88 research outputs found

    Remote-sensing of underground caverns using a full-Maxwell\u27s equations FDTD model

    Get PDF
    A need exists to reliably detect and characterize underground structures from immediately above the Earth\u27s surface within the vicinity of the structures, as well as via aerial surveys. Sandia National Labs and the University of New Mexico have collaborated to study the feasibility of detecting and characterizing underground structures, specifically hollow rectangular-shaped caverns. This thesis covers the computational aspects of this investigation and also focuses on the detection of caverns from immediately above the Earth\u27s surface. Three-dimensional, full-vector Maxwell\u27s equations finite-difference time-domain (FDTD) modeling is employed to obtain the signatures for different caverns of various depths and dimensions. It is found that by removing the signature of the ground, the presence of an underground structure is detectable

    Development of a Real-time Ultra-wideband See Through Wall Imaging Radar System

    Get PDF
    Ultra-Wideband (UWB) See-Through-Wall (STW) technology has emerged as a musthave enabling technology by both the military and commercial sectors. As a pioneer in this area, we have led the research in addressing many of the fundamental STW questions. This dissertation is to investigate and resolve a few hurdles in advancing this technology, and produce a realizable high performance STW platform system, which will aid the STW community to find the ultimate answer through experimental and theoretical work. The architectures of a realizable STW imaging system are thoroughly examined and studied. We present both a conceptual system based on RF instruments and a standalone real-time system based on custom design, which utilize reconfigurable design architecture and allows scaling down/up to a desired UWB operating frequency with little difficulty. The systems will serve as a high performance platform for STW study and other related UWB applications. Along the way to a complete STW system, we have developed a simplified transmission line model for wall characteristic prediction; we have developed a scalable synthetic aperture array including both the RF part and the switch control/synchronization part; we have proposed a cost-effective and efficient UWB data acquisition method for real-time STW application based on equivalent-time sampling method. The measurement results reported here include static image formation and tracking moveable targets behind the wall. Even though digital signal processing to generate radar images is not the focus of this research, simple methods for image formation have been implemented and results are very encouraging

    Optmized patch-like antennas for through the wall radar imaging and preliminary results with frequency modulated interrupted continuous wave

    Get PDF
    This paper presents optimized patch-like antennas for Through The Wall Imaging (TTWI) radar applications in the frequency range 0.5-2 GHz, and preliminary results using Frequency Modulated Interrupted Continuous Waveform (FMICW). Results of numerical simulations using basic models of the antenna are presented. The antenna optimization was aimed at making the radiation pattern more directional by focusing the energy in a single lobe to be directed towards the wall and the targets to be detected. The optimized antenna was manufactured and its measured parameters are compared with the simulated results which show good agreement. Some preliminary results from the FMICW radar system using this antenna are presented

    Through-The-Wall Detection Using Ultra Wide Band Frequency Modulated Interrupted Continuous Wave Signals

    Get PDF
    Through-The-Wall-Detection (TTWD) techniques can improve the situational awareness of police and soldiers, and support first responders in search and rescue operations. A variety of systems for TTWD based on different waveforms have been developed and presented in the literature, e.g. radar systems based on pulses, noise or pseudo-noise waveforms, and frequency modulated continuous wave (FMCW) or stepped frequency continuous wave (SFCW) waveforms. Ultra wide band signals are normally used as they provide suitable resolution to discriminate different targets. A common problem for active radar systems for TTWD is the strong backscattered signal from the air-wall interface. This undesired signal can overshadow the reflections from actual targets, especially those with low radar cross section like human beings, and limit the dynamic range at the receiver, which could be saturated and blocked. Although several techniques have been developed to address this problem, frequency modulated interrupted continuous wave (FMICW) waveforms represent an interesting further approach to wall removal, which can be used as an alternative technique or combined with the existing ones. FMICW waveforms have been used in the past for ionospheric and ocean sensing radar systems, but their application to the wall removal problem in TTWD scenarios is novel. The validation of the effectiveness of the proposed FMICW waveforms as wall removal technique is therefore the primary objective of this thesis, focusing on comparing simulated and experimental results using normal FMCW waveforms and using the proposed FMICW waveforms. Initially, numerical simulations of realistic scenarios for TTWD have been run and FMICW waveforms have been successfully tested for different materials and internal structure of the wall separating the radar system and the targets. Then a radar system capable of generating FMICW waveforms has been designed and built to perform a measurement campaign in environments of the School of Engineering and Computing Sciences, Durham University. These tests aimed at the localization of stationary targets and at the detection of people behind walls. FMICW waveforms prove to be effective in removing/mitigating the undesired return caused by antenna cross-talk and wall reflections, thus enhancing the detection of targets

    FMCW Signals for Radar Imaging and Channel Sounding

    Get PDF
    A linear / stepped frequency modulated continuous wave (FMCW) signal has for a long time been used in radar and channel sounding. A novel FMCW waveform known as “Gated FMCW” signal is proposed in this thesis for the suppression of strong undesired signals in microwave radar applications, such as: through-the-wall, ground penetrating, and medical imaging radar. In these applications the crosstalk signal between antennas and the reflections form the early interface (wall, ground surface, or skin respectively) are much stronger in magnitude compared to the backscattered signal from the target. Consequently, if not suppressed they overshadow the target’s return making detection a difficult task. Moreover, these strong unwanted reflections limit the radar’s dynamic range and might saturate or block the receiver causing the reflection from actual targets (especially targets with low radar cross section) to appear as noise. The effectiveness of the proposed waveform as a suppression technique was investigated in various radar scenarios, through numerical simulations and experiments. Comparisons of the radar images obtained for the radar system operating with the standard linear FMCW signal and with the proposed Gated FMCW waveform are also made. In addition to the radar work the application of FMCW signals to radio propagation measurements and channel characterisation in the 60 GHz and 2-6 GHz frequency bands in indoor and outdoor environments is described. The data are used to predict the bit error rate performance of the in-house built measurement based channel simulator and the results are compared with the theoretical multipath channel simulator available in Matlab

    Indoor wireless communications and applications

    Get PDF
    Chapter 3 addresses challenges in radio link and system design in indoor scenarios. Given the fact that most human activities take place in indoor environments, the need for supporting ubiquitous indoor data connectivity and location/tracking service becomes even more important than in the previous decades. Specific technical challenges addressed in this section are(i), modelling complex indoor radio channels for effective antenna deployment, (ii), potential of millimeter-wave (mm-wave) radios for supporting higher data rates, and (iii), feasible indoor localisation and tracking techniques, which are summarised in three dedicated sections of this chapter

    The perceptual flow of phonetic feature processing

    Get PDF
    • …
    corecore