22,682 research outputs found

    An Approach to Static Performance Guarantees for Programs with Run-time Checks

    Full text link
    Instrumenting programs for performing run-time checking of properties, such as regular shapes, is a common and useful technique that helps programmers detect incorrect program behaviors. This is specially true in dynamic languages such as Prolog. However, such run-time checks inevitably introduce run-time overhead (in execution time, memory, energy, etc.). Several approaches have been proposed for reducing such overhead, such as eliminating the checks that can statically be proved to always succeed, and/or optimizing the way in which the (remaining) checks are performed. However, there are cases in which it is not possible to remove all checks statically (e.g., open libraries which must check their interfaces, complex properties, unknown code, etc.) and in which, even after optimizations, these remaining checks still may introduce an unacceptable level of overhead. It is thus important for programmers to be able to determine the additional cost due to the run-time checks and compare it to some notion of admissible cost. The common practice used for estimating run-time checking overhead is profiling, which is not exhaustive by nature. Instead, we propose a method that uses static analysis to estimate such overhead, with the advantage that the estimations are functions parameterized by input data sizes. Unlike profiling, this approach can provide guarantees for all possible execution traces, and allows assessing how the overhead grows as the size of the input grows. Our method also extends an existing assertion verification framework to express "admissible" overheads, and statically and automatically checks whether the instrumented program conforms with such specifications. Finally, we present an experimental evaluation of our approach that suggests that our method is feasible and promising.Comment: 15 pages, 3 tables; submitted to ICLP'18, accepted as technical communicatio

    A General Framework for Static Profiling of Parametric Resource Usage

    Get PDF
    Traditional static resource analyses estimate the total resource usage of a program, without executing it. In this paper we present a novel resource analysis whose aim is instead the static profiling of accumulated cost, i.e., to discover, for selected parts of the program, an estimate or bound of the resource usage accumulated in each of those parts. Traditional resource analyses are parametric in the sense that the results can be functions on input data sizes. Our static profiling is also parametric, i.e., our accumulated cost estimates are also parameterized by input data sizes. Our proposal is based on the concept of cost centers and a program transformation that allows the static inference of functions that return bounds on these accumulated costs depending on input data sizes, for each cost center of interest. Such information is much more useful to the software developer than the traditional resource usage functions, as it allows identifying the parts of a program that should be optimized, because of their greater impact on the total cost of program executions. We also report on our implementation of the proposed technique using the CiaoPP program analysis framework, and provide some experimental results. This paper is under consideration for acceptance in TPLP.Comment: Paper presented at the 32nd International Conference on Logic Programming (ICLP 2016), New York City, USA, 16-21 October 2016, 22 pages, LaTe

    Algorithmic Debugging of Real-World Haskell Programs: Deriving Dependencies from the Cost Centre Stack

    Get PDF
    Existing algorithmic debuggers for Haskell require a transformation of all modules in a program, even libraries that the user does not want to debug and which may use language features not supported by the debugger. This is a pity, because a promising ap- proach to debugging is therefore not applicable to many real-world programs. We use the cost centre stack from the Glasgow Haskell Compiler profiling environment together with runtime value observations as provided by the Haskell Object Observation Debugger (HOOD) to collect enough information for algorithmic debugging. Program annotations are in suspected modules only. With this technique algorithmic debugging is applicable to a much larger set of Haskell programs. This demonstrates that for functional languages in general a simple stack trace extension is useful to support tasks such as profiling and debugging

    Combining Static and Dynamic Contract Checking for Curry

    Full text link
    Static type systems are usually not sufficient to express all requirements on function calls. Hence, contracts with pre- and postconditions can be used to express more complex constraints on operations. Contracts can be checked at run time to ensure that operations are only invoked with reasonable arguments and return intended results. Although such dynamic contract checking provides more reliable program execution, it requires execution time and could lead to program crashes that might be detected with more advanced methods at compile time. To improve this situation for declarative languages, we present an approach to combine static and dynamic contract checking for the functional logic language Curry. Based on a formal model of contract checking for functional logic programming, we propose an automatic method to verify contracts at compile time. If a contract is successfully verified, dynamic checking of it can be omitted. This method decreases execution time without degrading reliable program execution. In the best case, when all contracts are statically verified, it provides trust in the software since crashes due to contract violations cannot occur during program execution.Comment: Pre-proceedings paper presented at the 27th International Symposium on Logic-Based Program Synthesis and Transformation (LOPSTR 2017), Namur, Belgium, 10-12 October 2017 (arXiv:1708.07854

    The Ciao clp(FD) library. A modular CLP extension for Prolog

    Get PDF
    We present a new free library for Constraint Logic Programming over Finite Domains, included with the Ciao Prolog system. The library is entirely written in Prolog, leveraging on Ciao's module system and code transformation capabilities in order to achieve a highly modular design without compromising performance. We describe the interface, implementation, and design rationale of each modular component. The library meets several design goals: a high level of modularity, allowing the individual components to be replaced by different versions; highefficiency, being competitive with other TT> implementations; a glass-box approach, so the user can specify new constraints at different levels; and a Prolog implementation, in order to ease the integration with Ciao's code analysis components. The core is built upon two small libraries which implement integer ranges and closures. On top of that, a finite domain variable datatype is defined, taking care of constraint reexecution depending on range changes. These three libraries form what we call the TT> kernel of the library. This TT> kernel is used in turn to implement several higher-level finite domain constraints, specified using indexicals. Together with a labeling module this layer forms what we name the TT> solver. A final level integrates the CLP (J7©) paradigm with our TT> solver. This is achieved using attributed variables and a compiler from the CLP (J7©) language to the set of constraints provided by the solver. It should be noted that the user of the library is encouraged to work in any of those levels as seen convenient: from writing a new range module to enriching the set of TT> constraints by writing new indexicals
    • …
    corecore