10,631 research outputs found

    The Effect of Dissolved Water on the Tribological Properties of Polyalkylene Glycol and Polyolester Oils

    Get PDF
    The effect of water dissolved in polyalkylene glycol and polyolester oils on the tribological behavior of two material contact pairs in three test environments is evaluated. The material contact pairs are M2 tool steel against 390 aluminum and M2 tool steel against gray cast iron. The three oils are a polyalkylene glycol (PAG) and two polyolester (PEl and PE2) oils. The test environments are R134a, air and argon. The tests are conducted in a specially designed high pressure tribometer which provides an accurate control of the test variables. The results indicate that the P AG oil performed better than the esters for both material contact pairs. The wear on the aluminum plates for the tests conducted with the P AG oil in all three environments is greatest at the lowest moisture content levels. From the stand point of friction and wear, it is beneficial to have a water content level of 5000 ppm or greater in the PAG oil when the plate material is 390 aluminum. The wear on the cast iron plates, when using a PAG oil as the lubricant showed a slight increase with water content in a R134a environment. This trend is opposite when air is the test environment. Both ester oils lubricated aluminum much better than the cast iron . The difference in the amount of wear can be as high as two orders of magnitude. This is probably due to the ability of the esters to form bidentate bonds with aluminum. Esters do not form such bonds with iron. The plate wear is greater for the PEl tests than for the PE2 tests for both material contact pairs. This is most likely due to the difference in the viscosity of the oils. In PE2 oil, water does not seem to affect the friction and wear of both aluminum/steel and cast iron/steel contacts when R134a is the test environment. On the contrary, for the aluminum/steel contacts, the water content significantly influences wear when argon or air is the test environment. For the cast iron/steel contacts, the wear is strongly influenced by the water content when the test is conducted in argon, but it is not influenced by the water content when the test is conducted in air.Air Conditioning and Refrigeration Center Project 0

    Improving latency tolerance of multithreading through decoupling

    Get PDF
    The increasing hardware complexity of dynamically scheduled superscalar processors may compromise the scalability of this organization to make an efficient use of future increases in transistor budget. SMT processors, designed over a superscalar core, are therefore directly concerned by this problem. The article presents and evaluates a novel processor microarchitecture which combines two paradigms: simultaneous multithreading and access/execute decoupling. Since its decoupled units issue instructions in order, this architecture is significantly less complex, in terms of critical path delays, than a centralized out-of-order design, and it is more effective for future growth in issue-width and clock speed. We investigate how both techniques complement each other. Since decoupling features an excellent memory latency hiding efficiency, the large amount of parallelism exploited by multithreading may be used to hide the latency of functional units and keep them fully utilized. The study shows that, by adding decoupling to a multithreaded architecture, fewer threads are needed to achieve maximum throughput. Therefore, in addition to the obvious hardware complexity reduction, it places lower demands on the memory system. The study also reveals that multithreading by itself exhibits little memory latency tolerance. Results suggest that most of the latency hiding effectiveness of SMT architectures comes from the dynamic scheduling. On the other hand, decoupling is very effective at hiding memory latency. An increase in the cache miss penalty from 1 to 32 cycles reduces the performance of a 4-context multithreaded decoupled processor by less than 2 percent. For the nondecoupled multithreaded processor, the loss of performance is about 23 percent.Peer ReviewedPostprint (published version

    Hardware math for the 6502 microprocessor

    Get PDF
    A floating-point arithmetic unit is described which is being used in the Ground Facility of Large Space Structures Control Verification (GF/LSSCV). The experiment uses two complete inertial measurement units and a set of three gimbal torquers in a closed loop to control the structural vibrations in a flexible test article (beam). A 6502 (8-bit) microprocessor controls four AMD 9511A floating-point arithmetic units to do all the computation in 20 milliseconds

    High-voltage dc power processing thermal control and packaging techniques

    Get PDF
    The power processor operates in several modes, delivering up to 100 amperes of regulated electrical power, operating at input voltages to 375 volts with outputs controlled by an integral microprocessor. Several alternative packaging concepts are discussed and evaluated. High-voltage design applications, power stage interconnection and EMI considerations are also discussed. Preliminary thermal analyses were performed and the results presented for each conceptual approach with parametric study results given for the selected concept

    Development of single cell protectors for sealed silver-zinc cells, phase 1

    Get PDF
    A single cell protector (SCP) assembly capable of protecting a single silver-zinc (Ag Zn) battery cell was designed, fabricated, and tested. The SCP provides cell-level protection against overcharge and overdischarge by a bypass circuit. The bypass circuit consists of a magnetic-latching relay that is controlled by the high and low-voltage limit comparators. Although designed specifically for secondary Ag-Zn cells, the SCP is flexible enough to be adapted to other rechargeable cells. Eighteen SCPs were used in life testing of an 18-cell battery. The cells were sealed Ag-Zn system with inorganic separators. For comparison, another 18-cell battery was subjected to identical life test conditions, but with battery-level protection rather than cell-level. An alternative approach to the SCP design in the form of a microprocessor-based system was conceptually designed. The comparison of SCP and microprocessor approaches is also presented and a preferred approach for Ag-Zn battery protection is discussed

    Wind turbine generator interaction with conventional diesel generators on Block Island, Rhode Island. Volume 2: Data analysis

    Get PDF
    Assessing the performance of a MOD-OA horizontal axis wind turbine connected to an isolated diesel utility, a comprehensive data measurement program was conducted on the Block Island Power Company installation on Block Island, Rhode Island. The detailed results of that program focusing on three principal areas of (1) fuel displacement (savings), (2) dynamic interaction between the diesel utility and the wind turbine, (3) effects of three models of wind turbine reactive power control are presented. The approximate two month duration of the data acquisition program conducted in the winter months (February into April 1982) revealed performance during periods of highest wind energy penetration and hence severity of operation. Even under such conditions fuel savings were significant resulting in a fuel reduction of 6.7% while the MOD-OA was generating 10.7% of the total electrical energy. Also, electrical disturbance and interactive effects were of an acceptable level

    An economic analysis of a commercial approach to the design and fabrication of a space power system

    Get PDF
    A commercial approach to the design and fabrication of an economical space power system is presented. Cost reductions are projected through the conceptual design of a 2 kW space power system built with the capability for having serviceability. The approach to system costing that is used takes into account both the constraints of operation in space and commercial production engineering approaches. The cost of this power system reflects a variety of cost/benefit tradeoffs that would reduce system cost as a function of system reliability requirements, complexity, and the impact of rigid specifications. A breakdown of the system design, documentation, fabrication, and reliability and quality assurance cost estimates are detailed
    • …
    corecore