6 research outputs found

    Improved Runtime Bounds for the Univariate Marginal Distribution Algorithm via Anti-Concentration

    Get PDF
    Unlike traditional evolutionary algorithms which produce offspring via genetic operators, Estimation of Distribution Algorithms (EDAs) sample solutions from probabilistic models which are learned from selected individuals. It is hoped that EDAs may improve optimisation performance on epistatic fitness landscapes by learning variable interactions. However, hardly any rigorous results are available to support claims about the performance of EDAs, even for fitness functions without epistasis. The expected runtime of the Univariate Marginal Distribution Algorithm (UMDA) on OneMax was recently shown to be in O(nλlogλ)\mathcal{O}\left(n\lambda\log \lambda\right) by Dang and Lehre (GECCO 2015). Later, Krejca and Witt (FOGA 2017) proved the lower bound Ω(λn+nlogn)\Omega\left(\lambda\sqrt{n}+n\log n\right) via an involved drift analysis. We prove a O(nλ)\mathcal{O}\left(n\lambda\right) bound, given some restrictions on the population size. This implies the tight bound Θ(nlogn)\Theta\left(n\log n\right) when λ=O(logn)\lambda=\mathcal{O}\left(\log n\right), matching the runtime of classical EAs. Our analysis uses the level-based theorem and anti-concentration properties of the Poisson-Binomial distribution. We expect that these generic methods will facilitate further analysis of EDAs.Comment: 19 pages, 1 figur

    Level-Based Analysis of the Univariate Marginal Distribution Algorithm

    Get PDF
    Estimation of Distribution Algorithms (EDAs) are stochastic heuristics that search for optimal solutions by learning and sampling from probabilistic models. Despite their popularity in real-world applications, there is little rigorous understanding of their performance. Even for the Univariate Marginal Distribution Algorithm (UMDA) -- a simple population-based EDA assuming independence between decision variables -- the optimisation time on the linear problem OneMax was until recently undetermined. The incomplete theoretical understanding of EDAs is mainly due to lack of appropriate analytical tools. We show that the recently developed level-based theorem for non-elitist populations combined with anti-concentration results yield upper bounds on the expected optimisation time of the UMDA. This approach results in the bound O(nλlogλ+n2)\mathcal{O}(n\lambda\log \lambda+n^2) on two problems, LeadingOnes and BinVal, for population sizes λ>μ=Ω(logn)\lambda>\mu=\Omega(\log n), where μ\mu and λ\lambda are parameters of the algorithm. We also prove that the UMDA with population sizes μO(n)Ω(logn)\mu\in \mathcal{O}(\sqrt{n}) \cap \Omega(\log n) optimises OneMax in expected time O(λn)\mathcal{O}(\lambda n), and for larger population sizes μ=Ω(nlogn)\mu=\Omega(\sqrt{n}\log n), in expected time O(λn)\mathcal{O}(\lambda\sqrt{n}). The facility and generality of our arguments suggest that this is a promising approach to derive bounds on the expected optimisation time of EDAs.Comment: To appear in Algorithmica Journa

    The linear hidden subset problem for the (1+1) EA with scheduled and adaptive mutation rates

    Full text link
    We study unbiased (1+1)(1+1) evolutionary algorithms on linear functions with an unknown number nn of bits with non-zero weight. Static algorithms achieve an optimal runtime of O(n(lnn)2+ϵ)O(n (\ln n)^{2+\epsilon}), however, it remained unclear whether more dynamic parameter policies could yield better runtime guarantees. We consider two setups: one where the mutation rate follows a fixed schedule, and one where it may be adapted depending on the history of the run. For the first setup, we give a schedule that achieves a runtime of (1±o(1))βnlnn(1\pm o(1))\beta n \ln n, where β3.552\beta \approx 3.552, which is an asymptotic improvement over the runtime of the static setup. Moreover, we show that no schedule admits a better runtime guarantee and that the optimal schedule is essentially unique. For the second setup, we show that the runtime can be further improved to (1±o(1))enlnn(1\pm o(1)) e n \ln n, which matches the performance of algorithms that know nn in advance. Finally, we study the related model of initial segment uncertainty with static position-dependent mutation rates, and derive asymptotically optimal lower bounds. This answers a question by Doerr, Doerr, and K\"otzing

    Runtime analysis of the (1+1) EA on computing unique input output sequences

    Get PDF
    AbstractComputing unique input output (UIO) sequences is a fundamental and hard problem in conformance testing of finite state machines (FSM). Previous experimental research has shown that evolutionary algorithms (EAs) can be applied successfully to find UIOs for some FSMs. However, before EAs can be recommended as a practical technique for computing UIOs, it is necessary to better understand the potential and limitations of these algorithms on this problem. In particular, more research is needed in determining for what instance classes of the problem EAs are feasible, and for what instance classes EAs are provably better than random search strategies.This paper presents rigorous theoretical and numerical analyses of the runtime of the (1+1) EA and random search on several selected instance classes of this problem. The theoretical analysis shows firstly, that there are instance classes where the EA is efficient, while random testing fails completely. Secondly, an instance class that is difficult for both random testing and the EA is presented. Finally, a parametrised instance class with tunable difficulty is presented. The numerical study estimates the constants in the asymptotic expressions obtained in the theoretical analysis, and the variability of the runtime. The numerical results fit well with the theoretical results, even for small problem instance sizes. Together, these results provide a first theoretical characterisation of the potential and limitations of the (1+1) EA on the problem of computing UIOs

    Design and analysis of different alternating variable searches for search-based software testing

    Get PDF
    Manual software testing is a notoriously expensive part of the software development process, and its automation is of high concern. One aspect of the testing process is the automatic generation of test inputs. This paper studies the Alternating Variable Method (AVM) approach to search-based test input generation. The AVM has been shown to be an effective and efficient means of generating branch-covering inputs for procedural programs. However, there has been little work that has sought to analyse the technique and further improve its performance. This paper proposes two different local searches that may be used in conjunction with the AVM, Geometric and Lattice Search. A theoretical runtime analysis proves that under certain conditions, the use of these searches results in better performance compared to the original AVM. These theoretical results are confirmed by an empirical study with five programs, which shows that increases of speed of over 50% are possible in practice
    corecore