335 research outputs found

    A Comprehensive Survey of Deep Learning in Remote Sensing: Theories, Tools and Challenges for the Community

    Full text link
    In recent years, deep learning (DL), a re-branding of neural networks (NNs), has risen to the top in numerous areas, namely computer vision (CV), speech recognition, natural language processing, etc. Whereas remote sensing (RS) possesses a number of unique challenges, primarily related to sensors and applications, inevitably RS draws from many of the same theories as CV; e.g., statistics, fusion, and machine learning, to name a few. This means that the RS community should be aware of, if not at the leading edge of, of advancements like DL. Herein, we provide the most comprehensive survey of state-of-the-art RS DL research. We also review recent new developments in the DL field that can be used in DL for RS. Namely, we focus on theories, tools and challenges for the RS community. Specifically, we focus on unsolved challenges and opportunities as it relates to (i) inadequate data sets, (ii) human-understandable solutions for modelling physical phenomena, (iii) Big Data, (iv) non-traditional heterogeneous data sources, (v) DL architectures and learning algorithms for spectral, spatial and temporal data, (vi) transfer learning, (vii) an improved theoretical understanding of DL systems, (viii) high barriers to entry, and (ix) training and optimizing the DL.Comment: 64 pages, 411 references. To appear in Journal of Applied Remote Sensin

    Deep learning in remote sensing: a review

    Get PDF
    Standing at the paradigm shift towards data-intensive science, machine learning techniques are becoming increasingly important. In particular, as a major breakthrough in the field, deep learning has proven as an extremely powerful tool in many fields. Shall we embrace deep learning as the key to all? Or, should we resist a 'black-box' solution? There are controversial opinions in the remote sensing community. In this article, we analyze the challenges of using deep learning for remote sensing data analysis, review the recent advances, and provide resources to make deep learning in remote sensing ridiculously simple to start with. More importantly, we advocate remote sensing scientists to bring their expertise into deep learning, and use it as an implicit general model to tackle unprecedented large-scale influential challenges, such as climate change and urbanization.Comment: Accepted for publication IEEE Geoscience and Remote Sensing Magazin

    Deep Multi-Model Fusion for Human Activity Recognition Using Evolutionary Algorithms

    Get PDF
    Machine recognition of the human activities is an active research area in computer vision. In previous study, either one or two types of modalities have been used to handle this task. However, the grouping of maximum information improves the recognition accuracy of human activities. Therefore, this paper proposes an automatic human activity recognition system through deep fusion of multi-streams along with decision-level score optimization using evolutionary algorithms on RGB, depth maps and 3d skeleton joint information. Our proposed approach works in three phases, 1) space-time activity learning using two 3D Convolutional Neural Network (3DCNN) and a Long Sort Term Memory (LSTM) network from RGB, Depth and skeleton joint positions 2) Training of SVM using the activities learned from previous phase for each model and score generation using trained SVM 3) Score fusion and optimization using two Evolutionary algorithm such as Genetic algorithm (GA) and Particle Swarm Optimization (PSO) algorithm. The proposed approach is validated on two 3D challenging datasets, MSRDailyActivity3D and UTKinectAction3D. Experiments on these two datasets achieved 85.94% and 96.5% accuracies, respectively. The experimental results show the usefulness of the proposed representation. Furthermore, the fusion of different modalities improves recognition accuracies rather than using one or two types of information and obtains the state-of-art results

    Pedestrian Models for Autonomous Driving Part I: Low-Level Models, from Sensing to Tracking

    Get PDF
    Abstract—Autonomous vehicles (AVs) must share space with pedestrians, both in carriageway cases such as cars at pedestrian crossings and off-carriageway cases such as delivery vehicles navigating through crowds on pedestrianized high-streets. Unlike static obstacles, pedestrians are active agents with complex, inter- active motions. Planning AV actions in the presence of pedestrians thus requires modelling of their probable future behaviour as well as detecting and tracking them. This narrative review article is Part I of a pair, together surveying the current technology stack involved in this process, organising recent research into a hierarchical taxonomy ranging from low-level image detection to high-level psychology models, from the perspective of an AV designer. This self-contained Part I covers the lower levels of this stack, from sensing, through detection and recognition, up to tracking of pedestrians. Technologies at these levels are found to be mature and available as foundations for use in high-level systems, such as behaviour modelling, prediction and interaction control

    Action recognition from RGB-D data

    Get PDF
    In recent years, action recognition based on RGB-D data has attracted increasing attention. Different from traditional 2D action recognition, RGB-D data contains extra depth and skeleton modalities. Different modalities have their own characteristics. This thesis presents seven novel methods to take advantages of the three modalities for action recognition. First, effective handcrafted features are designed and frequent pattern mining method is employed to mine the most discriminative, representative and nonredundant features for skeleton-based action recognition. Second, to take advantages of powerful Convolutional Neural Networks (ConvNets), it is proposed to represent spatio-temporal information carried in 3D skeleton sequences in three 2D images by encoding the joint trajectories and their dynamics into color distribution in the images, and ConvNets are adopted to learn the discriminative features for human action recognition. Third, for depth-based action recognition, three strategies of data augmentation are proposed to apply ConvNets to small training datasets. Forth, to take full advantage of the 3D structural information offered in the depth modality and its being insensitive to illumination variations, three simple, compact yet effective images-based representations are proposed and ConvNets are adopted for feature extraction and classification. However, both of previous two methods are sensitive to noise and could not differentiate well fine-grained actions. Fifth, it is proposed to represent a depth map sequence into three pairs of structured dynamic images at body, part and joint levels respectively through bidirectional rank pooling to deal with the issue. The structured dynamic image preserves the spatial-temporal information, enhances the structure information across both body parts/joints and different temporal scales, and takes advantages of ConvNets for action recognition. Sixth, it is proposed to extract and use scene flow for action recognition from RGB and depth data. Last, to exploit the joint information in multi-modal features arising from heterogeneous sources (RGB, depth), it is proposed to cooperatively train a single ConvNet (referred to as c-ConvNet) on both RGB features and depth features, and deeply aggregate the two modalities to achieve robust action recognition

    Hyperspectral Classification Based on Lightweight 3-D-CNN With Transfer Learning

    Get PDF
    Recently, hyperspectral image (HSI) classification approaches based on deep learning (DL) models have been proposed and shown promising performance. However, because of very limited available training samples and massive model parameters, DL methods may suffer from overfitting. In this paper, we propose an end-to-end 3-D lightweight convolutional neural network (CNN) (abbreviated as 3-D-LWNet) for limited samples-based HSI classification. Compared with conventional 3-D-CNN models, the proposed 3-D-LWNet has a deeper network structure, less parameters, and lower computation cost, resulting in better classification performance. To further alleviate the small sample problem, we also propose two transfer learning strategies: 1) cross-sensor strategy, in which we pretrain a 3-D model in the source HSI data sets containing a greater number of labeled samples and then transfer it to the target HSI data sets and 2) cross-modal strategy, in which we pretrain a 3-D model in the 2-D RGB image data sets containing a large number of samples and then transfer it to the target HSI data sets. In contrast to previous approaches, we do not impose restrictions over the source data sets, in which they do not have to be collected by the same sensors as the target data sets. Experiments on three public HSI data sets captured by different sensors demonstrate that our model achieves competitive performance for HSI classification compared to several state-of-the-art methodsComment: 16 pages. Accepted to IEEE Trans. Geosci. Remote Sens. Code is available at: https://github.com/hkzhang91/LWNe
    • …
    corecore