
General Disclaimer

One or more of the Following Statements may affect this Document

 This document has been reproduced from the best copy furnished by the

organizational source. It is being released in the interest of making available as

much information as possible.

 This document may contain data, which exceeds the sheet parameters. It was

furnished in this condition by the organizational source and is the best copy

available.

 This document may contain tone-on-tone or color graphs, charts and/or pictures,

which have been reproduced in black and white.

 This document is paginated as submitted by the original source.

 Portions of this document are not fully legible due to the historical nature of some

of the material. However, it is the best reproduction available from the original

submission.

Produced by the NASA Center for Aerospace Information (CASI)

https://ntrs.nasa.gov/search.jsp?R=19850026198 2020-03-20T16:54:53+00:00Z

NASA
Technical
Memorandum

NASA TM —86517

(N1S1—TH-86517)
HICROPROCESSOR

NBS-34511

Unclas
4316CA 22159

HARDWARE MA T H FOR THE 6512
(N1S1)	 18 p HC a62/MF 1C 1

C SCL (.98

HARDWARE MATH FOR THE 6602 MICROPROCESSOR

By Ralph Kissel and James Currie

Information and Electronic Systems Laboratory
Science and Engineerin- Directorate

July 1985

^O

NAM
National Aeronau!iCS and
S pace Administration

George C. Marshall Spice Flight Center

MSFC - Form 3190 (Rev. May 1983)

^U%

TECHNICAL REPORT STANDARD TITLE PAGE
1,	 REPORT NO.

NASA TM —86517
2.	 GOVERNMENT ACCESSION NO. 3.	 RECIPIENT'S CATALOG NO.

q ,	TITLE AND SUBTITLE

Hardware Math for the 6502 Microprocessor

5.	 REPORT DATE
July 1985

6.	 PERFORMING ORGANIZATION CODE

7,	 AUTHOR(S? B,PERFORMING ORGANIZATION REPORF P

Ralph Kissel and James Currie
9.	 PERFORMING ORGANIZATION NAME AND ADDRESS 10.	 WORK UNIT NO.

George C. Marshall Space Flight Center 11.	 CONTRACT OR GRANT NO.
Marshall Space Flight Center, Alabama 	 35812

13, TYPE OF REPOR'	 & PERIOD COVERED

12,	 SPONSORING AGENCY NAME AND ADDRESS
Technical Memorandum

National Aeronautics and Space Administration
Washington, D.C.	 20546 I.J.	 SPONSORING AGENCY CODE

PLF_MENTAF.	 NOTES

ared by Information and Flectronic Systems Laboratory, Science and Engineering Directorate.

F

16.	 ABSTRACT

A floating-point arithmetic unit is described which is being used in the Ground Facility for Large
Space Structures Control Verification (GF/LSSCV). 	 The experiment uses two complete inertial measure-
ment units and a set of three gimbal torquers in a closed loop to control the structural vibrations in a
flexible test article (beam).	 A 6502 (8-bit) microprocessor controls four AMD 9511A floating-point
arithmetic units to do all the computation in 20 milliseconds.

I

17.	 KEG WORDS 18.	 DISTRIBUTION STATEMENT

6502 Microprocessor

Hardware Math Unclassified — Unlimited
Floating—point Coprocessor

AIM 65

1Q	 SECURITY CLASSIF. (of this rsparti 20.	 SECURITY CL ASSIF. (of this pap) 21,	 NO. OF PAGES 22.	 PRICE

Unclassified Unclassified 18 NTIS
A41Fr - i'orm 3497 (Mar 1969)

For We by National Technical Information Service, Springfield, Virginia 22151

•	 .-. ^^^-rte	 ^-_ _ __ --	

^^.	 .J

•	 I.

TABLE OF CONTENTS

Page

INTRODUCTION .. I

HARDWARE... 1

SOFTWARE.. 2

PERFORMANCE	 .. 4

SUMMARY ... 4

REFERENCES	 .. 5

APPENDIX ... 13

LIST OF ILLUSTRATIONS

Figure	 Title	 Page

1. Timing diagrams 	 6

2. Single-unit interface .. 	 7

3. Quad-unit interface	 8

4. Single-unit multiply example	 9

5. AIM-to-8231 format conversion ... 	 10

6. 8231-to-AIM format conversion ... 	 11

A-1. Timeline subroutine ..	 14

A-2. LSS timeline ..	 15

W&MING PAGE BLANK NOT FILMED

iii

TECHNICAL. MEMORANDUM

HARDWARE MATH FOR THE 6502 MICROPROCESSOR

INTRODUCTION

Floating-point arithmetic is generally a time-consuming task, especially on an 8-bit microprocessor.
The system described here is the result of a growing arithmetic workload in a real-time control system
using the given 6502 microprocessor. Four AMD 9511 A's (Intel 8231A) were used in parallel and con-
nected directly to the 6502. The 6502 (in the Rockwell AIM 65) was clocked at 2 MHz and the 9511's
at 4 MHz.

Originally, the AIM 65 was to read data from six gyros and six accelerometers (two complete
inertial navigation systems) and from two resolvers, then send these data to a central computer once
each 20 ms. Then, more computation became necessary as strapdown algorithms, control algorithms, and
finally, everything except mass storage was added to the software. The system described here does all
this arithmetic in the required time and can be adapted to any 6502 system to give an arithmetic speedup
of about 100 times over BASIC.

HARDWARE

Figure 1 shows the timing diagrams for a 6502 at 2 MHz and a 9511 at 4 MHz. The 9511 is
asynchronous which makes interfacing easier. The biggest hardware problem with the 6502 is that it
cannot be stopped during a write. The problem with timing is to obtain the 25 ns minimum between
WR going high and CS. AO going high.

Figure 2 shows the one-9511 interface for a typical 6502 system and Figure 3 shows the full
four-951 1 interface as described in this report.

Reference 1 gives deta i ls on interfacing a 9511 to a 6502 by using a 6522 VIA interface chip.
This method is straightforward to implement, bu. has so much overhead that it is primarily useful only
for trigonometric functions.

Reference 2 gives details of another method for directly connecting the 9511 to a 6502 (OSI
Superboard I1). The method was optimized to the OSI board, but could probably have Leen adapted
as needed had it been discovered soon enough.

DMA is generally the fastest method that could be used, but was not worked out foi the 6502.
It would be quite complex and may not actually be any faster than the method used here.

The actual hardware connections between the 6502 bus and the 9511's went through a Compu-
terist, Inc., DRAM board which was already 1 .,,i t of this AIM 65 system. Chip select (CS) was also Gone
by the DRAM board, although this was only for convenience. Another, more direct method to generate
the control signals could be used so long as the same timing is kept.

I'.

YI

Interfaces for other microprocessors (using one 9511) are generally simpler than that for the
6502 and are already published by AMD.

SOFTWARE

In the four-APU system all software was handwritten. There is about 5K object code and 3K
BASIC. Reference' 2 used a compiler, but none was written here. More than one APU implies overlap
and critical timing considerations to get inaximum Speed and efficiency, so a compiler did not seem
feasible.

A simulation was written for the desktop HP 9845A, which plotted timelines for the CPU and
each of tl a four APU's. Busy and idle times are all clearly shown, so code could be inserted if needed.
Any APU overlap (sending to a bu.;y APU, etc.) was also flagged (see Appendix).

Another simulation of the actual arithmetic was written for the HP 9845A so numerical correct-
ness could be checked. This simulation did the same calculations, in the same order, as the AIM 65
system itself. Still another simulation (done by a contractor as part of an overall system study) was
made to do the original theoretical algorithms. Eventuall y , all results agreed and the timeline indicated a
worst-case time less than 20 ms.

Hardware is arranged so that each APU, or any combination of APU's, has a unique address. 	 .W

Data are sent by doing a LDA data then STA address which tak.-s 4 As `otal. One floating-point number
for an APU contains 4 bytes so the minimum time to load is 16 µs. A command will usually only
require 3 ps to send — LDA immediate, STA address. A data read requires 4 µs.

Two methods were used to determine when an APU is finished. One is to check the busy bit
in the status register of a particular APU. The other is reading a special address which contains the four
APU END lines as the lower fou r bits and zeros in the upper four. This extra hardware was added to
increase CPU response time and reduce software volume since more than one APU status check would
normally require a separate read and check for each overlapped APU. Waiting for all end lines to go low
requires only one read of this added register.

Sometmes no check of APU status was made at all, since it was known that the APU could not
be busy. Interrupts were not used since response time is much too slow (at least 21 ps at 2 MHz), plus
1/0 uses interrupts also (conflict).

The hardware was designed such that the CPU will halt when an APU read is attempted and that
APU is busy. It will remain stopped until the APU is no longer busy. On a write, however, no attempt
is made to stop the CPU since it won't stop during a write. It will stop only on the next nen-write
instruction. This causes a continual problem and requires implementing a check to be sure the APU is
not busy before writing to it. Figure 4 is an example of how an APU can be used.

There is another 65C2 peculiarity that has to be kept in mind when the memory map is lb.;ing
laid out. It only applies when indexed instructions are used across a page boundary and reflects the
6502 design rules. During one microcycle the address of the incorrect preceding page is actually put on
cne bus and could activate whatever was there. This is always a read, but an APU could still be triggered
if it happened to have that address.

2

The APU's have one floating-point format - AIM 65 BASIC memory has another. Since BASIC
was used as the controlling language, conversion in both directions had to be made. All constants and
one-time calculations were done in BASIC and converted to APU format (Fig. 5). When results from an
APU are displayed by BASIC they must be converted to BASIC format (Fig. 6). The APU format is:

	

23
	

0

M
E	

I	 M3	 M2	 M1S S

	k EXPONENT -4-	 MANTISSA	 J

Exponent is unbiased 2's complement 7 bits (-64 to +63)
Bit 23 = 1 except for zero which is all zeros.
Mantissa sign: 0 = +, 1 = -

and the BASIC format is

[S I	 E	 I S	 M3	 I	 M2	 I	 Ml	 I	 MO

I E.XPONENT --I

Exponent: $81 = +1; $80 = 0: 7F = -1 etc. (biased).
Bit 7 of M3 is Mantissa sign: 0 = +, 1 = -.
0 = all five bytes = 0.

Instruction sequences were always done to make maximum use of otherwise idle CPU time and
even APU time when one is free. Registers can be loaded and other calculations and operations inserted
to eliminate the idle time. The timeline simulation was used to do this efficiently.

Minimum software and maximum speed required a tradeoff of in - line versus subroutine code.
In-line is considerably faster (16 ps versus 22 ps + overhead), but subroutines require much less memory
(E-PROM eventually), so subroutines were generally used since enough time was thought to be available
(it just was). There were also many tradeoffs on types of assembly instructions to use to keep the
number of subroutines to a minimum, but still allow fast execution. Absolute indexed mode was gen-
erally used, : s ince some versatility is available without the speed penalty of indirect instructions. For a
particular subroutine, the assembler can increment the absolute part with the index then not needing
changed at run time.

Error checks were nor made in this application. It seemed that too much time would be wasted
looking for the only two Mors that could occur - overflow and underflow. Underflow should not be
ignored, actually, it must be worked around. Underflow does not result in zero, but instead, a change
in exponent sign. This could be disastrous. So, scaling must be done to prevent it, it must be checked,

or safety checks must be made in case it occurs. Underflow occurs at about ±2.7 x 10-20 , overflow

about t9.2 x 10 18 , and overflow means there's a hardware problem which will immediately appear
elsewhere in the results.

Software reset of the APU's was not implemented. The AIM 65 has this as a manual button, if
it should ever be required. If it is required, it means there is a noise problem or a hardware problem that
must be fixed.

l N^

3

PERFORMANCE

The quad system in this application is running at 0.026 MFLOP. This includes CPU overhead,
APU idle time, APU stack manipulations,etc. An 8086-8087 at 5 MHz would do about 0.021 MFLOP.
A 6 MHz 68000-16081 combination should be around 0.050 MFLOP and an HP9000 using compiled
BASIC without floating-point hardware about 0.075 MFLOP.

Overhead generally doubles the time it takes to do any particular operation. Data must be moved
into and out of the APU, slack changes must be made to obtain higher effic,--ncy, and the CPU must
sometimes wait for an APU to finish.

More APU's could be tied to one APU (2 MHz), but four is about the limit for simple arithmetic.
If trigonometric functions were the primary requirement, then up to 10 APU's could be kept busy.

FORTH would be much better than BASIC for most applict tions where the maximum speed is
not required. Pure assembly code squeezes an extra factor of 5 to 10 out of the hardware. With
FORTH, little or no assembly code would be needed.

Using all in-line code, (MACROS) could increase the overall speed by maybe 10 percent, but at
a cost of three times the original program memory (5K to 15K here).

SUMMARY

The quad-951 1 system described here works rather well, but is time consuming to program and
debug. A typical application would only have one APU, which would be much easier to use. One APU
would also make writing a compiler a feasible and useful task.

Overlapped APU operation makes program changes something to be done with great care. Also,
the carry flag and the X-register sometimes are expected to ietain their value through several subroutines.
The CPU is often doing non-APU operations while some APU's are still busy. Overflow and underflow
may be a problem and must be considered, particularly in a real-time system. The LSS unit continues to
operate as expected.

4

47 .

REFERENCES

1. DeJong Marvin L.: Interfacing the AM9511 Arithmetic Processing Unit. COMPUTE!,
November-December 1980.

2. Hart, John E.: Microcrunch: An Ultra-fast Arithmetic Computing System. MICRO, August 1981
(Part 1), September 1981 (Part 2).

• i

5

wo
^

Wt

M̂
H

m
Z H

W
2

0

Q O

r

a

N	 ^
S
f

0
F-
QN
O

o
N ^

N ^'

Q
a ^+̂

Q C7

o —

W
F
a

W

a
WI
m
F
N

<
H
a
Q

J`h

V1

b

E-'

ao

L%

a

	

a	 a

	

V	 U
aa	 ^9

	

a0 a	 as
u. V u. a

^\	 Z

	^ 	 a

O

	

LL 	 u

>	 y^'
>	 Q	 W ^	 bi

J
wi

LLi	 a	 < f. <
a	 +	 W <J _a	 Q	 a ^<

^a	 , e W

N
Z	 ^'	 I ^	 L	

w
f

3	 a	
LL	 4	 c	 a	 Oa-

	

►-	 a
Q U	 OLL	 a	 la	 O	 a

ORIGINAL, PAGE 13
1	 OF POOR QUALITY

W

J
2

E1

6

1!

END

AO

•CLK

Vi1

A4

RESET

RAM

mo

RAM

02

READY

2

d7

06

Di

04

03

D2

D1

DO

.y	 ^K

RULES

1) CHIP ENABLE CS AND AO MUST BE STABLE BEFORE RD OR WR GO LOW,
2) RD MUST RETURN HIGH ZD NS BEFORE C3 GOES HIGH OR AO CHANGES.
3) WA MUST RETURN HIGH AT LEAST 25 NS BEFORE Et GOES HIGH OR AO CHANGES.

a	 4) ON READ CYCLE NOT READY MUST BESET LO BEFORE 0 2 GOES HIGH.

•CLK	 THE CLOCK FREQUENCY FOR THE 8231A IS 4 MHZ.

00	 THE AIM 66 CHIP CLOCK IS 2 MHZ. OR LESS.

ADDRESS LINES (INCLUDES VS1) SHOULD BE BUFFERED.

Figure 2. Single-unit interface.	 N

7

47

_n

3 ^

7

^ ^ Nh
U

	

< W J I N	 4	 f 	 <	 ^	 ^

	

W V '	 `	 d
Q

ORIGINAL PAGE IS
Or POOR QUALITY

8
w
y
C

C
7
.Q
c77
d

M

7
O(i

LL

I...^	 -

NUM1=74 LDA #$1C
NUM2=61 STA APUC (FLOAT)
APUD-$9010 (DATA) A2	 BIT APUC
APUC-S9011 (CMD) FMI 82 (Wii,T)
DATRO=$700 (RESULT) LDA #$12
* = $800 STA APJC FMUL)
LDA #NUMI A3 BIT APUC
STA APUD BM? R3 (WAIT)
LDA 00 LDA M$IE
STA APUD STA Ai,'C (FIXED)
STA APUD A4	 BIT APUC
STA APUD (e7IRST	 M) 3MI A4 (WHIT)
LDA	 #$1C LDA APUD
STA APUC (FLOAT) STA DPTAO

Al	 DIT	 HPUC LD9 APUD
BMI	 Al (WAIT) STA DATA0+1
LDA #NUM2 LDA APUD
STA APUD STA DATAO+2
LDA #0 LDA ^iPUD
STA APUD STA DATAO+3 (RESULT)
STA APUD BRK
STA	 AP 1 JD (SECOND #) .END

Figure 4. Single-unit multiply example.

,f

9

1,.1,

USES 42 USEC
BASIC VAR LOC (S BYTES)
8231 PUFFER (4 BYTES)

..

•=S3000
BADR=143
BUF82=SFE

T082 LDY M2
LDA (BADR),Y
YNE T01
LDY 03
LDA NA

T03 STA (BUF8R),Y
DEY
BNE 703
R7S

TO1 CMP MYCO
BCC T04
LDA M53F
BNE T0S

T04 CMP #$40
BCS T06
LDA 0$40

T0S ASL A
TAX
INY
LDA (BRDR),Y
ASL A
TXA
ROR R
LEY
STA (BUF8c),Y
I.-DR NSFF
LDY M3

T02 STA (BUF8;),Y
DEY
BNE T02
RTS

T136 ASL A
TAX
INY
LDA (BADR),Y
CMP NS60
CRP MS90
SYR (BUFB;),Y
TXA
ROR A
DEY
STA (BUF82),Y
LDY M2
LDA (BADR),Y
3TR (BUFOR),Y
INY
LDA (BADR),Y
STA (BUF9i),Y
P.TS

CHECK IF EXP =9
AND I F SO SET
ALL 8231-0

<CO ••-> NO OVF
CLEAR --> <
OVF

>=40 --> NO OF
SET --> >=
OF
LEFT ONE SC CAN ROR
NEED ACC
Y•1

P'JT M. SILAN INTO CARRY
GET OVF OR OF
APPEND CARRY .0 IT
Y-0

ALL ONES IN
MANTISSA
(INCL BIT 23)

LINE UP FOR LATER ROR
NEED ACC SAVED
Y=1

SET CARRY IF BIT 7 SE'
BIT 7 TO 1

RECALL DATA
AFPEND CARRY
Y-0

DIRECT TRANSFER OF
THESE BYTES
(TRUNCATE 4 TO 3)

Figure 5. AIM-to-8231 format conversion.

10

*=$3100 USES 54 USEC
TOBA LDY N4

LDA N0
STA (BADR),Y ALWAYS ZERO
DEY Y=3

BA1 LDA (BUF82),Y
STA (BADR),Y
DEY 3,2,1	 BUT NOT	 Y=0
BNE BA1
AND #$FF CHECK	 IF=O ALWAYS	 (SET FLAGS)
BNE BA2
STA (BADR),Y BYTE ZERO ALSO=O
RTS

BA2 LDA (BUF82),Y NOT=O
BMI BA3 SKIP	 IF	 M.S.	 OK
INY Y=1
LDA (BUF82),Y
AND Nf7F M.S.=O
STA (BADR),Y
DEY Y=0

BA3 LDA (BUF82),Y
AND Ml7F CLEAR	 M.S.	 BIT	 (E?(P	 NOW)
CMP Mf40 SET CARRY	 IF	 ?= $40
BCS BA4
ORA #$80 SET	 E.S.

BA4 STA (BADR),Y
RTS

Figure 6. 8231-to-AIM format conversion.

APPENDIX

TIMELINE SIMULATION

The entire simulation is somewhat lengthy, so only the subroutine that actually calculates the
time intervals will be discussed. It can then be used as needed in large systems. All other subroutines
eventually call this one. It calculates and plots CPU time plus the four APU times, idle as well as busy
It checks for illegal overlap, namely, writing to an already busy APU. Preventing such overlap is the
software designer's responsibility since the hardware cannot prevent it.

There are six subroutine parameters. TI is the total CPU time including any subroutine call
overhead. The assumed normal situation is that a subroutine is being simulated. If not, then T1 is made
negative and the call overhead time is not included. The user is expected to include the subroutine
return overhead time whenever it occurs since this is CPU time. Subroutine call overhead is automatically
added unless T1 is negative. The return overhead is not automatically handled because it often is sepa-
rated from the first part of its subro, i ne and because it is easier to handle than the call overhead.

Dt is the delta time (CPU) until an APU is first operated. The subroutine call overhead, if any,
is included in Dt. Roth T1 and Dt are measured from the time before a subroutine call was initiated,
if any.

The P value is the time that an APU is committed to a task, either executing an instruction, or
loading or unloading a command or data. A minus sign means the CPU will wait until that APU is ready.

If Grf = 1, then the full graph will be drawn. If Grf = 0, only execution times will be available
to be printed (by external routines). The graph shows busy time for the CPU and each of the four
APU's. Available CPU an- 1 APU times are immediately visible. The final time is always available and it
can be worst-case (typically) or otherwise, depending on needs. Other items such as percent utilization,
efficiency, etc., of various schemes could be added.

Any sequence of machine code can be simulated wish this subroutine. Pure CPU time can be
done as well as all overlapped APU's. Routines may have to be split in various ways to make them fit.
Variable times will need to be fixed, with, usually, either the minimum or maximum value.

Figure A-1 is the subroutine listing as written in HP 9845 BASIC. It assumes a 2 MHz 6502 and
4 MHz APU's. The calculation portion can easily be adapted io another machine, but the grap:tics may
be more involved.

Figure A-2 shows the results when this subroutine is applied to the LSS project. Changes are
easy to make and their effects easy to see. With so much overlap taking place, making a change often
produces an unexpected result. Times used here are in microseconds and there are no fractional values
permitted. Calculated final time is 19.5 ms worst case, and measured times were in the 18 ms range.

Earlier results indicated over 20 ms (22.1) and various otherwise idle times were put to use in
achieving the reduction. Further reduction would be quite difficult. Only a 10 percent reduction as
obtained here is probably not typical, since the original code was already tightly written.

PRECEDING PAGE BLANK NOT MUM 	 13

ORIGINAL PAGE IS
DE POOR QUALITY

1090 SUB C(TI,Dt,PI,P2,P3,P4)
1100 COM X1, X2,Yl,Y2,Z1,Z2,E1,E2,VI ,C,Xx,Yy,F.sdd,Fmu1,Nop,Fsub,FIts,Ptof,Popf,Xc
hf',Chsf,Fixs,Grf
1110 Cc=C.+3*(T1>=0)
1120 Dc=Dt.-3*(T1>=0)
1130 M=MA'X((X2-C:c)*(P11"0),:Y2-Cc:?*: P21< 0),iZ2-Cc) *(P3 <.0),CE2-Cc) *(P4<0),0)
1140 M=INT(INT((M +1):'3.5)*3.5)
1150 Mm=Cc+Dc+P1
1160 C:,=Mm
1170 IF (F'1>0) AND (:X2`=Cx) THEN PRINT "AP01 OVERLAP";C;T1;Dt.;X2-Mm
1180 IF (P2>0) AND (Y2`=Cx) THEN PRINT "APU2 OVERLAP";C;T1;Dt.;Y2-Mm
1190 IF (P3>0) AND (Z2.=Cx) THEN PRINT "APU3 OVERLAP";C:;T1;Dt;Z2-Mm
1200 IF (P4>0::. AND (E2;=Cx) THEN PRINT "AF'U4 O'-,'ERLAP";C;T1;Dt;E2-,'m
110 T1=ABS(T1)+M
1220 IF -::P1=0) OR (P1=-1) THEN 1250
1230 IF .:2.=C: THEN X1=P'm
1240 ;2=Mn + A B S (P1)
1'250 IF (F'2 = 0:' OR i.P2=- 1 	 THEN 1
1260 IF `1'2<=C. THEN Y'1=Vm
12'0 Y2=P1m+ABSkP2)
12.=0 IF (F'3 = 0:: 0R c:P) THEN 1:310
12-9 0 IF Z2%=C THEN Z1=Pm
1300 Z2=Mm+ABS(P3)
1310 IF (F'4=0) OR (P4=-1::) THEN 1340
1320 IF E2::=C THEN E1=P'm
1.330 E'2=Mm+ABS(P4)
1:340 REM PRINT C; T1;Dt;P1;Plrii;F'1;F'	 F':3;F'4,X1; ;2;'r'1;'r'2;Z1;Z2;E1;E2
1350 IF Grf=O THEN C:=C:+T1
1360 IF Grf=O THEN 164E
1:3'0 T ,=Yy*Xx.1"6
1380 FOR T = C: TO C:+Ti-1
1:390 IF (.T<:>INT(T,Ty:)*Ty') OR (:T=O) THEN 1440
1400 DUMP GRAPHICS
1410 1'1=-5
1420 GCLEAR
14:,0 GRID 10, E. 09 Yy9 5,1,2
1440 Tt =T MUD Xx
14,010 Ts=Tt+1
1460 IF (.Tt.=0) AND -::T< O) THEN ';'1=': 1 +r.

1470 IF .T'=Cc) AND (T<Cc+M; THEN 1500
1480 MOVE Tt,'dl
1490 DRAW T=, 1
1500 IF (T<:X1) OR -..T>=k2) THEN 1530
1510 MOVE Tt,':+1+1
1520 DRAW Ts, 4'1+1
15:30 IF (T <::Y1::- OR (.T':>='r2:, THEN 1560
1540 MOVE Tt,V1+2
1550 DRAW Ts,'-J1+
1560 IF (T<Z1) OR -::T> = 22) THEN 1590
1570 MOVE Tt,'.J1+:3
1580 DRAW T_.,V1+3
15'30 IF (T<:E1) OP (T> = E2? THEN 1x20
1600 MOVE Tt.,V1+4
1610 DRAW T=_.VI+4
1620 NEXT T
1630 C=T
164 C+ = UBE: IT

Figure A-1. Timeline subroutine.

14

R• 3113 919
ACCELB 1816
WT 3X3 3:75
OTGET 4872
OGET 4417
AT 3r3 5945
TROT 6842
RCCELT 8503

ORIGINAL PAGE IS
OF POOR QUALITY

Figure A-2. LSS timeline.

y	_ 	 _	 n

4b 3x3 10011
OBCET 18988
OGET 11253
ZANDWB 12781
2ANDWT 14588
TORK 16258
END lse 6 17341
END 2nd "18684
FINAL TIME 14455

J

APPROVAL

HARDWARE MATH FOR THE 6502 MICROPROCESSOR

By Ralph Kissel and James Currie

The information in this report has been reviewed for technical content. Review of any informa-
tion concerning Department of Defense or nuclear energy activities or programs has been made by the
MSFC Security Classification Officer. This report, in its entirety, has been determined to be unclassified.

W. C. BRADFORD
Director, Information and Electronic
Systems Laboratory

I

I	 ^

16

*U.S. GOVERNMENT PRINTING OFFICE 1985-544048/20002

