383 research outputs found

    Compact Models for Integrated Circuit Design

    Get PDF
    This modern treatise on compact models for circuit computer-aided design (CAD) presents industry standard models for bipolar-junction transistors (BJTs), metal-oxide-semiconductor (MOS) field-effect-transistors (FETs), FinFETs, and tunnel field-effect transistors (TFETs), along with statistical MOS models. Featuring exercise problems at the end of each chapter and extensive references at the end of the book, the text supplies fundamental and practical knowledge necessary for efficient integrated circuit (IC) design using nanoscale devices. It ensures even those unfamiliar with semiconductor physics gain a solid grasp of compact modeling concepts

    Advanced Modeling of SiC Power MOSFETs aimed to the Reliability Evaluation of Power Modules

    Get PDF

    Improving the performance of gas sensor systems with advanced data evaluation, operation, and calibration methods

    Get PDF
    In order to facilitate the widespread use of gas sensors, some challenges must still be overcome. Many of those are related to the reliable quantification of ultra-low concentrations of specific compounds in a background of other gases. This thesis focuses on three important items in the measurement chain: sensor material and operating modes, evaluation of the resulting data, and test gas generation for efficient sensor calibration. New operating modes and materials for gas-sensitive field-effect transistors have been investigated. Tungsten trioxide as gate oxide can improve the selectivity to hazardous volatile organic compounds like naphthalene even in a strong and variable ethanol background. The influence of gate bias and ultraviolet light has been studied with respect to the transport of oxygen anions on the sensor surface and was used to improve classification and quantification of different gases. DAV3E, an internationally recognized MATLAB-based toolbox for the evaluation of cyclic sensor data, has been developed and published as opensource. It provides a user-friendly graphical interface and specially tailored algorithms from multivariate statistics. The laboratory tests conducted during this project have been extended with an interlaboratory study and a field test, both yielding valuable insights for future, more complex sensor calibration. A novel, efficient calibration approach has been proposed and evaluated with ten different gas sensor systems.Vor der weitverbreiteten Nutzung von Gassensoren stehen noch einige Herausforderungen, insbesondere die zuverlĂ€ssige Messung ultrakleiner Konzentrationen bestimmter Substanzen vor einem Hintergrund anderer Gase. Diese Arbeit konzentriert sich auf drei wichtige Glieder der erforderlichen Messkette: Material und Betriebsweise von Sensoren, Auswertung der anfallenden Daten sowie Generierung von Testgasen zur effizienten Kalibrierung. Neue Betriebsmodi und Materialien fĂŒr gassensitive Feldeffekttransistoren wurden getestet. Wolframtrioxid kann als Gateoxid die SelektivitĂ€t fĂŒr flĂŒchtige organische Verbindungen wie Naphthalin in einem variierenden Ethanolhintergrund verbessern. Der Einfluss von Gate-Bias und ultravioletter Strahlung auf die Bewegung von Sauerstoffionen auf der OberflĂ€che wurde untersucht und genutzt, um die Klassifizierung und Quantifizierung von Gasen zu verbessern. Eine international anerkannte MATLAB-Toolbox zur Auswertung zyklischer Sensordaten, DAV3E, wurde entwickelt und als open source veröffentlicht. Sie stellt eine nutzerfreundliche OberflĂ€che und speziell angepasste Algorithmen der multivariaten Statistik zur VerfĂŒgung. Die Laborexperimente wurden ergĂ€nzt durch vergleichende Messungen in zwei unabhĂ€ngigen Laboren und einen Feldtest, womit wertvolle Erkenntnisse fĂŒr die kĂŒnftig notwendige, komplexe Kalibrierung von Sensoren gewonnen wurden. Ein neuartiger, effizienter Kalibrieransatz wurde vorgestellt und mit zehn unterschiedlichen Sensorsystemen evaluiert

    Solid State Circuits Technologies

    Get PDF
    The evolution of solid-state circuit technology has a long history within a relatively short period of time. This technology has lead to the modern information society that connects us and tools, a large market, and many types of products and applications. The solid-state circuit technology continuously evolves via breakthroughs and improvements every year. This book is devoted to review and present novel approaches for some of the main issues involved in this exciting and vigorous technology. The book is composed of 22 chapters, written by authors coming from 30 different institutions located in 12 different countries throughout the Americas, Asia and Europe. Thus, reflecting the wide international contribution to the book. The broad range of subjects presented in the book offers a general overview of the main issues in modern solid-state circuit technology. Furthermore, the book offers an in depth analysis on specific subjects for specialists. We believe the book is of great scientific and educational value for many readers. I am profoundly indebted to the support provided by all of those involved in the work. First and foremost I would like to acknowledge and thank the authors who worked hard and generously agreed to share their results and knowledge. Second I would like to express my gratitude to the Intech team that invited me to edit the book and give me their full support and a fruitful experience while working together to combine this book

    Product assurance technology for procuring reliable, radiation-hard, custom LSI/VLSI electronics

    Get PDF
    Advanced measurement methods using microelectronic test chips are described. These chips are intended to be used in acquiring the data needed to qualify Application Specific Integrated Circuits (ASIC's) for space use. Efforts were focused on developing the technology for obtaining custom IC's from CMOS/bulk silicon foundries. A series of test chips were developed: a parametric test strip, a fault chip, a set of reliability chips, and the CRRES (Combined Release and Radiation Effects Satellite) chip, a test circuit for monitoring space radiation effects. The technical accomplishments of the effort include: (1) development of a fault chip that contains a set of test structures used to evaluate the density of various process-induced defects; (2) development of new test structures and testing techniques for measuring gate-oxide capacitance, gate-overlap capacitance, and propagation delay; (3) development of a set of reliability chips that are used to evaluate failure mechanisms in CMOS/bulk: interconnect and contact electromigration and time-dependent dielectric breakdown; (4) development of MOSFET parameter extraction procedures for evaluating subthreshold characteristics; (5) evaluation of test chips and test strips on the second CRRES wafer run; (6) two dedicated fabrication runs for the CRRES chip flight parts; and (7) publication of two papers: one on the split-cross bridge resistor and another on asymmetrical SRAM (static random access memory) cells for single-event upset analysis

    Development and characterisation of a novel LDMOS macro-model for smart power applications

    Get PDF

    Modeling and Simulation in Engineering

    Get PDF
    The general aim of this book is to present selected chapters of the following types: chapters with more focus on modeling with some necessary simulation details and chapters with less focus on modeling but with more simulation details. This book contains eleven chapters divided into two sections: Modeling in Continuum Mechanics and Modeling in Electronics and Engineering. We hope our book entitled "Modeling and Simulation in Engineering - Selected Problems" will serve as a useful reference to students, scientists, and engineers

    SiNW-based Biosensors for Profiling Biomarkers in Breast Tumor Tissues

    Get PDF
    Breast cancer is the most common life-threatening malignancy in women of most developed countries today, with approximately 200,000 new cases diagnosed every year. About 30% of these cases progress to metastatic disease and death. Considering that one-third of these cancer deaths could be decreased if detected and treated early, new strategies for early breast cancer detection are needed to improve the efficacy of current diagnostics. The sensitive analysis of proteins such as breast cancer biomarkers has become the focus of intensive research due to its relevance to tumor diagnosis. However, the state-of-the-art diagnostic tools still lack the level of resolution needed for the detection of biomarkers at the very early stage of the disease, when treatments have more probability of success, and when protein concentration in tumor tissue is still very low. Nanotechnologies have shown great potential for the development of high-sensitive, portable devices for clinical applications. In particular, SiNWs with their unique properties such as the high surface-to-volume ratio and size, combined with the specificity of immune-sensing, are natural candidates for the fabrication of nanosensors. Thanks to their compatibility with conventional CMOS technology, SiNWs have been incorporated in standard FETs. In biosensing, SiNW-FETs have been shown a promising method for the label-free detection of trace amounts of biomolecules. However, detection of Antigen using Antibody immobilized SiNW-FETs is limited by ionic screening effects that reduce the sensor responsiveness and limit their applicability in tumor tissue. Here, we propose novel SiNW-based biosensing strategies with the aim of overcoming current sensitivity limitations of conventional SiNW-FET biosensors for the detection of breast cancer biomarkers in real human samples. Specifically, we address this goal by investigating two different approaches of biosensing. In the first method, we push the sensitivity of SiNW-FETs to their limits by proposing an alternative way of doing sensing in dry conditions. We show that in-air electrical measurements of Ab-Ag binding have the big advantage of increased Debye screening length in non-bulk solutions, and enable highly sensitive and specific measurements in breast tumor extract. Then, we present a completely novel biosensing paradigm that shows, for the first time, the use of memristive effects in fabricated SiNWs for biodetection purposes. This novel detection method has been named Voltage Gap (VoG)-biosensing as it is based on the changes of the VoG parameter, observed in the hysteretic characteristic of memristive devices, as a function of biomolecules. In this research, we demonstrate the use of the memristive-based VoG effect in Schottky Barrier SiNWs for the high-resolution sensing of ionic and biological species both in ideal buffer solutions and in tumor tissue extracts. Moreover, we propose an original theory enabling the physical interpretation and prediction of the mechanisms underlying the VoG-biosensing method in memristive devices. Finally, we demonstrate the potential of our system for future integration in a multi-panel VoG-biosensing platform. We fabricated a PDMS microfluidics enabling selective and high-quality functionalization of the NWs. We also realized a CMOS readout circuit for multiplexed VoG acquisition. The simulations demonstrate the feasibility of the approach and the potential for the integration of the reader with a portable and automated biosensing platform. Microfluidics and VoG reader will enable fast, concurrent detection ofmultiple angiogenic and inflammatory ligands in tumor tissue. This will highly improve the level of knowledge of the cancer disease by capturing the heterogeneity and the complexity of the tumor microenvironment, thus leading to novel opportunities in breast cancer diagnosis

    Photodetectors

    Get PDF
    In this book some recent advances in development of photodetectors and photodetection systems for specific applications are included. In the first section of the book nine different types of photodetectors and their characteristics are presented. Next, some theoretical aspects and simulations are discussed. The last eight chapters are devoted to the development of photodetection systems for imaging, particle size analysis, transfers of time, measurement of vibrations, magnetic field, polarization of light, and particle energy. The book is addressed to students, engineers, and researchers working in the field of photonics and advanced technologies

    Small business innovation research. Abstracts of completed 1987 phase 1 projects

    Get PDF
    Non-proprietary summaries of Phase 1 Small Business Innovation Research (SBIR) projects supported by NASA in the 1987 program year are given. Work in the areas of aeronautical propulsion, aerodynamics, acoustics, aircraft systems, materials and structures, teleoperators and robotics, computer sciences, information systems, spacecraft systems, spacecraft power supplies, spacecraft propulsion, bioastronautics, satellite communication, and space processing are covered
    • 

    corecore