of a vehicle. However, privacy, authentication and secure message dissemination are some of the main issues that need to be thoroughly addressed and solved for the widespread adoption/deployment of VANETs. Given the importance of these issues, researchers have spent a lot of effort in these areas over the last decade. We present an overview of the following issues that arise in VANETs: privacy, authentication, and secure message dissemination. Then we present a comprehensive review of various solutions proposed in the last 10 years which address these issues. Our survey sheds light on some open issues that need to be addressed in the future

    Secure and Privacy-Aware Cloud-Assisted Video Reporting Service in 5G Enabled Vehicular Networks

    Get PDF
    Vehicular networks are one of the main technologies that will be leveraged by the arrival of the future fifth generation (5G) mobile cellular networks. While scalability and latency are the major drawbacks of IEEE 802.11p and 4G LTE enabled vehicular communications, respectively, the 5G technology is a promising solution to empower the real-time services offered by vehicular networks. However, the security and privacy of such services in 5G enabled vehicular networks need to be addressed first. In this paper, we propose a novel system model for a 5G enabled vehicular network that facilitates a reliable, secure and privacy-aware real-time video reporting service. This service is designed for the participating vehicles to instantly report the videos of traffic accidents to guarantee a timely response from official and/or ambulance vehicles toward accidents. While it provides strong security and privacy guarantees for the participating vehicle’s identity and the video contents, the proposed service ensures traceability of misbehaving participants through a cooperation scheme among different authorities. We show the feasibility and the fulfilment of the proposed reporting service in 5G enabled vehicular networks in terms of security, privacy and efficiency

    A comprehensive survey of V2X cybersecurity mechanisms and future research paths

    Get PDF
    Recent advancements in vehicle-to-everything (V2X) communication have notably improved existing transport systems by enabling increased connectivity and driving autonomy levels. The remarkable benefits of V2X connectivity come inadvertently with challenges which involve security vulnerabilities and breaches. Addressing security concerns is essential for seamless and safe operation of mission-critical V2X use cases. This paper surveys current literature on V2X security and provides a systematic and comprehensive review of the most relevant security enhancements to date. An in-depth classification of V2X attacks is first performed according to key security and privacy requirements. Our methodology resumes with a taxonomy of security mechanisms based on their proactive/reactive defensive approach, which helps identify strengths and limitations of state-of-the-art countermeasures for V2X attacks. In addition, this paper delves into the potential of emerging security approaches leveraging artificial intelligence tools to meet security objectives. Promising data-driven solutions tailored to tackle security, privacy and trust issues are thoroughly discussed along with new threat vectors introduced inevitably by these enablers. The lessons learned from the detailed review of existing works are also compiled and highlighted. We conclude this survey with a structured synthesis of open challenges and future research directions to foster contributions in this prominent field.This work is supported by the H2020-INSPIRE-5Gplus project (under Grant agreement No. 871808), the ”Ministerio de Asuntos Económicos y Transformacion Digital” and the European Union-NextGenerationEU in the frameworks of the ”Plan de Recuperación, Transformación y Resiliencia” and of the ”Mecanismo de Recuperación y Resiliencia” under references TSI-063000-2021-39/40/41, and the CHIST-ERA-17-BDSI-003 FIREMAN project funded by the Spanish National Foundation (Grant PCI2019-103780).Peer ReviewedPostprint (published version

    Secure and Privacy-Aware Cloud-Assisted Video Reporting Service in 5G Enabled Vehicular Networks

    Get PDF
    Vehicular networks are one of the main technologies that will be leveraged by the arrival of the future fifth generation (5G) mobile cellular networks. While scalability and latency are the major drawbacks of IEEE 802.11p and 4G LTE enabled vehicular communications, respectively, the 5G technology is a promising solution to empower the real-time services offered by vehicular networks. However, the security and privacy of such services in 5G enabled vehicular networks need to be addressed first. In this paper, we propose a novel system model for a 5G enabled vehicular network that facilitates a reliable, secure and privacy-aware real-time video reporting service. This service is designed for the participating vehicles to instantly report the videos of traffic accidents to guarantee a timely response from official and/or ambulance vehicles toward accidents. While it provides strong security and privacy guarantees for the participating vehicle’s identity and the video contents, the proposed service ensures traceability of misbehaving participants through a cooperation scheme among different authorities. We show the feasibility and the fulfilment of the proposed reporting service in 5G enabled vehicular networks in terms of security, privacy and efficiency
    corecore