427 research outputs found

    Analytical evaluation of ILM sensors, volume 1

    Get PDF
    The functional requirements and operating environment constraints are defined for an independent landing monitor ILM which provides the flight crew with an independent assessment of the operation of the primary automatic landing system. The capabilities of radars, TV, forward looking infrared radiometers, multilateration, microwave radiometers, interferometers, and nuclear sensing concepts to meet the ILM conditions are analyzed. The most critical need for the ILM appears in the landing sequence from 1000 to 2000 meters from threshold through rollout. Of the sensing concepts analyzed, the following show potential of becoming feasible ILM's: redundant microwave landings systems, precision approach radar, airborne triangulation radar, multilateration with radar altimetry, and nuclear sensing

    Knowledge-based segmentation of SAR data with learned priors

    Get PDF
    ©2000 IEEE. Personal use of this material is permitted. However, permission to reprint/republish this material for advertising or promotional purposes or for creating new collective works for resale or distribution to servers or lists, or to reuse any copyrighted component of this work in other works must be obtained from the IEEE. This material is presented to ensure timely dissemination of scholarly and technical work. Copyright and all rights therein are retained by authors or by other copyright holders. All persons copying this information are expected to adhere to the terms and constraints invoked by each author's copyright. In most cases, these works may not be reposted without the explicit permission of the copyright holder.DOI: 10.1109/83.821747An approach for the segmentation of still and video synthetic aperture radar (SAR) images is described in this note. A priori knowledge about the objects present in the image, e.g., target, shadow, and background terrain, is introduced via Bayes' rule. Posterior probabilities obtained in this way are then anisotropically smoothed, and the image segmentation is obtained via MAP classifications of the smoothed data. When segmenting sequences of images, the smoothed posterior probabilities of past frames are used to learn the prior distributions in the succeeding frame. We show with examples from public data sets that this method provides an efficient and fast technique for addressing the segmentation of SAR data

    Addendum to proceedings of the 1978 Synthetic Aperture Radar Technology Conference

    Get PDF
    Various research projects on synthetic aperture radar are reported, including SAR calibration techniques. Slot arrays, sidelobe suppression, and wide swaths on satellite-borne radar were examined. The SAR applied to remote sensing was also considered

    Proceedings of the Augmented VIsual Display (AVID) Research Workshop

    Get PDF
    The papers, abstracts, and presentations were presented at a three day workshop focused on sensor modeling and simulation, and image enhancement, processing, and fusion. The technical sessions emphasized how sensor technology can be used to create visual imagery adequate for aircraft control and operations. Participants from industry, government, and academic laboratories contributed to panels on Sensor Systems, Sensor Modeling, Sensor Fusion, Image Processing (Computer and Human Vision), and Image Evaluation and Metrics

    Airborne Wind Shear Detection and Warning Systems. Second Combined Manufacturers' and Technologists' Conference, part 1

    Get PDF
    The Second Combined Manufacturers' and Technologists' Conference hosted jointly by NASA Langley (LaRC) and the Federal Aviation Administration (FAA) was held in Williamsburg, Virginia, on October 18 to 20, 1988. The purpose of the meeting was to transfer significant, ongoing results gained during the second year of the joint NASA/FAA Airborne Wind Shear Program to the technical industry and to pose problems of current concern to the combined group. It also provided a forum for manufacturers to review forward-look technology concepts and for technologists to gain an understanding of the problems encountered by the manufacturers during the development of airborne equipment and the FAA certification requirements

    Aspects of Synthetic Vision Display Systems and the Best Practices of the NASA's SVS Project

    Get PDF
    NASA s Synthetic Vision Systems (SVS) Project conducted research aimed at eliminating visibility-induced errors and low visibility conditions as causal factors in civil aircraft accidents while enabling the operational benefits of clear day flight operations regardless of actual outside visibility. SVS takes advantage of many enabling technologies to achieve this capability including, for example, the Global Positioning System (GPS), data links, radar, imaging sensors, geospatial databases, advanced display media and three dimensional video graphics processors. Integration of these technologies to achieve the SVS concept provides pilots with high-integrity information that improves situational awareness with respect to terrain, obstacles, traffic, and flight path. This paper attempts to emphasize the system aspects of SVS - true systems, rather than just terrain on a flight display - and to document from an historical viewpoint many of the best practices that evolved during the SVS Project from the perspective of some of the NASA researchers most heavily involved in its execution. The Integrated SVS Concepts are envisagements of what production-grade Synthetic Vision systems might, or perhaps should, be in order to provide the desired functional capabilities that eliminate low visibility as a causal factor to accidents and enable clear-day operational benefits regardless of visibility conditions

    Airport surface operations requirements analysis

    Get PDF
    This report documents the results of the Airport Surface Operations Requirements Analysis (ASORA) study. This study was conducted in response to task 24 of NASA Contract NAS1-18027. This study is part of NASA LaRC's Low Visibility Surface Operations program, which is designed to eliminate the constraints on all-weather arrival/departure operations due to the airport/aircraft ground system. The goal of this program is to provide the capability for safe and efficient aircraft operations on the airport surface during low visibility conditions down to zero. The ASORA study objectives were to (1) develop requirements for operation on the airport surface in visibilities down to zero; (2) survey and evaluate likely technologies; (3) develop candidate concepts to meet the requirements; and (4) select the most suitable concept based on cost/benefit factors

    Ice Shelf Melt Rates and 3D Imaging

    Get PDF
    Ice shelves are sensitive indicators of climate change and play a critical role in the stability of ice sheets and oceanic currents. Basal melting of ice shelves plays an important role in both the mass balance of the ice sheet and the global climate system. Airborne- and satellite based remote sensing systems can perform thickness measurements of ice shelves. Time separated repeat flight tracks over ice shelves of interest generate data sets that can be used to derive basal melt rates using traditional glaciological techniques. Many previous melt rate studies have relied on surface elevation data gathered by airborne- and satellite based altimeters. These systems infer melt rates by assuming hydrostatic equilibrium, an assumption that may not be accurate, especially near an ice shelf’s grounding line. Moderate bandwidth, VHF, ice penetrating radar has been used to measure ice shelf profiles with relatively coarse resolution. This study presents the application of an ultra wide bandwidth (UWB), UHF, ice penetrating radar to obtain finer resolution data on the ice shelves. These data reveal significant details about the basal interface, including the locations and depth of bottom crevasses and deviations from hydrostatic equilibrium. While our single channel radar provides new insight into ice shelf structure, it only images a small swatch of the shelf, which is assumed to be an average of the total shelf behavior. This study takes an additional step by investigating the application of a 3D imaging technique to a data set collected using a ground based multi channel version of the UWB radar. The intent is to show that the UWB radar could be capable of providing a wider swath 3D image of an ice shelf. The 3D images can then be used to obtain a more complete estimate of the bottom melt rates of ice shelves

    A Multispectral Look at Oil Pollution Detection, Monitoring, and Law Enforcement

    Get PDF
    The problems of detecting oil films on water, mapping the areal extent of slicks, measuring the slick thickness, and identifying oil types are discussed. The signature properties of oil in the ultraviolet, visible, infrared, microwave, and radar regions are analyzed

    Low cost passive radar through software defined radio

    Get PDF
    Passive radars utilise existing terrestrial radio signals, such as those produced by radio or television stations, to track objects within their range. This project aims to determine the suitability of low cost USB TV tuners as hardware receivers for a Software Defined Radio (SDR) based passive radar receiver. Subsequently determining its effectiveness in producing inverse synthetic aperture radar images using data collected from Digital Television signals. Since the initial identification of passive radar, Militaries the world over have been using it as a part of electronic warfare. The evolution of SDR has enabled greater access to the technologies required to implement passive radar, with the greatest limitation being the cost of the required hardware. The availability of low cost hardware was therefore investigated to determine its suitability and subsequently the availability of passive radar to a wider audience. Research was conducted into the available SDR receivers, and comparison of specifications was made against the low cost receiver used in the project. A functional hardware platform based around the Realtek RTL2832U chipset has been developed to determine its suitability as a low cost receiver verifying its ability to coherently receive radio signals for target identification. A complex ambiguity function was implemented to interpret sampled data windows, with the output of these windows to be compared to the requirements for an inverse synthetic aperture radar input, thus determining the suitability of the device. Interpretation of the received data has identified that although the hardware is capable, a real time implementation of data processing is not yet possible, impeding the ability to determine the suitability of the receiver as an inverse synthetic aperture receiver. The results of testing show that the hardware is capable of receiving and producing radar images, however due to the bandwidth of DVB-T signals , and the bandwidth limitations inherent in RTL-SDR dongles, they have proven not to be suitable for DVB-T based inverse synthetic aperture radar receivers
    • …
    corecore