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ABSTRACT
 

An algorithm is presented for use in estimating
 

accumulated numerical integration errors for integrating
 

systems of ordinary first-order differential equations.
 

Another algorithm is presented for estimating errors in
 

problems (such as trajectory optimization problems) having
 

an additional set of necessary conditions. These conditions
 

are often analogous to the momentum and energy constants of
 

conventional physical problems.
 

Also, accuracies of the standard fourth-order Runge-


Kutta and Adams-Moulton and fifth-order Runge-Kutta formulas
 

are compared. The brachistochrone and "flat Earth" trajectory
 

problems, both having closed form solutions, are used for
 

numerical examples. Results for a low thrust, Earth-Jupiter
 

transfer problem are presented as a third example.
 

INTRODUCTION*
 

The formulation of good error estimates or close-error
 

bounds for numerically integrating first-order systems of
 

ordinary differential equations is generally difficult.
 

However, good estimates for some specific problems can be
 

obtained. Ordinarily, trajectory optimization problems do
 

not tend to be unstable, nor do they fall into the stiff
 

spring class. Hence, two of the troublesome areas of
 

numerical integration are avoided. The fact that linear
 

estimates are exceptionally accurate for many nonlinear
 

trajectory problems is also very encouraging. Still
 

*Portions of this paper have been reproduced, with per
mission of the authors, from MSC-ED-R-68-74.
 



another important factor is the existence of a constant of
 

motion, a condition that exists for many optimization prob

lems in the form of a generalized Hamiltonian. Not only can
 

this function be monitored, but an analysis of the sensiti

vity of the function can be used to yield error estimates.
 

Most methods for solving trajectory optimization
 

problems imply some iterative process involving many
 

numerical integrations of an initial value problem. In
 

theory, this numerical integration is assumed to be exact
 

so that, at least in the terminal phases of the iteration
 

process, accurate numerical integration is required. Com

puter time requirements must also be considered, depending
 

on the number of iterations required and the complexity of
 

the problem in question. Both of these criteria, computer
 

expense and the need for accuracy, have stimulated several
 

good reports concerning numerical integration errors for the
 

two-body problem.
 

summer of 1966, Lewallen and Gerber(1)
During the 


investigated error propagation for numerically integrating
 

many different near Earth orbits. The effects of varying
 

orbit shape, orbit size, coordinate systems, and integra

tion step size were studied. All numerical tests were
 

carried out using fixed step Adams-Moulton integration in
 

either rectangular or spherical coordinates. Two signifi

cant results, the superiority of the spherical coordinate
 

system and a similarity of the norms of the error in posi-'
 

error in velocity, were reported. Schwausch (2 )
 
tion and the 


performed similar research by using additional coordinate
 

Isystems and obtained best results with a form of elliptic,
 

coordinates.
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Rainbolt (3) presents an error analysis for the two

body problem, finding circular cylindrical and parabolic
 

cylindrical to be more accurate than rectangular, spherical,
 

parabaloidal, and elliptic cylindrical. Rainbolt also
 

analyzed the effect of coordinate systems on convergence
 

envelopes for indirect optimization methods of solving a
 

two-dimensional, low-thrust, Earth-escape spiral. The
 

investigation revealed that larger convergence envelopes
 

are obtained using the circular cylindrical (polar in two
 

dimensions) coordinate system; monitoring of the Hamiltonian
 

also indicated that better accuracy is obtained when inte

grating the initial value problem in this coordinate system.
 

Perhaps the system yielding the most accurate integration
 

also yields the best convergence properties for-solving the
 

optimization problem.
 

All three references thus far base their conclusions
 

on using the popular fourth-order Adams-Moulton integration.
 

The authors propose in this study to fix the coordinate
 

system and to vary the type of numerical integration.
 

Tables are included to show the numerical errors propagated
 

during the terminal integration of three different optimi

zation problems. Both fixed-step and variable-step inte

gration will be considered.
 

In addition to comparing different types of integration,
 

this paper will compare methods for obtaining long-term
 

accumulated error estimates. Although good error bounds
 

are more desirable, there will be no attempt to obtain
 

bounds; past experience indicates very little success in
 

that direction. The authors prefer to hope for excellent
 

estimates and to accept some uncertainty. Obtaining these
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estimates will require a combination of mathematics,
 

numerical results, additional labor and computer time, and
 

common sense. Very logically, most methods to date depend
 

heavily on the latter, and, fortunately, automated tech

niques can be devised to eliminate some of the additional
 

costs. These techniques will be demonstrated with three
 

numerical examples, starting with the simple classical
 

brachistrochrone problem, progressing to a modern day
 
"flat Earth" trajectory problem for launching a satellite
 

and ending with an Earth-Jupiter transfer orbit problem.
 

Much of the previous work in trajectory optimization
 

has been focused on coordinate -systems, transformation of
 

variables such as regularization, and the effect of different
 

numerical techniques on convergence envelopes. Emphasis has
 

been placed on fixed-step size integration because of the
 

natural application to the structure of many numerical
 

algorithms. Trial and error procedures have played a domi

nant role in choosing this fixed-step size, and in many
 

instances little effort is made to automate the process.
 

A technique for estimating errors can be used to automate
 

this process of choosing step size; hence, a possible saving
 

of man-hours and computer time may resut. However, the
 

principle emphasis for obtaining error estimates is placed
 

on having additional information about the numerical
 

accuracy of the final solution.
 

PROBLEM DEFINITION
 

Although the numerical examples are restricted to
 

Euler Lagrange equations, the basic theory can be stated in
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general. The dominant theme is solving initial value prob

lems numerically. That is, given
 

y,= f(y,t) , y(t0) YO 

one must obtain an approximation y to the solution y
 

over a domain [t0,tf] or at least for a discrete set of
 

points in this domain.
 

If z = y - y denotes the error in y, then an 

estimate to z can be obtained by integrating 

0 (2)
y) =(y z' =Az+b, z(t0 


where A = (aij) = 3fi/ay. and b is a forcing function
 

representing the error in y' due to local truncation and
 

rounding errors. The accuracy of such an estimate depends
 

on the validity of the linearity assumption in (2), the
 

type of forcing function b , the accuracy of the esti

mates for local errors, and the type(s) of integration used
 

to integrate (1) and (2). An algorithm with a particular
 

choice for these variables will be defined in-the next
 

section. This process, using the linear estimate for z'
 

will form one of the basic types of estimates considered.
 

The second basic type of error estimate can be applied
 

only to those problems having an additional system of equa7
 

tions
 

g(y,t) = 0 (3) 

S
 



representing one or more necessary conditions that y
 

satisfy the initial value problem. Although "t" can
 

appear explicitly in (3) (and the algorithm can be applied
 

to these problems), emphasis will be placed on those prob

lems where g is explicitly a function of y alone.
 

These problems have the unpleasant characteristic that
 

error estimates are based on a system of equations having
 

many solutions. For example, if y(tf),is the numerical
 

solution at t = tf, then one would need to find a
 

vector A such that
 

.g(y(tf) + A, tf) 0 (4) 

Assuming that t does not appear explicitly (and that (1)
 

has a nontrivial solution), then there will be many vectors
 

A satisfying (4), namely those such that
 

A = y(t) - y(tf) (5) 

for some t : [t0 ,tf]. For most problems, the range of y
 

is a continuum so that there will be an uncountable number
 

of solutions for A .
 

On the surface, the second basic type of estimate
 

appears to have no merit. For many problems the residuals
 

of g(y,t) are monitored, and, if several types of numerical
 

integrations are used, the one yielding the smallest
 

residuals is assumed to be the most accurate. (Many
 

successful algorithms are based on assuming necessary
 

conditions are also sufficient.) This presentation is
 

neither a criticism of such techniques nor an attempt to
 

discourage their use; it is an attempt to go further in
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obtaining independent error estimates. However, in this
 

approach, the method itself will often serve as a reminder
 

that nonsufficient conditions have been used.
 

Since there are many solutions to (4), a logical cri

terion must be designed for accepting particular values of 

A as error estimates. One such method is to accept a 

solution to (4), say A0 , if the Euclidean norm of A0 
is a minimum for all values lAII such that A satisfies 

(4). The continuity of g in y would be sufficient to 

guarantee the existence of such a A0 Delaying considera

tions of existence, implementation of numerical techniques, 

and convergence problems, consider for a moment the choice 

of 4o as opposed to some other estimate. Both of the 

conditions-(a) 11A 0 11 is a minimum and (b) equation (4) is 

only a necessary condition-combine to prove that 

JJE(9)) J IIA01 ,
 
A 

where E(y) denotes the error in y ; i.e., A0 is a lower
 

bound (in norm) to the error and could at least be used to 

reject solutions. As a second criterion for estimates, all 

components of A can be required to be zero except for one 

component, and accept an estimate, say A1 , if the 

Euclidean norm of g(y + A) is a minimum. In most cases this
 

will result in a unique solution A. since this forms a
 

least squares problem rather than an overdeterminea system.
 

Physically, this is equivalent to assuming all error is in

one component, such as the velocity along the x component,
 

so that in a sense this seems to be an upper bound for the
 

error. However, one is again reminded that (4) is only a
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necessary condition; hence, this estimate can be viewed
 

with mixed emotions. Since the residuals may not be zero
 

for this estimate, indicating other variables having domi

nant errors, a more detailed study could be carried out
 

allowing various combinations of nonzero elements in the
 

A vector. "As a third and last criterion, a solution, say
 

A3 , will be accepted if 11w A3 11 < 11w All for any A 

satisfying. (4), where w is a diagonal weighting matrix.
 

In practice, this is often more realistic than minimizing
 

IIAI. For example, suppose y is the state vector con
sisting of three position coordinates, a1 = (y1,y2,y3) ,
 

and three velocity coordinates, a2 = (y2 ,y2,y3) = (y4 ,y5,y6 )
 
For this case, llyll has very little physical significance;
 

hence, IIAII for the corresponding error estimate has
 

little significance. Many choices of w can lend intuitive
 

interpretation to A3 If the approximate norm (I1alIl)
 

of the terminal position is wI , and the approximate norm 

([Ila2I) of the terminal velocity is w2 , an appropriate 

choice for weighting would be to minimize
 

(()22 + A2 + A2) +(L_)2(A2 + A2 + A )) 

Intuitively, this weighting forces errors affecting the nth
 

significant place of the velocity norm to be considered as
 

important as errors in the nth significant place of the
 

position norm. Similarly, the vector y may contain mass,
 

moments, Euler Lagrange multipliers, or some other variable
 

where weights need be introduced for the minimization process
 

to make sense.
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DERIVATION OF ALGORITHM I
 

The first basic type of estimate is based on the
 

approximation
 

z' Az + b, z(t) - 0 (1)
 

In practice, the following logic is used for the integration
 

algorithm. The standard fourth-order Runge-Kutta formula is
 

used to integrate the equation
 

y = f(y,t) (2) 

subject to y(t0) = Y . If an integration step size of h 

is specified, -then y(t0 + h) is approximated by numerically
 

integrating equation (2), using two steps of h/2 to obtain
 

y(t0 + h) and using one step of step size h to obtain
 

y(t0 + h). The local truncation error is estimated by
 

+ h) = y(t0 + h) - y(t0 + h) 

and the relative local errors by
 

6(to + h) 
6(t0 + h) - -ly(t o + h)l (Sb) 

(where coordinatewise division is meant; i.e.,
 

IL ' - 2 etc.
6 l 2 
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Absolute error is used when the divisor belongs to a user
 

specified interval about zero.) When integrating in fixed
 

step mode, equation (1) is immediately integrated using a
 

constant forcing function
 

b(t) E(to + h)/h (4)
 

for t a [to, to + h] . If a variable step tolerance B 

is specified, then a doubling-halving technique is used to
 

obtain a step size H such that the maximum magnitude of
 

the components in 6(to + H) is an element of [B/100, E].
 

After this step size has been chosen, equation (1) is numeri

cally integrated with constant forcing function as described
 

in (4). The process is then carried on iteratively so that
 

the accumulated error estimates from integrating (1) are
 

obtained stepwise just as the initial value problem itself
 

is solved.
 

Recall that the matrix
 

A = {a..i = af./Dy. (5) 

is a function of y , so that, depending on the choice of 

numerical integration for (1), the midpoint values
 

y(t + h/2) must sometimes be saved. The variations of
o 


this first algorithm will be obtained by choosing different
 

types of numerical integration for solving equation (1) as
 

follows: (I) Buler's Formula; (II) assume y constant in
 

[tk, t,+] and use series approximation; and (III) standard
 

fourth-order Runge-Kutta.
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Method I does not require the midpoint values 

y(t + h/2), and it is the least expensive in terms of 

computer time. Similarly, method II does not require the 

midpoint values, and it does provide a more accurate solu

tion to eA(t-tQb , where in practice it has been quite 

satisfactory to evaluate A(tk + h) rather than-A(tk) so 

that y(tk) can be discarded before integrating (1). 

Method II has the advantage that the accuracy can be varied 

easily by using series of different degrees. Method III 

requires storing the midpoint values y(tO + h/2) and it 

requires the most computer time, but this usually yields the 

most accurate estimate of the three methods. 

The linear estimate for z' is perhaps the simplest
 

of all error estimates. The method is not nearly so
 

advanced as the work presented several years ago at the
 

advent of the computer age by Sterne (4) and Rademacher (5 ).
 

Their work can be used to compute an optimal integration
 

step size (for fixed step mode only) using a minimum of
 

computer time and memory locations. However, storage
 

problems are becoming less and less critical, and computer
 

costs (per computation) have rapidly decreased, while
 

programmer costs have increased to the point where the
 

number of programmer man-hours required for implementation
 

is extremely important. Regardless of the -choice of
 

methods I, II, or III, the only additional man-hours
 

required, above the usual cost of integrating equation (2),
 

are those for deriving and coding the matrix A. Since the
 

functions f(y,t) are known analytically,and presumably
 

are programmed for solving (2), a standard matrix differen

tiation subroutine using linear or quadratic approximations
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can be used to eliminate the differentiation and coding
 

errors in computing A. Other advantages to the algorithm
 

are as follows: it can be applied easily to systems as
 

well as single equations;.solutions to the adjoint system
 

are not required; it can be applied to variable step
 

integration as easily as to fixed step integration; and
 

the method can be applied easily to any integration for

mula with a good estimate for local truncation errors.
 

For the examples presented in this paper, rounding
 

errors did not become a major problem when using the
 

fourth-order Runge-Kutta. However, this algorithm can
 

also be used to estimate accumulated rounding errors. One
 

method of application is to leave all logic the same
 

except for computation of the forcing function b(t).
 

The local error estimates are now based on the
 

assumption that all significant rounding errors are
 

obtained in the addition step y(t + h) = y(t ) + Ay
 
A logical choice is to assume that the errors are uniformly
 

distributed from -1/2 to +1/2 in the last significant place
 

carried in y(t). Zani(6) has shown that this provides good
 

estimates for several trajectory problems after several
 

thousand integration steps and that a linear estimate pro

vides good results for truncation errors. His examples
 

also include passing near singular points.
 

DERIVATION OF ALGORITHM II
 

The second algorithm is similar to the first .in two
 

respects. First, a linearization is involved, and, second,
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the analysis is quite simple. Algorithm II is different
 

from the first in that it can be applied directly at the
 

terminal time, but applications are restricted, as men

tioned before, to those problems having an additional
 

system of equations
 

g(y,t) = 0 , (l) 

representing a necessary condition that y satisfy the
 

initial value problem. Given an approximation y(tf) to
 

y(tf), the object is to find a vector A such that
 

g + A, tf) = 0 , (2) 

Although (2) is generally nonlinear, the authors propose a
 

linear model and an iterative process to find A as follows:
 

g(ny,tf) + C(nYtf) n 1lA =0 (3) 

where ny = n-lY + n-i A and C = (ci) = agi/ay 

This is the most commonly used technique for solving
 

nonlinear equations. However, difficulty arises from the
 

fact that (2) has an infinitude of solutions (probably a
 

continuum) so that, assuming the linearization is
 

reasonable, there can be an infinitude of solutions to (3).
 

This is quite realistic; for example, there is often only
 

one function g, and n variables; hence, C is a
 

lxn matrix. For linear problems, this does not form an
 
(7)impasse. The following results can be found in
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Theorem: If C.' is a real nxm matrix, g an nxl
 

real vector, then there exists an mxl vector A such that
 

(Euclidean norm) (4) IIC A - gIl is a minimum. All such
 

vectors are characterized by
 

A = C+g + (I - C+C)q
 

C+
q arbitrary, where is the generalized inverse of C
 

The vector A0 such that IIAII is also a minimum is given
 

by
 

Ao = Cg 

Perhaps it should be pointed out that such a differen

tial correction scheme need not be limited to this particular
 

context nor to real valued functions. There are computa

tional methods (see Decell and Kahng (8 ) ) for computing the
 

generalized inverse of an arbitrary nxm complex matrix.
 

For the second basic type of error estimate, three
 

different criteria were listed as logical for choosing a
 

solution A to equation (2). These criteria were:
 
(a.) choose A such that it satisfies (2) and
 

11A1 11 < 1IAII for any other A satisfying 2, (b.) choose
 

A2 such that all except one of the components of A2 are
 

zero, H g(Y + A2, tf) I1is a minimum for all A of this
 

form, and IIA2 11 < ''Ail for any other A satisfying this l 

property, (actually A2 is probably unique with first 

property), (c.) choose A3 such that A3 satisfies (2) 

and 11w A All for any vector A satisfying (2) 

(w a fixed diagonal weight matrix).
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The basic assumption is now made (just as in most
 
solutions to nonlinear problems) that performing an opera

tion iteratively on the linearized system yields an estimate
 

of this operation for the nonlinear system. The preceding
 

theorem obviously makes it possible to obtain solutions to
 

the linear system for criteria (a.) and (b.); another not
 

so obvious application of the theorem will produce A3
 
satisfying criteria (c.) (the authors tacitly assume a
 

C+
subroutine for computing is available). For a fixed
 

matrix w , one must obtain A3 satisfying IIC A3 - gll
 

is a minimum and llw A311 < 11w All for any A such 

that IIC A - gll is a minimum. Toward that end, recall 

that all vectors A such that IIC A - gil is a minimum
 

are characterized by
 

A = C+g + (I - C+C)q 

q E Rm, q arbitrary. Then
 

w A = {wC+g} + {w(I - C+C)}q
 

which is of the form
 

w A = p + Rq 

where p is a known vector and R is a known mxn matrix.
 

Thus, another application of the theorem yields a
 

solution
 

q = R+(-p) + (I - R+R); 
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is arbitrary and qo = R+(-p) is chosen which yields
 

A3 = C+g + (I - C+C)R+(-p) 

and IC A glJ and llw All have been simultaneously
 

minimized.
 

It should be noted that, at the time of this writing,
 

Speed and Decell (9 ) have completed a paper for differential
 

correction via generalized inverse for overdetermined
 

systems. This method has converged rapidly when applied
 

to several problems for which conventional methods either
 

converge slowly or diverge.
 

NUMERICAL EXAMPLES
 

Since the numerical examples are based on trajectory
 

optimization problems, and since this type of problem
 

stimulated the applications for the second algorithm, a
 

skeletal outline of the general trajectory optimization
 

problem will be presented. -A detailed description of this
 

theory and numerical methods is made by Tapley and
 
( 0) :
 

Lewallen
 

The trajectory optimization problem involves the 

determination of the m-vector of control variables u(t) in 

the interval tO < t < tf such that a scalar performance 

index of the form 

I = G(xf,tf) + f Q(x,u,t)dt (i) 
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is minimized, while the p-vector of initial conditions
 

L(xo,t0 ) = 0 (2) 

and the q-vector of terminal conditions
 

M(ftf) = 0 (3) 

are satisfied and the n first-order, nonlinear, differen

tial equations
 

x = f(x,u,t) (4) 

are satisfied. The vector x is an n-vector of state 

variables and t is the independent variable time. 

The first necessary conditions corresponding to the
 

above stated problem are as follows:
 

In the interval of interest
 

x=H~ =H
x = Hx 0 (5 

at the known initial time 

L(x 0 1,to ) 0 [(Px + x")] 0 = 0 (6) 
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and at the unknown final 	time 

M(x ftf) = 0 

(7)

I(Px - AT)], dxf = 0 

[t + n)] dtf = 0 
t tf
 

where the scalar functions P and H are defined as
 

P = G(xf,tf) + I'TL( 0 ,t	 0 ) + VTM(Xf,tf) (8) 

= Q(x,u,t) + X'f(x,u,t) 	 (9) 

The scalar H is referred to as the generalized Hamiltonian
 

and p and v are Lagrange multipliers.
 

In an indirect optimization method, the condition 

HUU = 0 yields m algebraic equations which can be used 

to eliminate the m control variables in Eqs. (5-a) and 

(5-b) to yield 

HT 	 -HT (10)
= HS
 

where H = H[x,,u(x,A,t)',t] Eqs. (6), (7), and (10) lead 

to a conventional two-point boundary value problem. If the 

2n-vectors z and F(z,t) are defined as 

T T1
[xT ] = [Hx2 i -H] (11) 
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then Eq. (10) can be expressed as
 

; = F(z,t) (12) 

Furthermore, Eqs. (6) and (7) define the boundary conditions
 

g(Z 0 ,to) 0 h(zf,tf) = 0 (13) 

where g is an n-vector and h is an n+l vector. Hence,
 

the 2n equations in Eq. (12) are subjected to the 2n+l
 

boundary conditions in Eq. (13).
 

In the present text, all theory is directed toward
 

solving Eq. (12) as an initial value problem. Hence, the
 

dependent variables will consist of an augmented vector of
 

state variables and Lagrange multipliers. In solving opti

mization problems, a split boundary value problem is
 

usually encountered where the state variables are known at
 
t and the multipliers at tf * Many methods are used
 

for solving such problems, but most of them involve inte

gration of an initial value problem (if for no other reason)
 

to verify the final solution. Methods for solving boundary
 

value problems will not be discussed. Numerical results
 

will consist of integrating Eq. (12) with the correct
 

initial conditions to give an optimal solution.
 

Brachistochrone Problem
 

The Brachistochrone Problem studied in this investiga

tion involves the determination of the closed-form solution
 

for a particle moving under the influence of a constant
 

gravitational acceleration from the point (x0,y0 ) at t0
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to the point (xf,yf) in such a manner that travel time is
 

minimized.
 

x x 

YI 

VI
 

The nonlinear 
 y
 
differential equations that
 

correspond to Eq. (12) are
 

y 

*- 2g(y-a) X F
 
11
2XT 2
1~ f+ 2 

2= - 2g(y- a) = F2 
212+AX2 2 22 

2 

3 A1 = 0 = F3 

2
92 + 

=4 A2 = 2g(y - a) F4 

2 

V0
 
where g is the acceleration of gravity and a = - and 
involves only the initial conditions. It should be noted that 

by Eq. (S-c) tan e = X2/x1 The quantity a is intro

duced to avoid the singularity if it is desired to start 
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from Y(to) = YO= 0 In this case, an initial velocity
 

must be given.
 

For numerical implementation, the following values
 

were selected:
 

to = 0 	 Xf = 5.0 g = 32.1741 

X0 = 0 	 Yf = 8.0 

YO = 1.0 	 a = 0.5 

These values lead to the closed-form determination of
 

c, = -5.711799, c2 = -.068417163, Ax = -.03573496 and
 

tf 	= .60766149 which determine the solutions
 

x 1 r , 
= 	 4gA,2 Lx c gt) - sin [2Xx( c - gt)jj + 

4gX = 1 2 

2 2
g+12 sin [Xx (c1 gt)]2gt 

X = X cot [x(c - gt)] 

The generalized Hamiltonian used for algorithm II is given
 

by
 

a
-H~~~ =x	 g(y 
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Flat Earth Problem
 

The Flat Earth Problem studied in this investigation
 

involves the determination of the closed-form solution for
 

rocket flight over a flat Earth so that it will arrive at
 

a fixed height Yf at tf with zero vertical velocity
 
and maximum horizontal velocity. The thrust-to-mass ratio
 

is constant and the horizontal displacement is not constrained.
 

SLuvelocity
 

Yf-


The nonlinear differential Yd " 

equations that correspond I 
to Eq. (12) are X0 Xf 

=i x = u= 
u1
 

z2 y = V = F2 

TX
 
3 - F
3
 

mA2 + X2 
U V 
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TX
 
V 

24 =V - g F 4 

U V 

Xx 0 
-z = = 0 = F6 

=A =0 =F
6 6 

Z7 A = x =F 7
7U x 

= = F88=-X 

XY
V 

where g is the acceleration of gravity and T/m is the
 

thrust to mass ratio, which is constant. It should be
 

noted that by Eq. (5-c) tan e = Xv/Xu
 

For numerical implementation, the following values were
 

selected:
 

to = 0 tf = 274.28710 sec
 

X = 0 Yf = 528,000.0 ft 

2
T/m = 100.0 ft/sec
Yo 0 

= 0 g = 32.0 ft/sec 2 
UO 


Vo = 0
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These values lead to the closed-form determination of
 

b = 0.90877929 c = .0038698512 u(tf) = 25000.0 ft/sec.
 

which in turn determine the solutions
 

b '2 	 2S=I + - r1 + (b - ct) 

(b - ct) log b + Vi + b 

:b ct + + (b- ct) 

2C2 

+ 	 2c t + b 2 log( b + N1 +b2 
(b ( ct + ,1 + (b - Ct2) 

I 	gt2
 

2
 

b 	 + + b2 I 
=a log 1 

b ct + 1i + (b ct) 2] 

= a2 	 + (b - ct)21 - gt 
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x 

A = C 
U 
A = 1 

Av(t9 -X y(tf - t)X V= 

Earth-Jupiter Problem
 

The Earth-Jupiter Problem studied in this investigation
 

does not have a closed-form solution. It involves minimizing
 

the fuel expenditure for a three-dimensional, constant

magnitude thrust rocket that leaves Earth on December 1, 1983.
 

The terminal conditions correspond to the state of Jupiter at
 

the arrival time.
 

y 

The nonlinear /Barth Orbit
 

differential equations
 

that correspond to
 

Eq. (12) are
 
Jupiter Orbit 

- x = u = 1 

z2 = y = v = F2 
2F
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3 z= = w = F3 

5= 

= 
4 

u 

V 

= 

= 

_.3+ 3 

r 

+ 
3 

r 

rn4 

-
115 

cos 

cos 

e 

e 

cos g 

sin 

= 

= 

F4 

F 5 

z =w = 

r 
- sine = F 

= ix = -5 r (3x 2 _r2 + 3X xy + 3Xwxz] = F. 

9 = -= 5P[3Xux2 

r 

+2 Y2 ) + 3xYz] = F9 

10 = = 5 [3XuXY + 3Xvyz + 
r 

wC3z 2 - = F 

11 = -w = F1 1 

12 

13 

= 2.
v 

w 

= -w_ 
-Wy 

z 

= F3 
F12 

F1 3 

* 

14 m = 

-T f2 U + 12+V 

2 

12W/ 

= 14 
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X2 Z2
where r = + y2 + , p = GM , G is the universal 

gravitational constant, M is the central body mass,
 

m = mn - 8t is the mass of the spacecraft, 8 is the
0 


mass flow rate, and c is the relative exhaust velocity 

of the propellant. The angles i and 6 are the in-plane 

and out-of-plane thrust angles, respectively. The terminal 

time tf is unknown. 

The constants of motion to be used to evaluate the
 

numerical error estimates for algorithm II are
 

T X2 +2+ * 2
 

= +(X + X Z)+ U w
X+E1 

r 3 u v w i 

- [WXu + yv +y W w] - Am 

B2 = Xw-XV-2z+%yE2 Xv w XWv WYz+WzY
 

E3 - W u + Z - W X 

B4 - V X u +X
 

Since a closed-form solution to the differential
 

equations was not known, the problem had to be solved numer

ically. This solution was obtained in double precision by
 

the Method of Perturbation Functions as outlined in Ref. 10.
 

Hence, the initial conditions used for this study were
 

c_ - .24497092E - 4
 
m 
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S= .296007536E - 3
 

x(t0 ) 


Y(to) 

0
Z(to) 


U(t0 ) 


V(to) 


W(to) 

m(to) 


w 	(to) 

oy	(t 

(t0 

xuJt0 

xv(t 

x(tO 


x (t) 


tf 


= .8321727E - 0 

= -.52919964E - 0 

.0 

= .92217756E - 2 

= .14807388B - 1 

= .0 

= .IE + 1 

= .82198202E + 1 

= .46426936E + 1 

= -.7815362SF 1 

= .16289938 

= -.22067387E - 1. 

= -.59754685E - 3 

= .18510952B + 4 

.90507346E + 3 
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COMPARISONS OP STANDARD INTEGRATION ALGORITHMS
 

The two error estimate algorithms are easily applied
 

to trajectory optimization problems, and implementation
 

does not require a prohibitive number of programmer man

hours. Another prerequisite for a numerical algorithm to
 

be usable is that it must require a reasonable amount of
 

computer time compared to other methods of similar accuracy
 

and dependability. In this section, data will be presented
 

to show the accuracy and speed of several well known types
 

of numerical integration algorithms. Any measurement of
 

speed or accuracy of an algorithm is highly dependent on
 

the type of computer used, programming techniques, and many
 

other factors. All data presented in tables 1 through 12
 

were obtained using the UNIVAC 1108 computer. In compiling
 

this data, all execution times are recorded for those exe

cutions having no output, derivative and calling programs
 

were kept identical wherever possible, and executions of
 

programs were all made on the same machine with the same
 

system and near the same time when possible. Every effort
 

has been taken to provide a good relative test of the speed
 

and accuracy of these algorithms. In addition, these data]
 

will provide a yardstick for measuring the percentage of
 

additional time required to compute the estimates in
 

algorithms I and II.
 

Three basic types of numerical integration are compared
 

in tables 1 through 6. The standard fourth-order Runge-


Kutta (RK) and Adams-Moulton (AM) integration methods were
 

chosen because of their widespread usage and reputation for
 

dependability. As a third choice, a fifth-order Runge-Kutta
 

(RKS) formula was chosen. Since this formula is not well
 

known, the'authors state it here.
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Denote y(t0 ) by yo and y' by f(y,t) then
 

y(t 0 + h) y + 1/12[K 1 + 5K3 + 5K5 + K 6 ] 

where 

K1 = hf(yoto) 

K2 = hf(y 0 + KI/2, t0 + h/2) 

=hf
K3 (Y0 + 1/10(2K1 - (' t-+( T 

K4 hf(y0 + 1/41K, + K 2, to + h/2)
 

KS = hf(y 0 + 1/20[{1 - ,/-}K - 4K 2 + (5 + 3/v}K 3 

+ 8K4], to + 1/10{5 + v}h)
 

K6 = hf(y0 + l/4[{v-5 - 11K 1 + {2'W - 212 + (5 - V5K 

8K4] + {10 - 2/5}K5, to + h)
 

A derivation for this formula can be found in Ref. 11.
 

This formula has not been used nearly so much as the first
 

two, but the algorithm has been programmed and successfully
 

used at MSC for several problems.
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The data for integrating examples I through 3, using
 

fixed step integration, are found in tables 1 through 3,
 

respectively. All numerical solutions are acceptable, and
 

the execution times are extremely good. Each of the three
 

numerical examples is often used to "test" numerical
 

algorithms for solving optimization problems. Hence, step
 

sizes were known such that at least four to five significant
 

(decimal) place accuracy would be maintained using fourth

order fixed step Adams-Moulton integration. Using this
 

step size brings attention to some interesting facts.
 

The "flat Earth" trajectory and the Earth-Jupiter transfer
 

integrations require Z75 and 906 steps, respectively. For
 

each of these problems, the fourth-order Runge-Kutta routine
 

yields more accurate results than the fifth-order Runge-


Kutta. The indication is that the fifth-order RK is much
 

more susceptible to accumulated roundoff error. The fact
 
that the variable step fifth-order RK obtained excellent
 

results, using a larger step, also tends to uphold this
 

assumption. It is suggested that total double precision
 

be used for integrating a large number of steps using RKS.
 
The fourth-order RK is also more accurate than the Adams-


Moulton solution for the Earth-Jupiter problem, indicating
 

slight numerical instabilities may have been encountered.
 

Data for variable step integrations are found in
 

tables 4, 5, and 6. In each of these tables, the first
 

column represents data from an integration using a test
 

on the estimate for absolute local truncation errors to
 

determine step size control, whereas all other data are
 
taken from routines using relative error tests.
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Two significant results, the increased relative speed
 

and the increased relative accuracy of the fifth-order RKS,
 

are at once evident. The small step sizes used for fixed
 

step integrations were a bit unfavorable to each of the
 

partial double precision routines (especially to RKS).
 
5
Even though the same error tolerance, 10- , was provided
 

for each routine, the fifth-order Runge-Kutta routine
 

maintained much better accuracy than any of the other
 

routines using relative error tests. This data indicates
 

that if all routines were forced to maintain the same
 

accuracy, then RK5 would probably execute as fast as any
 

of the other routines.
 

Although there is an attempt to keep the number of
 

tables and the amount of data down to a minimum, one detail
 

should be mentioned. Of the three numerical examples in
 

this paper, the largest system of derivatives requires less
 

than 1 millisecond per evaluation (using the UNIVAC 1108).
 

For systems requiring much more time to evaluate, the
 

Adams-Moulton integration is often faster than Runge-Kutta,
 

provided the same error tolerance is used for both types
 

of integration. Thus, for problems in this category, one
 

might consider an application of the linear estimate, used
 

in algorithm I, to Adams-Moulton integration. The error
 
t
equations z = Az + b could be integrated by Euler's
 

method or a higher order multistep method, requiring no
 

more backward values than those retained for the Adams-


Moulton integration.
 

The results of this section, in the sense of comparing
 

one algorithm to another, are exactly what one would expect.
 

No single algorithm appears to be "best." Even the large
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5 
errors (E4 in table 5) in the vertical velocity-for the
 

flat Earth trajectory-are a natural result of allowing 10


relative errors when this velocity had built up to more
 

than 1,000 ft/sec during the trajectory. This is a good
 

example where an absolute error test is sometimes preferred
 

over a relative one. However, the large relative errors
 

as this velocity approached zero at the terminal time were
 

expected, and the maximum absolute errors of .137 ft/sec
 

are perhaps acceptable. Generally, accuracy is maintained
 

and execution time decreased by using variable step inte

gration. Execution times and accuracy for the variable
 

fourth-order Runge-Kutta will be presented along with the
 
data for algorithm I. Here again, the data are comparable
 

to the results in tables 4, 5, and 6.
 

NUMERICAL RESULTS
 

In general, the numerical results using algorithms I
 

and II are very encouraging. The accuracy is much better,
 

and the computer execution time is much shorter than had
 

been anticipated. The results ban be found in tables 7
 
through 11. Only data obtained from variable step size inte

gration will be presented. In many instances algorithm I
 

predicts the error to two significant figures, and the
 

estimate is seldom off by more than an order of magnitude.
 

For example, using a fourth-degree series approximation
 

and an error tolerance of 10- 6 , the estimate is off by
 

more than an order of magnitude only twice, and this dis-.
 
crepancy is due to rounding errors rather than to poor
 

truncation estimates. Moreover, in each of these two
 

cases, an application of algorithm II accurately indicated
 

the true error (see table 11).
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The application of algorithm I always yields error
 

estimates for each dependent variable; such is not the case
 

for applying algorithm II. In fact, three different types
 
of situations can be seen the the three different numerical
 

examples. For the brachistochrone problem, there is one
 

equation g(y,t) in two variables including a control var

iable. In one sense, this is logical (note x does not
 

appear in g(y,t)); in obtaining actual numerical solutions,
 
one might integrate until x = xf and then predict the 

errors in y -and X . For the flat Earth problem only 

one variable appears in g(y,t). Note that this is because 

the proper initial conditions were known in closed form;
 

for any other iteration, the variables would have appeared.
 

Moreover, the remaining variable-the terminal vertical
 

velocity-is critical. In each of these two problems, only
 

a minimum norm (1) and a least squares (2) solution are
 
obtained using algorithm II.
 

For the Earth-Jupiter transfer problem, there are
 
four equations, and all 14 variables appear explicitly.
 

The first equation is analogous to the conservation of
 

energy principle, and the last three equations are analogous
 

to the conservation of angular momentum principle. All
 
three variations of algorithm II are applied to the transfer
 

problem. For the weighted variation (3), the diagonal
 
=
weight matrix w = {wii} = i/lyi(tf)j , wj 0 is used. 

One would not expect algorithm II to be as accurate
 

as the first, and, indeed, this is the case. However, good
 

estimates are obtained as can quickly be seen in tables 7
 

and 8. A detailed investigation of the accuracy of each
 

algorithm is perhaps warranted.
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Evaluation of Algorithm II
 

All numerical results for applying algorithm II are
 
based on the terminal solution y(tf) obtained from a vari

able step Runge-Kutta integration with an error tolerance
 

of 10-6. For comparison purposes, the corresponding
 

algorithm I series estimates are included in each table.
 

These data are found in tables 7, 8, and 11. Although
 

the algorithm I estimates are more accurate for the
 

brachistochrone problem, note that the least squares
 

algorithm II estimates are off only by about one multipli

cative factor of 2. Moreover, the algorithm II estimate
 

for the flat Earth trajectory problem is very accurate and
 

much better than the algorithm I estimates. Data for
 

applying algorithm II to the transfer problem are found in
 

table 11. Of all the data presented in this paper, the
 

most careful attention must be given to results of the
 

Earth-Jupiter transfer problem, for there is no closed form
 

solution available for this problem. It should be pointed
 

out that a great deal of work has already been done con

cerning this problem, and the Adams-Moulton fixed step
 

total double precision integration (column II) has been
 
considered the best available solution to date. Notice
 

also that the Runge-Kutta fixed step integration (table 3)
 

yields smaller maximum errors El through E4. The error
 

estimates using three variations of algorithm I, involving
 

a variable step integration with two different tolerances
 

for each variation, also agree very closely with the esti

mates obtained using the "best available solutions" (see
 

tables 9 and 10). For each variable in the Earth-Jupiter
 

transfer problem, the small interval formed by the numbers
 

in columns II and III of table 11 will be referred to as
 

the estimate interval.
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The estimates in columns IV, V, and VI of table 11
 

are, respectively, the (c) weighted minimum norm, (b) least
 

squares, and (a) minimum norm solutions derived for
 

algorithm II. Recall that (c) and (a) are lower bound
 

types of estimates (in norm), so that choosing the larger
 

of the two estimates would be logical. If this is done,
 

the resulting estimate misses the estimate interval by an
 

order of magnitude for five variables (indicated by
 

asterisks), but never by as much as two orders of magni

tude. It is-of interest to note that on each of these
 

five occasions, algorithm I accurately predicts the error.
 

Although algorithm II seems less accurate than the
 

first, it should be pointed out that this is almost a
 

free estimate. Deriving, coding, and checking the matrix
 

of partials for the system g(y,t) is usually much simpler
 

than for the system y' = f(y,t) The algorithm can be
 

applied directly at any time during the trajectory,
 

including the terminal time, without storing any previous
 

values of y or performing any previous computations.
 

Also, the computer time required is 'ertainly not pro

hibitive. Moreover, one computation has replaced a set of
 
"small" residuals for the system g(y,t) with individual
 

error estimates for the components of y : these estimates
 

are derived in a manner entirely independent of other
 

methods such as changing types of numerical integration,
 

changing variable step error tolerances, or halving

doubling step size techniques for fixed step integrations.
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Evaluation of Algbrithm I
 

In this section, the authors would like to show that
 

algorithm I always provides the "best" error estimate
 

available; however, natural laws seem to preclude proving
 

such a general statement. It has already been pointed out
 

that this algorithm has many features making it comparable
 

to other methods (i.e., the method can be applied to
 

systems of equations; implementation is straightforward and
 

requires few programmer man-hours; variable step integration
 

can be used; and no adjoint system need\be solved. Final
 

consideration involves the estimates and the speed of the
 

algorithm as compared to others of comparable accuracy.
 

Evaluations of algorithm I, simultaneously considering
 

accuracy and speed, vary between the following two extremes.
 

Using an error tolerance of 10- 5 for integrating the flat
 

Earth problem, the solution and excellent error estimates
 

were obtained in less time than the other methods which
 

obtained only the solution. In fact, in every numerical
 

example using a 10- 5 error tolerance and Euler's method
 

for integrating the error equations, algorithm I proved to
 

be faster than the fifth-order Runge-Kutta. At the other
 

extreme, using an error tolerance of 10-6 and RK4 for
 

integrating the error equations, algorithm I requires about
 

twice as much time as RK5 and four times as much as the
 

single precision Adams-Moulton. Here again, excellent
 

estimates are obtained, even with Euler's method (which

A 

requires about the same amount of time as RKS). Even
 

this most unfavorable comparison indicates that algorithm It
 

would be competitive with the simplest error estimating
 

devices such as comparing solutions using different types
 

of integration, successively smaller step size, or smaller
 

error tolerances.
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At the outset of this investigation, error estimates
 

missing the true error by two orders of magnitude were
 

expected. Contrary to these expectations, using an error
 

tolerance of 10- 6 , the estimates seldom missed the true
 

error by as'much as a multiplicative factor of 2. For
 

example, of the 18 estimates in table 7, for the brachisto

chrone problem, one significant figure of accuracy occurs
 

in 14 of the estimates, and a multiplicative factor of 2
 

would sufficiently modify the- four remaining.
 

Similarly, of the 24 estimates in table 8, for the
 

flat Earth problem, no estimate misses the true error by as
 

much as a multiplicative fact6r of 2. For the Earth-Jupiter
 

transfer problem, inspection of the differential equations
 

shows that Runge-Kutta integration would be exact for the
 

seventh variable so that the estimates for this variable
 

are essentially correct and the error is from propagated
 

rounding errors. The same is probably true of the fourteenth
 

variable, since extremely small local errors occurred and
 

each of the three estimates agree. Notice that these two
 

variables could have been eliminated, since one can easily
 

solve for m , and X is not needed. Applications of
 

algorithm II correctly estimated these errors. It was
 

pointed out earlier that algorithm I'correctly predicted
 

an error when the second algorithm estimate missed the true
 

error by two orders of magnitude. Assuming estimates from
 

both algorithms are available, a test for consistency between
 

the two would have indicated- all bad estimates in these data.
 

Of the remaining variables in table 10, no other estimate is
 

in error by as much as a factor of 2 except for the thir

teenth variable which is in error by a factor of 5. Another
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interesting characteristic appears in this thirteenth
 

row of table 10. There seems to be a monotonic growth
 

toward the correct estimate in going from columns 1 to 2
 

to 3. This behavior was predicted, although Euler's method
 

sometimes piovides better results than the series. If all
 

three methods of algorithm I are computed, then variations
 

in the estimates can also be used to detect faulty estimates.
 

Notice that ihe Runge-Kutta integration of the error equa

tions to obtain the estimates in table 9 are much better
 

than those obtained using Buler's method or a series. The
 

large variations indicate the possibility of faulty esti

mates, and, in fact, several estimates are poor compared
 

to those in the remaining tables. This added dependability
 

check requires the computation of all three estimates;
 

essentially, however, the first two are required for the
 

RK4 computations and, as shown in table 12, the time
 

required to integrate the error equations is only a frac

tion of the total execution time. All three estimates
 

can be obtained in slightly more time than that required by
 

the RK4 variation.
 

CONCLUDING REMARKS
 

No new mathematical theory is presented in this paper.
 

However, there is a definite lack of literature concerning
 

numerical error estimates for integrating differential
 

equations. Zani's paper is one of the few good recent
 

publications on the subject. This lack of literature
 

directly affects computation center libraries. For example,
 

to the authors' knowledge, there is no linear estimate
 

program similar to algorithm I in the CAD subroutine library
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or in use by any customers; yet, more than 50 percent of
 
the computer time Cin the scientific area) is often used to
 
integrate differential equations. Moreover, there has been
 

a great deal of research concerning problems where constants
 
of motion aire monitored to provide an error check for numer
ical integration. Although generalized matrix inversion had
 
been established as a method for solving these overdetermined
 

systems, there seem to be no applications to estimating
 
errors for this type of initial value problem. Since the
 
accuracy of estimates cannot be established by proof, one
 

must resort to numerical examples. The authors are indebted
 
to those who work in the field of trajectory optimization
 

for the nontrivial examples making the extrapolation to
 

some unsolved problems seem realistic.
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PRECEDING PAGE BLANK NOT FILMED.
 

TABLE 1 

BRACHISTOCHRONE PROBLEM 

FIXED STEP MODE 

STEP SIZE = 0.025 

INTEGRATION 
ROUTINE AM RKS A RK4 

TYPE OF 
INTEGRATION 

ADAMS-
MOULTON 

RUNGE-
KUTTA 

ADAMS-
MOULTON 

RUNGE-
KUTTA 

USE OF DOUBLE 
PRECISION 
ARITHMETIC 

TOTAL ACCUMULATION ACCUMULATION ACCUMULATION 

INTEGRATION 
TIMES IN 

MILLISECONDS 
38 53 32 42 

NUMBER OF 
INTEGRATION 

STEPS 
25 25 25 25 

NUMBER OF 
DERIVATIVE 
EVALUATIONS 

61 152 61 103 

STORAGE 
USED 

MAXIMUIERRORS 

El 

17778 

A R 

B E 
S I L 
0 AL ( T 

U I I 
T V 
I I E 

-3.3E-4 I-7"4E-S 

15108 

A R 

B E 
S L 
O AL T 

U I 
T I V 
E E 

-1.1E-6! -2.6E-7 

8 

A R 

B E 
S L 
0 AL T 

U I I 
T I V 
E j 

-3.3E-4 .- 7.4E-5 

11538 

Al R 

B I E 
S L 
0 AL T 

U J I 
T I V 
E l 

-1.ZE-S -lIE-S 

E2 4.ZE-4 5.2E-5 1.3E-61 1.7E-7 4.2E-!41i 5.2E-5 3.5E-51 4.4E-6 

E3 -7.8E-6 1-I.9E-4 -7.36-8 7.E6 1 1E-71.9B-4 -3.7E-71 9.SE-6 
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TABLE 2
 

FLAT EARTH TRAJECTORY PROBLEM
 

FIXED STEP MODE
 

1.0
STEP SIZE 1 


INTEGRATION AN' RKS RK4
 
ROUTINE
 

TYPE OF ADAMS- RUNGE- ADAMS- RUNGE-

INTEGRATION MOULTON KUTTA MOULTON KUTTA
 

USE OF DOUBLE
 
PRECISION TOTAL ACCUMULATION ACCUMULATION ACCUMULATION
 
ARITHMETIC
 

INTEGRATION
 
TIMES IN 376 597 352 499
 

MILLISECONDS
 

NUMBER OF
 
INTEGRATION 275 275 275 275
 

STEPS
 

NUMBER OF
 
DERIVATIVE 561 1652 561 1103
 
EVALUATIONS
 

STORAGE 1777 1510 2234 1153
 
USED 8
 

I - i i 
A j R A R A R A R 
B E B E B E B E 
S L S L S L S L 

MAXIMUM 0 i A 0 A 0 A 0 A 
ERRORS L I T L I T L I T L I T 

U j I U I I U I I U I 
T V T V, T V T j V 
BE E E E B B 1 E 

El 7.4E-S I-1.61-10 -3.2E-0 I-9.8E-7 -3.1E-2 I -9.OE-9 -1.4E-1 I -4.9E-8 

E2 1.2E-4 1-5.8E-30 -7.7E-I '-I.SE-6 -3.11-3 1 8.2E-9 -1.SE-2 1-4.2E-8 

E3 2.6E-7 1-2.2E-II -1.8E-2 -7.iE-7 35E-5 -'1.2E-9 -7.3E-4 1-2.9E-8 

E4 5.9E-7 I 6.0E-4 1 4.7E-5 522 5.OE-5 I-3.OE-3 l.4E-0 5.4E-2
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TABLE 3
 

EARTH JUPITER TRANSFER PROBLEM
 

FIXED STEP MODE
 

STEP SIZE = 1.0
 

INTEGRATION
 
ROUTINE AM RK IM RK4
 

__ _ __ _ __- _ _ _ __ _ __ _ __ _ '\ I 

TYPE OF ADAMS- RUNGE- ADAMS- RUNGE-

INTEGRATION MOULTON KUTTA MOULTON KUTTA
 

USE OF DOUBLE
 
PRECISION TOTAL ACCUMULATION ACCUMULATION ACCUMULATION
 
ARITHMETIC
 

INTEGRATION
 
TIMES IN 3630 6103 2973 4424
 

MILLISECONDS
 

NUMBER OF
 
INTEGRATION 906 906 906 906
 

STEPS
 

NUMBER OF
 
DERIVATIVE 1824 5439 1824 3628
 
EVALUATIONS
 

STORAGE 17778 15108 2234 1153
 
USED 8 88
 

A l R A I R A R A R 
B E B B E B I E 
S L S L S L S L
 

MAXIMUM 0 A 0 A 0 I A 0 jA 
ERRORS L I T L I T L j T L T 

U I I U I I U I U I 
TI V T V T V T V 
E E E E E E B I E 

7.2E-6S -- -9.0E-6El -6.lE-9 -7.6E-9 4i"0E-1. 6.1E-9; I 7.2E-6 7. 3E-11 8.6E-8R 

Ez -2.7E-9 2.2E-6 9.9E-9 -8.1E-6 -2.7E-9 I 2.2E-6 -1.OB-10 8.4E-8 

E3 -7.8E-7 -7.lE-S -7.9E-8 -7.1E-6 -7.8E-7 -7.1E-S S.OE-9 1 4.SE-7Ii 
E4 -3.7E-8 -3.47E-8 -3.7E-6 -3.7E-6 -3.9E- I -3.9E-8 l.SE-8 I.Sn
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TABLE 4 

BRACHISTOCHRONE PROBLEM 

VARIABLE STEP MODE 

INITIAL STEP SIZE 0.025 

S 10 -
5 

INTEGRATION 
ROUTINE 

ABS ERROR TEST 
AM RKS AM 

(RELATIVE TEST) 
AM 

TYPE OF 
INTEGRATION 

ADAMS-
MOULTON 

RUNGE-
KUTTA 

ADAMS-
MOULTON 

ADAMS-
MOULTON 

USE OF DOUBLE 
PRECISION 
ARITHMETIC 

TOTAL ACCUMULATION ACCUMULATION TOTAL 

INTEGRATION 
TIMES IN 

MILLISECONDS 
34 58 2S 32 

NIBER OF 
INTEGRATION 

STEPS 
20 10 17 17 

NUMBER OF 
DERIVATIVE 

EVALUATIONS 
58 161 52 52 

STORAGE 
USED 17778 8 2234a 17778 

MAXIMUM 
ERRORS 

A 
B 
S 
0 
L 
U 
T 
E 

I 
j 

R 
E 
L 

-A 
T 
I 
V 
E 

A 
B 
S 
0 
L 
U 
T 
E 

1 

I 

i 

I 
I 

R 
E 
L 
A 

I 
V 
E 

A 
B 
S 
0 
L 
U 
T 
E 

I 

I 
I 
j 

1 

R 
E 
L 
A 
T 
I 
V 
E 

A 
B 
S 
0 
L 
U 
T 
E 

j 

I 
I 
J 

R 
E 
L 
A 
T 
I 
V 
E 

El -3.4E-4 I -7.4E-S -5.4E-7 1-1.3E-7 -4.OE-4 I' 8.0E-5 -4,0B-4 I -8.E-S 

E2 4.3E-4 I 5.4E-5 1.1E-6 I 1.3E-7 4.9E-4 I 6.0E-5 4.9E-4 1 6.OE-S 

E3 -7.8E-6 I 2.1E-4 -1.SE-8 S.2E-7 -7.8B-6 2.,6E-4 -7.8E-6 2.6E-4 
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I TABLE S
 

FLAT EARTH TRAJECTORY PROBLEM
 

VARIABLE STEP MODE
 

INITIAL STEP SIZE - 1.0
 

INTEGRATION ABS ERROR TEST (RELAM
 
ROUTINE AM RKS (RLAIV TS
 

TYPE OF ADAMS- RUNGE- ADAMS- ADAMS-

INTEGRATION MOULTON KUTTA MOULTON MOULTON
 

USE OF DOUBLE 
PRECISION - TOTAL ACCUMULATION ACCUMULATION TOTAL 
ARITHMETIC 

INTEGRATION
 
TIMES IN 415 54 45 50
 

MILLISECONDS
 

NUMBER OF
 
INTEGRATION 275 9 30 30
 

STEPS
 

NUMBER OF
 
DERIVATIVE 561 144 99 99
 
EVALUATIONS
 

STORAGE 1777 1510 22348 1777
 
USED 1 1 7
 

A R A R A R A R 
B I E B I B I R B I E 
S I L S I L S I L S I L 

MAXIMUM 0 A 0 A 0 A 0 I A 
ERRORS L T L T L IT L T 

U I U I U I U IT V T V T V T I 
E I B E I H E I E E I E 

El -7.4E-5 -1.6E-10 -l.7Eli -5.3E-8 2.0E0 I 116E-6 -2.On-0 I-.IE-6 

E2 1.2E-4 -5.9E-10 4.OE-1 7.SE-7 6.E0 1.2E- 6E0 1.2E-S 

E3 2.6E-7 -2.2E-1l -1.7E-3 I-6.BE-8 2.3E-2 I 9.SE-7' 2.E-2 I 9.SE-7 

E4 5.9E-7 6.OE-4 -7.OE-5 -8.7E-24 .2E-2 E- 1 9.7E-l 
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TABLE 6
 

EARTH-JUPITER TRANSFER PROBLEM 

VARIABLE STEP MODE
 

INITIAL STEP SIZE = 1.0
 
-


c - 10 5
 

INTEGRATION ABS ERROR TEST (RELATIVE TEST)
 
ROUTINE AM RKS I AM AM 

TYPE OF ADAMS- RUNGE- ADAMS- ADAMS-

INTEGRATION MOULTON KUTTA MOULTON MOULTON
 

USE OF DOUBLE
 
PRECISION TOTAL ACCUMULATION ACCUMULATION TOTAL
 
ARITHMETIC
 

INTEGRATION
 
TIMES IN 1207 2054 1220 1482
 

MILLISECONDS
 

NUMBER OF
 
INTEGRATION 265 103 303 303
 

STEPS
 

NUMBER OF
 
DERIVATIVE 626 1809 772 772
 
EVALUATIONS
 

STORAGE 1777 islO 2234 1
 
USED 8 8 8 1777
 

A R A I R A R A R 
B I E B I E B I E B I E 
S I L S L S L S I L 

MAXIMUM 0 A 0 j A 0 j A 0 j A 
ERRORS L T L T L T L T 

u I Iiu I U I 
T I V T I V T I V T I V 
E E I E H I E I E 

El -8.7E-8 I.0E-4 1.8E-9 2.2E-6 -2.1E-7 2.4E-4 -2.1E-7 i-2.4E-4 

EZ 1.5E-7 -1.3E-4 2.2E-9 -2.OE-6 -6.3E-7' S.ZE-4 -6.7E-7 I S.SE-4I - I 
E3 5.9E-6 S.4E-4 2.OE-9 -1.IE-6 2.7E-5 2.5E-3 2.7E-5 2.5E-3
 

E4 9.2E 
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TABLE 7* 

BRACHISTOCHRONE PROBLEM 

ALGORITHM I ALGORITHM II ESTIMATES 

El 

E2 

E3 

ABSOLUTE ERRORS 

.107 B-05 

.477 E-05 

.284 E-07 

SERIES 

.137 E-05 

.544 E-05 

.317 E-07 

M'IN NORM 

N/A 

.3 E-9 

.58 E-7 

LEAST SQ 

N/A 

.118 B-04 

.58 E-07 

Ln 

=10-

El 

EZ 

E3 

.66 

.28 

415 

E-O5 

E-04 

E-06 

SERIES 

.676 E-05 

.324 E-04 

.149 E-06 

ALGORITHM I ESTIMATES 

EULER'S 

.9 E-05 

.3 B-04 

.16 E-06 

RK4 

.62 E-05 

.32 E-04 

.15 E-06 

= 106 

El 

E2 

E3 

.83 

.52 

.27 

E-06 

B-0S 

E-07 

SERIES 

.15 E-05 

.57 E-S 

.35 E-07 

EULER'S 

.17 E-05 

.53 E-05 

.33 H-07 

RK4 

.13 E-05 

.53 E-05 

.32 E-07 

*ABSOLUTE VALUES OF ERRORS AND ESTIMATES ARE USED IN TABLES 7 THROUGH 11.
 



TABLE 8 

"FLAT EARTH" TRAJECTORY PROBLEM 

ALGORITHM I ESTIMATES 

= I0- ABSOLUTE ERRORS ALGORITHM 1l 
SERIES EULER'S RK4 

El .17 E+01 .198 E+01 .151 E+01 .198 E+O1 

E2 .12 E+01 .10 E+01 .13 E+01 .10 E+01 ESTIMATES 

E3 .34 E-02 .39 E-02 .27 B-02 .39 E-02 USING 

E4 .65 E-02 .66 E-02 .65 E-02 .66 E-02 GENERALIZED 

= 106 HAMILTONIAN 

El .23 E-00 .143 E 00 .14 E 00 .14 E 00 N/A 

E2 .11 E 00 .73 E-01 .81 E-01 .73 E-01 N/A 

E3 .35 E-03 .28 B-03 .31 E-03 .31 E-03 N/A 

E4 .32 E-03 .46 E-03 .46 E-03 .46 E-03 .303 E-03 



TABLE 9*i
 

E = 10- 5 
EARTH-JUPITER TRANSFER PROBLEM 


ALGORITHM I ESTIMATES FIXED
 

EULER'S SERIES RK4 AM 

1 .27 E-01 .36 B-01 .69 E-02 .91 B-03 

2 .19 B-01 .23 E-01 .12 E-02 .51 E-02 

3 .14 E-02 .16 B-02 .27 E-04 .65 E-05 

4 .1 E-03 .13 E-03 .25 B-05 .36 B-05 

5 .79 E-04 .92 E-04 .54 E-05 .21 E-05 

6 .48 E-05 .52 E-05 .48 E-07 .7 E-08 

7 .6 E-08 .6 E-08 .6 B-08 .31 E-06 

8 .65 B-04 .11 E-03 .11 E-04 .11 E-04 

9 .69 E-04 .1 E-03 .86 E-05 .77 B-05 

10 .13 B-0S .37 E-06 .32 E-06 .26 E-07 

11 .52 B-01 .73 E-01 .34-E-02 .42 E-02 

12 .13 E-02 .23 E02 .27 E-02 .2 E-02 

13 .28 E-03 .56 B-03 .7 E-04 .6 E-04 

14 .62 E-03 .82 E-03 .1 B-04 .14 E-02 

*FOURTH COLUMN OBTAINED USING TOTAL DOUBLE PRECISION
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TABLE 10*
 

E 10- 6
 
EARTH-JUPITER TRANSFER PROBLEM 


ALGORITHM I ESTIMATES FIXED FIXED 

EULERS SERIES RK4 AM RK 

1 .27 E-04. .5 E-04 .31 E-04 .74 E-04 .35 E-05 

2 .9 E-04 .15 B-03 .13 B-03 .15 B-03 j.61 E-04 
3 .26 B-OS .68 E-05 .57 E-05 .85 E-05 .54 E-05 

4 .69 E-07 .19 E-06 .10 E-06 .18 E-06 .32 E-06 

5 .46 E-06 .69 E-06 .58 E-06 .52 E-06 1.19 E-06 

6 .57 E-08 .2 E-07 .17 E-07 .33 E-07 .98 E-08 

7 .4 E-08 .4 E-08 .4 E-08 .23 E-06 .21 B-06 

8 .S8 B-06 .41 E-06 .48 E-06 .75 B-06 j.5 E-06 

9 .75 E-06 .49 E-06 .32 E-06 .77 E-07 !.16 E-06 

10 .24 E-07 .26 E-07 .22 B-07 .26 B-07 .14 E-07 

11 .16 E-03 .16 E-04 .70 E-04 .1 2E-03 .12 E-03 

12 .25 E-03 .23 E-03 .17 E-03 .11 B-03 .64 E-04 

13 .53 E-OS .34 E-OS .29 E-05 .46 E-06 .12 E-05 

14 .71 E-04 .78 E-04 .73 E-04 .2 E-02 .21 B-02 

'*FOURTH COLUMN OBTAINED USING TOTAL DOUBLE PRECISION
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TABLE 11
 

EARTH-JUPITER TRANSFER PROBLEM
 

ALGORITHM II ESTIMATES
 

Y II III IV V VI 

1 

2 

3 

4 
5 

6 

7 
8 

9 

10 

11 

12 

13 

14 

.50 E-04 

.15 E-03 

'.68 E-05 
.19 E-06 
.69 E-06 

.20 B-07 

.40 B-08 

.41 E-06 

.49 B-06 

.26 E-07 

.16 B-04 

.23 E-03 

.34 E-05 

.78 E-04 

.9 B-04 

.15 E-03 

.85 E-05 

.22 E-06 

.5 E-06 

.33 E-07 

.23 E-06 

.6 E-06 

.12 B-07 

.2 E-07 

.7 E-04 

.11 E-03 

,22 B-06 

.2 E-02 

.15 B-04 

.58 E-04 

.32 E-05 

.21 E-07 

.17 E-06 

.1 E-07 

.2Z E-06 

.39 E-06 

.1 E-07 

.11 E-07 

.3 6-04 

.6 E-04 

.5 E-06 

.22 E-02 

.96 E-05 

.72 B-06 

.87 B-06 

.88 E-08 

.97 B-06 

.11 H-07 

.13 B-06 

.19 E-OS 

.31 E-06 

.31 E-08 

.12 E-06 

.89 E-06 

.12 E-06 

.20 E-02 

.12 B-05 

.11 E-05 

.23 E-07 

.47 E-08 

.43 E-08 

.84 E-10 

.1 E-02 

.88 E-08 

.14 E-07 

.2 E-09 

.12 B-04 

.63 E-05 

.96 E-07 

.19 E-02 

.5 E-07 

.11 E-06 

.23 E-05 

.16 E-04 

.2 B-04 

.5 E-06 

.19 E-06 

.15 E-04 

.42 E-05 

.58 E-07 

.5 E-08 

.59 E-07 

.23 E-05 

.7 E-07 

.29 E-03 .20 E-02 .22 E-02 .20 E-02 .21 E-02 .30 6-04 I A! 

I. LINEAR ESTIMATOR USING SERIES SOLUTION (ALG I). 

II. DIFFERENCED TO TOTAL DOUBLE PRECISION AM FIXED H=l. 

III. DIFFERENCED TO FOURTH-ORDER RK FIXED H=I. 

IV. WEIGHTED MINIMUM NORM (wi = 1/lyil) 

V. MINIMUM NORM LEAST SQ (4 EQ, 1 VAR) (5 ITERATIONS) 

VI. MIN NORM (14 VAR, 4 EQ) 



TABLE 12
 

TIME COMPARISON DATA*
 

ALGORITHM I
 

SOLUTIONS & ESTIMATES ESTIMATES ONLY SOLUTION ONLY
 

- 5
= 10 EULER'S SERIES RK4 EULER'S SERIES RK4 

BRACHISTOCHRONE 45 53 62 5 13 22 40
 

FLAT EARTH 39 48 53 3 12 17 36
 

E-JT 1254 1798 2156 300 844 1202 954
 

a = 10 - 6 

BRACHISTOCHRONE 70 81 95 9 20 24 61
 

FLAT EARTH 56 69 73 4 17 21 52
 

E-JT 1893 2745 3252 454 1306 1813 1439
 

ALGORITHM II
 

LEAST SQ MIN NORM WEIGHTED MIN NORM
 

E-JT 126 84 1188
 

FLAT EARTH 5
 

BRACHISTOCHRONE 12
 

*ALL TIMES IN MILLISECONDS
 


