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Abstract. Adaptivity in both space and time has become the norm for solving

problems modeled by partial differential equations. The size of the discretized problem

makes uniformly refined grids computationally prohibitive. Adaptive refinement of

meshes and time steps allows to capture the phenomena of interest while keeping the

cost of a simulation tractable on the current hardware. Many fields in science and

engineering require the solution of inverse problems where parameters for a given

model are estimated based on available measurement information. In contrast to

forward (regular) simulations, inverse problems have not extensively benefited from the

adaptive solver technology. Previous research in inverse problems has focused mainly

on the continuous approach to calculate sensitivities, and has typically employed fixed

time and space meshes in the solution process. Inverse problem solvers that make

exclusive use of uniform or static meshes avoid complications such as the differentiation

of mesh motion equations, or inconsistencies in the sensitivity equations between

subdomains with different refinement levels. However, this comes at the cost of low

computational efficiency. More efficient computations are possible through judicious

use of adaptive mesh refinement, adaptive time steps, and the discrete adjoint method.

This paper develops a framework for the construction and analysis of discrete

adjoint sensitivities in the context of time dependent, adaptive grid, adaptive step

models. Discrete adjoints are attractive in practice since they can be generated with low

effort using automatic differentiation. However, this approach brings several important

challenges. The adjoint of the forward numerical scheme may be inconsistent with

the continuous adjoint equations. A reduction in accuracy of the discrete adjoint

sensitivities may appear due to the intergrid transfer operators. Moreover, the

optimization algorithm may need to accommodate state and gradient vectors whose

dimensions change between iterations. This work shows that several of these potential

issues can be avoided for the discontinuous Galerkin (DG) method. The adjoint model

development is considerably simplified by decoupling the adaptive mesh refinement

mechanism from the forward model solver, and by selectively applying automatic

differentiation on individual algorithms.

In forward models discontinuous Galerkin discretizations can efficiently handle high

orders of accuracy, h/p-refinement, and parallel computation. The analysis reveals that

this approach, paired with Runge Kutta time stepping, is well suited for the adaptive

solutions of inverse problems. The usefulness of discrete discontinuous Galerkin

adjoints is illustrated on a two-dimensional adaptive data assimilation problem.
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1. Introduction and background

Inverse problems (IPs) consist in using a priori available measurements to infer the

values of the defining parameters for a given model. IPs arise in various applications of

engineering and mathematics, e.g., seismography, meteorology, oceanography, medical

imaging, systems biology, and fluid dynamics (see, e.g., [1, 2, 3, 4, 5, 6]). IPs are usually

described as constrained optimization problems, where the constraints are ordinary

(ODE) or partial differential equations (PDEs). Alternatively, the problem can be stated

in terms of probability densities. Using Bayes’ theorem we arrive at the optimization

formulation [7]. State of the art PDE solvers use adjoint-driven adaptive space-time

refinement, and other dynamic computational patterns such as upwinding, slope or flux

limiting, interpolations, extrapolations, variable order approximations (p-refinement),

moving meshes, etc. (see, e.g., [8], and references therein). Space-time adaptivity

controls the numerical errors introduced by the spatial and temporal discretizations,

preserves the quality of the solution, and helps maximize solver efficiency. In contrast,

most attempts at solving inverse problems have favored non-adaptive methods. There

has been recently a growing trend of research into the use of adaptive inverse problem

solvers (see, e.g., [9, 10, 11, 12, 13, 14, 15]), but there remains a considerable gap

between the state of the art forward model solvers and the strategies used in inverse

problems. This discrepancy is mainly caused by the difficulties with obtaining and

using derivative information in adaptive simulations. This work aims to further close

this gap, by demonstrating the feasibility and efficiency of discrete adjoints for time and

space-dependent inverse problems.

The discrete adjoint method [16] is very attractive in practice since the discrete

adjoint model can be generated with minimal user intervention via automatic

differentiation [17]. Given the complexity of current numerical solvers, automatic

generation of the adjoint code is a significant advantage over both finite-difference, and

hand-coded (analytical) derivatives. Moreover, the discrete approach avoids problems

with incompatible cost functionals [18, 19], and bypasses the usually cumbersome

derivation of boundary conditions for the continuous adjoint system [11, 20]. We also

note that discrete adjoints yield the exact gradient of the discretized cost functional

under consideration, while the discretized solution of the continuous adjoint system is

not the true gradient of anything, except in the limit of the discretization [16]. However,

discretizations of the continuous adjoint problem may sometimes lead to better inversion

results, despite poorer gradient consistency than that obtained with the adjoint of the

primal discretization [21].

As previously mentioned, most research efforts to date on large scale inverse

problems have made use of the continuous sensitivity approach. Fang et al. have

developed a fully adaptive 3D finite-element ocean model equipped with adjoint

sensitivity analysis [12, 14, 15, 22, 23, 24]. The adjoint equations are discretized on

spatially-variable grids, with the forward variables interpolated onto the adjoint mesh

wherever needed. For faster forward and backward simulations, the POD method [22]
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is used to reduce the state space of the model and its adjoint, while capturing their

essential dynamics.

The construction and properties of discrete adjoints on adaptive meshes are not

yet fully understood. Previous research efforts on adjoints for adaptive mesh refinement

problems include the work of Li and Petzold [11]. The authors attempt to combine

the advantages of both approaches to adjoint sensitivity, DA (discretization of the

adjoint) and AD (adjoint of the discretization) into their ADDA method. However,

their approach uses discrete adjoints only for a fixed grid inside an artificial boundary

layer, where the DA is assumed to be consistent, while employing the continuous adjoint

method in the interior of the domain [11]. This avoids the difficult determination of

suitable boundary conditions for the adjoint PDE.

There is a significant body of work in sensitivity analysis for large-scale, nonlinear,

steady-state problems. Bangerth [9] introduces a framework for the solution of

parameter estimation problems on adaptive grids using finite element discretizations.

The continuous optimality system is solved using an all-at-once approach in a function

space setting. This formulation allows the use of separate (nested) meshes for the model

state, the adjoint solution, and the inversion variables. Marta [25] applies automatic

differentiation on selected parts of two 3D unstructured-mesh CFD solvers to derive

a consistent discrete adjoint model. Mavriplis [26] uses the discrete adjoint method

in a Navier–Stokes multigrid optimization problem, discretized on three-dimensional

unstructured meshes.

Inverse problems with discontinuous solutions benefit from error-based adaptive

mesh refinement; the quality of the discrete adjoint solution improves when more grid

points (or elements) are generated near the shock or jump in the forward solution,

as observed by Giles and Ulbrich [20, 27, 28]. Adaptive meshing also allows for

regularization by discretization [29]: we can control the variation in the inversion

variables by error-based mesh coarsening and refinement, and through local variations

in the approximation order of the inverse problem solution.

Our paper demonstrates the feasibility and efficiency of the discrete adjoint method

for adaptive time-dependent inverse problems. While the efforts of other authors have

considered almost exclusively on steady-state problems (with some exceptions, see

[22, 30]), we examine discrete adjoints for evolution problems, and highlight the benefits

of both time and space adaptivity. Recent advances in adjoint computation strategies

have made reversal of time-dependent codes computationally feasible (see [31], and

references therein). The main computational advantage of the discrete adjoint approach

is that the adjoint model code can be obtained through automatic differentiation, hence

saving a significant amount of software development effort. Automatic differentiation

tools are available for all the major programming languages used in scientific computing

[32, 33, 34, 35, 36]. Specialized finite element software such as deal.II allow the

mesh adaptation to be performed in a transparent fashion, and independent from the

numerical core of the solution algorithm. Thus, automatic differentiation can be used in

a targeted fashion, such that we obtain the adjoint of only the time marching procedure,
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and that of the (linearized) right hand side of the discrete model equations. This

simplifies both the derivation and verification of the discrete adjoint model.

We first present the general form of the discrete adjoint method, and then discuss

the issues that arise with adaptive mesh and time refinement. For spectral-type

numerical methods such as discontinuous Galerkin (a method particularly amenable

to space-time adaptivity), the discrete intergrid operators are implemented through

orthogonal projections. Thus, there are no inconsistencies introduced through the use of

the adjoint interpolation and restriction operators obtained by automatic differentiation.

The analysis is then extended to general meshes, where the same operator properties are

verified. However, this orthogonality property is not recovered for all numerical methods.

The adjoint analysis of finite volume mesh transfer operators shows the adjoint of high-

order interpolation (through solution averaging) to be only first order accurate in the

general case.

We then focus on the concept of adjoint consistency for time-dependent

discontinuous Galerkin discretizations. The concept of adjoint consistency, defined,

e.g., in [37, 38] for elliptic problems, plays an important role in the analysis of the dual

(adjoint) problem solution, in the convergence of the primal approximation, as well

as in the accuracy of the target functional under consideration. Building on previous

duality results for time [39, 40, 41] and space discretizations [37, 42], we develop an

unified framework for investigating dual consistency of discretizations for a general type

of time-dependent PDEs.

1.1. Organization

This paper is structured as follows. Section 2 discusses the adaptive inverse problem

framework and the difficulties associated with adaptivity and the discrete adjoint

method. In section 3 we review the mathematical foundation of the discontinuous

Galerkin (DG) method. Section 4 concerns intergrid transfer operators for Galerkin-

type discretizations. We remark that both h- and p-refinement with structured AMR

are performed through orthogonal projections, hence the accuracy of the discrete adjoint

solution will not be affected by intergrid solution transfer operators (beyond the intrinsic

loss in accuracy associated with mesh coarsening). Section 5 gives a brief overview of the

finite-volume method, and discusses the interpolation and restriction operators for h-

refinement obtained through polynomial solution reconstructions. Subsequently, section

6 discusses in detail the derivation of formal adjoint systems for general differential

problems that obey a given set of compatibility conditions. Section 7 considers the

dual consistency of time discretizations in Runge-Kutta DG methods. The accuracy

and computational advantages of the discrete adjoint approach are demonstrated on a

two-dimensional numerical test problem in section 8. Finally, section 9 summarizes the

conclusions, and discusses opportunities for further research.
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2. The adaptive inverse problem framework

Consider a dynamical model whose time and space evolution is described by the following

initial boundary-value problem (IBVP):

F (u, ut, ux, uxx, . . . , p, t, x) = 0 , x ∈ Ω , t0 ≤ t ≤ tN

FB(u,un, . . . ,p, t, x) = 0 , x ∈ Γ := ∂Ω

u(t0, x) = u0(p) , x ∈ Ω .

(1)

We discretize the equations (1) in time and space, and arrive at the discrete problem,

written in residual form. Find uh,n ∈ Uh,n such that:

Fh,n
(
uh,n(xh), uh,n−1(xh), ph, tn

)
= 0 , xh ∈ Ωh

n , 1 ≤ n ≤ N

uh,0(t0, xh) = uh,0 , xh ∈ Ωh
0 .

(2)

The term Fh,n incorporates both volume and boundary residuals.

To fix notation, we assume that (2) is solved on a sequence of time-dependent

meshes Ωh
n with n = 0 . . .N . For elliptic problems, the meshes can be associated

with different iterations of the nonlinear discrete solver. For time dependent PDE

discretizations, we can assume without loss of generality that one mesh is used per time

step. All discrete variables will henceforth be marked with superscript h (for spatially

discrete variables), and/or n (denoting the time discretization): uh,n is the solution of

(2) at time tn. The inversion variables ph are a discrete set of parameters, whose exact

values are unknown. For simplicity of exposition, we assume that the parameters ph are

time-invariant. The vector ~n is the unit normal to the discrete domain boundary ∂Ωh
n.

An inverse problem is typically formulated as a constrained minimization problem

for a given objective functional J . In the continuous approach, also called differentiate-

then-discretize, one defines the minimization problem in terms of the analytical model

formulation (1):

Find p∗ = arg min
p∈P adm

J (u,p) , subject to (1) . (3)

We instead focus on the discrete approach, also called specifically discretize-then-

optimize. The optimization problem is formulated in terms of the discretized model and

the associated mesh variables:

Find ph
∗ = arg min

ph∈P adm
Jh(u

h,0:N ,ph) , subject to (2) . (4)

We note that both (3) and (4) usually contains bound constraints on the parameters:

the physically valid values for the inversion variables define the admissible set P adm.

A well known example of inverse problem (IP) is four-dimensional data assimilation

(henceforth referred to as 4D-Var), ubiquitous in numerical weather prediction [43]. For

this type of problems, the cost functional Jh quantifies the difference between the model

state, and a set of a priori observations at selected points in the space-time domain.

Direct or indirect measurements of the state of the atmosphere at a given time are

incorporated in the cost function Jh, and used to retrieve better approximations to the

“true” initial or boundary conditions.
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There are two prevalent approaches to solving the discrete optimization problem

(4). The one-shot (or all-in-one) optimization approach [9] amounts to solving the first

order optimality system for the Lagrangian functional [44]

Lh := Jh −
N∑

n=1

(
λh,n

)T
· Fh,n(uh,n(xh), uh,n−1(xh), ph, tn) ,

using a preconditioned linear solver. Here λh,n are the Lagrange multipliers, which

will be reinterpreted below as the adjoint or dual variables. The optimal values of the

parameters are obtained through a single linear solve, hence the name of the method.

The constraints on the inversion variables can be incorporated as additional equations in

the optimality system. However, the size of the discretized optimality system can make

its solution computationally prohibitive for large-scale problems. Finding a good quality

preconditioner matrix for the full (or reduced) optimality system is also far from trivial,

and is the subject of current research (see, e.g., [45, 46, 47]). Another approach, and the

one we employ in this paper, is reduced-space optimization. We solve the forward and

adjoint equations sequentially. The adjoint gradient provides us with a search direction

for the optimization algorithm. A line search procedure [44] will then yield the next

approximate solution to the inverse problem. Robust optimization algorithms such as

L-BFGS-B [48] can transparently handle bound constraints.

2.1. Derivation of the discrete adjoint equations

Consider the steepest descent method [44] applied to minimize the cost functional Jh.

The solution update has the following form:

ph
new = ph

old − α

(
dJh

dph

)T

,

where α is a suitably chosen step length, and the gradient (total derivative) reads:

dJh

dph
=
∂Jh

∂ph
+

N∑

n=1

∂Jh

∂uh,n

∂uh,n

∂ph
. (5)

Since equation (2) is discretized in residual form, the implicit function theorem

gives the following equation, also called the tangent linear model (henceforth referred

to as the TLM):

∂Fh,n

∂uh,n

∂uh,n

∂ph
+

∂Fh,n

∂uh,n−1

∂uh,n−1

∂ph
= −

∂Fh,n

∂ph
, n = 1 . . . N . (6)

Hence, the space-time matrix formulation of the sensitivity equations reads as

follows:

M




∂uh,N

∂ph

∂uh,N−1

∂ph

...
∂uh,1

∂ph




=




−
∂Fh,N

∂ph

−
∂Fh,N−1

∂ph

...

−
∂Fh,0

∂ph




, (7)
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where

M :=




∂Fh,N

∂uh,N

∂Fh,N

∂uh,N−1
0 . . . 0

0
∂Fh,N−1

∂uh,N−1

∂Fh,N−1

∂uh,N−2
0 . . .

0 0
. . .

. . . . . .

0 . . . . . . 0
∂Fh,0

∂uh,1




.

The sensitivity matrices ∂uh,n/∂ph are very expensive to compute, since they scale with

both the number of states and that of the control variables. When a new control variable

is added, (6) needs to be solved anew. The discrete adjoint method [16] calculates the

gradient (5) at a significantly lower cost than finite differences or forward sensitivities

when the number of parameters is large compared to the number of outputs of interest.

By defining the N discrete adjoint variables λh,n as the solution components of the

discrete adjoint equation, which reads:

MT




λh,N

λh,N−1

...

λh,1




=




(
∂Jh

∂uh,N

)T

(
∂Jh

∂uh,N−1

)T

...(
∂Jh

∂uh,1

)T




, (8)

we obtain

dJh

dph
=
∂Jh

∂ph
−

N∑

n=1

(
λh,n

)T ∂Fn

∂ph
. (9)

Note that both the adjoint matrix MT , and the right hand side of (8), are independent of

the number of inversion variables. If the size of ph does not scale directly with the model

state size uh, the cost of the discrete adjoint approach does not depend on the number

of inversion variables. From the block lower bidiagonal structure of (8), we remark that

the adjoint equations are solved backwards in time, i.e. from n = N to n = 0. The size

of the blocks may vary with n because of the mesh adaptation mechanism. This change

in local solution size is easily accommodated by standard single-step Runge-Kutta-type

ODE solvers such as the ones employed in this paper. Should a s-stage Runge-Kutta be

used, the forward and adjoint systems (7)–(8) will have s non-zero block diagonals, and

the computational cost scales accordingly. We do not consider linear multistep methods

[49] in this paper, since they are not generally adjoint consistent [50].

2.2. Computational advantages of the discrete adjoint method

One frequently raised objection to the discrete adjoint method (besides consistency

issues with the numerical discretization) is that the forward mesh is frequently
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sub-optimal for the adjoint problem. While independent mesh refinement for the

adjoint problem would enhance both the accuracy and the efficiency of the discrete

adjoint solver, the additional complexity may increase the overall cost of the inversion

process. The development effort required for the discretization of the continuous

adjoint equations becomes significantly larger (there is no possibility of automating the

computation). Features in the newly computed adjoint solutions may also be degraded

when interpolating the gradient (9) to a reference optimization grid [11].

If we consider the Lagrangian interpretation of the adjoint variables, λh,n tracks how

well the forward solution uh,n satisfies the state equation [29]. Hence, it is a reasonable

choice to define both the uh,n and λh,n on the same mesh. Note from equation (9) that

the discrete adjoint method can easily accommodate a different mesh for the inversion

variables. While the discrete partial derivatives
∂J h

∂ph
and

∂Fh,n

∂ph
are now defined on a

separate “parameter mesh”, the adjoint system (8) and its solutions λh,n do not change.

This approach was proven to be very beneficial in practice [29, 51].

2.3. Mesh adaptivity and the discrete adjoint method

The mesh adaptivity raises several complications for the discrete adjoint approach. The

issues that arise with adaptive temporal discretizations and automatic differentiation

have been discussed in [52, 53]. We focus our analysis on the mesh refinement process.

The mesh at a given nonlinear iteration and/or time step is refined or coarsened

based on some a posteriori (residual-based) error estimation for the current solution

approximation. Thus, the forward solver is required to transfer the solution between

different meshes. We can write the forward solution process for (2) as:

uh,0 = uh,0(xh) ,

uh,n+1 = In→n+1

(
Sn→n+1 uh,n

)
, 0 ≤ n ≤ N − 1 .

Here Sn→n+1(·) is the nonlinear solution operator that advances uh,n in time from

tn to tn+1 on Ωh
n. The linear intergrid transfer operator is In→n+1 : Ωh

n → Ωh
n+1. Hence,

the discrete adjoint procedure for solving (8), that may be generated through automatic

differentiation, reads:

λh,N = λh,N(xh)

λh,n = S ′ ∗
n+1→n

(
IT

n→n+1 λ
h,n+1

)
, N − 1 ≥ n ≥ 0 ,

where the adjoint solution operator

S ′ ∗
n+1→n(·) = −

(
∂Fn

∂uh,n

)−T


(
∂Fn+1

∂uh,n

)T

(·) +

(
∂Jh

∂uh,n

)T



is the discrete adjoint (i.e., transpose) of the linearization of Sn→n+1. The grid transfer

operator is (In→n+1)
T : Ωh

n+1 → Ωh
n. Barring consistency issues in the discrete adjoint

of the spatial discretization, or in the reversal of the time integration procedure, there
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remains the question of the impact of the intergrid operators on the accuracy of the

discrete adjoint solution. If

In+1→n = C · (In→n+1)
T , (10)

with a constant C independent of mesh and time step size (a valid assumption in

most multigrid implementations, see e.g., [54]), the discrete adjoint accuracy is not

compromised, and the adjoint code generated by AD can be used as-is (with a simple

scaling to take into account the constant factor). In what follows we show that (10)

is verified for h/p-adaptive DG (with C = 1 and hierarchical spatial refinement), since

both h- and p-refinement operators are orthogonal matrices.

Note that the solution transfer may also be done before Sn→n+1(·) is applied:

uh,0 = uh,0(xh) ,

uh,n+1 = Sn→n+1

(
In→n+1 uh,n

)
, 0 ≤ n ≤ N − 1 .

λh,N = λh,N(xh)

λh,n = IT
n→n+1

(
S ′ ∗

n+1→n λ
h,n+1

)
, N − 1 ≥ n ≥ 0 .

With few modifications, the analysis above remains valid.

2.4. Multigrid optimization with the discrete adjoint method

When the inversion variables are spatially distributed, e.g., ph = uh,0, they are

represented on a given mesh, e.g., Ωh
0 . As the optimization proceeds the shape of the

field ph changes, and the grid may require adjustments in order to accurately represent

the new ph. One possible solution is to apply grid refinement operations at the end of

each optimization cycle. This approach has the disadvantage that the dimensions of the

parameter and gradient vectors change during optimization. We do not know of any

optimization algorithm that can handle a variable optimization space. To overcome this

problem an alternative strategy is to define a fixed optimization mesh Θh
0 , to project

the parameter and gradient vectors from the computational mesh to the optimization

one before the optimizer step, and to project the results back for the next function

and gradient evaluation [55]. This approach has the disadvantage that the optimization

mesh does not adapt to the changing solution profile; moreover, accuracy can be lost in

the repeated interpolation process.

We propose to use a multigrid optimization approach [56]. The optimization grid

is the computational grid ΩH
0 and is fixed throughout the inversion process. The

optimizer need not accommodate changes in the discrete solution space size, and the

code complexity is reduced as no interpolation onto a reference mesh is required. The

optimization on the (coarser) ΩH
0 converges to obtain the solution pH . Through grid

refinement operations both pH and uH,0 are projected onto a finer Ωh
0 grid that allows a

more accurate representation of the fields of interest. The optimization process is then

restarted on Ωh
0 , using the current best solution approximation ph = IΩH

0
→Ωh

0
pH as the

initial iterate.
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2.5. Dual consistency for space-time discretizations

In the following we extend the dual consistency analysis in [38, 37] to space-time

discretizations. Discretization of the time dimension by a Runge–Kutta quadrature

[49] introduces several complications that preclude a simple extension of the spatial

dual consistency concept, defined, e.g., in [38]. Consider the following framework for

sensitivity analysis:

• The continuous primal problem is defined by (1)–(3).

• The tangent linear problem, i.e. the linearization of the continuous primal

formulation:

F ′[u,p](δu, δp) = 0

δJ := J ′[u,p](δu, δp) . (11)

Here the ′ symbol denotes the Fréchet derivative of F , while the bracket notation

indicates the state about which the linearization is performed. The direction of

differentiation is (δu, δp), i.e. the full state vector of the tangent linear model.

Note that J ′ = 0 at the exact solution (u)

• The continuous L2-dual problem:

F ′ ∗[u,p](λ) = 0

J a := J ′[u,p](λ,p) . (12)

The ∗ superscript denotes an adjoint operator. Also, λ is the continuous dual

variable, and J a = δJ is the expression of Fréchet derivative of J in terms of the

dual variable.

• The discrete primal problem (2)–(4).

• The linearization of the discrete primal, i.e., the discrete tangent linear model
(
Fh,n

)′
[uh,n,ph](δuh,n, δph) = 0

δJh := (Jh)
′ [uh,n,ph](δuh,n, δph) . (13)

This is obtained directly by Fréchet differentiation of the discrete primal

formulation, in the direction (δuh, δph).

• The discrete dual problem, obtained, e.g., through automatic differentiation,

directly from the discrete tangent linear model (13):
(
Fh,n

)′ ∗
[uh,n,ph](λh,n) = 0

J a
h := (Jh)

′ ∗ [uh,n,ph](λh,0:N ,ph) . (14)

In the discrete space formulation (14), the adjoint operator is equivalent to a matrix

transpose.
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2.5.1. Consistency of the primal and tangent linear discretizations The primal

discretization is space-time consistent of order (α, β), if, in the limit of the spatial

and temporal discretizations, it holds that:
∥∥∥Fh,n(u,p)

∥∥∥ ∼ O(hα, τβ)
∣∣∣J h(u,p) −J (u,p)

∣∣∣ ∼ O(hα, τβ) . (15)

We assume that the discrete primal variables are a priori consistent with their

continuous counterparts. We will also refer to (15) as the residual consistency condition.

Here u and p are the exact solutions to the continuous primal problem (1)–(3), while h

and τ denote the size of the time and space meshes. Residual consistency is defined in

a very similar manner for the discrete TLM (13):
∥∥∥∥
(
Fh,n

)′
[u,p](δu, δp)

∥∥∥∥ ∼ O(hα, τβ)
∣∣∣(Jh)

′ [u,p](δu, δp) −J ′[u,p](δu, δp)
∣∣∣ ∼ O(hα, τβ) . (16)

Here δu and δp are the exact solution to (11).

Consider now the convergence of the linearized primal variables. Note that this is a

stronger property than (16), for it automatically implies residual consistency. Since the

tangent linear problem (13) is linear in (δuh,n, δph), stability and residual consistency (if

proven) imply convergence of the linearized variables, in the limit of both discretizations:
∥∥∥δuh,n − δu(tn)

∥∥∥ ∼ O(hα, τβ) , as h→ 0 , τ → 0 . (17)

Note that neither stability nor consistency are automatically inherited by the tangent

linear equations from the primal problem.

2.5.2. Consistency of the dual discretization Space-time consistency definitions for the

dual discretization follow those for the primal problem and its linearization. We say that

the adjoint discretization (14) is space-time consistent of order (α, β) if, in the limit of

h and τ , the following relations hold:
∥∥∥∥
(
Fh,n

)′ ∗
[u,p](λ)

∥∥∥∥ ∼ O(hα, τβ)

|J a
h (u, λ,p) − J a(u, λ,p) | ∼ O(hα, τβ) . (18)

The asymptotic order of consistency in the cost functional may be higher than (α, β)

due to super-convergence effects, or dual post-processing of J a
h [57].

Equation (18) is equivalent to saying that the linearized primal discretization (13)

is dual consistent of order (α, β). Note that the dual discretization (14) automatically

inherits the stability properties of the discrete tangent linear formulation (13). A crucial

point in the discrete adjoint analysis is the convergence of the discrete adjoint variables.

This does not follow automatically from (18). Instead, we need both stability of the

dual formulation (14), and residual consistency (18). In that case, convergence of the

λh,n follows:
∥∥∥λh,n − λ(tn)

∥∥∥ ∼ O(hα, τβ) , as h→ 0 , τ → 0 . (19)
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3. The discontinuous Galerkin method

We illustrate the general derivation of the discontinuous Galerkin (DG) method for a

general hyperbolic conservation law:

ut + ∇ · F(u) = f , x ∈ Ω , t ∈ [0, T ]

u(t,x) = g(t,x) , x ∈ ∂Ωin

u(t = 0,x) = u0(x) ,

(20)

The exact solution to (20) is u ∈ L2{[0, T ];U}, where U is a function space that

guarantees sufficient smoothness for u. The discrete spatial mesh consists of polyhedral

elements, i.e., Ωh
n =

⋃Kn
k=1D

k
n, and the inflow boundary ∂Ωin. In the modal DG

formulation, the solution to (20) is approximated on a given element Dk
n by a truncated

expansion of orthonormal polynomials (up to and including degree J):

uh,n
∣∣∣
Dk

n

=
J∑

j=0

û
(k),n
j ψj(x

h) , (21)

with
∫
Dk

n
ψi(x)ψj(x) dx = δij . The unknowns are then the time-dependent expansion

coefficients u
(k),n
j , j = 0 . . . J . In the nodal DG formulation, the solution is given by:

uh,n
∣∣∣
Dk

n

= V
[
û

(k),n
0 û

(k),n
1 . . . û

(k),n
J

]T
:= V û(k),n . (22)

Here V is a block-diagonal Vandermonde interpolation matrix [58]. Note that if either

the modal or nodal form of DG for (20) is proved to be adjoint consistent, the consistency

of the other formulation follows from (22). The global vector of unknown expansion

coefficients at tn is

ûn :=




û(1),n

û(2),n

...

û(K),n



.

We follow the DG notation in [37] throughout this derivation. Since we will be

concerned mainly with the space discretization, we omit the time dependency for the

rest of this section. Let Uh ⊂ U denote the discrete solution space. The test functions vh

are assumed to be bounded in the H1 Sobolev norm on each mesh element. Given two

neighboring elements Dk
− and Dk

+ (with a common face or edge), we let u± := u|∂Dk
±

denote the trace of u taken from the interior of Dk
±, respectively. The jump in the

solution over an edge (or face) is given by

JuhK := uh
+~n+ + uh

−~n− ,

whereas the average at x ∈ Dk
− ∩Dk

+ is {u} := (uh
− + uh

+)/2. On a boundary edge, we

have that {uh} := uh
+, and JuK := uh

+ ~n+.

Define the following two discrete volume and boundary inner products:
〈
uh, vh

〉
Dh

:=
∫

Dh

(
uh
)T

vh dx

〈
uh, vh

〉
∂Dh

:=
∫

∂Dh

(
uh
)T

vh ds ,



Space-time adaptive solution of inverse problems with the discrete adjoint method 13

where ∂Dh is the boundary of the element Dk. A Galerkin projection onto the solution

space Uh, followed by an application of the divergence theorem, lead to the semi-discrete

DG formulation: Find uh ∈ Uh, such that for all vh ∈ Uh we have that

∑

Dk

(〈
duh

dt
, vh

〉

Dk

−
〈
F(uh), ∇vh

〉
Dk

+
〈
F∗(uh

−,u
h
+, ~n), vh

〉
∂Dk

)

−
∑

Dk

〈
f , vh

〉
Dh

= 0 .

The numerical flux FDG(uh
−,u

h
+, ~n) is obtained through the solution of a Riemann

problem at the boundary between two adjacent elements [58]. For Runge–Kutta DG

methods, the time derivative is discretized through a Runge-Kutta quadrature [49].

Alternatively, the time dimension may also be discretized by DG, leading to a space-

time DG discretization [59, 60]. The consistency of Runge–Kutta time discretizations

will be discussed in detail in section 7.

We focus on the discontinuous Galerkin method because of its multiple advantages

over the finite volume, finite differences, and continuous Galerkin approaches. DG is

particularly amenable to adaptive mesh refinement and parallelization, due to the weak

coupling between elements (which are connected only through the boundary fluxes FDG).

The order of the numerical approximation can easily be varied inside each element,

since the basis functions have only local support. This avoids the AMR complications

introduced by global basis functions (necessary in the continuous Galerkin approach).

Also, there is no increase in stencil size when higher order approximations are used, in

contrast with the finite difference and finite volume methods, where p-refinement can

only be implemented by adding extra points or cells to the computational stencil.

As remarked previously, consistency of discrete adjoints with the continuous

problem is by no means guaranteed, even in the fixed mesh case. Hartmann [37] proposed

a framework for investigating adjoint consistency of DG schemes for elliptic problems.

Lack of this adjoint consistency property leads to non-smooth discrete adjoint solutions,

as well as suboptimal rates of convergence for the primal problem [61, 62, 38]. This

adjoint consistency concept can be extended to hyperbolic problems by considering

a semi-discrete version of the primal problem. In this case, time derivatives can be

implemented with a strong-stability preserving Runge-Kutta method [63]. Care must

be taken such that source terms are also discretized in a dual consistent manner [42].

We show below that the interpolation and restriction operators for h− and

p−refinement DG are exact transposes of each other (note that this transpose

relationship holds if we have an embedding between the coarse/fine solution spaces,

which may not be the case for curved domains).

4. Adjoint interpolation and restriction operators for h/p-adaptive DG

In this section we investigate the discrete adjoints of the projection and restriction

operators for h- and p-adaptive DG. These are the grid transfer operators used in an

adaptive adjoint code obtained through automatic differentiation. The analysis does
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not consider the differentiation of the mesh refinement logic that decides a new grid size

based on truncation error estimates. It is expected that differentiation of the spatial

mesh refinement logic leads to inconsistent discrete adjoints, as it does in the case of

temporal mesh refinement [53].

4.1. Hierarchical h-refinement

We first analyze the refinement and coarsening operators in the context of hierarchical

mesh refinement, i.e., an embedding of nested meshes with finer and finer spacing.

Implementation of this refinement strategy is facilitated by data structures such as

quad- or octrees [64]. Note that the shape and dimension of the elements is arbitrary;

we only assume the existence of smooth bijective mappings from a canonical (reference)

element D to the active element. A quick analysis shows that both h− and p−refinement

are done using orthogonal projections. Hence, we do not lose solution accuracy (beyond

the aliasing introduced by coarsening itself) by using the code generated by AD for the

adjoint intergrid solution transfers.

Consider the element Dk that is refined by the AMR mechanism into P smaller

elements, i.e. Dk =
⋃P

p=1D
k
p . Let M : D → Dk be a bijective mapping from the

reference element D to the active element Dk. Similarly, Mp is a one-to-one and onto

map from D to Dk
p ⊂ Dk. We denote the orthonormal set of basis functions on D by

{Ψj(x)}j=0...J .

The interpolation operator from Dk to its set of P children elements
⋃

p D
k
p reads:

PH→h :=




P1

...

PP


 , (23)

where

Pp
ij :=

∫

Dk
p

Ψj(M
−1(x))Ψi(M

−1
p (x)) dx , i, j = 0 . . . J . (24)

Mesh coarsening collapses the P child elements into their parent element. The

restriction operator that performs this operation is:

Rh→H :=
[
R1 . . . RP

]
. (25)

with

Rp
ij :=

∫

Dk
p

Ψi(M
−1(x))Ψj(M

−1
p (x)) dx , i, j = 0 . . . J . (26)

From (23–24) and (25–26):

Rh→H = P T
H→h . (27)
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4.2. p-refinement

Adaptive order refinement (also called p-refinement) is useful for nonlinear problems,

and implies the reduction or increase of the local order of the solution on a chosen subset

of the grid elements. This is equivalent to adding or removing expansion coefficients

(for the modal formulation), or interpolation points (in the nodal approach). Suppose

for simplicity that the AMR mechanism flagged a set {Diq}q=1...Q of Q out of the K

mesh elements for p-refinement. Assume the order of the solution is increased by Q̂ on

each of the Q mesh elements. Then, the p-refinement operator on element Diq has the

following form:

A
J→J+Q̂

:=

[
IJ×J

0
Q̂×J

]
. (28)

The reverse operation on Diq can be written in operator form as




û
(iq)
1
...

û
(iq)
N


 = A T

J→J+Q̂




û
(iq)
1
...

û
(iq)
N
...

û
(iq)

N+Q̂




. (29)

Since the solution coefficients on all elements outside the refinement set remain

unchanged, the transpose relationship for the global p-refinement operator follows from

(28)–(29). This result and equation (27) prove the transpose relationship (10) holds

with C = 1:

In+1→n = I T
n→n+1 . (30)

This implies that the adjoint grid transfer operators generated via reverse mode

automatic differentiation retain the accuracy of their forward model counterparts.

Hence, h-adaptivity together with an adjoint consistent DG discretization [37] (see

also the next section), lead to a stable and consistent discrete adjoint solution.

Moreover, the adjoint DG code can be generated automatically from the forward

problem discretization, without requiring any post-processing of the adjoint solution.

4.3. h-refinement with general meshes

We now extend our analysis of interpolation and coarsening to general triangulations.

Consider two meshes that cover our domain Ω: Ωh
A =

⋃
k A

k and Ωh
B =

⋃
mB

m. Consider

also the elements generated by all intersections of elements of Ωh
A and Ωh

B: denote them

by Ck,m = Ak ⋂Bm. The corresponding mesh is Ωh
C =

⋃
k,mC

k,m.

The solution on Ak is

uAk =
∑

j

a{k,j}φ{k,j}(x) , φ{k,j} = φj

(
M−1

A,k(x)
)
,
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while the solution on element Bm reads:

uBm =
∑

i

b{m,i}ψ{m,i}(x) , ψ{m,i} = ψi

(
M−1

B,m(x)
)
.

We project the solution uA defined on Ωh
A on the basis ψ to obtain the solution uB on

Ωh
B. Note that

Bm =
⋃

k

Ck,m .

Consequently,

b{m,i} =
∫

Bm
uBm(x)ψ{m,i}(x) dx

=
∑

k

∫

Ck,m
uBm(x)ψ{m,i}(x) dx

=
∑

k

∫

Ck,m

∑

j

a{k,j}φ{k,j}(x)ψ{m,i}(x) dx

=
∑

{k,j}

(∫

Ck,m
φ{k,j}(x)ψ{m,i}(x) dx

)
a{k,j} .

The transfer matrix that maps the solution uA (defined by the a coefficients) to the

solution uB (defined by the b coefficients) is:

{b} = T A→B · {a} , T A→B
{m,i},{k,j} =

∫

Ck,m
φ{k,j}(x)ψ{m,i}(x) dx .

We do similar calculations for the solution transfer from B to A. In the above formulas

we interchange the roles of a and b, and of φ and ψ to obtain:

a{m,i} =
∑

{k,j}

(∫

Cm,k
ψ{k,j}(x)φ{m,i}(x) dx

)
b{k,j} .

The transfer matrix that maps the solution uB (defined by the b coefficients) to the

solution uA (defined by the a coefficients) is:

{a} = T B→A · {b} , T B→A
{m,i},{k,j} =

∫

Cm,k
ψ{k,j}(x)φ{m,i}(x) dx .

Clearly the two intergrid operators are the transpose of one another, which means (30)

holds in this more general case:

T B→A
{m,i},{k,j} = T A→B

{k,j},{m,i} .

5. Adjoint interpolation and restriction operators for the finite volume

method

The finite volume method (FVM) [65] is built on the physical properties of the hyperbolic

conservation law (20). Like discontinuous Galerkin, it can be used on structured and

unstructured meshes, and has excellent geometric flexibility. The formulation of the

FVM relies on conservation of “mass” (i.e, some solution average) principles inside a

given control volume (or cell). Our discrete spatial mesh at tn is now defined as the
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union of K distinct control volumes: Ωh
n =

Kn⋃

k=1

Ck
n. We define the approximate solution

average inside a cell Ck
n at time tn to be:

Uk,n ≈
1

Vol(Ck
n)

∫

Ck
n

u(x, tn) dx . (31)

From (20) we obtain:

1

Vol(Ck
n)

(
∂

∂t

∫

Ck
n

u(x, t) dx +
∫

∂Ck
n

F · ~n ds−
∫

Ck
n

f(x, t) dx

)
= 0 .

Let σ be a boundary edge (or face) for the control cell Ck
n. Using a conservative

and consistent approximation FFVM
σ (xh, tn) for the analytical flux F(x, tn) through σ,

we arrive at the semi-discrete finite-volume formulation of (20):

dUk,n

dt
+

1

Vol(Ck
n)


 ∑

σ∈∂Ck
n

FFVM
σ (xh, tn) −

∫

Ck
n

f (xh, tn) dx


 = 0 .

By virtue of the conservation principle, the net flow through the boundaries of

the control volume must be zero in the absence of any forcing terms f . Similar

to the DG approach, reconstructing the solution at the control volume interfaces is

done locally. Hence, generalizations to unstructured grids and higher dimensions are

straightforward. The various choices of numerical fluxes lead to different finite volume

methods [65]. However, the FVM in two or three space dimensions is not easily

amenable to p-refinement, since higher order solution approximations rely on polynomial

reconstructions over multiple cells. In d dimensions, one needs at least

Ĵ =
(J + d− 1)!

(J − 1)! d!
(32)

finite volume cells to build a J-th degree polynomial approximation to u(x, t).

Structured meshes make p-refinement easier by allowing straightforward stencil size

adjustments. However, general unstructured grids are more complex to handle

[66, 67, 68]. Another drawback of larger stencils is the order reduction in the primal

and dual solutions around the boundaries of the domain [69], where the stencil cannot

be extended to allow sufficient accuracy (except in the case of periodic boundary

conditions).

We are concerned with the accuracy of intergrid operators for finite volume solvers

on structured meshes. For simplicity, we first consider one-dimensional problems; the

analysis will be extended to higher dimensions in section 5.2. This one-dimensional

discussion fully illustrates the accuracy issues encountered with adjoint (transposed)

intergrid operators. Furthermore, we omit the time dependent notation, for ease

of notation. The kth finite volume cell is Ck =
[
xk−1/2, xk+1/2

]
, where xk+1/2 =

(xk+1 + xk)/2. Let hk = Vol(Ck) := xk+1 − xk. This leads to the finite volume scheme

for equation (20):

hk dUk

dt
+ FFVM

k+1/2 − FFVM
k+1/2 = hk fk , ∀ k = 1 . . . K . (33)
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The polynomial reconstruction approach approximates the solution through the interface

between two control volumes as a polynomial with unknown coefficients:

uh(x) :=
J∑

j=0

aj(x− xk)j . (34)

Note that we dropped the explicit time dependency in the numerical solution, since we

assume this holds at some particular time point tn. The aj coefficients are determined

by requiring that
∫

Cj
uh(x) = Vol(Cj)Uj , ∀ j = 0, . . . , J .

The reconstruction may be either centered, or biased (upwind). We will show that

the transpose relationship between the interpolation and restriction operators does not

hold for operators with orders of accuracy higher than one. The adjoints of quadratic or

higher order flux interpolations reduce to a simple first order conservative reconstruction.

Hence, the adjoint solution cannot be expected to retain the order of accuracy of the

forward discretization, due the order reduction in the intergrid solution transfer process.

This is an additional drawback of the finite volume method, which negatively impacts

the accuracy of black-box generation (via AD) of h-refinement operators in the discrete

adjoint solver.

5.1. h-refinement via quadratic centered polynomial solution reconstruction

Assume a smooth exact solution u(x, t) to (20). Consider three adjacent finite volume

cells of size h: CL, CC , and CR, centered at xi−1, xi, and xi+1, respectively. Their

corresponding exact averages are UL, UC , and UR. The cell CC is split into two cells

CC
L and CC

R , each with volume h/2. The solution inside CL⋃CC ⋃CR is approximated

by a quadratic polynomial uh(x), with the unknown coefficients determined from (34).

We then obtain the averages on the two finer cells using equation (31):

[
UC

L

UC
R

]
=

[
1
8

1 −1
8

−1
8

1 1
8

]



UL

UC

UR


 . (35)

We are interested in the order of accuracy of these approximations, i.e. we want to

estimate the errors of the two new cell averages

EL :=

∣∣∣∣∣U
C
L −

2

h

∫ xi

xi−1/2

u(x)dx

∣∣∣∣∣

ER :=

∣∣∣∣∣U
C
R −

2

h

∫ xi+1/2

xi
u(x)dx

∣∣∣∣∣ . (36)

Using (31) (now assumed to hold exactly for the cells of size h), we get that:

max (|EL| , |ER|) =
3

64
h3

∣∣∣∣∣
d3u

dx3
(xi)

∣∣∣∣∣+ O(h5) ,

hence the approximation (36) is third order accurate for our uniform centered stencil.

We now consider the transposed operator that coarsens CL
C and CL

C into a single
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parent cell CC . From (35) it is immediately apparent that the transposed coarsening

operator is equivalent to first order (conservative) averaging. Moreover, using the adjoint

(transpose) of the discrete interpolation operator in equation (35) has the undesired

side-effect of perturbing the neighbor averages:

UC = UL
C + UR

C

ÛL = UL + 1/8
(
UL

C −UR
C

)
:= UL + εL

ÛR = UR + 1/8
(
−UL

C + UL
C

)
:= UR + εR . (37)

Since by our assumptions UL and UR are exact averages, and u(x) is smooth over

CL ⋃CC ⋃CR, one can bound the perturbations εL and εR using Taylor approximations:

max (|εL| , |εR|) =
1

16
h

∣∣∣∣∣
du

dx
(xi)

∣∣∣∣∣+ O(h3) .

These numerical side-effects should be avoided in practice (preferably through post-

processing of the discrete adjoint code). Nevertheless, this grid coarsening operation

remains only first order. This can be also shown to hold for higher degree (centered or

upwind) polynomial reconstructions, and for higher dimensional problems, as outlined

in the next section.

5.2. General intergrid transfer operators in the finite volume method

We now consider a more general formulation of the intergrid transfer operators used in

the finite volume method. In what follows Ĵ is defined by equation (32). Consider the

polynomial reconstruction formula (34) over Ĵ cells C1, . . . , C Ĵ :

uh(x) = aT ·




φ1(x)
...

φ
Ĵ
(x)


 ,

where a =
[
a1, . . . , aĴ

]T
are the polynomial coefficients, and φ1, . . . , φĴ

are a set of

basis functions for the space of multivariate polynomials of degree J under consideration.

Then, the average on cell Cj is

1

Vol(Cj)

∫

Cj
uh(x) dx = wT

j · a = Uj , (38)

with wj denoting the integration weights:

(wj)i =
1

Vol(Cj)

∫

Cj
φi(x) dx , ∀ i = 1, . . . , Ĵ . (39)

Equation (38) leads to the matrix formulation over all Ĵ cells:

Wa = U . (40)

In equation (40), the W ∈ RĴ×Ĵ is the weight matrix, and U denotes the column vector

of Ĵ cell averages. Suppose now that cell Ci is refined into K non-overlapping sub-cells

Ci
1, . . . , C

i
K . The averages inside the smaller K cells are given by:

Uk
i = vT

k a = vT
k W−1U , ∀ i = 1, . . . , K ,
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where the new integration weights vk are defined by

(vk)j :=
1

Vol(Cj
i )

∫

Cj
i

φj(x) dx , ∀ i = 1, . . . , Ĵ ,

and satisfy the equation
K∑

k=1

vT
k = wT

i = eT
i W . (41)

Here ei is the i-th unit basis vector of RĴ . For small values of J , and smooth u(x, t), the

averages in the finer sub-cells can be shown to be accurate of order hJ+1. Larger-sized

stencils introduce oscillations in the approximating polynomials, hence some WENO-

type stabilization is required [70]. The analysis of the transpose of the stabilization

algorithm is beyond the scope of this paper. We can write the refinement operation in

matrix form as:


U1

...

Ui−1

U1
i

...

UK
i

Ui+1

...

U
Ĵ




=




I 0 0

PK

0 0 I


 U , (42)

with the prolongation sub-matrix

PK =




vT
1 W−1

...

vT
KW−1


 ∈ RK×Ĵ . (43)

Use of the adjoint of (42) as a coarsening operator yields the following average for cell

Ci:

Ũi =
K∑

k=1

(
W−Tvk

)
i
Uk

i . (44)

From (41), we get a first order conservative reconstruction of the solution average inside

cell Ci. However, there is one undesired side-effect of this operator. The average solution

values inside all of the other Ĵ − 1 cells in the interpolation stencil are polluted by a

first order perturbation stemming from the transposed restriction operator (44):

Ũj = Uj +
K∑

k=1

(
W−Tvk

)
j
Uk

i , ∀ j 6= i .

This perturbation is O(h) on general uniform and non-uniform grids. To establish this

estimate, note that, using (41), we have
K∑

k=1

(
W−Tvk

)
j
= 0 , ∀ j 6= i .
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In the general case this first order error term does not vanish.

6. Space-time duality relations in function spaces

As mentioned previously, the concept of adjoint consistency, together with its

implications in optimization, have been investigated for steady-state problems by Lu

[38], Harriman, Gavaghan and Süli [62], Hartmann and Houston [71, 72], and Oliver

and Darmofal [42]. Hartmann [37] proposed a general framework for establishing

adjoint consistency for DG discretizations of stationary PDE models. We leverage

previous results on dual consistency for temporal [40], and spatial discretizations [71]

to give a unified framework for the analysis of adjoint consistency of space-time DG

discretizations. This section discusses space-time duality relations for continuous model

formulations. A general strategy to construct the adjoint system is given, applicable

whenever the cost functional and the associated model differential operators satisfy a

set of compatibility conditions. The next section will discuss dual consistency of the

time quadratures for Runge–Kutta DG discretizations (assumed to be dual consistent

in space).

Consider again equation (1). For simplicity of exposition, we rewrite (1) in the

form:

ut = N [u] + f , x ∈ Ω , t ∈ [0, T ]

B[u] = g , x ∈ Γ , t ∈ [0, T ] (45)

u(t = 0,x) = u0 , x ∈ Ω .

The PDE system admits solutions u : [0, T ] → U , such that u ∈ L2 ([0, T ];U), and

ut ∈ L2 ([0, T ];U), where U is an appropriate function space. Here N and B are

Frechét differentiable, nonlinear differential operators, containing spatial and boundary

derivative terms. We denote the Frèchet derivatives by:

Lw = N ′ [u]w

B′ w = B′[u]w .

Consider a nonlinear cost functional of the form

J (u) =
∫ T

0

∫

Ω
JΩ[CΩ u] dx dt+

∫ T

0

∫

Γ
JΓ[CΓ u] ds dt

+
∫

Ω
KΩ[EΩ u ]t=T dx . (46)

The differential operators CΩ and EΩ act on the domain Ω, while CΓ is a boundary

operator (all are assumed to be Frechét differentiable). Their Frèchet derivatives are

denoted by C ′
Ω, E ′

Ω, and C ′
Γ, respectively. Also, let

jΩ = (J ′
Ω[CΩ u])

T

jΓ = (J ′
Γ[CΓ u])

T

kΩ = (K ′
Ω[EΩ u ])

T
.
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6.1. The tangent linear PDE

Small variations δu in the solution u(x, t) of (45) satisfy (up to first order) the tangent

linear model. These equations can be obtained from (45) by linearization in the direction

(δu, δf , δg):

δut = N ′ [u] δu + δf , x ∈ Ω , t ∈ [0, T ]

B′[u] δu = δg , x ∈ Γ , t ∈ [0, T ]

δu(t = 0,x) = δu0 , x ∈ Ω . (47)

We denote

〈u, v〉[0, T ]×Γ :=
∫ T

0

∫

Γ
uT v ds dt

〈u, v〉[0, T ]×Ω :=
∫ T

0

∫

Ω
uT v dx dt . (48)

The space-time weak form of (47) is written in terms of space-time inner products as:

〈wt , v〉[0,T ]×Ω = 〈L [u] w , v〉[0,T ]×Ω + 〈δf , v〉[0,T ]×Ω

〈B′[u]w , v〉[0,T ]×Γ = 〈δg , v〉[0,T ]×Γ (49)

〈w, v〉Ω|t=0 =
〈
δu0, v

〉
Ω
, ∀ v ∈ L2 ([0, T ];U) .

The space of all possible solutions of (49) is:

U tlm = {w ∈ U | ∃ δf , δg , δu0 s.t. w is a solution of (49)} . (50)

Clearly U tlm is a vector subspace of U . The variation of the cost functional (46) is

δJ = J ′[u] δu , (51)

where

J ′[u]w =
∫ T

0

∫

Ω
J ′

Ω[CΩ u]C ′
Ω w dx dt+

∫ T

0

∫

Γ
J ′

Γ[CΓ u]C ′
Γ w ds dt

+
(∫

Ω
K ′

Ω[EΩ u] E ′
Ω w dx

)∣∣∣∣
t=T

:= 〈C ′
Ω w , jΩ〉[0,T ]×Ω + 〈C ′

Γ w , jΓ〉[0,T ]×Γ + 〈E ′
Ω w , kΩ〉Ω|t=T .

To compute the variation (51) due to δu0, δf , and δg, one runs the TLM (49) to obtain

δu, and uses it in (51) to compute δJ . A new TLM solution is needed for each set of

perturbations δu0, δf , and δg.

6.2. The adjoint PDE

We wish to express the variation (51) as

δJ =
(
Cadj

Ω λ , δf
〉

[0,T ]×Ω
+
〈
Cadj

Γ λ , δg
〉

[0,T ]×Γ
+
〈
Eadj

Ω λ|t=0 , δu0

〉
Ω
,

(52)
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for any perturbations δu0, δf , and δg. The adjoint variables λ are obtained by solving

the dual problem

−λt = L∗ λ+ fadj , x ∈ Ω , t ∈ [0, T ]

Badj λ = gadj , x ∈ Γ , t ∈ [0, T ] (53)

λ(t = T,x) = Eadj
Ω kΩ , x ∈ Ω .

The operators Badj and Cadj
Γ need to be chosen such that (52) and (51) are equivalent.

Note that duality implies that the following relations hold:

• The domain weight jΩ in the forward linearized cost function (51) determines

the adjoint domain forcing fadj. The domain forcing δf in the forward linearized

problem determines the domain weight in the adjoint expression of the cost function

(52).

• The boundary weight jΓ in the forward linearized cost function (51) determines the

adjoint boundary forcing gadj. The boundary forcing δg in the forward linearized

problem determines the boundary weight in the adjoint expression of the cost

function (52).

• The domain forcing at the final time kΩ in the forward linearized cost function (51)

determines the final value of the adjoint variable λ(t = T,x).

The time-space weak form of (54) is

−〈w , λt〉[0,T ]×Ω = 〈w , L∗ λ〉[0,T ]×Ω +
〈
w , fadj

〉
[0,T ]×Ω〈

w , Badj λ
〉

[0,T ]×Γ
=
〈
w , gadj

〉
[0,T ]×Γ

(54)

〈w , λ|t=T 〉Ω =
〈
w , λF

〉
Ω
.

6.3. Compatibility conditions

Consider the integration by parts formulas

〈Lw , v〉Ω = 〈w , L∗ v〉Ω +
∑

i

〈
FL

i w , GL
i v
〉

Γ
, ∀ w,v ∈ U (55a)

〈C ′
Ω w , v〉Ω = 〈w , C ′∗

Ω v〉Ω +
∑

i

〈
FC

i w , GC
i v

〉
Γ
, ∀ w,v ∈ U (55b)

〈E ′
Ω w , v〉Ω = 〈w , E ′∗

Ω v)Ω +
∑

i

〈
FE

i w , GE
i v

〉
Γ
, ∀ w,v ∈ U (55c)

where FL,C,E
i , GL,C,E

i are boundary linear differential operators that come from the

integration by parts of the linear operators L, C ′
Ω, and E ′

Ω, respectively. We impose a

first compatibility condition which ensures that the boundary terms coming from the

integration by parts of C ′
Ω vanish for all w that satisfy the boundary condition (50) of

the tangent linear model (49):

Compatibility condition 1 :
∑

i

〈
FC

i w , GC
i v

〉
Γ

= 0 ,

∀ v ∈ U , ∀ w ∈ U tlm . (56)
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The second compatibility condition ensures that the boundary terms coming from the

integration by parts of E ′
Ω vanish for all perturbations consistent with (50):

Compatibility condition 2 :
∑

i

〈
FE

i w ,GE
i v
〉

Γ
= 0 ,

∀ v ∈ U , ∀ w ∈ U tlm . (57)

The compatibility conditions (56) and (57) simplify the integration by parts formulas

(55) to

〈Lw , v〉Ω = 〈w , L∗ v〉Ω +
∑

i

〈
FL

i w , GL
i v
〉

Γ
, ∀ w,v ∈ U (58a)

〈C ′
Ω w , v〉Ω = 〈w , C ′∗

Ω v〉Ω , ∀ w ∈ U tlm , ∀ v ∈ U (58b)

〈E ′
Ω w , v〉Ω = 〈w , E ′∗

Ω v〉Ω , ∀ w ∈ U tlm , ∀ v ∈ U . (58c)

After integration by parts the TLM (49) becomes:

−〈w , λt〉[0,T ]×Ω + 〈w , λ〉Ω|
T
0 = 〈w , L∗ λ〉[0,T ]×Ω

+
∑

i

〈
FL

i w , GL
i λ
〉

[0,T ]×Γ

+ 〈δf , λ〉[0,T ]×Ω

〈B′ w , λ〉[0,T ]×Γ = 〈δg , λ〉[0,T ]×Γ ,

〈w|t=0 , λ〉Ω =
〈
δu0 , λ

〉
Ω
. (59)

Equations (59) and (55) lead to
〈
w , fadj

〉
[0,T ]×Ω

+ 〈w , λ〉Ω|t=T
= 〈w , λ〉Ω|t=0

+ 〈δf , λ〉[0,T ]×Ω

+
∑

i

〈
FL

i w , GL
i λ
〉

[0,T ]×Γ
. (60)

The variation of the cost functional (51) can be rewritten as:

J ′[u]w = 〈C ′
Ω w , jΩ〉[0,T ]×Ω + 〈C ′

Γ w , jΓ〉[0,T ]×Γ + 〈E ′
Ω w , kΩ〉Ω|t=T

= 〈w , C ′∗
Ω jΩ〉[0,T ]×Ω + 〈C ′

Γ w , jΓ〉[0,T ]×Γ + 〈w , E ′∗
Ω kΩ〉Ω|t=T .

(61)

We make the following identifications:

fadj = C ′∗
Ω jΩ

gadj = jΓ

λF = E ′∗
Ω kΩ .

Then, the adjoint problem (54) reads

−λt = L∗ λ+ C ′∗
Ω jΩ , x ∈ Ω , t ∈ [0, T ]

Badj λ = jΓ , x ∈ Γ , t ∈ [0, T ] (62)

λ(t = T,x) = E ′∗ kΩ , x ∈ Ω ,
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and equation (61) becomes:

J ′[u]w = − 〈w , λ〉Ω|t=T + 〈w , λ〉Ω|t=0 + 〈wt − Lw , λ〉[0,T ]×Ω

−
∑

i

〈
FL

i w , GL
i λ
〉

[0,T ]×Γ
+
∑

i

〈
FC

i w , GC
i jΩ

〉
[0,T ]×Γ

+
〈
C ′

Γ w , Badj λ
〉

[0,T ]×Γ
+ 〈w , λ〉Ω|t=T

= 〈w , λ〉Ω|t=0 + 〈δf , λ〉[0,T ]×Ω

+
〈
C ′

Γ w , Badj λ
〉

[0,T ]×Γ
+
∑

i

〈
FL

i w , GL
i λ
〉

[0,T ]×Γ

+
∑

i

〈
FC

i w , GC
i jΩ

〉
[0,T ]×Γ

.

If the adjoint boundary condition is defined by the relation
〈
Badj λ , C ′

Γw
〉

[0,T ]×Γ
=
〈
Cadj

Γ λ , B′ w
〉

[0,T ]×Γ

−
∑

i

〈
FL

i w , GL
i λ
〉

[0,T ]×Γ
, (63)

then

J ′[u]w =
〈
δu0 , λ

〉
Ω

∣∣∣
t=0

+ 〈δf , λ〉[0,T ]×Ω +
〈
Cadj

Γ λ , δg
〉

[0,T ]×Γ
. (64)

Equation (63) is ensured by the third compatibility condition. There exist well defined

boundary operators Badj and Cadj
Γ such that the following holds:

Compatibility condition 3 :

(Lw , v)Ω −
(
B′ w , Cadj

Γ v
)

Γ
= (w , L∗ v)Ω −

(
C ′

Γw , Badj v
)

Γ

∀ w ∈ U tlm , v ∈ U . (65)

Here we have used (58) to relate (63) and (65).

We say that the cost function and the PDE are compatible if the three compatibility

conditions (56), (57), and (65) hold. The third compatibility condition (65) is discussed

in [20, 37]. The authors assume C = I (the identity operator), and E = 0, therefore

(56), and (57) trivially hold. Equation (65) is the only compatibility condition needed

in this simpler setting.

6.4. An example: the linear advection-diffusion equation

As an example, we will consider the linear advection-diffusion problem:

ut = −∇ · (~au) + ∆u + f , x ∈ Ω , t ∈ [0, T ]

u = gD , x ∈ ΓD = Γ−

~n · ∇u = gN , x ∈ ΓN = Γ \ΓD

u(t = 0,x) = u0 . (66)

Here Γ− = {x ∈ Γ |~a(x) · ~n(x) < 0} is the advective inflow boundary. The nonlinear

cost functional quantifies the mismatch between the model trajectory u(t,x), and a
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given reference state uref . We penalize high variations in the boundary derivatives (to

avoid boundary layers in our numerical solution). Thus, J is defined as:

J (u) =
1

2

∫ T

0

∫

Ω

∥∥∥u− uref
∥∥∥
2

2
dx dt+

1

2

∫ T

0

∫

ΓD

(∇u · ~n)2 ds dt .

We immediately identify the operators

JΩ[CΩ u] =
1

2

∥∥∥u − uref
∥∥∥
2

2
; jΩ = u − uref ;

CΓD
(u) = ∇u · ~n ; C ′

ΓD
(w) = ∇w · ~n ;

JΓD
[CΓD

u] =
1

2
(∇u · ~n)2 ; jΓD

= ∇u · ~n .

6.4.1. The tangent linear PDE The TLM of (66) reads:

wt = −∇ · (~aw) + ∆w + δf , x ∈ Ω , t ∈ [0, T ]

B′
D w := w = δgD , x ∈ ΓD

B′
N w := ~n · ∇w = δgN , x ∈ ΓN

w(t = 0,x) = δu0 ,

and the Fréchet derivative of the cost functional J in the direction w can be written

as:

J ′[u]w =
〈
u − uref ,w

〉
[0,T ]×Ω

+

〈
∂u

∂~n
,
∂w

∂~n

〉

[0,T ]×ΓD

.

6.4.2. The adjoint PDE The integration by parts formula becomes

〈−∇ · (~aw) + ∆w , v〉[0, T ]×Ω = 〈w , ~a · ∇v + ∆v〉[0, T ]×Ω

+

〈
v , −w~a · ~n +

∂w

∂~n

〉

[0, T ]×Γ

+

〈
−
∂v

∂~n
, w

〉

[0, T ]×Γ

.

Then, we can easily identify the volume and boundary operators:

Lw = −∇ · (~aw) + ∆w

L∗ v = ~a · ∇v + ∆v

F1 w = −w~a · ~n +
∂w

∂~n
, G1 v = v

F2 w = w , G2 v = −
∂v

∂~n
.

The compatibility conditions (56) and (57) are trivially satisfied. The operatorsBadj

and Cadj
Γ are determined by the third compatibility condition, which for our example

reduces to:

〈v , −w~a · ~n + ~n · ∇w〉[0, T ]×Γ + 〈−~n · ∇v , w〉[0, T ]×Γ

=
〈
w , Cadj

ΓD
v
〉

[0, T ]×ΓD

−
〈
~n · ∇w , Badj

ΓD
v
〉

[0, T ]×ΓD

+
〈
~n · ∇w , Cadj

ΓN
v
〉

[0, T ]×ΓN

−
〈
w , Badj

ΓN
v
〉

[0, T ]×ΓN

.
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Using the linearity of the inner product integrals, we can establish that:

Badj
ΓD

v := − v , x ∈ ΓD

Badj
ΓN

v := ~a · ~nv +
∂v

∂~n
, x ∈ ΓN

Cadj
ΓD

v := − ~a · ~nv −
∂v

∂~n
, x ∈ ΓD

Cadj
ΓN

v := v , x ∈ ΓN ,

and write the adjoint final value problem for (66):

−λt = ~a · ∇λ+ ∆λ + u− uref , x ∈ Ω , t ∈ (T, 0]

λ = −∇u · ~n , x ∈ ΓD

~n · ∇λ+ ~a · ~nλ = 0 , x ∈ ΓN

λ(t = T,x) = 0 .

We will revisit this example below, in the context of fully discrete models.

7. Duality relations and space-time adjoints for discrete models

If the time dimension is discretized by DG (see, e.g., [59, 60]), then we have a space-time

DG discretization. The consistency analysis follows closely the one presented in [37].

The only difference is that the integrals are taken in space-time.

We now consider a time discretization by Runge Kutta methods. A semi-

discretization in space of the continuous primal problem (45) leads to the following

semi-discrete model [37]:

Find uh ∈ L2 ([0, T ] ; Uh) such that (uh)t ∈ L2 ([0, T ] ; Uh) and
〈
∂uh

∂t
, vh(t)

〉

Ω

= N
(
t;uh, vh

)
+
〈
f , vh

〉
Ω

+ B
(
g, vh

)

∀vh ∈ L2 ([0, T ];Uh) , a.a. t ∈ [0, T ] . (67)

Here the semi-linear form N is nonlinear in uh, and linear in vh. B (·, ·) is a bilinear

form defined on the boundary Γ, which depends on the prescribed boundary data gh.

Let N ′[uh] := ∂N /∂uh be the Fréchet derivative of N with respect to uh. The TLM of

(67) reads
〈
∂wh

∂t
,vh(t)

〉

Ω

= N ′[uh]
(
t;wh(t) , vh

)
+
〈
δf(t),vh

〉
+ B

(
δg, vh

)

∀vh ∈ L2
(
[0, T ];U tlm

h

)
, a.a. t ∈ [0, T ] , (68)

where the TLM solution wh ∈ L2 ([0, T ];Uh). The semi-discrete cost functional

Jh(u
h) =

∫ T

0

∫

Ω
jΩ[CΩ uh] dx dt+

∫ T

0

∫

Γ
jΓ[CΓ uh]ds dt

+
∫

Ω
kΩ[EΩ uh ]t=T dx , (69)
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is a discretization of the continuous functional J in equation (46), and has a variation

given by

J ′
h wh =

∫ T

0

〈(
jΩ[CΩ uh(t)]

)T
, C ′

Ω wh(t)
〉

Ω
dt

+
∫ T

0

〈(
jΓ[CΓ uh(t)]

)T
, C ′

Γ wh(t)
〉

Γ
dt

+
〈(
k′Ω[EΩ , u

h(T ) ]
)T

, E ′
Ω wh(T )

〉

Ω
. (70)

A full discretization of the PDE is obtained by discretizing the time derivative in (67)

using a Runge–Kutta method [49]. In the following, un ∈ Uh is the fully discrete solution

at tn, Un
i ∈ Uh is the i-th stage vector at time step n, and T n

i = tn + ci h
n+1 is the stage

time moment. The time grid has N + 1 points: from t0 = 0, up to tN = T , and

tn+1 = tn + τn+1. For simplicity of notation, we omit the discrete space superscripts in

the following discussion. The Runge–Kutta discretization of (67) reads:

〈Un
i , v〉Ω = 〈un,v〉Ω + τn+1

s∑

j=1

ai,j

[
N
(
T n

j ;Un
j , v

)

+
〈
fn
j , v

〉
+ B

(
gn

j , v
) ]

, ∀v ∈ U tlm
h

〈
un+1,v

〉
Ω

= 〈un,v〉Ω + τn+1
s∑

i=1

bi [N (T n
i ;Un

i , v) + 〈fn
i , v〉 + B (gn

i , v) ] .

Due to the linearity of the Runge–Kutta procedure, the TLM of the fully discrete

system reads:

〈Wn
i , v〉Ω = (wn,v〉Ω + τn+1

s∑

j=1

ai,j

[
N ′[Un

j ]
(
T n

j ;Wn
j , v

)

+
〈
δfn

j , v
〉

+ B
(
δgn

j , v
) ]

, ∀v ∈ Uh

〈
wn+1, v

〉
Ω

= 〈wn, v〉Ω + τn+1
s∑

i=1

bi [N ′[Un
i ] (T n

i ;Wn
i , v)

+ 〈δfn
i , v〉 + B (δgn

i , v) ] .

The time integration of the cost functional is discretized according to the Runge–Kutta

quadrature. The variation of the fully discrete cost functional is:

J ′
h w =

N−1∑

n=0

τn+1
s∑

i=1

bi
〈
(jΩ[CΩ Un

i ])T , C ′
Ω w(T n

i )
〉

Ω

+
N−1∑

n=0

τn+1
s∑

i=1

bi
〈
(jΓ[CΓ Un

i ])T , C ′
Γ w(T n

i )
〉

Γ

+
〈(
k′Ω[EΩ uN ]

)T
, E ′

Ω w(tN)
〉

Ω
.

We rewrite the TLM of the fully discrete system, to outline the use of different

discrete test functions λ(tn,x) ∈ Uh (which will later be interpreted as the adjoint

variables):
〈
w0, λ0

〉
Ω

=
〈
δu0, λ0

〉
Ω
, ∀λ0 ∈ Uh
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〈Wn
i , θ

n
i 〉Ω = 〈wn, θn

i )Ω + τn+1
s∑

j=1

ai,j

[
N ′[Un

j ]
(
T n

j ;Wn
j , θ

n
i

)

+
〈
δfn

j , θ
n
i

〉
+ B

(
δgn

j , θ
n
i

) ]
, ∀ θn

i ∈ Uh

〈
wn+1, λn+1

〉
Ω

=
〈
wn, λn+1

〉
Ω

+ τn+1
s∑

i=1

bi
[
N ′[Un

i ]
(
T n

i ;Wn
i , λ

n+1
)

+
〈
δfn

i , λ
n+1

〉
+ B

(
δgn

i , λ
n+1

) ]
, ∀λn+1 ∈ Uh .

Consider all of the above relations for n = 0, . . . , N−1. We identify the terms involving

the same Wn
i , and wn arguments on the left and right hand sides, and obtain the

following correspondence:

〈Wn
i , θ

n
i 〉Ω ↔ τn+1

s∑

ℓ=1

aℓ,i N
′[Un

i ] (T n
i ;Wn

i , θn,ℓ)

+ τn+1 bi N
′[Un

i ]
(
T n

i ;Wn
i , λ

n+1
)

〈wn, λn〉Ω ↔ 〈wn, λn+1〉Ω +
s∑

i=1

〈wn, θn
i 〉Ω .

We now define the discrete adjoint system as:

(w , θn
i )Ω = τn+1 N ′[Un

i ]

(
T n

i ;w , biλ
n+1 +

s∑

ℓ=1

aℓ,i θ
n
ℓ

)

− τn+1
s∑

i=1

bi
〈
(jΩ[CΩ Un

i ])T , C ′
Ω w

〉
Ω

− τn+1
s∑

i=1

bi
〈
(jΓ[CΓ Un

i ])T , C ′
Γ w

〉
Γ
, ∀w ∈ U tlm

h

〈w, λn〉Ω =
〈
w, λn+1

〉
Ω

+
s∑

i=1

〈w, θn
i )Ω , ∀w ∈ U tlm

h (71)

The sum of the TLM relations for n = 0, . . . , N − 1 gives:
〈
wN , λN

〉
Ω

=
〈
δu0, λ0

〉
Ω
− J ′

h w0 +
〈(
k′Ω[EΩ uN ]

)T
, E ′

Ω wN
〉

Ω

+ Sf + Sg . (72)

where

Sf =
N−1∑

n=0

τn+1
s∑

i,j=1

ai,j

〈
δfn

j , θ
n
i

〉
Ω

+
N−1∑

n=0

τn+1
s∑

i=1

bi
〈
δfn

i , λ
n+1

〉
Ω
,

(73)

and

Sg =
N−1∑

n=0

τn+1
s∑

i,j=1

ai,j B
(
δgn,j, θn

i

)
+

N−1∑

n=0

τn+1
s∑

i=1

bi B
(
δgn

i , λ
n+1

)
.

(74)

We examine in more detail the terms Sf and Sg. From the correspondence between

the discrete adjoint “stages”

θn
j ↔ τn+1 bj λ

n+1 + τn+1
s∑

i=1

ai,j θ
n
i , (75)
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we get that

Sf =
N−1∑

n=0

s∑

j=1

〈
δfn

j , θ
n
j

〉
Ω

(76a)

Sg =
N−1∑

n=0

s∑

j=1

B
(
δgn

j , θ
n
j

)
. (76b)

Following Hager [39], we perform a change of variables in (76) using the

correspondence (75). First, from (75), assuming all Runge-Kutta coefficients bi 6= 0,

we get

1

τn+1 bj
θn

j ↔ λn+1 +
s∑

ℓ=1

aℓ,j

bj
θn

ℓ .

Let θ̃n
j denote the stages of the formal adjoint Runge–Kutta method (see [73]), where

θ̃n
j :=

1

τn+1 bj
θn

j .

Then, the formal adjoint stage correspondence becomes

θ̃n
j ↔ λn+1 + τn+1

s∑

ℓ=1

aℓ,j bℓ
bj

θ̃n
ℓ .

Replacing this expression in equation (76), we arrive at:

Sf =
N−1∑

n=0

τn+1
s∑

j=1

bj
〈
θ̃n

j , δf
n
j

〉
Ω
≈ 〈λ, δf〉[0, T ]×Ω . (77)

The last (approximate) equality follows from the consistence theory of Runge–Kutta

quadratures for time integrals [49]. We note that for control problems (unlike inverse

problems), some additional order conditions are needed for the formal adjoints of Runge–

Kutta methods to achieve orders 3 and above [39]. A similar result can be derived for

Sg, namely:

Sg ≈
∫ T

0
B(δg, λ) dt .

We define the final adjoint condition by
〈
λN , w

〉
Ω

=
〈(
k′Ω[EΩ uN ]

)T
, E ′

Ω w

〉

Ω
, ∀w ∈ U tlm

h . (78)

Then, (72) becomes:

J ′
h w ≈

〈
δu0, λ0

〉
[0, T ]×Ω

+ 〈δf , λ〉[0, T ]×Ω +
∫ T

0
B (δg, λ) dt .

The discrete adjoint variables λn can yield different sensitivities, depending on the

direction in which the Fréchet derivative of Jh is computed:

• Differentiation of Jh along (δu0, 0, 0) yields the gradient of the cost functional with

respect to the initial conditions:
(
Eadj

Ω

)h
λ0 =

dJh

du0
. (79)
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• If the tangent linear model is obtained by linearization around (0, δf , 0), then

we obtain the sensitivities with respect to changes in the primal equation volume

forcing:
(
Cadj

Ω

)h
λn =

dJh

dfn
. (80)

• The consistency of the boundary sensitivities does not follow directly from the

consistency of the dual discretization. Indeed, for the example given in the next

section, we obtain inconsistent boundary sensitivities from a dual consistent DG

discretization. Along with dual consistency of the DG discretization, one also

needs adjoint consistency for the boundary functional B (defined by the primal

discretization). We say that B is dual consistent iff, for any admissible boundary

perturbation δg, there exists a consistent discretization
(
Cadj

Γ

)h
of the continuous

differential operator Cadj
Γ , such that

B(δg, λ) =
〈
δg,

(
Cadj

Γ

)h
λ
〉

Γ
. (81)

This does not hold true for all discretizations. The next section will look at the

symmetric interior penalty DG discretization of the advection-diffusion system (66).

While the discretization itself is dual consistent, the boundary functional Bh is

shown to be adjoint inconsistent.

Note that the discrete adjoint model (71)–(78) is obtained by applying the discrete

Runge–Kutta adjoint numerical method to the semi-discrete adjoint system
〈
w,

∂λ

∂t

〉

Ω

= N ′[u] (t;w, λ) − 〈w, jΩ[CΩu ]〉Ω

∀w ∈ L2
(
[0, T ] ; U tlm

h

)
, a.a. t ∈ [0, T ] . (82)

According to [40] the discrete adjoint Runge Kutta method provides the same order of

consistency as the forward Runge Kutta method.

In conclusion, the fully discrete adjoint model (71)–(78) is equivalent to applying a

method of lines discretization to the continuous adjoint PDE. The space discretization

is done with the discrete adjoint DG method, and is consistent with the same order as

the forward DG discretization. The time discretization is done with the discrete Runge

Kutta adjoint method; the time consistency of the adjoint discretization is the same as

the one of the forward method.

7.1. Space-time consistency analysis of the upwind SIPG advection-diffusion DG

discretization

The upwind penalty DG semi-discretization [37] for the advection-diffusion PDE (66)

reads: 〈
∂uh

∂t
, vh

〉

Ω

= N (uh, vh) + B(gh, vh) −L(fh, vh) , (83)
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with

N (uh, vh) := Ndiff(uh, vh) + Nadv(u
h, vh) ,

and

Nadv(u
h, vh) = −

∫

Ω
uh~a · ∇vh dx +

∑

Dk

∫

∂Dk
−
\Γ
~a · ~nuh

−vh
+ ds

+
∑

Dk

∫

∂Dk
+

~a · ~nuh
+vh

+ ds .

Ndiff(uh, vh) =
∫

Ω
∇uh · ∇vh dx +

∑

Dk

∫

∂Dk\Γ

1

2
θJuhK · ∇vh ds

−
∑

Dk

∫

∂Dk\ΓN

{
∇uh

}
· ~nvh ds +

∑

Dk

∫

∂Dk
φ JuhK · ~nvh ds

+
∫

ΓD

θuh ~n · ∇vh ds ,

Furthermore,

L(fh,vh) =
∫

Ω
fh vh dx

B(gh, vh) =
∫

ΓD

~a · ~ngh
D vh ds −

∫

ΓD

θ gh
D ∇vh · ~n ds

−
∫

ΓD

φ gh
Dvh ds −

∫

ΓN

gh
N vh ds .

Here we denote the penalization parameter by φ ≥ φ0 > 0. For the symmetric

interior penalty method (SIPG) [74], θ = −1. The residual form discrete adjoint of the

bilinear forms Ndiff and Nadv follows from integrating by parts the primal discretizations

[37]. Below λh is the discrete adjoint variable, and wh ∈ Uh denote the test functions:

N ∗
adv(w

h, λh) := −
∫

Ω
wh~a · ∇λh dx +

∑

Dk

∫

∂Dk
+
\Γ

wh
+~a · Jλ

hK ds

+
∫

ΓN

wh~a · ~nλh ds .

N ∗
diff(wh, λh) := −

∫

Ω
wh ∆λh dx

+
∑

Dk

∫

∂Dk\Γ
wh

[
1

2
J∇λhK + (1 + θ) ~n ·

{
∇λh

}
+ φJλhK · ~n

]
ds

−
∑

Dk

∫

∂Dk\Γ

1

2
∇w · JλhK ds +

∫

ΓN

wh ~n · ∇λh ds

+
∫

ΓD

wh
[
(1 + θ) ~n · ∇λh + φλh

]
ds−

∫

ΓD

∇wh · ~nλh ds .

The semi-discrete formulation of (67) reads:

Jh(u
h) :=

1

2

∫ T

0

∫

Ω

∥∥∥uh − uref
∥∥∥
2

dx +
1

2

∫ T

0

∫

ΓD

(
∇uh · ~n

)2
ds ,

hence its Fréchet derivative is calculated as

J ′
h[u

h](wh) =
〈
uh − uref , wh

〉
[0, T ]×Ω

+
〈
∇uh · ~n, ∇wh · ~n

〉
[0, T ]×ΓD

.
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The semi-discrete adjoint equation has the following form:

−

〈
wh,

∂λh

∂t

〉

Ω

= −N ∗
diff(wh, λh) −N ∗

adv(w
h, λh) + J ′

h[u
h](wh) . (84)

To investigate the dual consistency of the adjoint residuals for our particular

discretization, we must first recast (84) in residual-based form [37]. We get:
∫

Ω
wh R∗

Ω(λh) dx +
∑

Dk

∫

∂Dk\Γ
wh r∗Ω(λh) + ∇wh · ρ∗Ω(λh) ds

+
∫

Γ
wh r∗Γ(λh) + ∇wh · ρ∗Γ(λh) ds = 0 , ∀wh ∈ Uh . (85)

From (84)–(85), we identify the following dual residuals:

• Inside Ω:

R∗
Ω(λh) := −

∂λh

∂t
+ ∆λh + ~a · ∇λh + (uh − uref) .

From the continuous adjoint equation inside Ω we see that R∗
Ω(λ) = 0, so the

volume terms of the adjoint semi-discretization (84) are dual consistent.

• On the inter-element boundaries (excluding the domain boundary):

r∗Ω(λh) = − ~a · JλhK −
1

2
J∇λnK − (1 + θ) ~n ·

{
∇λh

}
+ φJλhK · ~n ,

ρ∗Ω(λh) =
1

2
JλhK .

Using the continuity of the strong form adjoint solution λ, and the fact that θ = −1

for SIPG, we get that both dual residuals are zero when evaluated at λ.

• On the outflow boundary (with respect to the advective flux), ΓN :

r∗ΓN
(λh) = − λh~a · ~n − ~n · ∇λh + κh

N ,

ρ∗ΓN
(λh) = 0 .

Due to the boundary condition of the continuous adjoint system, we have that

r∗ΓN
(λ) = 0. Thus (84) is adjoint consistent on the outflow boundary.

• On the Dirichlet boundary ΓD:

r∗ΓD
(λh) = −(1 + θ) ~n · ∇λh − φ λh , (86a)

ρ∗ΓD
(λh) = (∇uh · ~n + λh) ~n . (86b)

While these residuals do not cancel immediately when evaluated at the exact adjoint

solution (recall that θ = −1, and φ > 0), they can be made consistent through a

change in the target functional J [37]. Let

J̃h(u
h) := Jh(u

h) −
∫

ΓD

φ (uh − gh
D) (∇uh · ~n) ds (87)

be a consistent modification of Jh, since J̃ (u) = J (u). The variation of the

modified cost functional (87) is

J̃ ′
h[u

h](wh) = J ′
h[u

h](wh) +
〈
φ∇uh · ~n, wh

〉
ΓD

+
〈
φ (uh − gh

D), ∇wh · ~n
〉

ΓD

.
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All the discrete adjoint residuals remain unchanged, except for (86)–(86), which

now become:

r∗ΓD
(λh) = −(1 + θ) ~n · ∇λh − φ

(
λh + ∇uh · ~n

)
, (88a)

ρ∗ΓD
(λh) = (∇uh · ~n + λh) ~n + φ (uh − gh

D) ~n . (88b)

Both residuals (88)–(88) are now identically zero when evaluated at the exact

adjoint solution λ. We have thus proved dual consistency for the DG discretization

(83) coupled with the modified functional (87).

7.1.1. Discrete adjoint boundary sensitivities Now let us consider the boundary bilinear

form B(gh,vh). For any admissible perturbation δg := (δgD, δgN) in the boundary

conditions, we get that:

B(δgh, λh) =
〈
δgD ,

(
Cadj

ΓD

)h
λh
〉

ΓD

+
〈
δgN ,

(
Cadj

ΓN

)h
λh
〉

ΓN

− φ
〈
δgD, λ

h
〉

ΓD

, (89)

where
(
Cadj

ΓD

)h
and

(
Cadj

ΓN

)h
are consistent discretizations of the continuous differential

operators defined in (67). Note the additional boundary penalty term: the nonzero

penalty parameter φ ensures stability and convergence of the method. However, it also

leads to inconsistencies in the adjoint boundary sensitivities, that must be removed by

post-processing of the adjoint Runge–Kutta DG implementation. The adjoint Runge–

Kutta time integration, albeit consistent, cannot remove the inconsistent term in the

sensitivity formula (89). Proving dual consistency is a crucial step in the analysis of a

dual DG discretization, allowing one to establish whether or not the adjoint variable

corresponds to the true gradient of the discretized cost functional Jh. However, if

one also seeks derivatives with respect to the boundary values, further investigations

pertaining to B are warranted, that go beyond establishing dual consistency of the

primal discretization.

8. A two-dimensional inverse problem

8.1. Problem description

The second test problem is built around the two-dimensional advection equation:

ut + ∇ · (~βu) = f

u(t,x)|Γin
= g

u(t0,x) = u0(x) , t0 ≤ t ≤ tN , x ∈ Ω . (90)

Here Ω = [0, 1]2, ~β := x / ‖x‖, and Γin :=
{
x ∈ Γ | ~n · ~β < 0

}
.

The discrete cost functional Jh reads:

Jh(u
h,0) = Jh,B + Jh,O
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Figure 1. (a) Observation grid for the two-dimensional assimilation problem. (b)

Optimization grid Ωh
0 that holds the parameters ph = uh,0 throughout the inversion

process.

=
1

2

(
uh,0 − uB

)T
B−1

(
uh,0 − uB

)

+
1

2

K∑

k=1

(
Hku

h,k − yh,k
)T
R−1

k

(
Hku

h,k − yh,k
)
. (91)

The background term Jh,B quantifies the departure of the inverse solution from a

background state u
h,0
B . It also acts as a regularization term that guarantees the inverse

problem is well-posed. Jh,O quantifies the mismatch between the model predictions and

a set of a priori available observations yh,k at selected grid locations and observation

times tk. Our particular choice of observation mesh is shown in figure 1(a).

8.2. The experimental setup

The primal and adjoint RK-DG discretizations are implemented with the deal.II

library [75]. The optimization routine is a C++ implementation [76] of the well-

known L-BFGS-B algorithm [48]. The mesh adaptation is driven by an error estimation

mechanism based on a numerical approximation of the gradient
∂uh

∂xh
[29]. The

optimization mesh Ωh
0 holds the inversion variables throughout the optimization process.

It is shown in figure 1(b) to be locally refined in regions of high variation in the

background state. The final time in the forward simulation is T = 0.48, while the

observation times are tk = 0.03 × k, k = 1 . . . 16.

8.3. Space-time consistency and accuracy of the discrete adjoint solution

To check the consistency and the empirical order of accuracy of the discrete adjoint

solver, we will derive the corresponding continuous adjoint problem. Let δ(t) denote the

Dirac delta distribution. We can rewrite the 4D-Var discrete cost functional as

Jh :=
K∑

k=0

Ĵh(u
h,k) :=

∫ tN

t0
Ĵh(u

h, t)
K∑

k=0

δ(t− tk) dt . (92)
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Then, the strong form adjoint of (90)–(92) reads:

−λt − ~β · (∇λ) =
∂Ĵ

∂u

K∑

k=0

δ(t− tk) , x ∈ Ω , t ∈ [tN , 0]

Badj
Γ λ := ~β · ~nλ = 0 , x ∈ Γout = Γ \Γin

λ(tN ,x) = 0 .

(93)

The exact solution to the inverse problem is chosen to be

u0(x, y) = A exp

(
−

(xs− xc)
2

σ2

)
exp

(
−

(ys− yc)
2

σ2

)
, (94)

where A = 10, s = 20, σ = 2, and xc = yc = 4.

We use the dual consistent upwind spatial discretization given in [37]. The

particular form of the cost functional (91) implies that the discrete adjoint system has

a forcing term only at the observation times tk (93), where it is necessary to add the

observation mismatch [77]:

λh,k = λh,k + HT
k R

−1
(
Hku

h,k − yh,k
)
, k = 1 . . . K . (95)

The equation (93) is not in conservation form. We rewrite the nonconservative term

as

~β · ∇u = ∇ · (~βu) − (∇ · ~β)u ,

Through a Galerkin projection onto the discrete function space Uh and integration by

parts, we arrive at the DG semi-discretization of (93):

For alln, find λ̄h,n such that on Ωh
n , ∀w̄

h ∈ Uh :

−

〈
∂λ̄h,n

∂t
, w̄h

〉

Ω

+
∑

Dk

(〈
λ̄h,n+1, ~β · ∇w̄h

〉
Dk

n

−
〈
~β · ~n λ̄h,n+1

− , w̄h
+

〉
∂Dk

n+

−
〈
~β · ~n λ̄h,n+1

− , w̄h
+

〉
∂Dk

n−
\Γh

n

+
〈
∇ · ~β λ̄h,n+1, w̄h

〉
Dk

n

)
= 0 . (96)

Again, at the observation times tk, we add the mismatch term in (95) to the solution

λ̄h,n.

The dual consistency of the spatial discretization, together with a third order

strong stability preserving Runge-Kutta method [78] for time integration, ensure space-

time dual consistency of our RK-DG discretization for (90). Moreover, the spatial

and temporal order of accuracy of the discrete adjoint solution match that of the

corresponding discretization of the continuous model, i.e., in the limit of both the

discretizations we have that:

lim
∆tn, h→0

∥∥∥λh,n − λ(tn)
∥∥∥

L2(Ωh
n)∥∥∥λ̄h,n − λ(tn)

∥∥∥
L2(Ωh

n)

= O(1) , ∀n = 1 . . .N . (97)

To verify this numerically, both the discrete adjoint, and the discretization of the adjoint

problem (96) are compared against a predetermined exact solution

λ(t, x, y) = u0(x− t, y − t) . (98)
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Figure 2. Time-averaged L2 and L∞ errors for: (a) the forward state uh,n, (b) the

continuous adjoint solution λ̄h,n, and (c) the discrete adjoint variables λh,n. The exact

solutions are given by (94), (98), and (99). We use a quadratic Lagrange basis over

an uniform mesh. The time integration is performed with a third order fixed-step

TVD Runge-Kutta method: τn+1 = τ, ∀n = 0 . . . N − 1. The convergence order is

O(h3 + τ3) for all numerical approximations.
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Figure 3. Adaptive spatial meshes used in the determination of the numerical order

of accuracy for λ̄h,n, and uh,n.

Here Uh are broken spaces of piecewise quadratic Lagrange polynomials. For the primal

problem, the volume and boundary forcing terms f and g are chosen such that

u(t, x, y) = u0(x− t, y − t) . (99)

Figure 2 shows the order of convergence of the RK-DG discretizations on fixed spatial

meshes. To illustrate the behavior of the discretization on adaptive meshes, we run the

accuracy experiments on a variable mesh and report the numerical results in Figure

4. All of the numerical results fully confirm our theoretical derivations: both adjoint

solutions are third order accurate in space and time. Hence, the adjoint of the primal

discretization inherits the order of accuracy of the discrete forward solution.
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Figure 4. Time-averaged L2 and L∞ errors plotted against the mesh degrees of

freedom for λ̄h,n (left), and λh,n (right). The exact solutions are given by (94), (98),

and (99). We use a quadratic Lagrange basis over an adaptive spatial mesh, and a third

order Runge–Kutta method for the time integration. The cubic convergence confirms

the theoretical estimates for the adaptive DG discretization.
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Figure 5. Numerical validation of the discrete adjoint solution using equation (100).

Another approach to adjoint code validation is through a truncated Taylor

expansion [79]:

Jh(p
h + ε δph) = Jh(p

h) + ε
〈
λh , δph

〉
Ωh

+ O(ε2 ‖δph‖2) .

Hence, we numerically verify that the following limit holds for small values of ε:

lim
ε→0

Rh := lim
ε→0

Jh(p
h + ε δph) − Jh(p

h)

ε 〈λh , δph〉Ωh

= 1 . (100)

As shown in figure 5, the variable mesh discrete adjoint solution is found numerically

consistent. For ε < 10−12, truncation errors degrade the quality of the approximation

(100).
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Figure 6. Reference (a), background (b), and analysis (c) states for the two-

dimensional data assimilation problem, with a measurement noise level of 5%. The

analysis error is shown in (d).
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Figure 7. Relative decrease in the cost functional, and in the L2-error for the two-

dimensional data assimilation experiments, plotted against the number of optimization

iterations. Various observation noise levels are shown.

8.4. Numerical results

The numerical results for the two-dimensional data assimilation experiment are shown

in Figures 6 and 7. Figure 6 (a)–(b) shows the background (the a priori state), and
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the reference solution. Parts (c) and (d) of the same figure illustrates the analysis

state, and the analysis error, respectively. It is apparent that the quality of the solution

approximation is improved significantly over that of the initial guess (the background).

Figure 7 quantifies these improvements. We plot both the decrease in the cost

functional throughout the optimization procedure, relative to the initial value at the

background state Jh(u
0,h
B ) := J B. The third order accurate primal and dual solutions

lead to a good reconstruction of the optimal solution in our twin experiment. The

robustness and accuracy of the inversion procedure are tested with various levels of

uniformly-distributed noise in the observation values. As expected, the quality of the

analysis solution degrades when the noise level is increased. However, as Figure 7 shows,

we still get a significant decrease in both the cost functional Jh, and in the analysis error.

This indicates good performance and robustness for the discrete adjoint-based adaptive

inversion procedure.

9. Conclusions and future research directions

Numerical solutions of forward problems modeled by partial differential equations rely

on adaptive refinements of meshes and time steps to achieve the target accuracy while

keeping the simulation costs low. Time and space adaptivity are highly desirable features

in the solution of large scale inverse problems as well. This paper develops a framework

for the construction and analysis of discrete adjoints for time dependent, adaptive

grid, adaptive step models. The research shows that discontinuous Galerkin space

discretizations, paired with Runge Kutta time stepping, and discrete adjoint gradients,

offer a suitable approach to adaptively solving inverse problems.

Previous research has, with few exceptions, concentrated on steady state inverse

problems and their associated discretizations. We develop a general framework for

the derivation of a well-posed adjoint system for time dependent partial differential

equations and general objective functionals. Building on the work in [20], we derive a

more general set of compatibility conditions (between the linearized differential operators

and the objective functional); when they are satisfied, the derivation of the adjoint

system follows the steps outlined in Section 6.

Since inverse problems are usually formulated as deterministic optimization

problems, the discrete adjoint approach is a low cost method to calculate the gradient of

the target functional whose minimum is sought. A major advantage of this discretize–

then–differentiate strategy is that discrete adjoints (i.e., gradients of the numerical

solution) can be automatically generated using algorithmic differentiation. However, the

discrete adjoints may not provide consistent approximations to the continuous gradients

(consistency of the dual discretization is not automatic and requires a careful analysis).

This work proposes a unified space and time discrete adjoint consistency analysis in the

context of adaptive solvers for time-dependent problems. The dual consistency concepts

discussed in [37, 38] can be extended to time dependent systems only when the time

discretization is performed by discontinuous Galerkin approach. We show that the use



Space-time adaptive solution of inverse problems with the discrete adjoint method 41

of Runge–Kutta quadratures for time stepping, together with dual consistent spatial

discretizations, result in fully space-time dual consistent adjoint systems. Discrete

boundary sensitivities obtained with the adjoint method are also examined. Their

values may be incorrect even when the volume discretization is dual consistent, due

to the presence of discretization-specific penalty terms. Post-processing of the discrete

adjoint code is required in this case to retrieve the correct values for the gradients with

respect to boundary conditions.

The spectral intergrid projection operators used in h− and p−refinement are

orthogonal L2 projections. We show that this property holds for both structured

(hierarchical) and unstructured mesh refinement with the discontinuous Galerkin

method. Orthogonality of the solution transfer operators is important, because discrete

adjoint intergrid operators can be generated from their forward counterparts via

automatic differentiation. Adjoint code development is thus simplified, since there is

no need to decouple the solution transfer across multiple meshes from the numerical

core of the algorithm. The intergrid operators in the finite volume approach do not

share these convenient properties. As our general analysis shows, the transpose of

high-order refinement operators reduces to a simple first-order averaging, when used

for mesh coarsening. Moreover, such adjoints affect the rest of the stencil neighbors,

by introducing low order perturbations in their cell average values. Removing such

perturbations by code post-processing is non-trivial in large-scale simulations.

The use of discrete adjoint method is illustrated on the solution of a typical

inverse problem (4D-Var data assimilation) with a prototypical test system (advection

equation). The discrete adjoint solutions provide accurate gradients for the 4D-Var cost

functional, and result in a robust and accurate inversion process. Good quality analyses

are obtained even in the presence of significant observational noise. The use of the same

mesh for both the primal and dual variables eliminates the need for spatial or temporal

interpolations during inversion.

On-going work is focused on error-driven adaptation of the optimal solution grid

based on primal and dual a posteriori error estimates. Future research includes

demonstrating the discrete adjoint techniques in inverse problems with fully nonlinear

models. The authors plan to investigate the space-time optimality system for the

discrete problem, and its relationship to the continuous optimality equations. We will

look for general error estimates for the discrete primal and dual solutions that guarantee

convergence of the inverse problem solution.
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