259,395 research outputs found

    Identity of electrons and ionization equilibrium

    Full text link
    It is perhaps appropriate that, in a year marking the 90th anniversary of Meghnad Saha seminal paper (1920), new developments should call fresh attention to the problem of ionization equilibrium in gases. Ionization equilibrium is considered in the simplest "physical" model for an electronic subsystem of matter in a rarefied state, consisting of one localized electronic state in each nucleus and delocalized electronic states considered as free ones. It is shown that, despite the qualitative agreement, there is a significant quantitative difference from the results of applying the Saha formula to the degree of ionization. This is caused by the fact that the Saha formula corresponds to the "chemical" model of matter.Comment: 9 pages, 2 figure

    Equation of state SAHA-S meets stellar evolution code CESAM2k

    Full text link
    We present an example of an interpolation code of the SAHA-S equation of state that has been adapted for use in the stellar evolution code CESAM2k. The aim is to provide the necessary data and numerical procedures for its implementation in a stellar code. A technical problem is the discrepancy between the sets of thermodynamic quantities provided by the SAHA-S equation of state and those necessary in the CESAM2k computations. Moreover, the independent variables in a practical equation of state (like SAHA-S) are temperature and density, whereas for modelling calculations the variables temperature and pressure are preferable. Specifically for the CESAM2k code, some additional quantities and their derivatives must be provided. To provide the bridge between the equation of state and stellar modelling, we prepare auxiliary tables of the quantities that are demanded in CESAM2k. Then we use cubic spline interpolation to provide both smoothness and a good approximation of the necessary derivatives. Using the B-form of spline representation provides us with an efficient algorithm for three-dimensional interpolation. The table of B-spline coefficients provided can be directly used during stellar model calculations together with the module of cubic spline interpolation. This implementation of the SAHA-S equation of state in the CESAM2k stellar structure and evolution code has been tested on a solar model evolved to the present. A comparison with other equations of state is briefly discussed. The choice of a regular net of mesh points for specific primary quantities in the SAHA-S equation of state, together with accurate and consistently smooth tabulated values, provides an effective algorithm of interpolation in modelling calculations. The proposed module of interpolation procedures can be easily adopted in other evolution codes.Comment: 8 pages, 5 figure

    Exact aymptotic expansions for the thermodynamics of hydrogen gas in the Saha regime

    Get PDF
    We consider the hydrogen quantum plasma in the Saha regime, where it almost reduces to a partially ionized atomic gas. We briefly review the construction of systematic expansions of thermodynamical functions beyond Saha theory, which describes an ideal mixture of ionized protons, ionized electrons and hydrogen atoms in their ground-state. Thanks to the existence of rigorous results, we first identify the simultaneous low-temperature and low-density limit in which Saha theory becomes asymptotically exact. Then, we argue that the screened cluster representation is well suited for calculating corrections, since that formalism accounts for all screening and recombination phenomena at work in a more tractable way than other many-body methods. We sketch the corresponding diagrammatical analysis, which leads to an exact asymptotic expansion for the equation of state. That scaled low-temperature expansion improves the analytical knowledge of the phase diagram. It also provides reliable numerical values over a rather wide range of temperatures and densities, as confirmed by comparisons to quantum Monte Carlo data.Comment: 10 page

    Saha-Langmuir surface ionization relation

    Get PDF
    Ion production rate in cesium thermionic converter related to Saha-Langmuir surface ionization equatio

    Histone Deacetylase Inhibitor Induced Radiation Sensitization Effects on Human Cancer Cells after Photon and Hadron Radiation Exposure

    Get PDF
    Suberoylanilide hydroxamic acid (SAHA) is a histone deacetylase inhibitor, which has been widely utilized throughout the cancer research field. SAHA-induced radiosensitization in normal human fibroblasts AG1522 and lung carcinoma cells A549 were evaluated with a combination of γ-rays, proton, and carbon ion exposure. Growth delay was observed in both cell lines during SAHA treatment; 2 μM SAHA treatment decreased clonogenicity and induced cell cycle block in G1 phase but 0.2 μM SAHA treatment did not show either of them. Low LET (Linear Energy Transfer) irradiated A549 cells showed radiosensitization effects on cell killing in cycling and G1 phase with 0.2 or 2 μM SAHA pretreatment. In contrast, minimal sensitization was observed in normal human cells after low and high LET radiation exposure. The potentially lethal damage repair was not affected by SAHA treatment. SAHA treatment reduced the rate of γ-H2AX foci disappearance and suppressed RAD51 and RPA (Replication Protein A) focus formation. Suppression of DNA double strand break repair by SAHA did not result in the differences of SAHA-induced radiosensitization between human cancer cells and normal cells. In conclusion, our results suggest SAHA treatment will sensitize cancer cells to low and high LET radiation with minimum effects to normal cell