1,380 research outputs found

    Space-time adaptive solution of inverse problems with the discrete adjoint method

    Get PDF
    Adaptivity in both space and time has become the norm for solving problems modeled by partial differential equations. The size of the discretized problem makes uniformly refined grids computationally prohibitive. Adaptive refinement of meshes and time steps allows to capture the phenomena of interest while keeping the cost of a simulation tractable on the current hardware. Many fields in science and engineering require the solution of inverse problems where parameters for a given model are estimated based on available measurement information. In contrast to forward (regular) simulations, inverse problems have not extensively benefited from the adaptive solver technology. Previous research in inverse problems has focused mainly on the continuous approach to calculate sensitivities, and has typically employed fixed time and space meshes in the solution process. Inverse problem solvers that make exclusive use of uniform or static meshes avoid complications such as the differentiation of mesh motion equations, or inconsistencies in the sensitivity equations between subdomains with different refinement levels. However, this comes at the cost of low computational efficiency. More efficient computations are possible through judicious use of adaptive mesh refinement, adaptive time steps, and the discrete adjoint method. This paper develops a framework for the construction and analysis of discrete adjoint sensitivities in the context of time dependent, adaptive grid, adaptive step models. Discrete adjoints are attractive in practice since they can be generated with low effort using automatic differentiation. However, this approach brings several important challenges. The adjoint of the forward numerical scheme may be inconsistent with the continuous adjoint equations. A reduction in accuracy of the discrete adjoint sensitivities may appear due to the intergrid transfer operators. Moreover, the optimization algorithm may need to accommodate state and gradient vectors whose dimensions change between iterations. This work shows that several of these potential issues can be avoided for the discontinuous Galerkin (DG) method. The adjoint model development is considerably simplified by decoupling the adaptive mesh refinement mechanism from the forward model solver, and by selectively applying automatic differentiation on individual algorithms. In forward models discontinuous Galerkin discretizations can efficiently handle high orders of accuracy, h/ph/p-refinement, and parallel computation. The analysis reveals that this approach, paired with Runge Kutta time stepping, is well suited for the adaptive solutions of inverse problems. The usefulness of discrete discontinuous Galerkin adjoints is illustrated on a two-dimensional adaptive data assimilation problem

    Dissipative numerical schemes on Riemannian manifolds with applications to gradient flows

    Full text link
    This paper concerns an extension of discrete gradient methods to finite-dimensional Riemannian manifolds termed discrete Riemannian gradients, and their application to dissipative ordinary differential equations. This includes Riemannian gradient flow systems which occur naturally in optimization problems. The Itoh--Abe discrete gradient is formulated and applied to gradient systems, yielding a derivative-free optimization algorithm. The algorithm is tested on two eigenvalue problems and two problems from manifold valued imaging: InSAR denoising and DTI denoising.Comment: Post-revision version. To appear in SIAM Journal on Scientific Computin

    Multi-Dimensional High Order Essentially Non-Oscillatory Finite Difference Methods in Generalized Coordinates

    Get PDF
    This project is about the development of high order, non-oscillatory type schemes for computational fluid dynamics. Algorithm analysis, implementation, and applications are performed. Collaborations with NASA scientists have been carried out to ensure that the research is relevant to NASA objectives. The combination of ENO finite difference method with spectral method in two space dimension is considered, jointly with Cai [3]. The resulting scheme behaves nicely for the two dimensional test problems with or without shocks. Jointly with Cai and Gottlieb, we have also considered one-sided filters for spectral approximations to discontinuous functions [2]. We proved theoretically the existence of filters to recover spectral accuracy up to the discontinuity. We also constructed such filters for practical calculations

    Estimating numerical integration errors

    Get PDF
    Algorithm for use in estimating accumulated numerical integration error

    Differential-Algebraic Equations and Beyond: From Smooth to Nonsmooth Constrained Dynamical Systems

    Get PDF
    The present article presents a summarizing view at differential-algebraic equations (DAEs) and analyzes how new application fields and corresponding mathematical models lead to innovations both in theory and in numerical analysis for this problem class. Recent numerical methods for nonsmooth dynamical systems subject to unilateral contact and friction illustrate the topicality of this development.Comment: Preprint of Book Chapte

    Bayesian Analysis of ODE's: solver optimal accuracy and Bayes factors

    Full text link
    In most relevant cases in the Bayesian analysis of ODE inverse problems, a numerical solver needs to be used. Therefore, we cannot work with the exact theoretical posterior distribution but only with an approximate posterior deriving from the error in the numerical solver. To compare a numerical and the theoretical posterior distributions we propose to use Bayes Factors (BF), considering both of them as models for the data at hand. We prove that the theoretical vs a numerical posterior BF tends to 1, in the same order (of the step size used) as the numerical forward map solver does. For higher order solvers (eg. Runge-Kutta) the Bayes Factor is already nearly 1 for step sizes that would take far less computational effort. Considerable CPU time may be saved by using coarser solvers that nevertheless produce practically error free posteriors. Two examples are presented where nearly 90% CPU time is saved while all inference results are identical to using a solver with a much finer time step.Comment: 28 pages, 6 figure

    A fully discrete framework for the adaptive solution of inverse problems

    Get PDF
    We investigate and contrast the differences between the discretize-then-differentiate and differentiate-then-discretize approaches to the numerical solution of parameter estimation problems. The former approach is attractive in practice due to the use of automatic differentiation for the generation of the dual and optimality equations in the first-order KKT system. The latter strategy is more versatile, in that it allows one to formulate efficient mesh-independent algorithms over suitably chosen function spaces. However, it is significantly more difficult to implement, since automatic code generation is no longer an option. The starting point is a classical elliptic inverse problem. An a priori error analysis for the discrete optimality equation shows consistency and stability are not inherited automatically from the primal discretization. Similar to the concept of dual consistency, We introduce the concept of optimality consistency. However, the convergence properties can be restored through suitable consistent modifications of the target functional. Numerical tests confirm the theoretical convergence order for the optimal solution. We then derive a posteriori error estimates for the infinite dimensional optimal solution error, through a suitably chosen error functional. This estimates are constructed using second order derivative information for the target functional. For computational efficiency, the Hessian is replaced by a low order BFGS approximation. The efficiency of the error estimator is confirmed by a numerical experiment with multigrid optimization

    Variational image regularization with Euler's elastica using a discrete gradient scheme

    Full text link
    This paper concerns an optimization algorithm for unconstrained non-convex problems where the objective function has sparse connections between the unknowns. The algorithm is based on applying a dissipation preserving numerical integrator, the Itoh--Abe discrete gradient scheme, to the gradient flow of an objective function, guaranteeing energy decrease regardless of step size. We introduce the algorithm, prove a convergence rate estimate for non-convex problems with Lipschitz continuous gradients, and show an improved convergence rate if the objective function has sparse connections between unknowns. The algorithm is presented in serial and parallel versions. Numerical tests show its use in Euler's elastica regularized imaging problems and its convergence rate and compare the execution time of the method to that of the iPiano algorithm and the gradient descent and Heavy-ball algorithms
    corecore