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Manual software testing is a notoriously expensive part of the software development 
process, and its automation is of high concern. One aspect of the testing process is the 
automatic generation of test inputs. This paper studies the Alternating Variable Method 
(AVM) approach to search-based test input generation. The AVM has been shown to be an 
effective and efficient means of generating branch-covering inputs for procedural programs. 
However, there has been little work that has sought to analyse the technique and further 
improve its performance. This paper proposes two different local searches that may be 
used in conjunction with the AVM, Geometric and Lattice Search. A theoretical runtime 
analysis proves that under certain conditions, the use of these searches results in better 
performance compared to the original AVM. These theoretical results are confirmed by an 
empirical study with five programs, which shows that increases of speed of over 50% are 
possible in practice.

© 2015 The Authors. Published by Elsevier B.V. This is an open access article under the 
CC BY license (http://creativecommons.org/licenses/by/4.0/).

1. Introduction

Testing software for functional correctness can be classified as two distinct types of activity, black-box testing—where 
the software is exercised with respect to a specification, formal or otherwise—and white-box testing, where test inputs are 
derived with respect to the software’s underlying program code. Black-box and white-box testing are complementary. While 
black-box testing can check that all expected functionality is present, i.e., trapping so-called faults of omission, white-box 
testing can check for faults of commission—unintended software behaviours not documented in the specification, but present 
in the implementation.

The degree to which white-box testing has been performed is measured by coverage metrics. The strongest coverage 
metric is path coverage. A program “path” is simply the sequence of program statements executed through a program, 
decided by the outcomes of decisions at conditionals statements such as if, while and for etc., and path coverage is the 
proportion of all possible paths through the software that were exercised by the tests. However, for any realistic program, 
full path coverage is an unrealistic target due to the potentially infinite number of paths that may be involved [1]. A more 
achievable and common goal is branch coverage, where every decision in the program is executed as true and false.

✩ This article was originally scheduled to be compiled on the Special issue Evolutionary Computation 2013, now getting compiled in to a regular issue.
✩✩ A preliminary conference version with parts of the results appeared at GECCO 2013 [11].
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Software testing is an expensive and labour-intensive process. One potential way to lower the costs involved in testing 
is to generate inputs for achieving white-box coverage automatically, and a technique that has been of particular interest 
to researchers in recent years is that of search-based test input generation [17,13,16,26]. In search-based testing, stochastic 
optimisation techniques are employed to drive the dynamic executions of a piece of software towards the coverage of a 
certain test goal, for example the execution of a particular program branch. Due to the non-linearity of software, it is usually 
non-obvious which inputs will execute which branches. Search-based testing reformulates the predicates in a program that 
guard the execution of a branch into a fitness function, such that inputs closer to satisfying those predicates are awarded 
better fitness values. These fitness functions may then be optimised by an optimisation technique, such as a randomised 
search heuristic, to locate an input for a particular branch.

A simple local search optimisation technique that has been shown to be effective for covering branches of procedural 
programs is the Alternating Variable Method (AVM) [13]. In a recent empirical study by Harman and McMinn with a range 
of C programs, the AVM was able to cover the majority of branches faster than a genetic algorithm [9]. This suggests that 
the underlying fitness landscape for covering individual program branches is relatively simple most of the time, with more 
“heavyweight” population-based approaches like Genetic Algorithms only required in a minority of cases [19]. Despite this, 
there has been relatively little work devoted to analysing and improving the performance of the AVM technique.

The AVM can be regarded as a general framework in which a local search strategy is applied in turn to each individual 
input vector variable of the program under test. In this paper, we view the local search strategy to be a component of the 
overall framework that may be substituted for another. The original AVM applied an accelerated hill climb that we refer to 
as Iterated Pattern Search (IPS), where “exploratory” moves in a direction of fitness improvement are proceeded by “pattern” 
steps in the same direction. Pattern steps iteratively increase in size for as long as improvements in fitness continue. As 
soon as fitness peaks, exploratory moves are again made to re-establish a new direction.

In this paper, we propose to replace IPS with two different approaches for exploring individual dimensions of the input 
vector—Geometric Search and Lattice Search (see Section 5 for details and formal definitions). Geometric and Lattice Search 
are elimination searches that are able to find the optimum of a one dimensional function that is unimodal on a given 
interval. They work by comparing the fitness values of two points at predetermined positions, using the result to select a 
new but smaller sub-range. The algorithm iterates until it is left with one point. Geometric Search splits the range in two 
by comparing two positions in the middle of the interval to determine whether an optimum is contained in the bottom or 
top half of the interval. Lattice Search compares points that are offset by Fibonacci numbers.

We examine all three variants of the AVM through theoretical runtime analyses and through empirical experiments, in 
order to understand and improve the performance of this popular approach to search-based test input generation.

While prior theoretical runtime analyses of the original AVM with IPS involved specific programs and branches [2,3], we 
furnish a more general result, proving that for all unimodal functions Geometric and Lattice Search are faster than IPS, when 
used in the framework of AVM. In a more general sense, Geometric and Lattice Search converge faster to local optima than 
IPS. These theoretical results are complemented by an empirical study on open source programs, involving unimodal as well 
as non-unimodal fitness landscapes. On most branches the alternative local searches perform significantly better than IPS. 
This includes unimodal landscapes, in agreement with our theory, as well as non-unimodal ones, where the assumptions of 
our theory are not met. This indicates that faster convergence to local optima is beneficial on a broad range of instances. 
The only departure from this pattern was found for one complex landscape of a type for which—as observed in prior studies 
[9,19]—a Genetic Algorithm is significantly better than AVM. A further theoretical analysis for this challenging branch shows 
that worse performance is due to the kind of local optima being returned by local search. On this branch, the alternative 
local searches are faster in finding some local optimum, but which local optimum is returned has an adverse effect on global 
search performance in this specific case.

The contributions of this paper are therefore as follows:

1. The incorporation of two different local searches Geometric Search and Lattice Search into the AVM approach for finding 
test inputs for programs (Section 5).

2. A theoretical runtime analysis of the local search used in the original AVM approach, IPS (Section 4), and Geometric 
and Lattice Search, on unimodal functions. Starting at distances up to d from the global optimum, IPS has a worst-case 
(regarding the choice of the starting point) running time of Θ((log d)2) on every unimodal function. The same holds for 
its average-case performance on a simple unimodal function. Geometric and Lattice Search perform well on all unimodal 
functions as they only need time O (log d) in the worst case (Sections 5.1 and 5.2).

3. An empirical analysis of the AVM, comparing IPS, Geometric and Lattice Search on five programs, including unimodal 
and non-unimodal functions, complementing our theoretical results on unimodal functions and providing additional 
evidence that the alternative local searches also speed up search on non-unimodal functions, possibly due to their 
faster convergence to local optima (Section 6).

4. A theoretical analysis and discussion for landscapes with multiple local optima highlighting how global search perfor-
mance can be affected by the question which local optimum is being returned by local search (Section 7).
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Fig. 1. Example program for which branch-covering test inputs are required, and a partial control flow graph (CFG) showing fitness function computation 
(AL = approach level, BD = branch distance) for execution of the true branch from the second “if” statement of the program at CFG node (3) (correspond-
ing control flow graph node numbers appear to the left of relevant code statements).

2. Background

We introduce the fitness function and the representation used in this paper for search-based test input generation, the 
AVM algorithm, and important background to theoretical runtime analysis.

2.1. Representation and fitness function

The fitness function for covering individual program branches is a multivariate function mf (�x) → R, that takes an input 
vector �x = (x1, x2, . . . , xn), i.e., an ordered list of arguments that are passed to a procedure. In this paper, we assume �x can 
be modelled as a sequence of integers. Our contributions naturally extend to rational numbers, when these are represented 
using fixed-point representations (i.e., a fixed number of digits is used for both integer and fractional parts of a number).

The fitness function measures how “close” an input vector was to executing a target branch. It is minimised by the 
search, with a zero value indicating an input that covers the branch. The fitness function has two components, which we 
describe with the aid of the example in Fig. 1 and the execution of the true branch from control flow graph node (3).

The approach level relates to the decision points in the program appearing en route to reaching the target branch, and 
reflects the number of control flow graph (CFG) nodes unexecuted by �x on which the target branch is directly or transitively 
control dependent. These are decision nodes in the CFG that must be executed with a specific outcome, otherwise the target 
cannot be reached. For example, in Fig. 1 the target branch is control dependent on the if statements at CFG nodes (1) 
and (3), as demonstrated by the (partially-drawn) CFG. If the “wrong” choices are made at either of these decision points 
(i.e., the condition evaluates to true for node (1) or false for node (3)), the target is unexecuted by the path taken through 
the control structure of the program. If the true branch is taken at CFG node (1), the approach level is 1, since node (3) 
is unexecuted. If the false branch is taken from node (1), the approach level is 0, since all control dependencies will be 
executed.

The branch distance is computed from the values of variables at predicates where control flow diverged from the target at 
some control dependent CFG node. It is intended as a measure of “how far” the input was from executing a condition in the 
required way, so that control flow is directed towards, rather than away from the current target in question. For example, 
in Fig. 1, if the input takes the true branch at CFG node (1), the branch distance is computed using the formula y − x. 
With this formula, inputs are rewarded on the basis of how close they are to making y equal x, which would result in the 
alternative (and desired) false branch being taken instead of the true branch. If the search succeeds in finding an input that 
results in the false branch being taken at CFG node (1), but then takes the false branch at CFG node (3), the branch distance 
is computed using the formula |x − y|. This formula rewards inputs that are close to being equal, in order to encourage the 
search towards inputs that result in the desired true branch to be taken in the execution path.

The description of branch distance computation presented in the previous paragraph and in Fig. 1 is a simplified view 
designed to convey its intuition. A full list of rules and formulas for computing branch distance with different predicate 
types, originally due to Tracey [29], is presented in Table 1. In essence, the branch distance should always be a positive 
value when the branching condition is not executed as desired, else zero. Therefore, the addition of a non-zero constant K
(K = 1 for experiments in this paper) is required in order to accommodate for special cases where a “raw” branch distance 
calculation would return zero even when the predicate is still false. For example, for executing the predicate x< y as true
(as opposed to false in the example of Fig. 1), the formula x − y returns 0 when x = y (that is, when x< y is not true). 
Thus using r + K , where r is the raw branch distance value (i.e., the value of x − y for x< y as true), always ensures 
a distance greater than zero when the condition is not executed as desired. The addition of K is included in all branch 
distance formulas, whether it is strictly needed to distinguish special cases such as these or not. In the table, a maps to the 
left hand side of the predicate, and b the right. For instance, for the branching predicate x % y == 3 (“x % y” meaning 
“x mod y”), a becomes x % y and b becomes 3. Due to the possibility of short-circuiting (e.g. with the C operators “||” 
and “&&”), predicates consisting of disjuncts and conjuncts require special handling. For brevity, we refer interested readers 
to reference [18].
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Table 1
Tracey’s branch distance functions for relational predicates (from reference 
[29]). The value K , K > 0, refers to a constant which is always added if the 
predicate is not true.

Relational predicate Branch distance computation

Boolean if TRUE then 0 else K
a = b if |a − b| = 0 then 0 else |a − b| + K
a �= b if |a − b| �= 0 then 0 else K
a < b if a − b < 0 then 0 else (a − b) + K
a ≤ b if a − b ≤ 0 then 0 else (a − b) + K
a > b if b − a < 0 then 0 else (b − a) + K
a ≥ b if b − a ≤ 0 then 0 else (b − a) + K

In practice, the maximum branch distance varies from branch to branch, depending on the types of the variables involved 
in the branch predicate. Instead of applying costly analysis to determine variable types, it is easier, in practice, to simply 
apply a generic normalisation function. In this paper we use the function norm(d(�x)) = 1 − 1.001−d(�x) , where d(�x) returns 
the value of r + K for �x and norm(d(�x)) is the normalised branch distance. The complete fitness value is computed by 
normalising the branch distance and adding it to the approach level, i.e., mf (�x) = AL(�x) + norm(d(�x)) [31]. As the co-domain 
of norm is [0, 1) and the approach level takes integer values, the latter always represents the dominating term in the fitness 
function. In other words, a search point �x has a better fitness than �y if its approach level is smaller, or if they have equal 
approach levels, but �x has a smaller branching distance. The choice of the normalisation function is not important when 
only the relative ranking of solutions is of concern—as in this paper—and identical rankings are produced (e.g., when the 
constant 1.001 is replaced in norm with any other base greater than 1); or, the lexicographic ordering of a bi-objective 
function consisting of the approach level and the branch distance is minimised.

2.2. The alternating variable method (AVM)

The AVM can be viewed as a general framework that proceeds from a random starting point in the search space, and 
works by calling a local search function on each element of the input vector in turn. That is, while the local search is 
performing “moves” on one component of the vector, the values for all other dimensions remain fixed. If, during this search, 
a fitness of zero is found, the AVM terminates with the branch-covering input. If, however, a local optimum is reached, the 
AVM advances to the next element. If the fitness cannot be improved after cycling through all elements, the AVM restarts 
from another randomly-generated input, continuing the search for a branch-covering input until the number of fitness 
function evaluations exceeds a predefined maximum.

Algorithm 1 describes the AVM framework more formally. The initial vector is chosen uniformly at random using the 
function random( ). The algorithm transforms the multivariate fitness function mf into a one dimensional projection f
(line 5). The function f is equivalent to evaluating mf with an input vector where all components except xi are set to con-
stants and xi is substituted by the free parameter x. The function f is passed to a local search algorithm called local_search, 
along with xi , the starting point for the search. The variable c counts how many variables AVM has optimised since the last 
improvement of mf ; it restarts with a uniform random value for �x once it has cycled through all n variables with no suc-
cessful improvement in fitness. The fitness function keeps track of the number of fitness evaluations, maintaining a mapping 
of previously evaluated vectors to their corresponding fitness values. Once a branching-covering input vector is found, or 
when the number of evaluations exceeds the maximum (i.e., the search has failed), an exception is raised to terminate the 
search (not shown in our algorithms for space and simplicity).

Algorithm 1 The AVM framework for optimizing �x = (x1, . . . , xn).
1: while true do
2: let �x := random( )
3: let i := 1, c := 0
4: while c < n do
5: let f : x �→ mf (x1, . . . , xi−1, x, xi+1, . . . , xn)

6: let �x′ := local_search( f , xi)

7: if mf (�x′) < mf (�x) then
8: let �x := �x′ , c := 0
9: else

10: let c := c + 1
11: let i := (i mod n) + 1

2.3. Runtime analysis and related work

The aim of runtime analysis is to provide mathematical estimations of the running time of algorithms such as randomised 
search heuristics, in order to provide a better understanding of their underlying working principles and to help design better 
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Fig. 2. Examples of different fitness landscapes, including simple example code for a single variable x that generates these landscapes; abs(x) denotes the 
absolute value of x. To ease presentation, we used K = 0 in the branch distance and the base 1.001 of the normalisation function was changed to 1.1 for 
generating these plots. The function in (b) results from the strictly unimodal function (a) and adding global optima for x < 0. In (d) values x < 3 lead to a 
high fitness value because of the worse approach level.

algorithms. Runtime analysis has established itself as a leading theory in randomised search heuristics, with many new 
results in the last 15 years [25,4,10]. In particular, in the area of search-based software engineering recent results include 
computing input-output sequences [14,15], test input generation [3], and software project scheduling [21,22]. The following 
paragraphs review related work in runtime analysis.

Arcuri, Lehre, and Yao [3] were the first to present a runtime analysis of search-based input generation. They focussed 
on the triangle classification problem, which involves three integer variables describing side lengths of a potential triangle. 
The task is to classify the input as a scalene, equilateral, or isosceles triangle, or not representing a triangle. Their analysis 
was limited to the time for covering the equilateral branch of the problem. If the range of input values contains n numbers, 
the expected time of random search is Θ(n2). Hill climbing needs expected time Θ(n), i.e., in every iteration a single 
variable is increased or decreased by 1. For the AVM they proved an upper bound of O ((logn)2) and a weaker lower bound 
of Ω(log n) [3].

Later on, Arcuri [2] extended the analysis of the AVM to all branches of the triangle classification problem, showing that 
the expected running time is bounded from above by O ((log n)2) on all branches. Certain branches with many global optima 
(cf. Fig. 2(b) on p. 5) only need O (log n) time. In this paper we extend his results by proving an upper bound of O ((log n)2)

for all strictly unimodal functions (and functions with further global optima).
The performance of search heuristics on unimodal functions was also studied by Dietzfelbinger, Rowe, Wegener, and 

Woelfel [6,5]. They showed that algorithms that randomly displace the current position of a search algorithm using any 
fixed probability distribution need at least Ω((log d)2) time in the worst case, when the initial distance to the optimum 
is chosen from {1, . . . , d}. Thus, no algorithm using such a fixed distribution can do better than the original AVM. In other 
words, every local search strategy aiming at better performance needs to use a probability distribution, or search strategy, 
that depends on the initial point. This is the case for all AVM variants considered here.

3. Preliminaries

Our theoretical analyses focus on the time for finding a local optimum using local search within the framework of the 
AVM. Recall that these local searches are executed on one coordinate of the multivariate fitness function. We count the 
number of function evaluations, also called fitness evaluations, made by local search until an optimum is found for the first 
time. The motivation for considering fitness evaluations is that such an evaluation is the most costly operation as it involves 
executing the program. In some cases we count unique fitness evaluations, i.e., the number of different search points evaluated. 
This reflects the fact that it is easy to cache past evaluations, so evaluating the same point twice only incurs insignificant 
additional cost.

In our analyses we consider local search minimising a function f : D → R for a finite domain D ⊂ Z, which can be 
regarded a projection of the multivariate fitness function mf . For ease of presentation, we assume f (x) = ∞ for all x /∈ D . 
This includes settings where f is the branch distance before or after normalisation. As already noted in Section 2.1, the 
precise choice of a normalisation function is irrelevant in our work; all local searches analysed in this work only use 
information about the ranks of search points. So every strictly increasing normalisation function leads to the same sequences 
of search points queried and hence the same performance.

In previous work [2,3] the authors derived performance results with regard to the size n of the domain, e.g., {1, . . . , n}
or {−n/2 + 1, . . . , n/2}. Here we consider the initial distance d to the optimum instead, as this distance governs the running 
time of all local searches considered in this work. As d ≤ n upper running time bounds using d are generally stronger and 
more precise than those using n.
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In the remainder, we will deal with the following function classes, illustrated in Fig. 2. A function f : D → R with domain 
D ⊆ R is called strictly unimodal if it only has a single local optimum. If f is to be minimised (the case of maximisation is 
symmetric) this means that

f (�1) > f (�2) > f (opt) < f (r1) < f (r2) (1)

for all �1 < �2 < opt < r1 < r2, where opt = min( f ) is the global minimum of f . In other words, f is strictly decreasing on 
D ∩ (−∞, opt] and strictly increasing on D ∩ [opt, ∞). The upper bounds obtained in the remainder for the running time 
of AVM on strictly unimodal functions also apply to functions f that result from taking a strictly unimodal function f ′ and 
assigning function values min( f ′) to further points, formally:

∀x ∈ D: f (x) ∈ {
f ′(x),min

(
f ′)}. (2)

Fig. 2(b) shows one such example. Note that in general global optima are not required to form one interval.
In order to classify real-world fitness landscapes in Section 6, we also consider weakly unimodal functions, defined as 

functions where all local optima are also global optima. In contrast to strictly unimodal functions with additional optima, 
weakly unimodal functions may contain several “basins of attraction”, see Fig. 2(c). Multimodal functions, on the other hand, 
are defined as functions with multiple local optima such that not all local optima are also global optima, see Fig. 2(d).

Note that both weakly unimodal and multimodal functions can be decomposed into several strictly unimodal functions, 
each of which has their own “basin of attraction”. The latter can be defined as an interval, a subset of the domain, where 
f is strictly unimodal. For example, in Figs. 2(c) and 2(d) we have two basins of attractions [−10, 0] and [0, 10] (boundary 
points can be part of two basins of attractions). Our analyses of AVM variants finding global optima on strictly unimodal 
functions carry over to finding local optima on weakly unimodal and multimodal functions under the assumption that AVM 
never leaves the starting point’s basin of attraction. Fig. 2(c) gives an example of a landscape where this assumption holds 
for almost all starting points.

4. Analysis of the original AVM

4.1. Original AVM with IPS

The original AVM due to Korel [13] uses the following local search, shown in Algorithm 2, that we name Iterated Pattern 
Search (IPS). Starting at x, IPS first evaluates points x − 1 and x + 1 to identify a gradient. Unless x is a local optimum, it 
then performs a so-called pattern search, moving in the direction of decreasing f -values. The step size doubles with each 
step, so when the gradient is towards increasing indices IPS traverses the points

x, x + 1, x + 1 + 2, x + 1 + 2 + 4, . . . , x + 1 + 2 + 4 + · · · + 2 j.

Since 
∑ j

i=0 2 j = 2 j+1 − 1 this sequence is equal to

x, x + 21 − 1, x + 22 − 1, x + 23 − 1, . . . , x + 2 j+1 − 1.

Pattern search stops if the next point does not improve the fitness, which happens on unimodal functions when the op-
timum is being overshot. This process is iterated; that is, IPS then starts another exploration. If the function is unimodal, 
IPS gets close to the optimum over time. However, this line search can be relatively slow. The reason is that IPS accelerates 
during exploration, but after overshooting the optimum IPS starts another exploration from scratch.

Algorithm 2 Iterated Pattern Search, starting at x ∈ D .
1: while true do
2: if f (x − 1) ≥ f (x) and f (x + 1) ≥ f (x) return x
3: if f (x − 1) < f (x + 1) then let k := −1 else let k := 1
4: while f (x + k) < f (x) do
5: let x := x + k, k := 2k

4.2. Upper bound for original AVM

We start our investigations with Iterated Pattern Search, the local search used in the original AVM [13]. An upper bound 
O (log2 n) (for domain size n) was proven for AVM with IPS in [3], for the special case that there is a linear relationship 
between the function value and the distance to the optimum. The following statement holds for arbitrary strictly unimodal 
functions. Here and in the remainder log denotes the binary logarithm log2.

Theorem 1. Consider Iterated Pattern Search on a strictly unimodal function f : Z → R where d denotes the initial distance from the 
starting point to the optimum. Then IPS finds an optimum after querying at most (logd)2 + 8 log d + 4 values. This also holds for 
functions f that result from a strictly unimodal function f ′ and assigning function values min( f ′) to further points as in (2), d being 
the initial distance to the optimum of f ′ .
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The last statement implies that we get an upper bound of order O ((log d)2) for many further common functions. Exam-
ples are functions where opt is a global optimum and all points x > opt or x < opt are global optima as well (see Fig. 2(b)). 
In particular, all functions considered in Arcuri’s work [2] are covered by this statement. However, for functions with many 
global optima the upper bound may not be tight [2].

Proof of Theorem 1. We allow the algorithm to traverse points outside of D , but assume that all x′ /∈ D are worse than all 
x ∈ D .

We consider passes of IPS, corresponding to one iteration of the outer while loop in Algorithm 2: a pass starts with an 
exploratory search examining the two neighbouring solutions of the current point (index ±1). It then performs a pattern 
search, doubling the distance travelled in each step. Note that a pass starting with the optimum makes exactly 3 queries. If 
a pass queries points up to a distance of 

∑i
j=0 2 j = 2i+1 − 1 from the initial value, it queries i + 3 values.

Without loss of generality assume that the current position is 0 and the optimum is at d. If d = 1 we need 4 queries, 
hence we assume in the following that d ≥ 2. We claim that within at most 2 passes the distance to the optimum has been 
reduced to at most �d/2�. Let i be the unique integer such that 2i − 1 ≤ d < 2i+1 − 1. Note that pattern search queries 2i − 1
and 2i+1 − 1 as the points are strictly improving in [0, 2i − 1]. We consider two cases. First assume that 2i − 1 is better than 
2i+1 − 1. Then pattern search stops at 2i − 1 and since d ≤ 2i+1 − 2 the new distance to the optimum is at most �d/2�. The 
number of queries made is at most i + 3, and since d ≥ 2i − 1 ≥ 2i−1 this is at most �log d� + 4.

Now consider the case that 2i − 1 is worse than 2i+1 − 1. This implies 2i ≤ d ≤ 2i+1 − 2. Then pattern search will 
query 2i+2 − 1 and stop at 2i+1 − 1 as 2i+2 − 1 is worse than 2i+1 − 1. The second pass will traverse positions 2i+1 − 21,

2i+1 − 22, 2i+1 − 23 . . . . Since by unimodality all points in [0, 2i] are increasingly better, pattern search will stop at some 
2i+1 − 2 j with 0 ≤ j ≤ i. As the optimum must be within [max(2i, 2i+1 − 2 j+1), 2i+1 − 2 j−1], and the new current point is 
2i+1 − 2 j , the distance between the current point and the optimum has decreased to at most 2 j for j < i and 2i−1 for j = i. 
In both cases the new distance is bounded by �d/2�.

In the worst case, we need one pass querying up to i + 4 values, and a second pass querying up to i + 3 points. The total 
is 2i + 7 ≤ 2�log d� + 7 as d ≥ 2i .

The total number of queries made, T (d), is then subject to the following recurrence: T (0) = 3, T (1) = 4, and T (d) ≤
2�log d� + 7 + T (�d/2�) for d > 1. The floor functions in this formula imply that, when repeatedly expanding terms T (·), we 
get the same recurrence for T (d) as for T (2�log d�). Solving the latter gives

T (d) ≤
�log d�∑

k=1

(2k + 7) + T (1)

≤ 2 · �log d�(�log d� + 1)

2
+ 7�log d� + T (1)

≤ (log d)2 + 8 log d + 4.

The last remark of the statement holds true since adding further global optima can only decrease the expected time until 
some global optimum is found. �
4.3. Original AVM is slow in the worst case

The following result shows that the upper bound from Theorem 1 is asymptotically tight. Both bounds together show 
that the worst-case running time of IPS is of order Θ((log d)2), when initial points up to distance d are allowed. Note that 
the result applies to every unimodal function, hence AVM always has a bad worst-case performance.

Theorem 2. Consider Iterated Pattern Search minimising an arbitrary strictly unimodal function f : Z →R. If there are feasible starting 
points with distances 0, 1, . . . , d to the optimum, the worst case number of unique fitness evaluations is at least

(log d)2

10
− O (log d).

Proof. We can assume w.l.o.g. that the optimum is at position 0. If the domain D is bounded on one side, we consider an 
extended function f ′ where the domain is Z and f (x) = ∞ for all x /∈ D .

The challenge in proving the statement is that it holds for an arbitrary unimodal function f . We do not know any 
details of this unimodal function; we only know from (1) that f is monotonically decreasing in the negative range and 
monotonically increasing in the positive range. This shape implies that when IPS overshoots the optimum by travelling 
(w.l.o.g. towards increasing indices) from a point � < 0 towards r > 0, the comparison of f (�) and f (r) determines whether 
a pass of IPS will stop at � or r, triggering the next pass from there. Note that these are the only two possibilities due to (1). 
Note that the distance to the optimum for � and r is no reliable indicator for the comparison of f (�) and f (r): even if, say, 
� is much further away, |�| � r, there are many unimodal functions f that still satisfy f (�) < f (r), namely if the slope of f
in the positive range is steeper than that of f in the negative range.
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The main idea of the proof is to consider two worst-case starting points within a range that grows with a parameter i: 
a point �i < 0 left of the optimum and another point ri > 0 right of the optimum. Having a worst-case point on either 
side of the optimum is necessary as IPS may stop a pass on either side of the optimum. We provide a lower bound for the 
fastest time starting from either �i or ri . Then we consider a larger range for parameter i + 1 and determine worst-case 
points �i+1 and ri+1. These points are chosen based on �i, ri and the comparison of f (�i) and f (ri), in such a way that IPS 
starting from either �i+1 or ri+1 will stop a pass at the better search point among �i and ri . As the above-mentioned lower 
bound applies to the fastest time from either �i or ri , this allows us to add this lower bound to the time it takes to travel 
from �i+1 or ri+1 to �i or ri . We get a new lower bound for the fastest time from either �i+1 or ri+1. The claimed lower 
bound then follows by induction over i.

Formalising this idea, we define Ts(�, r) as the number of different search points evaluated when IPS starts in s, counting 
evaluations from the set {�, . . . , r} only. If s /∈ D we let Ts(�, r) := ∞. Let T (�, r) := min{T�(�, r), Tr(�, r)} be the smallest such 
number when starting from either � or r.

Define �0 = r0 = 0 and T (�0, r0) = 1. Assume we have �i ≤ 0 ≤ ri for some i ∈N0, such that �i and ri are not both outside 
f ’s domain. Let Δi := 2�log(ri−�i)�+1 for i ∈N and Δ0 := 1 be the smallest power of 2 such that Δi > ri − �i .

We define new points �i+1, ri+1 according to the following case distinction. First assume f (�i) > f (ri), which implies 
f (x) > f (ri) for all x ≤ �i . It also implies that ri exists. Let ri+1 := ri + Δi − 1 and �i+1 := ri − 2Δi + 1. If IPS starts at ri+1, 
it will sample points at

ri+1, ri+1 − (
21 − 1

)
, . . . , ri+1 − (

2log(Δi) − 1
) = ri, ri − Δi

and since the fitness improves in every step but the last one, IPS will stop at ri and restart exploration from there. All points 
but ri −Δi are guaranteed to exist and are contained in {�i+1, . . . , ri+1}; so IPS evaluates Δi + 1 different search points from 
that set before restarting exploration. From ri IPS needs time at least T (�i, ri) − 1 since so far IPS has evaluated a single 
search point from the set {�i, . . . , ri}, namely ri . We thus have established the recurrence

T�i+1(�i+1, ri+1) ≥ Δi + T (�i, ri). (3)

Similarly, if �i+1 exists and IPS starts from there, it will sample points at

�i+1, �i+1 + 21 − 1, . . . , �i+1 + 2log(Δi) − 1 = ri − Δi, ri, ri + 2Δi .

The fitness improves in each step but the last one, and so IPS will stop at ri and start exploration from there. Not counting 
the evaluation of ri + 2Δi , IPS evaluates Δi + 2 search points, hence as above we get

Tri+1(�i+1, ri+1) ≥ Δi + T (�i, ri) + 1. (4)

Putting (3) and (4) together, we have shown

T (�i+1, ri+1) ≥ Δi + T (�i, ri).

This also holds when �i+1 /∈ D as then T�i+1 (�i, ri) = ∞. The case f (�i) < f (ri) is symmetric, and if f (�i) = f (ri) we also 
get the same recurrence as IPS stops at ri as in the case f (�i) > f (ri) when starting from �i+1 and IPS stops at �i as on the 
other case when starting from ri+1.

It follows that

T (�i, ri) ≥
i−1∑
j=1

Δ j + T (�0, r0) ≥ 1 +
i−1∑
j=1

log(r j − � j).

Note that for i ≥ 1 the difference ri+1 − �i+1 does not depend on whether f (�i) > f (ri) or not, hence w.l.o.g. we use the 
definition of �i+1, ri+1 from the case f (�i) > f (ri). Along with Δi ≥ ri − �i + 1 we get

ri+1 − �i+1 = ri + Δi − 1 − (ri − 2Δi + 1) = 3Δi − 2 > 3(ri − �i).

Expanding and using r1 − �1 = 2 yields

ri+1 − �i+1 > 2 · 3i .

Thus,

T (�i, ri) ≥ 1 +
i−1∑
j=1

log
(
2 · 3 j−1)

= i +
i−2∑
j=0

log
(
3 j)

= i + log(3) · (i − 2)(i − 1)
>

log(3) · i2 − O (i).

2 2
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It is easy to verify by induction that ri ≤ 7i−1 and |�i | ≤ 7i−1 for all i ∈N. Putting i := �log7(d)� + 1 along with i ≥ log7(d) =
log7(2) · log2(d) then gives a lower bound of

log(3)

2
· (log7(2)

)2 · (log d)2 − O (log d) >
(log d)2

10
− O (log d). �

4.4. Original AVM is slow on average

The bad worst-case performance of IPS is not simply due to a few unlucky choices of the initial point. In fact, most 
starting points lead to a running time of order Θ((log d)2). To see this, we consider the specific function f (x) = |x|, which is 
equivalent to the normalised function from Fig. 2(a). We show that when the starting point is chosen such that the distance 
between starting point and target is uniform in some interval, then we still get a lower bound of order (log d)2.

Note that f (x) = |x| is quite an easy function as points closer to the optimum 0 are better than points that are further 
away from it. This encourages IPS to stop at the closest point to the optimum traversed in a pattern search, but we still get 
a time of Ω((log d)2).

Theorem 3. Consider Iterated Pattern Search minimising the function f (x) = |x| such that the starting point is chosen uniformly at 
random from {−2i, . . . , 2i − 1}, for some i ∈N0 . The expected number of unique fitness evaluations is at least i2

6 .

Note that the choice of the initial starting point corresponds to choosing a random integer in the two’s complement 
representation on i + 1-bit words, the standard method for representing signed integers in programming languages.

Proof of Theorem 3. Let T (i) denote the expected number of different search points queried when the starting point is 
chosen uniformly at random from {−2i, . . . , 2i − 1}. The claim T (i) ≥ i2/6 is trivial for i = 0 and i = 1.

If IPS starts at some value x < 0 (the case x > 0 is symmetric), IPS will start a pattern search exploring points with higher 
indices, querying points at x1 := x + 20, x2 := x + 20 + 21, x3 := x + 20 + 21 + 22, etc. (We do not count a potential evaluation 
of the point at x − 1 since it might not be in the domain of feasible search points.) Let x j := x + ∑ j−1

�=0 2� = x + 2 j − 1 for 
1 ≤ j ≤ i be the first search point queried where x j ≥ 0. Now IPS will stop pattern search and continue with either x j−1 or 
x j , depending on which is better. If x j is better, IPS will also query x j+1; but as this might be out of range, we do not count 
a potential evaluation of x j+1.

Due to the fitness function used, the point with the smaller absolute value from either x j−1 or x j is better. Note that their 
index difference is x j − x j−1 = 2 j−1, so x j ∈ {0, . . . , 2 j−1 − 1}. If x j ∈ {0, . . . , 2 j−2 − 1}, x j is better than x j−1, and IPS starts 
another pass at {0, . . . , 2 j−2 − 1}. Otherwise, x j−1 is better and IPS will start another pass at {−2 j−2, −2 j−2 + 1, . . . , −1}. 
All these positions are attained with the same probability, hence we are in the same setting as described in the statement, 
with j − 2 in place of i.

The probability of stopping at x j being the first point where x j ≥ 0 (x j ≤ 0 when starting at x > 0), for 1 ≤ j ≤ i, is 
2 · 2 j−1/2i+1 = 2 j−i−1 as there are x j − x j−1 = 2 j−1 positions for x where this happens when x < 0 and the same holds for 
x > 0. Recall that all initial positions are chosen uniformly at random, and there are 2i+1 feasible positions.

While getting to x j IPS has queried at least j + 1 mutually different points x, x1, . . . , x j . Then the remaining time is at 
least T ( j − 2) − 1; the reason for subtracting 1 is that we have already queried x j . Defining T (−1) := 0, we have established 
the following recurrence

T (i) ≥
i∑

j=1

2 j−i−1 · ( j + 1 + T ( j − 2) − 1
)

=
i∑

j=1

j · 2 j−i−1 +
i∑

j=1

2 j−i−1 · T ( j − 2)

=
i−1∑
j=0

( j + 1) · 2 j−i +
i−2∑

j=−1

2 j−i+1 · T ( j)

=
i−1∑
j=0

( j + 1) · 2 j−i +
i−2∑
j=0

2 j−i+1 · T ( j)

as T (−1) = 0. Along with 
∑i−1

j=0( j + 1) · 2 j−i = i − 1 + 2−i , we get

T (i) ≥ i − 1 + 2−i +
i−2∑

2 j−i+1 · T ( j).

j=0
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Assume for an induction that T ( j) ≥ j2/6 all 0 ≤ j < i. Then

T (i) ≥ i − 1 + 2−i +
i−1∑
j=0

2 j−i · j2

6

= i − 1 + 2−i + 1

6
·

i−1∑
j=0

2 j−i · j2

= i − 1 + 2−i + 1

6
· (−4i + 6 + i2 − 6 · 2−i)

= i2

6
+ i

3

which implies the claim. �
5. Alternative local searches for the AVM

We now show that other local searches used in the framework provided by AVM only require Θ(log d) evaluations 
instead of Θ((log d)2). This yields significant speedups over AVM’s original local search method IPS, if the initial distance d
to the optimum is not very small.

Our results formally only hold for unimodal functions, but they also indicate more generally that the alternate local 
searches converge faster to local optima. The reason is that the basin of attraction around a local optimum has the properties 
of a unimodal function. So, our analysis is applicable whenever the search does not leave the initial basin of attraction. It 
further can be used to estimate the remaining running time after the search has reached a certain basin of attraction as 
above.

5.1. AVM with geometric search

We propose to use more clever local searches that locate the optimum of a unimodal function more efficiently after the 
first exploration. The following Geometric Search uses a variant of binary search. The idea is to perform a pattern search, and 
then to use binary search to home in on the target. Thereby we are using the following fact: if pattern search queries search 
points x j−1, x j, x j+1, stopping at x j , we know that f (x j−1) > f (x j) ≤ f (x j+1). This implies that, if f is unimodal, the global 
minimum must lie in the set {x j−1, . . . , x j+1}. We call it “Geometric Search” since the initial pattern search is performed 
with a geometric sequence of numbers.

Algorithm 3 Geometric Search, starting at x ∈ D .
1: if f (x − 1) ≥ f (x) and f (x + 1) ≥ f (x) return x
2: if f (x − 1) < f (x + 1) then let k := −1 else let k := 1
3: while f (x + k) < f (x) do
4: let x := x + k, k := 2k
5: let � := min(x − k/2, x + k), r := max(x − k/2, x + k)

6: while � < r do
7: if f (�(� + r)/2�) < f (�(� + r)/2� + 1) then
8: r := �(� + r)/2�
9: else

10: � := �(� + r)/2� + 1
11: return �

The following result shows that AVM with Geometric Search finds the optimum of any unimodal function in time loga-
rithmic in the initial distance.

Theorem 4. Consider a one-dimensional search on a unimodal function f : Z → R where d ≥ 1 denotes the initial distance from the 
starting point to the optimum. Then Geometric Search finds an optimum after querying at most 3 logd + 5 search points.

Proof. Let i be such that 2i ≤ d < 2i+1. By the same arguments as in the proof of Theorem 1 pattern search stops at either 
2i − 1 or 2i+1 − 1 after querying at most i + 3 points. We pessimistically assume that it stops at 2i+1 − 1, which results in 
the algorithm putting � := 2i − 1 and r := 2i+2 − 1. We claim that each iteration of binary search updates �, r towards �′, r′
such that r′ − �′ ≤ �(r − �)/2�. If r′ = �(� + r)/2� we have

r′ − �′ =
⌊

� + r
⌋

− � =
⌊

r − �
⌋
.

2 2
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Otherwise, �′ = � �+r
2 � + 1 and using −�x� − 1 ≤ �−x� for x ∈R we get

r′ − �′ = r −
⌊

� + r

2

⌋
− 1 ≤ r +

⌊
−� + r

2

⌋
=

⌊
r − �

2

⌋
.

Initially r − � < 2i+2, and due to the floor functions we get the same recurrence as for 2i+1. Two queries are needed to 
replace the current distance by its floored half, ending at 0 with no further queries. Hence we need an additional amount 
of 2i + 2 queries, leading to a total of 3i + 5 ≤ 3 log d + 5 queries. �

It is easy to see that, in the setting of Theorem 4, Geometric Search always needs 3 log d ± O (1) queries: the initial pattern 
search queries log d ± O (1) points before proceeding to an elimination search on an interval of length Ω(d). Geometric 
Search only stops after this interval has been reduced to a single point. Since halving this interval makes 2 queries, this 
process requires 2 log d ± O (1) further queries.

5.2. AVM with Lattice Search

Lattice Search [23, Section 8.2] is a refinement of Fibonacci Search [12] for integer domains. The idea of Fibonacci search 
is to evaluate search points according to Fibonacci numbers F1 = 1, F2 = 1, and Fn+2 = Fn + Fn+1 for n ∈ N in such a way 
that only one new search point needs to be evaluated in each iteration. Assume we know that the optimum is in some 
interval [�, � + Fn]. Fibonacci search would then compare � + Fn−2 and � + Fn−1. If f (� + Fn−2) ≤ f (� + Fn−1) we know 
that an optimum must be in the interval [�, � + Fn−1], and we iterate by comparing � + Fn−3 and � + Fn−2. The latter point 
has already been evaluated, hence only one new evaluation is required. Likewise, if f (� + Fn−2) > f (� + Fn−1) then an 
optimum must lie in [� + Fn−2, Fn] and we iterate by setting �′ := � + Fn−2 and evaluating �′ + Fn−3 and �′ + Fn−2. Since 
�′ + Fn−3 = � + Fn−1, it has already been evaluated, again leaving just one new evaluation.

In terms of unique evaluations, Fibonacci search is faster than Geometric search. Kiefer [12] showed that Fibonacci 
Search in continuous domains is an optimal search technique in the following sense. Consider all search techniques using 
a fixed number of function evaluations. Then Fibonacci search has the largest possible interval of input values for which it 
guarantees to find a solution whose quality differs by at most ε > 0 from that of an optimum.

Lattice Search further refines this principle by exploiting that for integer domains in the case f (� + Fn−2) ≤ f (� + Fn−1)

the last point � + Fn−1 cannot be the unique optimum, hence the interval reduces by one further point to [�, � + Fn−1 − 1]. 
Likewise, in the other case the interval becomes [� + Fn−2 +1, Fn]. In both cases the interval is reduced by 1 point, compared 
to Fibonacci search. These gains accumulate in each iteration, and Lattice Search on integers needs even fewer function 
evaluations than Fibonacci Search on a comparable continuous domain.

It is known that Lattice search can find the minimum of a unimodal function on a domain of integers {1, . . . , Fn − 1}
using n − 2 function evaluations [23, p. 190] (note that Monahan [23, p. 190] uses the definition F0 = 1, F1 = 1,
F2 = 2, . . .).

The local search using Lattice Search is shown in Algorithm 4.

Algorithm 4 Lattice Search, starting at x ∈ D .
1: if f (x − 1) ≥ f (x) and f (x + 1) ≥ f (x) return x
2: if f (x − 1) < f (x + 1) thenlet k := −1 else let k := 1
3: while f (x + k) < f (x) do
4: let x := x + k, k := 2k
5: let � := min(x − k/2, x + k), r := max(x − k/2, x + k)

6: let n := min{n | Fn ≥ r − l + 2}
7: while n > 3 do
8: if � + Fn−1 − 1 ≤ r and f (� + Fn−2 − 1) ≥ f (� + Fn−1 − 1) then
9: let � := � + Fn−2

10: let n := n − 1
11: return �

Note that the initial pattern search is done in a geometric fashion, i.e., increasing the step size geometrically as in IPS and 
Geometric Search. There is a related search technique called Fibonaccian Searching [7] (not to be confused with Fibonacci 
Search) where pattern search is done by means of Fibonacci numbers. The reason that we are using geometric pattern 
search is that it is generally faster.

Lattice Search further improves the leading constant preceding the log d term; using Fibonacci numbers to search for the 
optimum in the interval identified by pattern search is more efficient than the binary search used in our Geometric Search 
procedure.

Theorem 5. Consider a one-dimensional search on a unimodal function f : Z → R where d ≥ 1 denotes the initial distance from the 
starting point to the optimum. Then Lattice Search finds an optimum after querying at most 2.45 logd + 7 search points.
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Proof. As in the previous proofs, pattern search stops after querying at most �log d� +3 ≤ log d +4 points. Afterwards, lattice 
search is run on an interval of size at most 4d.

Let Fm be the smallest Fibonacci number such that Fm − 2 ≥ 4d. We know that Lattice Search on a set {1, . . . , Fm − 1}
uses m − 2 function evaluations [23, p. 190] with our definition of Fm . This corresponds to our setting after a trivial index 
transformation.

Using a well-known closed formula for Fm ,

Fm = (1 + √
5)m − (1 − √

5)m

2m · √5
,

we get for odd m, using (1 − √
5)m < 0,

Fm ≥ 1√
5

·
(

1 + √
5

2

)m

.

For even m, we clearly have

Fm ≥ Fm−1 ≥ 1√
5

·
(

1 + √
5

2

)m−1

= 2√
5 + 5

·
(

1 + √
5

2

)m

.

Therefore, the required inequality Fm ≥ 4d + 2 is implied by(
1 + √

5

2

)m

≥ (4d + 2) ·
√

5 + 5

2

⇔ m ≥ log((4d + 2) ·
√

5+5
2 )

log( 1+√
5

2 )
.

The last term on the right-hand side is upper-bounded by 1.45 log d + 5. It follows that lattice search requires at most 
m − 2 ≤ 1.45 log d + 3 evaluations. Along with the time for pattern search this proves the claim. �
6. Experiments

We now provide an empirical comparison of the AVM using our alternative local searches to complement our theoretical 
results. We first show results on simple functions, designed to provide additional empirical evidence about the better scala-
bility of the alternative local searches. However, real-world programs are not so straightforward, involving fitness landscapes 
of varying shapes. Therefore, following some simple initial experiments, we continue onto performing experiments with five 
real-world programs.

6.1. Experiments with unimodal functions

We return to the simple and illustrative problem from Fig. 2(a) with just a single variable, recalling that this corresponds 
to the following program:

void is_zero(int x) {
if (x == 0) { /* TARGET BRANCH */ }

}

The goal is to find an input x that is equal to zero. The approach level is zero (since the branching condition is always 
reached), and the branch distance is norm(|x|). Because the local searches do not rely on comparing absolute values, but 
instead their corresponding ranks, this problem is equivalent to minimising the fitness function f (x) = |x| (where the branch 
distance is not normalised) as analysed in Theorem 3.

Studying this simple program allows us to isolate the impact of the range and the initial distance d from the optimum 
on the running time of the AVM. Our theoretical results show that, when the starting point is chosen uniformly at random 
from a set {−d, . . . , d −1} for d a power of 2, the AVM with IPS will take Θ((log d)2) steps whereas the AVM with Geometric 
Search or Lattice Search will succeed in only O (log d) steps. Our theoretical results also give bounds with precise constants 
and precise small-order terms; experiments can reveal further insights into how tight these bounds are.

In order to obtain broader results, we also include experiments on two other strictly unimodal functions. Recall that 
for any strictly unimodal function the function values increase when moving away from the optimum in both directions. 
Because we only consider searches that compare ranks of search points rather than their absolute function values, the 
characteristics that define a strictly unimodal function may be viewed as the position of the optimum and the relative 
heights of the slopes on either side of the optimum.
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Fig. 3. Comparisons of mean number of unique fitness evaluations for three strictly unimodal target branches with various local searches. The domain is 
chosen as {−2i , . . . , 2i − 1} for i ∈ {0, . . . , 31}. The first plot (a) corresponds to the function f (x) = |x| from Fig. 2(a) and Theorem 3. The second branch (b) 
is similar, but all x > 0 have a worse fitness than all x ≤ 0. The third branch (c) shows a variant of (a) where the optimum is located at one end of the 
feasible domain.

In problem (a), i.e., f (x) = |x|, the optimum is located at zero with slopes of equal gradient to the left and right of the 
optimum. In problem (b) the optimum is also located at zero, but all search points to the right of the optimum are strictly 
worse that all points to the left of the optimum because they have a greater approach level. In problem (c) the optimum is 
located at the left end of the domain right next to the infeasible search space.

The performance of IPS, Geometric Search and Lattice Search was measured over the following ranges [−d, d − 1], where 
d ∈ {1, 2, 4, 8, . . . , 231}. For each range 100 runs of each local search were performed and the number of unique fitness 
evaluations to find the global optimum was counted. In each run the starting position x1 was chosen uniformly at random 
from the corresponding range (including boundaries).

Fig. 3 shows how the average performance of each local search scales with increasing domain size. Here the variable i
is related to the logarithm of the distance, i.e., i = log2(d). We also included pure random search (marked as “Random” in 
the figure), for completeness.3 Random search is commonly involved in empirical studies applying optimisation to software 
testing. This is because random search is used frequently in software testing as a technique for testing in its own right, 
and is referred to as “random testing”. Random testing is often the baseline on which we want to improve—that is, we are 
comparing with the simplest technique that could be applied. Unsurprisingly, it frequently fails to find the desired input, as 
its expected running time equals the input domain size.

The empirical results agree with our theoretical results as one can clearly see a different scaling behaviour between IPS 
and the two alternative local searches, Geometric Search and Lattice Search. For small d the performance is similar, but 
as d grows the differences become obvious. The performance of all local searches is similar across all three problems. It 
seems that problem (a), f (x) = |x| from Theorem 3, is the least difficult problem for IPS among (a), (b), and (c). The reason 
might be on problem (a) that the fitness reflects the distance to the optimum. This implies that whenever IPS overshoots 
the optimum, it will start a new pattern search from the closest point to the optimum. This is not always the case for (b) 
and (c).

In order to investigate the growth curve of IPS on problem (a), a second order polynomial was fit to the average running 
times of IPS using a weighted non-linear regression and then the χ2 test was used to assess the goodness of fit. The 
equation of the fitted curve is as follows: T (i) = 0.169623 · i2 + 0.717115 · i + 1.5189, where T is the mean number of 
fitness evaluations. Note that the leading constant 0.169623 almost exactly matches the constant 1/6 = 0.166666 . . . from 
Theorem 3. For the fit, the obtained value of χ2 is 27.6887 and the number of degrees of freedom is 32 − 3 = 29 (i.e., the 
number of values of i minus the number of fitted parameters). Since P (χ2 > 27.6887) = 0.5345, this suggests that the fit 
is of high quality and explains the experimental results very well. We also applied the same fitting technique and assumed 
the same form of equation (i.e. a quadratic function) to investigate the growth curves for IPS on problems (b) and (c). Using 
the same notation as before, the equation for the fitted curve for problem (b) is T (i) = 0.249093 · i2 + 0.682377 · i + 1.5213
with χ2 = 26.0034 and P (χ2 > 26.0034) = 0.6253 and that for problem (c) is T (i) = 0.247606 · i2 + 0.824655 · i + 1.4856
with χ2 = 30.4144 and P (χ2 > 30.4144) = 0.3935. Similar to problem (a), the values of χ2 for the curves in problems (b) 
and (c) indicate that a quadratic fit is the correct choice for approximating how the behaviour of IPS scales on both of these 

3 Fig. 3 shows the same data for Random in (a), (b), and (c) as random search behaves equally on every strictly unimodal function with the same domain 
size.
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Fig. 4. Number of unique fitness evaluations for optimizing f (x) = |x| with different local searches for each starting position x1 ∈ [−220, 220 − 1]. For the 
sake of clarity, the plots do not show all 221 data points, but were downsampled to a selection of 25 000 data points for each search to give a good and 
accurate visual representation of all 221 points, using the Largest-Triangle-Three-Buckets algorithm [27].

problems. The leading constants for the fitted curves of IPS on problems (b) and (c) are very similar but are noticeably 
greater than that of problem (a) suggesting that these two problems are more difficult for IPS to solve because on average 
require a greater number of fitness evaluations for a given domain size.

Along with the comparison of IPS on (a), (b), and (c), the empirical results indicate that the lower bound on the average-
case performance from Theorem 3 may also hold for other strictly unimodal functions.

As all problems lead to similar results regarding the comparison of IPS and alternative local searches, the upcoming 
statistical evaluation of results just considers problem (a) studied in Theorem 3.

For each range the runtime distributions of the local searches in Fig. 3(a) were compared in a pairwise manner using the 
Mann–Whitney U test. In addition to p-values, the non-parametric Vargha–Delaney statistic Â12 [30], which is computed 
from mean ranks, is reported as a measure of effect size. It is possible to interpret Â12 as the probability that a run of the 
first search algorithm takes a larger number of fitness evaluations compared to that of the second search algorithm. The 
implication is that if Â12 < 0.5, then the first local search performs better overall whereas the opposite is true if Â12 > 0.5. 
Also, depending whether the absolute difference: | Â12 − 0.5| is > 0.21, > 0.14, > 0.06, or ≤ 0.06, the corresponding effect 
size can be divided into the following categories: large, medium, small, and negligible.

The results show that for all ranges where d ≥ 2048, IPS is worse than Geometric Search (p ≤ 0.0054 and Â12 ≥ 0.61) 
and also worse than Lattice Search (p ≤ 4.1 × 10−8 and Â12 ≥ 0.72). It was also found that for the same ranges Geometric 
Search is worse than Lattice Search (p ≤ 7.9 × 10−8 and Â12 ≥ 0.72).

In Fig. 4 we additionally show how the performance of Iterated Pattern Search on f (x) = |x| depends on the precise 
choice of the starting point. Experiments were run for all initial values x1 ∈ [−220, 220 − 1]. The range was chosen large 
enough to reveal differences in the average performance between IPS and the alternative local searches (cf. Fig. 3(a) for 
i = 20). The drawback of this large range is that the amount of data was too large to be plotted as a whole. Attempting 
to plot all the data points would result in a figure that is difficult to render due to large amounts of visual overlap and 
high memory requirements. Instead, the approach we took was to plot a sample of 25 000 data points per search. We used 
a method called the Largest-Triangle-Three-Buckets [27] for down-sampling the data and deciding which points to draw. 
This method is designed to produce an accurate visual representation of the original data set by preserving as much detail 
as possible with regards to its overall shape and other defining features. It works by dividing the data set into the same 
number of ‘buckets’ as to be sampled, then choosing one point from each bucket such that the point which is selected 
forms the triangle with the greatest area when connecting to two other points from each of its own neighbouring buckets.

The performance of Iterated Pattern Search is symmetric around 0 (modulo tiny differences in tie-breaking) and the 
pattern looks like a fractal structure. This reflects the recursive nature of IPS, which also became visible in the recurrence 
arguments used in our proofs from Section 4. In accordance with our average-case analysis from Theorem 3, many starting 
points lead to rather high running times.
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Table 2
Details of the test objects used in the experiments.

Function name No. of branches Inputs and ranges

clip_to_circle 42 {x1 . . . x7} ∈ [−231,231 − 1]
days_between 32 {x1 . . . x6} ∈ [−215,215 − 1]
gimp_rgb_to_hsv_int 14 {x1 . . . x3} ∈ [0,255]
gimp_hsv_to_rgb_int 16 x1 ∈ [0,360], {x2, x3} ∈ [0,255]
validate_card 10 {x1 . . . x16} ∈ [0,9]

The alternative local searches lead to smoother and smaller curves, as there the running time is always bounded 
by O (log d). The observable differences between Geometric Search and Lattice Search seem to be in line with the different 
leading constants in our upper running time bounds.

6.2. Experiments with real-world test objects

So far, we have been considering strictly unimodal functions, or variations thereof with additional global optima. This 
leaves open the question whether the alternative local searches also improve performance on branches with multimodal 
fitness landscapes. As discussed, our hope is that the alternative local searches are faster at finding local optima as multi-
modal functions consist of multiple unimodal functions. Moreover, if the function to be optimised by local search contains 
multiple local optima, replacing IPS by a different local search might lead to different local optima being returned. This can 
change the global search trajectory, with unforeseen effects; such a change can have a beneficial or a detrimental impact on 
performance, or no impact at all. This issue will be further discussed in Section 7; it corroborates the need for experiments 
on real-world test cases with multiple variables as it is not obvious whether faster local searches also improve global search 
performance.

In order to compare the performance of the local searches in a practical setting, we implemented the alternative AVM 
searches into and conducted our experiments with the IGUANA toolset [18], and selected five test objects, details of which 
are shown in Table 2. Each test object is written in C, and its source code was automatically instrumented by IGUANA for 
the purposes of collecting fitness information. The selected test cases cover variables from very different ranges, from just 
10 values to 232 in the full 32 bit integer range.

The clip_to_circle function is from the graphical front-end of the SPICE electronic circuit simulator. It clips a line—specified 
by two pairs of integer co-ordinates—to a circle, specified by a pair of integer co-ordinates and a further integer specifying 
its radius. The days_between function calculates the number of days between two dates. The source code for this function 
appears in reference [20]. The function takes six short integers as arguments, corresponding to the day, month and year of 
a pair of dates. We did not restrict these ranges to those corresponding to valid day and month numbers etc., since the 
function is designed to check for and correct invalid inputs. The functions gimp_rgb_to_hsv_int and gimp_hsv_to_rgb_int are 
colour space converters from the GIMP image editor. The former takes three integers in the range 0–255; specifying red, 
green, and blue colorspace components. The latter takes three arguments, the first an integer in the range 0–360 specifying 
a hue value (in degrees), followed by two further integers in the range 0–255 for saturation and value components. Finally, 
the validate_card function is an implementation of the Luhn algorithm for checking 16 digit credit card numbers, and takes 
16 integers in the range 0–9 as arguments. Each test object consists of nested control structures in the form of if statements, 
switch statements and loops. IGUANA creates a pair of true and false branches when it detects that control flow diverges in 
the source code of a C function. Because there can be multiple pairs of branches in a single test object, each pair is labelled 
with the control flow graph number of the branching decision statement suffixed with a “T” or an “F” to distinguish the 
true branch from its false counterpart.

In the experiments, AVM with each local search was applied to each function 100 times. Each run was treated in-
dependently such that the starting position was chosen uniformly at random from the entire search space. We recorded 
the mean number of unique fitness evaluations, excluding evaluations of infeasible search points with coordinates outside 
their domain, as these could be identified with little computational effort. Also for Geometric Search and Lattice Search, 
if during the elimination stage of the search both middle points fall outside the domain, a decision is made to favour the 
solution closest to the boundary so that the search is directed back to the feasible region of the search space. For each 
branch pairwise comparisons of the runtime distributions corresponding to different local searches were performed using 
the Mann–Whitney U test. The results include raw p-values and non-parametric effect sizes, Â12.

Only branches where random search performed notably worse than at least one of the local searches (i.e., p < 0.05
(significant) and Â12 > 0.56 (at least small effect size)) are considered. The purpose of filtering was to remove branches 
that are covered easily by any search as there is no reason to design a better algorithm for these branches. Similarly, there 
were 11 branches which were either infeasible (i.e., no inputs from the input domain execute it) or so hard that none of 
the tested algorithms found an optimum. In total, 28 out of 114 branches satisfied the selection criteria.

In order to get a more detailed insight into the structure of these remaining branches, we used a sampling approach to 
investigate how many fitness landscapes for line searches are unimodal. To this end, for each branch with variables x1, . . . , xn

we picked an index 1 ≤ i ≤ n uniformly at random. All variables x j , j �= i, were fixed to constants c1, . . . , ci−1, ci+1, . . . , cn
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Table 3
Results of the sampling process to estimate the degree of unimodality for each branch listed in Table 4.

Function Branch Strictly 
unimodal (%)

Weakly 
unimodal (%)

Multimodal (%)

clip_to_circle 7F 29 71 0
10F 26 74 0
55T 18 17 65
55F 24 22 54
57F 18 19 63
61T 13 18 69
66T 12 20 68
68T 22 16 62
68F 11 14 75
70F 19 16 65
74T 15 18 67
Overall % 18.8 27.7 53.5

days_between 28T 50 33 17
32T 81 0 19
34T 80 0 20
34F 89 0 11
Overall % 75 8.3 16.8

gimp_rgb_to_hsv_int 14T 0 100 0
17T 0 100 0
Overall % 0 100 0

gimp_hsv_to_rgb_int 4T 28 72 0
11T 34 66 0
Overall % 31 69 0

validate_card 5F 5 93 2
7T 8 92 0
7F 6 94 0
9T 7 93 0
9F 6 94 0
11T 4 96 0
11F 7 93 0
14T 7 91 2
14F 1 99 0
Overall % 5.7 93.9 0.4

Overall % 22.1 54.3 23.5

chosen uniformly at random. This led to a line search problem (c1, . . . , ci−1, xi, ci+1, . . . , cn) with xi being the only variable 
and the other coordinates being fixed. Then we scanned the whole range of xi to classify the landscape as strictly unimodal, 
weakly unimodal, or multimodal. The domains of the input variables for clip_to_circle and days_between were too large to 
allow for a complete scan. So for these branches we sampled from a scaled version of that branch instead, where the range 
for all such variables was reduced to [−27, 27 −1]. The sampling process was repeated 100 times for each branch, to yield an 
estimate of its degree of unimodality. Table 3 records the results. Across all 28 branches listed in Table 4, 22.1% of landscapes 
were strictly unimodal. A further 54.3% were weakly unimodal. Only 23.5% of all sampled settings were truly multimodal, 
i.e., contained local optima, which were not globally optimal. The largest proportion of these belong to clip_to_circle, with a 
smaller number also appearing in days_between.

The results of comparisons among AVM variants with Mann–Whitney U tests are recorded in Table 4, where we indicate 
statistical significance on a low level of 0.01. Wherever we detected a statistical significance, we compared mean ranks to 
identify which algorithm performed better.

AVM with Geometric Search performed significantly better than AVM with IPS on 12 branches, with small to large effect 
sizes. Geometric Search performed significantly worse than IPS on 3 branches. On strictly unimodal functions Lattice Search 
led to a better leading constant in our theoretical upper bounds and our previous experiments (Fig. 3), hence we expect 
AVM with Lattice Search to be slightly faster than AVM with Geometric Search. Indeed, using Lattice Search within AVM 
was significantly faster than AVM with IPS on 16 of the 28 branches, with a medium to large effect size. On all branches 
with domain sizes at least 216, AVM with Lattice Search was significantly faster than AVM with IPS.

Looking at the direct comparison between Geometric Search and Lattice Search, 8 branches showed a significant differ-
ence between the two searches, and on 7 of them Lattice Search was faster than Geometric Search. This notably includes 
branch 10F of clip_to_circle, where Lattice Search showed a slightly higher mean, but a smaller mean rank than Geometric 
Search. The effect sizes for comparisons of Geometric and Lattice Search were typically smaller than for comparisons with 
IPS.
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Table 4
Results of test case experiments: mean numbers of unique fitness evaluations and the results of statistical evaluations. The p-values formatted in bold 
indicate significance at the 0.01 level. Similarly, effect sizes that are large, medium, small, and negligible are distinguished by bold, underlined, italic, and 
normal formatting respectively.

Function Mean no. of fitness evaluations IPS v geometric IPS v lattice Geometric v lattice

Branch IPS Geometric Lattice p-value Â12 p-value Â12 p-value Â12

clip_to_circle 7F 853.60 300.88 283.86 5.6 × 10−19 0.86 1.5 × 10−19 0.87 5.7 × 10−3 0.61
10F 819.92 291.97 298.06 1.1 × 10−20 0.88 9.2 × 10−19 0.86 5.4 × 10−3 0.61
55T 1 988.89 1 250.49 1 087.02 7.1 × 10−5 0.66 4.8 × 10−6 0.69 7.0 × 10−1 0.52
55F 654.43 294.18 315.61 6.7 × 10−14 0.81 1.5 × 10−11 0.78 3.6 × 10−1 0.46
57F 627.69 378.89 307.42 1.3 × 10−8 0.73 1.6 × 10−12 0.79 3.2 × 10−1 0.54
61T 583.47 280.79 237.88 2.1 × 10−14 0.81 3.0 × 10−16 0.83 2.1 × 10−1 0.55
66T 788.99 442.36 328.04 2.6 × 10−7 0.71 1.3 × 10−13 0.80 3.7 × 10−2 0.59
68T 2 588.73 1 973.70 1 282.51 4.1 × 10−2 0.58 6.5 × 10−6 0.68 2.2 × 10−2 0.59
68F 870.05 559.26 488.91 4.6 × 10−3 0.62 3.9 × 10−6 0.69 6.4 × 10−2 0.58
70F 978.58 496.15 511.57 1.7 × 10−7 0.71 1.1 × 10−6 0.70 5.4 × 10−1 0.47
74T 859.94 459.82 458.20 7.4 × 10−7 0.70 3.0 × 10−6 0.69 7.8 × 10−1 0.49

days_between 28T 71.78 59.79 55.02 3.0 × 10−7 0.71 3.9 × 10−10 0.76 6.7 × 10−2 0.57
32T 102.43 106.52 83.00 3.0 × 10−1 0.54 3.2 × 10−5 0.67 1.0 × 10−4 0.66
34T 102.43 106.52 83.00 3.0 × 10−1 0.54 3.2 × 10−5 0.67 1.0 × 10−4 0.66
34F 102.43 106.52 83.00 3.0 × 10−1 0.54 3.2 × 10−5 0.67 1.0 × 10−4 0.66

gimp_rgb_to_hsv_int 14T 22 459.23 460 789.00 431 509.54 6.9 × 10−32 0.02 1.1 × 10−28 0.05 7.0 × 10−1 0.52
17T 35.75 42.31 34.87 1.4 × 10−3 0.37 2.0 × 10−1 0.55 2.0 × 10−5 0.67

gimp_hsv_to_rgb_int 4T 22.51 15.56 16.53 1.7 × 10−13 0.80 2.5 × 10−11 0.77 9.6 × 10−3 0.39
11T 20.31 81.31 24.93 7.9 × 10−18 0.15 3.1 × 10−1 0.46 6.3 × 10−14 0.81

validate_card 5F 6.49 6.31 6.62 6.8 × 10−1 0.52 8.7 × 10−1 0.49 4.8 × 10−1 0.47
7T 5.59 5.99 5.89 4.7 × 10−1 0.47 5.0 × 10−1 0.47 9.4 × 10−1 0.50
7F 6.54 6.09 6.40 2.0 × 10−1 0.55 6.9 × 10−1 0.52 3.9 × 10−1 0.47
9T 6.38 6.12 6.59 5.3 × 10−1 0.53 6.6 × 10−1 0.48 2.7 × 10−1 0.46
9F 6.38 6.24 6.82 6.5 × 10−1 0.52 3.1 × 10−1 0.46 1.4 × 10−1 0.44
11T 6.50 6.46 6.46 1.0 × 100 0.50 9.4 × 10−1 0.50 9.8 × 10−1 0.50
11F 5.92 6.04 6.24 7.8 × 10−1 0.49 4.6 × 10−1 0.47 6.0 × 10−1 0.48
14T 12.43 12.25 11.83 9.0 × 10−1 0.51 3.4 × 10−1 0.54 4.4 × 10−1 0.53
14F 7.30 6.55 6.81 8.0 × 10−2 0.57 2.6 × 10−1 0.55 5.0 × 10−1 0.47

The largest improvements were observed with the clip_to_circle, with notable improvements in performance for days_be-
tween function.4 This is remarkable since these branches contain the largest degree of multimodality (see Table 3). Here, it 
seems that the characteristics of the fitness function are generally less important than the range of input values. The above 
functions have large domain sizes for their input variables (as seen in Table 2), suggesting that we indeed see a difference 
in scalability between running times Θ((log d)2) and O (log d).

For the other functions, particularly validates_card, branches were covered relatively quickly regardless of the local search 
used, often leading to a difference of less than one evaluation on average—likely due to their function’s small input range. 
Hence, the difference in runtime from a practical standpoint is almost negligible, and comparisons did not yield statistical 
significance.

Furthermore, there is one branch (namely branch 14T of the gimp_rgb_to_hsv_int test object) in which IPS performs far 
better than both Geometric and Lattice. The success rates for this branch are 0% for Random, 100% for IPS, 17% for Geometric, 
and 19% for Lattice. We observed that all searches frequently resorted to restarting. Further investigations with this branch 
and the Wegener Genetic Algorithm [9,31] revealed the GA was much more efficient at finding a solution, requiring only 
4795 evaluations as a mean average, compared to 22 459 for the AVM with IPS. This result fits with those from previous 
studies in search-based test input generation, where the AVM works most efficiently for simple fitness landscapes with 
“obvious” optima, whereas diversifying GAs are more efficient at navigating less smooth landscapes generated by more 
difficult branches [9]. A detailed analysis of this branch is given in Section 7.

6.3. Threats to the validity of the empirical study

It is good practice in Software Engineering to discuss threats to validity associated with our empirical study, so that 
the reader may judge the limits to the claims that we make. From the point of view of external threats, the test objects 
in our experiments may not generalise in practice, however, care was taken to select them from a variety of real-world 
sources, from different programmers. These examples go beyond the bounds of our theory, but still show positive results 

4 Three branches of days_between share identical statistics: branches “34T” and “34F” correspond to the entry and exit point of a loop that is nested 
within branch “32T” and almost always subsequently entered.
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in the majority of cases. From the point of view of internal threats, possible errors come from our implementation of the 
techniques. However, as shown with the simple and controlled is_zero example from Fig. 3(a), empirical results closely 
matched those expected from our theoretical observations. Furthermore we used non-parametric statistical tests to analyse 
our results, i.e., the Mann–Whitney U test and the Vargha–Delaney Â12 statistic, both of which do not have assumptions 
regarding normality of the sample means, avoiding a further potential source of error in our analysis.

7. On the importance of finding the right local optimum

In our experiments branch 14T of the gimp_rgb_to_hsv_int test object was found to be challenging for the new AVM 
variants. We conduct a further analysis to find out why, leading to a rigorous explanation and further insights as to how 
choosing a different local optimum can impact on the global search behaviour.

In contrast to Sections 4 and 5, where the performance of a single local search run was studied, the performance analyses 
in this section concern the global search performance, where the goal is to cover the target branch. We focus on the number 
of starts AVM makes in order to cover the branch, as this is a major indicator that dominates search performance.

The branch 14T corresponds to the true condition of the following code (rewritten to ease presentation). It involves three 
variables r, g, b, which take integer values:

if (MAX(MAX(r, g), b) == 0) { /* TARGET BRANCH */ }

This means that the (non-normalised) branch distance for branch 14T equals the following minimisation problem:

min
{

max(x1, x2, x3) | x1, x2, x3 ∈ [0,255]}
(we use K = 0 as K is irrelevant here). This function is hard to minimise by AVM: if there is a single variable with a 
maximum value among all coordinates, decreasing this variable decreases the maximum. However, decreasing any other 
variable does not improve the branch distance. Even worse, if there are several variables with the same maximal value, the 
branch distance cannot be improved by changing a single variable.

We formalise this in the following theorem, which considers a generalisation of the above settings to n variables and N
values 0 to N − 1. The theorem states that the success probability of AVM is exponentially small, provided that local search 
in this setting always returns the closest local optimum.

In our setting, we claim that both Geometric Search and Lattice Search will return the local optimum closest to the 
starting point. Let xi be the variable AVM is currently optimising, and x j be the largest variable different from xi . Then 
local search is optimising mf (x) = max(xi, x j), and all xi ≤ x j yield local optima. If local search starts with a local optimum, 
we return that optimum. Otherwise, xi > x j . The alternative local searches perform exploration starting with xi towards 
decreasing values. When searching for a local minimum within an interval, ties are broken towards searching in the right 
part of the interval. This implies that the largest optimal value is returned.

Theorem 6. Consider AVM minimising the function mf = max(x1, . . . , xn) with x1, . . . , xn ∈ [0, N − 1]. Assume that the local search 
used in AVM outputs an optimum at a minimum distance to the starting point. Then the probability of AVM discovering the optimum 
(0, . . . , 0) before restarting is (n · N − n + 1) · N−n. Hence the expected number of starts is Nn/(n · N − n + 1).

Proof. We claim that AVM finds the global optimum if and only if the initial solution has at least n − 1 variables set to 0. 
Since the number of those vectors is (n · N − n + 1) and the probability of initialising with any specific vector is N−n , this 
implies the claim.

It is easy to see that with this initial solution AVM manages to find the optimum. Assume there is one variable xi �= 0
in the initial search point. If AVM optimises a variable x j = 0, local search stops at x j = 0, and AVM moves on to the next 
variable. Once AVM starts a local search on xi , since max(0, . . . , xi, . . . , 0) = xi , local search will stop with xi = 0.

Now assume AVM starts with a search point where the two largest variables are xi > x j > 0. Note that then 
mf (x1, . . . , xn) = max(xi, x j), and local search on any variable xk , k �= i, will stop and leave the current search point un-
changed. Once AVM starts to optimise xi , all values xi ≤ x j lead to local optima of fitness x j . Hence, by assumption AVM 
will stop with the closest local optimum, where xi = x j .

Once AVM has found a solution where the two largest values are equal and greater than 0, this solution cannot be 
improved by changing a single variable. Hence AVM will cycle through all variables and restart. �

So Theorem 6 implies the following for our setting of branch 14T.

Corollary 7. The probability of AVM with either Geometric Search or Lattice Search solving branch 14T of gimp_rgb_to_hsv_int is 
(3 · 256 − 3 + 1) · 256−3 = 383/8 388 608. In expectation, around 21 902 starts are needed.

The reason why AVM with IPS performs better on branch 14T is that IPS does not always stop at the largest local 
optimum. If the initial pattern search on a variable xi finishes on a point x′ on the plateau, IPS will stop at x′ . This can 
i i
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Table 5
Success probabilities of a run of AVM with IPS and the expected number of starts to 
find an optimum on max(x1, x2), where the range for both x1 and x2 is [0, N − 1]
with N = 21 − 1, 22 − 1, . . . , 216 − 1. Figures are rounded.

Range Success probability Expected # starts

[0,1] 0.75 1.33
[0,3] 0.5625 1.78
[0,7] 0.3906 2.56
[0,15] 0.2617 3.82
[0,31] 0.1729 5.79
[0,63] 0.1135 8.81
[0,127] 0.0744 13.44
[0,255] 0.0487 20.52
[0,511] 0.0319 31.35
[0,1 023] 0.0209 47.90
[0,2 047] 0.0137 73.18
[0,4 095] 0.0089 111.81
[0,8 191] 0.0059 170.83
[0,16 383] 0.0038 261.01
[0,32 767] 0.0025 398.78
[0,65 535] 0.0016 609.29

leave AVM with a setting where then there is a unique maximum value x j , in which case the next local search on x j will 
decrease x j , potentially towards a value x′

j < x′
i . Then x′

i might become the next unique maximum, and so forth. In other 
words, variables may go past one another, a phenomenon we call “leap-frogging”.

For instance, when minimising the maximum of two variables in the 8-bit range, the input (166, 81), leading to the 
following trajectory:

(166,81) → (39,81) → (39,18) → (8,18) → (8,3) → (1,3) → (1,0) → (0,0).

This trajectory can be further extended towards larger inputs by adding a value of 2 j+1 − 1 to the smaller input value, 
where j ≥ 1 is chosen such that the difference between the two inputs is larger than 2 j .

Such long trajectories with leap-frogging are rare as in every step AVM needs to avoid setting two variables to the same 
value. But it is also clear that because of leap-frogging AVM with IPS has a strictly higher success probability than AVM 
with Geometric Search or Lattice Search. The same effect also occurs with more than two variables, however the chances of 
setting two variables to the same value increase with the number of variables.

We investigated the case of two variables in more detail and determined success probabilities for AVM with IPS numeri-
cally for ranges [0, N − 1] with N = 21, 22, . . . , 216, by running AVM on all possible inputs. The results are shown in Table 5, 
including the expected number of starts for AVM to be successful.

Theorem 6 gives a success probability 2/N − N−2 for AVM with Geometric Search and Lattice Search, hence an expected 
number of starts of around N/2. Compared to this value, the times in Table 5 are much lower for AVM with IPS.

To conclude this section, the alternative local searches still speed up the time for finding some local optimum. But 
branch 14T turns out to be an example where for the global search behaviour which local optimum is found makes a 
big difference. Both Geometric Search and Lattice Search find the worst possible local optimum in a sense that AVM gets 
stuck on points with two or more variables sharing the maximum value. AVM with IPS may perform better as variables 
can perform leap-frogging and avoid such search points. In any case, minimising the maximum of n variables is a problem 
not well suited for optimisation methods that only change one coordinate at a time (as previously noted in the empirical 
evaluation).

8. Conclusions and future work

We have analysed the performance of the original AVM incorporating Iterated Pattern Search (IPS), proposing to replace 
the latter with faster local searches, Geometric and Lattice Search. On strictly unimodal functions, these searches provably 
need less time than IPS. On every strictly unimodal function, IPS requires time Θ((log d)2) in the worst case, when the initial 
point can be chosen up to a distance of d. The same holds for its average-case performance on the easy unimodal function 
f (x) = |x|. In contrast to this, the alternative searches succeed in time O (log d) on any strictly unimodal function, where d
is the initial distance to the optimum. These theoretical results closely matched the results of experiments optimising the 
easy function f (x) = |x| and variants thereof.

We further empirically analysed AVM with Geometric Search and Lattice Search on test objects that gave rise to uni-
modal as well as multimodal functions. For multimodal functions there are no non-trivial performance guarantees for any 
local search; our experiments therefore extend the realm of what can be proven theoretically. Considering branches where 
any variant of AVM performed significantly better than random search, we found that Geometric and Lattice performed 
significantly better than IPS on a majority of branches. Results varied with the input domain size, which determines the 
initial distance to global optima. For small domain sizes of only 10 values, no statistically significant differences were found. 
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But for larger domains, significant differences emerged: AVM with Lattice Search clearly outperformed AVM with IPS on all 
branches with input domain size at least 216. Excluding the pathological case of branch 14T in gimp_rgb_to_hsv_int, AVM 
with Lattice Search needed less than 50% evaluations overall, compared to the original AVM. The reason why IPS performed 
better on branch 14T was found to be that the alternative local searches returned different local optima than IPS, which on 
this specific branch hampered global search performance. The branch was found to be challenging for all AVM variants as it 
contains large plateaux, which AVM cannot escape from by changing a single variable.

One idea for future research is to use the alternative local searches for the AVM to further improve results with Memetic 
Algorithms (MAs) [8,9], which combine diversifying GA searches with intensifying local search algorithms [24,28]. Such an 
approach was found to provide the “best of both worlds” for test input generation in Harman and McMinn’s study [9], and 
it may help to deal with plateaux as above. Thus, further work is needed to investigate the performance of the alternative 
local searches with the AVM when integrated into an MA. Another idea is to investigate different, possibly randomised 
tie-breaking rules to eliminate worst-case scenarios as experienced with branch 14T.
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