
ar
X

iv
:1

60
8.

02
78

0v
2

 [
cs

.P
L

]
 1

7
O

ct
 2

01
6

Under consideration for publication in Theory and Practice of Logic Programming 1

A General Framework for Static Profiling of

Parametric Resource Usage ∗

P. LOPEZ-GARCIA1,2 M. KLEMEN1 U. LIQAT1 M.V. HERMENEGILDO1,3

1IMDEA Software Institute
(e-mail: {pedro.lopez,maximiliano.klemen,umer.liqat,manuel.hermenegildo}@imdea.org)

2Spanish Council for Scientific Research (CSIC)
3Technical University of Madrid (UPM)

submitted April 30, 2016; revised July 10, 2016; accepted July 22, 2016

Abstract

For some applications, standard resource analyses do not provide the information required. Such
analyses estimate the total resource usage of a program (without executing it) as functions on
input data sizes. However, some applications require knowing how such total resource usage is
distributed over selected parts of a program. We propose a novel, general, and flexible framework
for setting up cost equations/relations which can be instantiated for performing a wide range of
resource usage analyses, including both static profiling and the inference of the standard notion
of cost. We extend and generalize standard resource analysis techniques, so that the relations
generated include additional Boolean control variables for switching on or off different terms in
the relations, as required by the desired resource usage profile. We also instantiate our frame-
work to perform static profiling of accumulated cost (also parameterized by input data sizes).
Such information is much more useful to the software developer than the standard notion of
cost: it identifies the parts of the program that have the greatest impact on the total program
cost, and which therefore should be optimized first. We also report on an implementation of our
framework within the CiaoPP system, and its instantiation for accumulated cost, and provide
some experimental results. In addition to generality, our new method brings important advan-
tages over our previous approach based on a program transformation, including support for
non-deterministic programs, better and easier integration in the compiler, and higher efficiency.

KEYWORDS: Static Profiling, Static Analysis, Resource Usage Analysis, Complexity Analysis

1 Introduction

Resources are numerical properties about the execution of a program, such as number

of resolution steps, execution time, energy consumption, number of calls to a particular

predicate, number of network accesses, number of transactions in a database, etc. The

goal of automatic static cost analysis is estimating the resource usage of the execution

of a program without running it, as a function of input data sizes and possibly other

(environmental) parameters. The significant body of work on static analysis for logic

∗ This research has received funding from EU FP7 agreement no 318337 ENTRA, Spanish
MINECO TIN2012-39391 StrongSoft and TIN2015-67522-C3-1-R TRACES projects, and the Madrid
M141047003 N-GREENS program. Special thanks are due to John Gallagher for many fruitful and
inspiring discussions and to the anonymous reviewers for their detailed and useful comments.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Servicio de Coordinación de Bibliotecas de la Universidad Politécnica de Madrid

https://core.ac.uk/display/148690164?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://arxiv.org/abs/1608.02780v2

programs has actually also been applied to the analysis of other programming paradigms,

including imperative programs. This is achieved via a transformation of the program into

Horn Clauses (Méndez-Lojo et al. 2007). In this paper we concentrate on the analysis of

Horn Clause programs, independently of whether they are the result of a translation or

the actual program source.

Given a program P and a predicate p ∈ P of arity k and a set Π of k-tuples of actual

arguments to p, we refer to the standard cost of a call p(ē) (i.e., a call to p with actual

data ē ∈ Π), as the resource usage (under a given cost metric) of the complete execution

of p(ē). Thus, the standard cost is a per-call cost formalized as a function Cp : Π → R∞,

whereR∞ is the set of real numbers augmented with the special symbol ∞ (which is used

to represent non-termination). Standard cost, and, in general, resource usage information,

is very useful for a number of applications, such as automatic program optimization,

verification of resource-related specifications, detection of performance bugs, or helping

developers make resource-related design decisions. In the latter case, the analysis has to

show which parts of the program are the most resource-consuming, i.e., which predicates

would bring the highest overall improvement if they were optimized, so that programming

efforts can be focused more productively. The standard cost information only partially

meets these objectives. For example, often predicates with the highest (standard) cost

are not the ones whose optimization is most profitable, since predicates which have lower

costs but which are called more often may be responsible for a larger part of the overall

resource usage. The input data sizes to such calls are also relevant. Thus, rather than

the global costs provided by standard cost analyses, what is really needed in many such

applications is the results of a static profiling of the program that helps identify the parts

of a program responsible for highest fractions of the cost, or, more generally, how the

total resource usage of the execution of a program is distributed over selected parts of

it. By static profiling we mean the static inference of the kinds of information that are

usually obtained at run-time by profilers.

For this reason, herein we are more interested in what we refer to as accumulated

cost. To give an intuition of this concept, we first explain our notion of cost cen-

ters, which is similar to the one we use in (Haemmerlé et al. 2016), and was inspired

from (Sansom and Jones 1995; Morgan and Jarvis 1998): they are user-defined program

points (predicates, in our case) to which execution costs are assigned during the execu-

tion of a program. Data about computational events is accumulated by the cost center

each time the corresponding program point is reached by the program execution control

flow. Assume for example that predicate p calls another predicate q (either directly or

indirectly), and that we declare that both predicates are cost centers. In this case, the

cost of a (single) call p(ē) accumulated in cost center q, denoted Cq
p(ē), expresses how

much of the standard cost of p(ē) is attributed to q, and is the sum of the costs of all the

computations that are descendants (in the call stack) of the call p(ē), and are performed

“under the scope” of any call to q.

We say that a computation is “under the scope” of a call to cost center q, if the

closest ancestor of such computation in the call stack that is a cost center, is q. The

2

accumulated cost is formalized as a function Cq
p : Π → R∞. We refer the reader

to (Haemmerlé et al. 2016) for a formal definition of accumulated cost.1

The goal of static analysis is to infer approximations (i.e., abstractions) of the

concrete functions Cq
p and Cp (or, more precisely, of the extensions of such func-

tions to the powerset of Π) that represent the accumulated and standard cost re-

spectively. In this paper we propose a novel, general, and flexible framework for

setting up cost equations/relations which can be instantiated for performing a

wide range of static resource usage analyses, including both accumulated cost and

standard cost. Our starting point is the well-developed technique of setting up

recurrence relations representing resource usage functions parameterized by input

data sizes (Wegbreit 1975; Rosendahl 1989; Debray et al. 1990; Debray and Lin 1993;

Debray et al. 1997; Navas et al. 2007; Albert et al. 2011; Serrano et al. 2014), which are

then solved to obtain (exact or safely approximated) closed-forms of such functions (i.e.,

functions that provide upper or lower bounds on resource usage in general). 2 Our pro-

posal extends and generalizes these standard resource analysis techniques by introducing

into the derived relations extra Boolean control variables whose value is 0 or 1. A par-

ticular resource profile can be analyzed by assigning values to the control variables,

effectively switching on or off different terms in the relations. The standard resource

analysis is obtained by assigning 1 to all variables. We also define a concrete Boolean

variable assignment that instantiates our framework so that it performs static profil-

ing of accumulated cost, similarly to (Haemmerlé et al. 2016), where the results are also

parameterized by input data sizes. However, the approach we present in this paper is

quite different from our previous approach (Haemmerlé et al. 2016), which was based on

a program transformation. The main contributions of this paper and the differences and

advantages over that work can be summarized as follows:

• We propose a novel, general, and flexible framework for setting up cost relations

which can be instantiated for performing a wide range of resource usage analyses.

Is more general than (Haemmerlé et al. 2016), which is limited to accumulated cost

analysis.

• Our new approach can deal with non-deterministic/multiple-solution predicates,

unlike (Haemmerlé et al. 2016). This is obviously a requirement for analyzing logic

programs and is also useful for dealing with certain aspects of imperative programs,

such as multiple dispatch; see (Méndez-Lojo et al. 2007). While our previous ap-

proach could conceivably be extended to deal with such programs, it would certainly

result in a more complicated and indirect solution.

• Our new approach and its implementation are based on a direct applica-

tion of abstract interpretation and integration into the Ciao preprocessor,

CiaoPP (Hermenegildo et al. 2005), rather than on a program transformation. As

a result, many useful CiaoPP features are inherited for free, such as multivariance

1 In (Haemmerlé et al. 2016) we use the notation C
p
q(ē) instead of C

q
p(ē).

2 In addition, recently many other approaches have been proposed for resource
analysis (Vasconcelos and Hammond 2003; Hoffmann et al. 2012; Grobauer 2001;
Igarashi and Kobayashi 2002; Nielson et al. 2002; Giesl et al. 2012; Albert et al. 2011;
Gulwani et al. 2009). While based on different techniques, all these analyses are aimed at in-
ferring the standard notion of cost. Please see (Haemmerlé et al. 2016) for a further discussion of
related work.

3

(being able to infer separate cost functions for different abstract call patterns for

the same predicate), communication with the other required analyses, integrated

treatment of special control features (such as, e.g., the cut), assertion-based verifica-

tion and user interaction, efficient fixpoint, etc. Also, for this integration we define

a novel abstract domain for resource analysis that keeps track of the environment.
• Furthermore, this direct implementation avoids the disadvantages of the

transformation-based approach, such as making it more difficult to relate the results

(and warnings/errors) to the original program, and complicating the task of the

auxiliary analyses needed for cost analysis (types, modes, determinism, non-failure,

etc.). This is because if the analyses are performed on the original program, then

the results need to be transferred to the transformed program; and if the analyses

are performed on the transformed program, then there is always the risk of loss

of precision. Also, the transformation required by our previous approach is global,

which is problematic for modular compilation. In general, this new approach allows

much better and easier integration in a real-world compilation infrastructure.
• The integration also inherits the capability of CiaoPP’s analyzers of analyzing for

several resources at the same time. While it might be possible to define a new

transformation capable of keeping track of several resources, this would further

complicate the transformed program, and in any case requires additional work.
• Finally, as our experimental results show, our new approach is more efficient than

the transformation-based approach. This is not only due to its implementation as

a direct abstract interpretation, but also to the inclusion and use of reachability

information, performed automatically by the abstract interpretation framework.

2 The Standard Parametric Cost Relations Framework

We start by describing the kind of functions inferred by the standard cost analysis that

we generalize for static profiling. Consider the function Cp : Π → R∞ introduced in

the previous section. We extend it to the powerset of Π, i.e., Ĉp : 2Π → 2R∞ , where

Ĉp(E) = {Cp(ē) | ē ∈ E}. Our goal is to abstract (safely approximate, as accurately as

possible) Ĉp (note that Cp(ē) = Ĉp({ē})). Intuitively, this abstraction is the composition

of two abstractions: a size abstraction and a cost abstraction. The goal of the analysis

is to infer two functions Ĉ↓
p and Ĉ↑

p : Nm
⊤ → R∞ that give lower and upper bounds

respectively on the cost function Ĉp, where Nm
⊤ is the set of m-tuples whose elements are

natural numbers or the special symbol ⊤, meaning that the size of a given term under

a given size metric is undefined. Such bounds are given as a function of tuples of data

sizes (representing the concrete tuples of data of the concrete function Ĉp). Typical size

metrics are the actual value of a number, the length of a list, the size (number of constant

and function symbols) of a term, etc. (Navas et al. 2007; Serrano et al. 2014).

Our starting point for static analysis is the standard general framework described

in (Navas et al. 2007) for setting up parametric relations representing the resource usage

(and size relations) of programs and predicates.3 The analysis infers size relations for

3 We give equivalent but simpler descriptions than in (Navas et al. 2007), which are allowed by assuming
that programs are the result of a normalization process that makes all unifications explicit in the clause
body, so that the arguments of the clause head and the body literals are all unique variables. We also
omit the resource and approximation identifiers, r and ap respectively, since they are assumed to be
arguments of all expressions that yield a resource usage.

4

each predicate in a program: arithmetic expressions that provide the size of output argu-

ments of the predicate as a function of its input data sizes. It also infers size relations for

each clause, which give the input data sizes of the body literals as functions of the input

data sizes to the clause head. Such size relations are instrumental for setting up cost rela-

tions. This work generalizes the approach of (Debray et al. 1990; Debray and Lin 1993;

Debray et al. 1997) to infer user-defined resources (by using an extension of the Ciao as-

sertion language (Hermenegildo et al. 2012)). The framework is doubly parametric: first,

the costs inferred are parametric (they are functions of input data sizes), and second,

the framework itself is parametric with respect to the resources being tracked and the

type of approximation made (upper or lower bounds). Each concrete resource r to be

tracked is defined by two sets of (user-provided) functions, some of which can be constant

functions:

1. Head cost ϕ(P): a function that returns the amount of resource r used by the

unification of the calling literal (subgoal) P and the head of a clause matching P ,

plus any preparation for entering a clause (i.e., call and parameter passing cost).

2. Predicate cost Ψ(p): it is also possible to define the full cost for a particular pred-

icate p for resource r, i.e., the function Ψ(p) : Nm
⊤ → R∞ (with the sizes of p’s

input data as parameters, x̄) that returns the usage of resource r made by a call to

this predicate. This is specially useful for built-in or external predicates, i.e., pred-

icates for which the source code is not available and thus cannot be analyzed, or

for providing a more accurate function than analysis can infer. 4 Ψ(p) is expressed

using the Ciao assertion language “trust” assertions (Hermenegildo et al. 2012).

Thus, for a clause C ≡ p(x̄) :− q1(x̄1), . . . , qn(x̄n), defining predicate p, the cost rela-

tion expressing the cost (for resource r) of the complete execution of a single call to p

for input data sizes x̄ (obtaining all solutions), represented as Cp(x̄) is:

Cp(x̄) = ϕ(p(x̄)) +

lim(C,x̄)∑

i=1

solsi × Cq
i
(x̄i) (1)

where solsi represents the product of the number of solutions produced by the ancestor

literals of qi(x̄i) in the clause body:

solsi =
i−1∏

j=1

spred(qj(x̄j)) (2)

where spred(qj(x̄j)) gives the number of solutions produced by qj(x̄j), and lim(C, x̄)

gives the index of the last body literal that is called in the execution of clause C.

The (standard) cost of a body literal qi(x̄i), i.e., Cq
i
(x̄i), is obtained from the costs

of all clauses applicable to it that are executed, by using an aggregation operator
⊙

.

The resulting set of cost relations can be considered a definition of the resource us-

age semantics of a program. Ideally, we would like to find solutions to such relations,

i.e., closed-form functions that give the resource usage of the programs and all of its

predicates. However, this is impossible to do statically for all cases, and we then seek

4 Note that sometimes approximations have to be used when solving recurrence relations, and there are
other potential sources of loss of precision in the intervening analyses, which can accumulate in larger
programs. In these cases trust assertions can be used in key places to recover precision. While this
implies a burden, it is certainly always better than having to do all the cost analysis of the program
by hand.

5

approximations, both upper and lower bounds. For this reason, we use a parametric op-

erator
⊙

(ap) that depends on the approximation ap being performed. For example, if

ap is the identifier for lower bounds approximation (lb), then
⊙

(ap) is the min function.

If ap is the identifier for upper bound approximation (ub), then a possible conservative

definition for
⊙

(ap) is the
∑

function. In this case, and since the number of solutions

generated by a predicate that will be demanded is generally not known in advance, a

conservative upper bound on the computational cost of a predicate can be obtained by

assuming that all solutions are needed, and that all clauses are executed. Then, the cost

of the predicate is assumed to be the sum of the costs of all of its clauses. However, it is

straightforward to take mutual exclusion into account to obtain a more precise estimate

of the cost of a predicate, using the maximum of the costs of mutually exclusive groups

of clauses, as done in (Serrano et al. 2014). Similarly, we use safe approximations of the

function lim(C, x̄) in Expression 1 by introducing the function lim(C, x̄, ap) that returns

the index of a literal in the clause body depending on the approximation identifier ap.

For example, lim(C, x̄, ub) = n (the index of the last body literal) and lim(C, x̄, lb) is the

index of the leftmost body literal that could possibly fail. 5 If the cost of a qi is given

by a trust assertion as a function Ψ(qi)(ȳ) then the closed-form Ψ(qi)(x̄) is used directly

instead of the symbolic Cq
i
(x̄) appearing in the set of cost relations to be solved.

Example 1

Consider the following program that checks whether a number n is prime based on

Wilson’s theorem: any integer n > 1 is prime iff (n− 1)! ≡ −1 (mod n). Equivalently,

n is prime iff (n− 1)! + 1 is a multiple of n.
✞ ☎

1 prime(X):- X > 1, X1 is X - 1, fact(X1,F1), F is F1 + 1, multiple (F,X).
2

3 fact(X,1):- X = 1.
4 fact(X,Y):- X > 1, X1 is X - 1, fact(X1,Y1), Y is Y1*X.
✝ ✆

Assume that multiple is a naively implemented library predicate, so that its resource

usage, in number of resolution steps, is linear on the size of the input: Cmultiple(n,m) =

n+1 if n > 1 (given by using a trust assertion). Assume that we want to infer the standard

cost of this predicate in resolution steps, i.e., we define ϕ(p(x̄)) = 1 for all predicates p ∈

P . For brevity, we also assume that we are only interested in inferring upper bounds on

resource usages, so that the expression Cp(x̄) appearing in Equation 1 is understood to

represent an upper bound, and, assuming no definite failure information, then lim(C, x̄)

is the index of the last body literal of clause C. Finally, we also assume that size relations

have been inferred for the different arguments in a clause, and that the size metric used

is the actual value of an argument, since all arguments are numeric. Such relations are

obvious in this example, so that we focus only on cost relations. However, as already

stated, CiaoPP is able to infer and deal with a rich set of size metrics, and also infer such

size relations. The size of the kth output argument of predicate p, given as a function

of the input data sizes n̄ to that predicate is represented as Szkp (n̄). It is important also

to mention the modes of these predicates (again, inferred automatically by CiaoPP):

prime has one input argument and no output; multiple has two input arguments and

no output; and fact has one input and one output, whose size we have assumed is already

5 CiaoPP implements analyses like coverage, non-failure, cardinality, reachability, modes, shapes, treat-
ment of cut, etc. that are instrumental in this context; see (Hermenegildo et al. 2005) and its references.

6

inferred in terms of the size of the input by the size analysis. This size is represented by

Sz2fact(n), and is obtained from the setting up of the following size relation:
Sz2fact(n) = 1 if n = 1 , Sz2fact(n) = n× Sz2fact(n− 1) if n > 1

By solving this recurrence, the size analysis obtains the closed-form Sz2fact(n) = n!.

Regarding the number of solutions, in this example all the predicates generate at most

one solution, thus ∀i : solsi = 1 in Equation 1. Now we have all the necessary elements

to set up the cost relations for prime, fact, and multiple:
Cfact(n) = 1 if n = 1
Cfact(n) = 1 + Cfact(n− 1) if n > 1

Cmultiple(n,m) = n+ 1 if n > 1

Cprime(n) = 1 + Cfact(n− 1) + Cmultiple(Sz
2
fact(n− 1) + 1, n) if n > 1

Note that in this program, the size of the input of the call to multiple is given by the

size of the output of fact, represented by Sz2fact(n). After solving these equations and

composing the closed forms, we obtain the following closed form functions:
Cfact(n) = n if n > 1

Cmultiple(n,m) = n+ 1 if n > 1

Cprime(n) = (n− 1)! + n+ 3 if n > 1
Example 2

Consider the following program P :
✞ ☎

1 p(X,Y):- h(X), q(X,Y), w(Y), s(X).

2

3 q(0,_).
4 q(X,Y):- X > 0, X1 is X - 1,

5 m(Y), q(X1,Y), s(X).
✝ ✆

✞ ☎
8 m(0).
9 m(X):- X > 0, w(X), X1 is X - 1, m(X1).

10

11 s(0).
12 s(X):- X > 0, X1 is X - 1, w(X), s(X1).

13

14 h(2).

15 h(3).
✝ ✆

Assume as in the previous example that we want to infer upper bounds of the standard

costs of all the predicates in resolution steps, i.e., ϕ(p(x̄)) = 1 for all predicates p ∈ P .

Assume also that w is a library predicate and that its (standard) cost is given as a

predicate cost function (by using a trust assertion):
Ψ(w)(n) = 2n+ 1 (3)

We assume again that the size metric used is the actual value of the arguments, since they

are all numeric, and that size relations, again obvious, have been inferred for all clause

arguments, which are all inputs, and we focus only on cost relations. The cost relation for

the recursive clause of predicate s, according to Expression 1 is (for simplicity, solsi = 1

for all predicates in this example):
Cs(n) = 1 + Cw(n) + Cs(n− 1) if n > 0

Since Cw(n) is given by a trust assertion as Ψ(w)(n) = 2 n + 1 (Expression 3), this cost

relation, together with the one for the non-recursive clause, form the system:
Cs(n) = 1 if n = 0

Cs(n) = 1 + 2n+ 1 + Cs(n− 1) if n > 0

and its closed-form solution is Cs(n) = n2 + 3n + 1 for n ≥ 0. The same cost relations

correspond to predicate m, therefore its closed form is Cm(n) = n2 +3n+1 for n ≥ 0. For

predicate h, the following non-recursive system of cost relations is set up:
Ch(n) = 1, if n = 2 and Ch(n) = 1, if n = 3

obtaining Ch(n) = 1, since the clauses of h are mutually exclusive. Now, the cost relations

for q are: Cq(m,n) = 1 if m = 0

Cq(m,n) = 1 + Cm(n) + Cq(m− 1, n) + Cs(m) if m > 0

7

Replacing Cm(n) and Cs(n) with their corresponding closed-form functions obtained be-

fore, and solving the recurrence, we obtain Cq(m,n) = 1
3m

3+mn2+2m2+3mn+ 14
3 m+1.

Finally, the cost relations for the main predicate p result in:
Cp(m,n) = 1 + Ch(m) + Cq(m,n) + Cw(n) + Cs(m)

and its closed form is: Cp(m,n) = 1
3m

3 +mn2 + 3m2 + 3mn+ 23
3 m+ 2n+ 4.

3 Generalizing the Standard Cost Relations Approach

Our proposal extends and generalizes the approach described in Sect. 2. We introduce a

new concept of cost, Ccp,e(x̄), representing the (part of the) cost of the complete execu-

tion of a single call p(x̄) (i.e., Cp(x̄) in Sect. 2), performed in an environment e, that is

attributed/assigned to cost center c of the program. The parameter e is used to capture

a broad notion of environment. For example, it can be just the name of a predicate that

is an ancestor of p in the call stack. In a more complex setting, for example when infer-

ring hardware-dependent resources, such as energy (Navas et al. 2008; Liqat et al. 2014;

Liqat et al. 2016), e can also include information about the state of the hardware (or

the whole system, including the running software environment), e.g., the last instruction

executed (useful for modeling the switching cost of instructions), temperature, voltage,

cache state, and pipeline state. There is of course a trade-off between the amount of

information in e and analysis efficiency and accuracy.

As already said, and similarly to (Haemmerlé et al. 2016), in this paper we assume that

a cost center is a predicate in the program. Conceptually, we can say that we extend the

notion of resource so that it is now a pair (c, r), where r is a resource identifier as before

(e.g., resolution steps, execution time, energy, etc.), and c is the cost center (predicate)

that the resource usage is attributed/assigned to.

We also introduce Boolean functions Bϕ(p, c, e) and B(p, c, e, q) to control which terms

of the cost relation should be considered. To this end, Expression 1 is generalized as:

Ccp,e(x̄) = Bϕ(p, c, e)× ϕ(p(x̄)) +
∑lim(C,x̄)

i=1 solsi ×B(p, c, e, qi)× Ccq
i
,e′(x̄i) (4)

where e′ = E(p, c, e, qi(x̄i)), and E is the environment change function, which obtains the

new environment for qi. If the cost of p is given (by using a trust assertion) as a function

Ψ(p)(x̄), then: Ccp,e(x̄) = Bϕ(p, c, e)×Ψ(p)(x̄) (5)

Again, this equational framework can be instantiated to obtain the standard cost by

defining Bϕ(p, c, e) = B(p, c, e, q) ≡ 1, and defining E so that it does not change the

environment and always returns the input environment, i.e., E(p, c, e, qi(x̄i)) = e. The

standard cost Cp(x̄) is then given by C
p

p,⊥(x̄), where ⊥ is the null environment, in which

no information about the environment is tracked, and the only cost center that the cost

of a single call to p is attributed to is the predicate p itself.

4 Instantiation for Parametric Accumulated-cost Static Profiling

We now instantiate the general approach described in Sect. 3 for the static inference of

accumulated cost. The advantages of this approach with respect to our previous approach

to accumulated cost inference (Haemmerlé et al. 2016) were already discussed in Sect. 1.

Assume we are given a set of (user-defined) cost centers ♦, which, as mentioned before,

in our approach are program predicates. Assuming that p is a cost center, the standard

cost of a single call p(x̄) (as defined in Sect. 1, and whose inference was discussed in

8

Sect. 2) is the sum of its accumulated costs in all the cost centers in the program, or,

equivalently in all the cost centers that are descendants (in the call stack) of p. This is

formally expressed in (Haemmerlé et al. 2016) Theorem 1, and, intuitively, the proof is

based on the fact that, according to the definition of accumulated cost, the cost of any

computation performed during the complete execution of p(x̄) is uniquely attributed to

a cost center (predicate): the closest ancestor of such computation in the call stack that

is a cost center.

Given a predicate p, we refer to the computations performed by a call p(x̄) that are

not under the scope of any cost center that is a descendant (in the call stack) of p, as the

residual computations of p. We refer to the cost of such computations as the residual cost

of p. Note that such computations include the computations performed by calls to non-

cost-center predicates that are descendants of p and that are not under the scope of any

cost center that is a descendant of p. Assume that the analysis is inferring accumulated

costs on a given cost center c. When analyzing a call to a non-cost-center predicate p, its

residual cost must be attributed to c only if the call p(x̄) is under the scope of c (i.e., is

a descendant of c). When analyzing a call to a cost-center predicate p, its residual cost

must be attributed to c only if p = c. Thus, in the expression Ccp,e(x̄) (where necessarily

c ∈ ♦) the environment e is just a Boolean value representing whether the (single) call

to p is in the scope of cost center c (e = 1) or not (e = 0).

To this end, we define the environment change function as follows: E(p, c, e,) ≡ (p =

c ∨ (p 6∈ ♦ ∧ e)).

Knowing that a given predicate cannot be called by another during program execution

allows the analysis to ignore some parts not affecting the cost to be inferred. We define

a simple calls relation between predicates as: p calls q, denoted p α q, if and only if a

literal with predicate symbol q appears in the body of a clause defining p; ⋆
α is the re-

flexive transitive closure of α. This α relation is an abstraction (over-approximation)

of the concrete relation (a more precise abstraction is computed by CiaoPP).

The Boolean assignment functions (appearing in Expression 4) are defined as follows:
Bϕ(p, c, e) ≡ (p = c ∨ (p 6∈ ♦ ∧ e)) (6)
B(p, c, e, q) ≡ Bϕ(p, c, e) ∨ (q ⋆

α c) (7)

Note that the analysis of the accumulated cost of a given non-cost-center predicate p

in a given cost center c can create at most two versions of Ccp,e(x̄) for the same input

(calling pattern) x̄ (and hence, there will be at most two versions of the cost relations

for p): the version Ccp,1(x̄) created if there is a (direct or indirect) call to p in the scope

of c, e.g., if such call is in the body of a clause defining c (in which case the ϕ cost is

added to the cost relations for p), and the variant Ccp,0(x̄) created if there is a call to p

not in the scope of c (in which case the ϕ cost is not added).

Lemma 1

∀p, q ∈ ♦, ∀e ∈ {0, 1}, it holds that E(p, q, e,) ≡ (p = q) and Bϕ(p, q, e) ≡ (p = q).

This implies that:

Lemma 2

∀p, q ∈ ♦ it holds that C
q
p,0(x̄) = C

q
p,1(x̄).

Thus, if p ∈ ♦ we omit the environment e and write C
q
p(x̄). Note that necessarily q ∈ ♦.

Lemma 3

∀p, q ∈ ♦, if p 6 ⋆
α q then C

q
p(x̄) = 0.

9

Lemma 4

∀p 6∈ ♦, ∀q ∈ ♦, if p 6 ⋆
α q then C

q
p,0(x̄) = 0.

Note also that in the standard cost relation-based static analysis, cost relations are set

up for each predicate in the program. In the approach we propose here for accumulated

cost, cost relations are set up for each cost center and for each predicate in the program.

Example 3

In Example 1, predicate prime was found too expensive in terms of resolution steps

to be practical, since Cprime(n) ∈ O(n!). However, the standard cost inferred for all the

predicates called from prime is linear, and it is not easy to detect at first glance where the

resource is really consumed. To locate the culprit, traditionally this would be attempted

using a dynamic profiling tool, executing the program with several test cases –commonly

known as hot spot detection. However, as with the standard cost analysis, we want to

detect such hot spots statically, in order to have sound information for any possible

input. For this purpose, we perform the accumulated cost analysis declaring that all

predicates are cost centers (i.e, ♦ = {prime, fact, multiple}). Based on the equational

framework instantiation above and Lemma 2, consider the cost of a single call to prime

accumulated in fact, Cfactprime(n), for an input size n. As already stated, the number of

solutions of all these predicates is 1, and the output sizes have already been inferred. For

the sake of conciseness, from now on we refer to prime, fact and multiple as p, f and

m respectively. The cost relations for the accumulated costs in cost center fact are:

Cfp(n) = Bϕ(p, f,)× ϕ(p(n)) + C
f
f(n− 1) + Cfm(Sz2f(n− 1) + 1)

C
f
f(n) = Bϕ(f, f,)× ϕ(f(n)) if n = 1

C
f
f(n) = Bϕ(f, f,)× ϕ(f(n)) + C

f
f (n− 1) if n > 1

Cfm(n) = Bϕ(m, f,)×Ψ(m)(n) = Bϕ(m, f,)× (n+ 1) if n > 1

We have that ϕ() = 1, and, according to Expression 6, Bϕ(p, f,) = Bϕ(m, f,) = 0 and

Bϕ(f, f,) = 1. Using these values, the cost relations defining Cfp(n) are:

Cfp(n) = C
f
f (n− 1)

C
f
f(n) = 1 if n = 1

C
f
f(n) = 1 + C

f
f (n− 1) if n > 1

Solving this system of cost relations, we finally obtain: Cfp(n) = n. Analogously, we

obtain the closed-form functions for Cmp (n) and Cpp(n):

Cpp(n) = 1 if n > 1

Cmp (n) = (n− 1)! + 2 if n > 1

Now, it is clear that the most expensive part of this program is the call to multiple.

Even though the standard cost of multiple is linear, its input size is the output size of

the call to fact (plus 1), which is the factorial of the input to prime minus 1. In this

case the problem can really only be fixed by using a better implementation of multiple

(O(1)) or of prime, to achieve the expected polynomial resource usage.

This example illustrates how the accumulated cost is more useful than the standard

cost. Neither the standard cost of multiple (n + 1) nor the number of calls to this

predicate from prime (since it is called just once) gives a direct hint that this predicate

is responsible for most of the resource consumption of prime.

10

Example 4

Consider again the program in Example 2. Assume that we declare that predicates p, q,

m and h are cost centers, i.e., ♦ = {p, q, m, h}, and s and w are not. For space reasons, we

will only illustrate the inference of upper bounds on accumulated costs in all cost centers.

The accumulated costs in cost center q are inferred as follows. Consider the clause

defining predicate p. Since p ∈ ♦, by Lemma 1 the current environment e is irrelevant

for the computation of the new environment e′ (i.e., e′ = E(p, q, 0,) = E(p, q, 1,) ≡

(p = q) ≡ 0), and for the computation of the head cost, i.e., Bϕ(p, q, 0) = Bϕ(p, q, 1) ≡

(p = q) ≡ 0. Thus, the cost relation for p according to Equation 4 is C
q
p(x, y) = C

q
h(x) +

C
q
q(x, y) + C

q
w,0(y) + C

q
s,0(x). Consider predicate q now. Since Bϕ(q, q, e) ≡ (q = q) ≡

1 and E(q, q, e,) ≡ (q = q) ≡ 1 for e ∈ {0, 1}, the cost relations for the base case and

recursive clause of q respectively are:

C
q
q(x, y) = Bϕ(q, q,)× 1 = 1× 1 = 1 if x = 0

C
q
q(x, y) = 1 + C

q
m(y) + C

q
q(x− 1, y) + C

q
s,1(x) if x > 0

For expression C
q
s,1(x) appearing in the recursive cost relation for q above (i.e., the version

of the cost of s when called in the scope of cost center q), the cost relations are:6

C
q
s,1(x) = 1 if x = 0

C
q
s,1(x) = 1 + C

q
w,1(x) + C

q
s,1(x− 1) if x > 0

We now need to infer the function represented by expression C
q
w,1(x) appearing in the

recursive cost relation for s above. Since the cost function for w is given by a trust assertion

(see Expression 3) and Bϕ(w, q, 1) = 1, we have that C
q
w,1(x) = Bϕ(w, q, 1)× (2 x + 1) =

2 x+ 1. Using this function, the closed-form solution for C
q
s,1(x) is x

2 + 3x+ 1 for x ≥ 0.

For expression C
q
w,0(y) appearing in the equation for p above, we have that C

q
w,0(y) =

Bϕ(w, q, 0)×(2y+1) = 0×(2y+1) = 0. Now, for expression C
q
s,0(x) appearing in the cost

relation for p above (i.e., the version of the cost of s when it is called not in the scope

of cost center q), we have that C
q
s,0(x) = 0 (Lemma 4). For expression C

q
m(y) appearing

in the second cost relation for q above, we have that Cqm(y) = 0 (Lemma 3), and no cost

relation is set up for predicate m. Now, the accumulated costs in cost center h are inferred

as follows. The accumulated cost in h for a call to p is given by:

Chp(x, y) = Chh(x) + Chq(x, y) + Chw,0(y) + Chs,0(x)

We have that: Chq(x, y) = 0 and Chm(y) = 0 (by Lemma 3)

and: Chs,0(x) = 0 (by Lemma 4)

and Chw,0(y) = Bϕ(w, h, 0) × Ψ(m)(y) = 0. Then, the cost relations for the accumulated

cost in h for a call to h are: Chh(x) = Bϕ(h, h,)× 1 = 1

Chh(x) = Bϕ(h, h,)× 1 = 1

Therefore, Chh(x) = 1 and Chp(x, y) = 1. For cost center m we have:

Cmp(x, y) = xy2 + 3xy+ 2y+ 1
3x

3 + 5
2x

2 + 25
6 x + 1

Cmq(x, y) = xy2 + 3xy+ 1
3x

3 + 3
2x

2 + 13
6 x

Cmm(x) = x2 + 3x+ 1

Finally, for cost center p we have:

C
p
p(x, y) = 1 C

p
q(x, y) = 0 C

p
m(x) = 0 C

p
h(x) = 0

6 Since s 6∈ ♦, the environment is needed in this case.

11

Note that the large complexity of Cmp(x, y) makes us realize that if we move the call m(y)

from the recursive clause of q to the clause of p:
✞ ☎

1 p(X, Y):- h(X), m(Y), q(X, Y), w(Y), s(X).
2

3 q(0, _).

4 q(X, Y):- X > 0, X1 is X - 1, q(X1, Y), s(X).
✝ ✆

then, the standard cost of p will be reduced. In particular, it is reduced from Cp(x, y) =
1
3x

3 + xy2 + 3x2 + 3xy+ 23
3 x+ 2y+ 4 to Cp(x, y) = y2 + 5y+ 1

3x
3 + 3x2 + 20

3 x+ 8.

5 Implementation and Experimental Results

We have implemented the proposed approach within the CiaoPP system, by extending

the implementation of (Serrano et al. 2014). The latter improved on (Navas et al. 2007)

by defining the resource analysis itself as an abstract domain that is integrated

into the PLAI abstract interpretation framework (Muthukumar and Hermenegildo 1992;

Puebla and Hermenegildo 1996) of CiaoPP, inheriting features such as multivariance,

efficient fixpoints, and assertion-based verification and user interaction. A significant ad-

ditional improvement brought about by (Serrano et al. 2014) is its use of a sized types

abstract domain, which allows the inference of non-trivial cost bounds when these depend

on the sizes of parts of input terms at any position and depth. The resulting abstract

interpretation-based implementation builds the cost equations described in Sect. 3. Sep-

arate equations are built for each procedure version thanks to the built-in multivariance

in PLAI. Other optimizations include not building equations for unreachable program

parts.

Table 1 shows the results of the comparison between the proposed approach and our

previous, program transformation-based approach (Haemmerlé et al. 2016) –New and

Prev respectively from now on. Column Bench shows, for each program, the entry

predicate (marked with a star, e.g., sublist∗) and the predicates that are declared as

cost centers (which always include the entry predicate). Acc. Cost shows the paramet-

ric accumulated cost functions inferred for each cost center, which depend on the input

data sizes of the entry predicate. For conciseness, we only show upper bound functions,

although in the experiments both upper and lower bounds were inferred. The resource

inferred in these tests is the number of resolution steps (i.e., each clause body is assumed

to have unitary cost). The symbols in Column C compare New and Prev: × means

that it is a non-deterministic program that produces multiple solutions and New is able

to obtain non-trivial bounds while Prev fails to obtain a correct bound (as mentioned

before, Prev is not applicable for these programs).= indicates that New obtains the

same bounds as Prev. Only these two symbols are required because all the results co-

incide except for the non-deterministic programs. AvD is the average deviation of the

accumulated costs obtained by evaluating the functions in Column Acc. Cost, with re-

spect to the costs measured with a dynamic profiler (Mera et al. 2011). The input data

for dynamic profiling was selected to exhibit the worst case execution,7 in order to com-

pare with upper bound functions. Time (s) lists the analysis times of New in seconds

(Ciao/CiaoPP version 1.15-4048-g6bd1569, MacBook Pro, 2.4GHz Intel Core i7 CPU,

7 Except for queens: the queens program was simply run for 8 queens. The selection of input data that
can make a program exhibit worst case execution is non-trivial.

12

Table 1. Experimental results (static profiling of accumulated cost).

Bench Acc. Cost C AvD Time (s) Std. Cost #Calls Acc.BigO

sublist∗ n2 + 3
×

5% 4.7 n1n2 + 3n2 + 2 2 O(n2)
append n1n2 + 2n2 − 1 40% (NA) 2n− 1 n1n2 + 2n2 − 1 O(n1n2)

is prime∗ 1
=

0% (n− 1)! + n+ 3 1 O(1)
fact n 0% 1.6 n n O(n)
mult (n− 1)! + 2 0% (-24%) n+ 1 (n− 1)! + 2 O(n!)

queens∗ n+ 2

×

7% O(nn)† 1 O(n)

consistent
((n−1)n−1)nn+1+n

(n−1)2
104% 4.7 2n+ 1

((n−1)n−1)nn+1+n

(n−1)2
O(nn)

choose
(2n−1)(nn−1)

(n−1)
104% (NA) 2n− 1

(2n−1)(nn−1)
n−1

O(nn)

noattack
(n−2)n(n+2)+n

2

(n−1)2
104% 1

(n−2)nn+2+n
2

(n−1)2
O(nn)

search∗ 1
×

0% 1.4 2n+ 2 1 O(1)
member 2n+ 1 0.1% (NA) 2n+ 1 2n+ 1 O(n)

appAll2∗ b1
=

0% 5.3 O(b1b2b3)† 1 O(b1)
appAll b1b2 0% (-16%) b1b2 b1 O(b1b2)
append 2b1b2b3 0% n b1b2 + b1 O(b1b2b3)

hanoi∗ 2n − 1
=

0% 1.6 2n+1 − 2 1 O(2n)
move 2n − 1 0% (-19%) 1 2n − 1 O(2n)

coupled∗ 1
=

0% 2.4 n+ 2 1 O(1)

p n

2
+ (−1)n

4
+ 3

4
1.2% (-14%) n+ 1 n

2
− (−1)n

4
+ 1

4
O(n)

q n

2
−

(−1)n

4
+ 1

4
0% n+ 1 n

2
+

(−1)n

4
− 1

4
O(n)

isort∗ n+ 1
=

0% 3 n2 + n+ 1 n+ 1 O(n)
insert n2 71% (-19%) 2n+ 1 n2 O(n2)

minsort∗ n+ 1
=

0% 3.5 (n+1)2

2
+ n+1

2
1 O(n)

findmin
(n+1)2

2
+ n−1

2
7% (-27%) n n+ 1 O(n2)

dyade∗ n1 =
0% 3.2 n1(n2 + 1) 1 O(n1)

mult n1n2 0% (-20%) n n1 O(n1n2)

variance∗ 1
=

0% 3.6 2n2 1 O(1)
sq diff n− 1 0% (-39%) 2n2n1 − 2n2 n− 1 O(n)
mean 2n2 − n 0% 2n+ 1 n O(n2)

variance2∗ 1
=

0% 3.1 5n+ 3 1 O(1)
sq diff n 0% (-40%) n n O(n)
mean 4n+ 2 0% 2n+ 1 2 O(n)

listfact∗ b1 =
0% 1.9 b1(b2 + 2) 1 O(b1)

fact b1b2 + b1 0% (-23%) n b1 O(b1b2)

† For space limitations only the complexity order is shown.

• n1, n2, . . . , nk represent the sizes of k input arguments. For a single input argument, the subscript is
dropped.

• b1, b2, . . . , bk represent the sizes of the nested structures of an input argument, where b1 represents the
size of the outer most structure and bk the inner most. In cases, where the cost only depends on the
outer most structure, the previous representation is used.

13

8 GB 1333 MHz DDR3 memory, MAC OS X Lion 10.7.5) and, between brackets, how

efficient New is with respect to Prev (New−Prev

Prev
× 100). New is more efficient than

Prev in all programs, with one exception (hanoi). Times are quite encouraging in any

case, specially considering the currently inefficient implementation of the Mathematica

interface, one of the solvers used for the recurrence equations.

Std. Cost shows the cost functions inferred using the standard notion of cost (in

particular, the cost functions inferred by (Serrano et al. 2014)) for comparison with the

accumulated cost functions (Acc. Cost). The latter clearly signal hot spots that are

not visible from the standard cost functions. Note also that in all cases the sum of the

functions for all the cost centers is the standard cost of the entry predicate. Due to

space limitations we do not include analysis times for obtaining the standard costs in

Column Std. Cost, but while the analysis times of New are higher, as expected, it is

only by 20% on average.#Calls shows the number of times each predicate is called, as a

function of input data sizes of the entry predicate. These functions are inferred using the

standard analysis by defining explicitly a #Calls resource for each cost center predicate.

A large complexity order in the number of calls to a predicate (in relation to that of a

single call) suggests that it could be profitable to optimize the program to reduce the

number of calls to this predicate, to effectively reduce its impact on the overall cost of the

program. More interestingly, since both resources Acc. Cost and #Calls of a predicate

p are expressed as functions of input data sizes of the entry predicate, their quotient

(Acc. Cost/ #Calls) is meaningful and will give an approximation of the cost of a

single call to p as a function of the input data sizes of the entry predicate. Note that the

standard analysis (Column Std. Cost) also provides an upper-bound approximation of

this cost but as a function of the input data sizes of q. Finally, Column Acc.BigO shows

the actual asymptotic resource usage of the accumulated cost in different cost centers.

6 Conclusions

We presented a novel, general, and flexible framework for setting up cost equations/rela-

tions which can be instantiated for performing a wide range of resource usage analyses,

including both accumulated cost and standard cost. We have also reported on an im-

plementation of this general framework within the CiaoPP system, and its instantiation

for accumulated cost, and provided some experimental results. The results show that the

resulting accumulated cost analysis, in addition to providing results for non-deterministic

programs, is also more efficient than our previous approach based on program transfor-

mation, and has a good number of additional advantages. We argue that our approach

is quite general, and it can be easily applied to other paradigms, including imperative

programs, functional programs, CHR, etc., using the strategy based on compilation to

Horn Clauses, as in our previous work with Java or XC.

References

Albert, E., Arenas, P., Genaim, S., and Puebla, G. 2011. Closed-Form Upper Bounds in
Static Cost Analysis. Journal of Automated Reasoning 46, 2, 161–203.

Albert, E., Genaim, S., and Masud, A. N. 2011. More Precise yet Widely Applicable Cost
Analysis. In Proc. of VMCAI’11. LNCS, vol. 6538. Springer, 38–53.

Debray, S. K. and Lin, N. W. 1993. Cost analysis of logic programs. ACM TOPLAS 15, 5
(November), 826–875.

14

Debray, S. K., Lin, N.-W., and Hermenegildo, M. 1990. Task Granularity Analysis in Logic
Programs. In Proc. PLDI’90. ACM, 174–188.

Debray, S. K., López-Garćıa, P., Hermenegildo, M., and Lin, N.-W. 1997. Lower Bound
Cost Estimation for Logic Programs. In ILPS’97. MIT Press, 291–305.

Giesl, J., Ströder, T., Schneider-Kamp, P., Emmes, F., and Fuhs, C. 2012. Symbolic
evaluation graphs and term rewriting: a general methodology for analyzing logic programs.
In Proceedings of PPDP’12. ACM, 1–12.

Grobauer, B. 2001. Cost recurrences for DML programs. In Proceedings of ICFP ’01. ACM,
New York, NY, USA, 253–264.

Gulwani, S., Mehra, K. K., and Chilimbi, T. M. 2009. SPEED: Precise and Efficient Static
Estimation of Program Computational Complexity. In The 36th Symposium on Principles of
Programming Languages (POPL’09). ACM, 127–139.

Haemmerlé, R., Lopez-Garcia, P., Liqat, U., Klemen, M., Gallagher, J. P., and

Hermenegildo, M. V. 2016. A Transformational Approach to Parametric Accumulated-
cost Static Profiling. In FLOPS’16. LNCS, vol. 9613. Springer, 163–180.

Hermenegildo, M., Puebla, G., Bueno, F., and Garćıa, P. L. 2005. Integrated Program
Debugging, Verification, and Optimization Using Abstract Interpretation (and The Ciao Sys-
tem Preprocessor). Science of Computer Programming 58, 1–2, 115–140.

Hermenegildo, M. V., Bueno, F., Carro, M., López, P., Mera, E., Morales, J., and
Puebla, G. 2012. An Overview of Ciao and its Design Philosophy. TPLP 12, 1–2, 219–252.
http://arxiv.org/abs/1102.5497.

Hoffmann, J., Aehlig, K., and Hofmann, M. 2012. Multivariate amortized resource analysis.
ACM TOPLAS 34, 3, 14:1–14:62.

Igarashi, A. and Kobayashi, N. 2002. Resource usage analysis. In Symposium on Principles
of Programming Languages. ACM, 331–342.

Liqat, U., Georgiou, K., Kerrison, S., Lopez-Garcia, P., Hermenegildo, M. V., Gal-

lagher, J. P., and Eder, K. 2016. Inferring Parametric Energy Consumption Functions at
Different Software Levels: ISA vs. LLVM IR. In Proc. of FOPARA. LNCS, vol. 9964. Springer.
In press.

Liqat, U., Kerrison, S., Serrano, A., Georgiou, K., Lopez-Garcia, P., Grech, N.,
Hermenegildo, M., and Eder, K. 2014. Energy Consumption Analysis of Programs based
on XMOS ISA-level Models. In Proceedings of LOPSTR’13. LNCS, vol. 8901. Springer, 72–90.

Méndez-Lojo, M., Navas, J., and Hermenegildo, M. 2007. A Flexible (C)LP-Based Ap-
proach to the Analysis of Object-Oriented Programs. In LOPSTR. LNCS, vol. 4915. Springer-
Verlag, 154–168.

Mera, E., Trigo, T., López-Garćıa, P., and Hermenegildo, M. 2011. Profiling for Run-
Time Checking of Computational Properties and Performance Debugging. In PADL. LNCS,
vol. 6539. 38–53.

Morgan, R. G. and Jarvis, S. A. 1998. Profiling Large-Scale Lazy Functional Programs.
Journal of Functional Programing 8, 3, 201–237.

Muthukumar, K. and Hermenegildo, M. 1992. Compile-time Derivation of Variable Depen-
dency Using Abstract Interpretation. JLP 13, 2/3 (July), 315–347.

Navas, J., Méndez-Lojo, M., and Hermenegildo, M. 2008. Safe Upper-bounds Inference of
Energy Consumption for Java Bytecode Applications. In NASA LFM’08. 29–32.

Navas, J., Mera, E., López-Garćıa, P., and Hermenegildo, M. 2007. User-Definable Re-
source Bounds Analysis for Logic Programs. In Proc. of ICLP’07. LNCS, vol. 4670. Springer,
348–363.

Nielson, F., Nielson, H., and Seidl, H. 2002. Automatic complexity analysis. In Program-
ming Languages and Systems. LNCS. Springer, 243–261.

Puebla, G. and Hermenegildo, M. 1996. Optimized Algorithms for the Incremental Analysis
of Logic Programs. In SAS’96. Springer LNCS 1145, 270–284.

15

http://arxiv.org/abs/1102.5497

Rosendahl, M. 1989. Automatic Complexity Analysis. In Proc. of FPCA’89. ACM Press,
144–156.

Sansom, P. M. and Jones, S. L. P. 1995. Time and Space Profiling for Non-Strict, Higher-
Order Functional Languages. In Proc. of POPL’95. ACM, New York, NY, USA, 355–366.

Serrano, A., Lopez-Garcia, P., and Hermenegildo, M. 2014. Resource Usage Analysis
of Logic Programs via Abstract Interpretation Using Sized Types. TPLP, ICLP’14 Special
Issue 14, 4-5, 739–754.

Vasconcelos, P. and Hammond, K. 2003. Inferring Cost Equations for Recursive, Polymor-
phic and Higher-Order Functional Programs. In IFL’03. LNCS, vol. 3145. Springer, 86–101.

Wegbreit, B. 1975. Mechanical Program Analysis. Comm. of the ACM 18, 9, 528–539.

16

Appendices8

Appendix A

Additional Examples

Example 5

Consider the following program to determine whether a list is a sublist of another. A

sublist can be specified in terms of prefixes and suffixes: a suffix of a prefix, or a prefix

of a suffix. The following program uses the latter to implement the sublist predicate.
✞ ☎

1 sublist (L, L).
2 sublist (Sub, List) :- suffix(List , Suf), prefix(Suf, Sub).

3

4 suffix(List , Suffix):- append(_, Suffix , List).
5

6 prefix(List , Prefix):- append(Prefix, _, List).
7

8 append ([], L, L).
9 append ([X|Xs], L, [X|Zs]):- append(Xs , L, Zs).
✝ ✆

Assume we are going to perform the analysis, to infer upper bounds on both the

standard and accumulated costs, in terms of resolution steps, for the calling pattern

sublist(list, list), i.e., for the case where sublist is called with both of its ar-

guments bound to lists. Given such calling pattern, CiaoPP infers the unique call-

ing patterns suffix(list, var) and prefix(var, list), for suffix and prefix,

where var represents an unbound variable. However, two different calling patterns

are inferred for append: append(var,var,list), when it is called from suffix, and

append(list,var,list), when it is called from prefix.

Assume that size relations have been inferred for the different arguments in a clause,

and that the size metric used is the list length of an argument, since all arguments are

lists. The size of the output (second) argument of suffix is inferred as a function on

its input (first) argument, and is represented by Sz2suffix(n). Such inference sets up the

following size relations:

Sz2suffix(n) = Sz2append(n)

Sz2append(n) = 1 if n = 1

Sz2append(n) = n if n > 1

Sz2append(n) = Sz2append(n− 1) if n > 1

and finds the closed form Sz2suffix(n) = n.

In order to infer the standard cost of this program, the analysis sets up the following

cost relations for sublist, suffix, prefix and append:

Csublist(n,m) = Csuffix(n) + Solsuffix(n) ∗ Cprefix(Sz2suffix(n),m) + 2

Csuffix(n) = Cappend(n) + 1

Cprefix(n,m) = Cappend(n,m) + 1

Note that the size of the input to the call to prefix is given by the size of the output of

suffix, represented by Sz2suffix(n).

8 In the version of this paper published in TPLP these appendices constitute the supplementary, on-line
material associated with the paper.

17

The cost relations for the two variants of append are:

Cappend(n) = 1 if n = 1

Cappend(n) = Cappend(n− 1) + 2 if n > 1

Cappend(n,m) = 1 if m = 1, n = 1

Cappend(n,m) = 1 if m = 1

Cappend(n,m) = Cappend(n− 1,m− 1) + 1 if m > 1

and the their closed forms are Cappend(n) = 2 n− 1 and Cappend(n,m) = m respectively.

Note that in this program suffix produces multiple solutions. For each solution of

suffix the prefix predicate is executed on backtracking.

The cost relations for the inference of the number of solutions are:

Solsuffix(n) = Solappend(n)

Solappend(n) = 1 if n = 1

Solappend(n) = Solappend(n− 1) + 1 if n > 1

and the closed form is Solsuffix(n) = n.

After composing all the closed forms, the analysis obtains the following function rep-

resenting an upper bound on the resource usage of all the predicates:

Csuffix(n) = 2 n

Cprefix(n) = m+ 1

Cappend(n) = 2 n− 1

Cappend(n,m) = m

Csublist(n) = n m+ 3 n+ 2

Assume now that we declare sublist and append as cost centers to infer the accumu-

lated costs in them. The cost relations set up for sublist are:

Csublistsublist(n,m) = Csublistsuffix,1(n) + Solsuffix(n) ∗ C
sublist
prefix,1(Sz

2
suffix(n),m) + 2

C
append
sublist(n,m) = C

append
suffix,0(n) + Solsuffix(n) ∗ C

append
prefix,0(Sz

2
suffix(n),m)

Replacing the functions for sizes (Sz) and solutions (Sol) from the previous step we get:

Csublistsublist(n,m) = Csublistsuffix,1(n) + n ∗ Csublistprefix,1(n,m) + 2

C
append
sublist(n,m) = C

append
suffix,0(n) + n ∗ Cappendprefix,0(n,m)

Furthermore, the intermediate cost relations are set up as follows:

Csublistsuffix,1(n) = Csublistappend (n) + 1

= 1 (Lemma 3)

Csublistprefix,1(n,m) = Csublistappend (n,m) + 1

= 1 (Lemma 3)

C
append
suffix,0(n) = C

append
append(n)

C
append
prefix,0(n,m) = C

append
append(n,m)

C
append
append(n) = C

append
append(n− 1) + 2 if n > 1

C
append
append(n) = 1 if n = 1

18

C
append
append(n,m) = 1 if m = 1, n = 1

C
append
append(n,m) = 1 if m = 1

C
append
append(n,m) = C

append
append(n− 1) + 1 if m > 1

After composing all the intermediate cost relations, the analysis obtains the following

functions representing upper bounds on the accumulated resource usage of sublist and

append:

Csublistsublist(n) = n+ 3

C
append
sublist(n) = nm+ 2n− 1

Example 6

Consider the following program P :
✞ ☎

1 p(X, Y) :- i1, i2 , q(X, Z), s(Z, Y).

2

3 q(0, 0).

4 q(X, Y) :- X1 is X - 1, q(X1, Z), i1, i3, s(Z, W), Y is W + 1.
5

6 s(0, 0):- i1.

7 s(X, Y) :- i2, i4 , X1 is X - 1, s(X1, Z), Y is Z + 1.
✝ ✆

Assume that im, for m ∈ {1, 2, 3, 4}, are builtin/library predicates and that their

standard costs are given by means of trust assertions: for simplicity we assume that

Ψ(im) = Cim = 1, for m ∈ {1, 2, 3, 4}, and that the (standard) cost of the is/2 arithmetic

predicate is given as zero. Assume also that ϕ(p) = 0 for all predicates p ∈ P .

Assume that for all the predicates, the first argument is an input argument and the

second one is output, and that the type of all arguments is the set of natural numbers.

Assume that the following size relationships, expressing the size of the output argument

as a function of the size of the input argument, have already been inferred for all of them:

• Sz2p(n) = n, which means that the size (under the natural value metric) of the

second argument of predicate p is n, the size of the input argument.

• Similarly, Sz2q (n) = n, and Sz2s(n) = n.

Assume that the set of cost centers is ♦ = {p, q, s}, and that we want to estimate

(upper bounds on) the cost accumulated in all the cost centers for the predicates p,

q, and s. Let C
q
p(x̄) denote an upper bound on the accumulated cost in cost center q

corresponding to a call p(x̄).

Assume we process each strongly-connected component of the call graph of the program

in reverse topological order. We start by inferring the costs accumulated in cost center

s. The accumulated cost in s corresponding to a call to s is expressed by the following

cost relation:

Css(0) = Csi1,1 = Ci1 = 1

Css(n) = Csi2,1 + Csi4,1 + Css(n− 1)

which can be written as:

Css(0) = 1

Css(n) = 2 + Css(n− 1)

and whose closed-form solution is:

Css(n) = 2 n+ 1.

19

Now, we analyze predicate q. To this end, the accumulated cost in s for a call to q is

expressed by:

Csq(0) = 0

Csq(n) = Csq(n− 1) + Csi1,0 + Csi3,0 + Css(n− 1)

Since there is a trust assertion providing the cost of i1, Ψ(i1) = 1 (as already said),

according to Expression 5, we have that Csi1,0 = Bϕ(i1, s, 0)× Ψ(i1) = 0× 1 = 0. Note

that Bϕ(i1, s, 0) = 0 because i1 6= s and the environment (third argument of Bϕ) is 0

(since i1 is called in the scope of cost center q, not in the scope of the cost center where

the analysis is accumulating costs in this equation, i.e., s). Thus, the cost of i1 is not

taken into account in this equation. The same consideration applies to i3.

Since the cost function for Css(n) has already been computed, replacing values we have

Csq(0) = 0

Csq(n) = Csq(n− 1) + 2 (n− 1) + 1

and

Csq(0) = 0

Csq(n) = Csq(n− 1) + 2 n− 1

The solution to the cost relation above is:

Csq(n) = n2.

We now analyze predicate p, so that the accumulated cost in s for a call to p is expressed

by:

Csp(n) = Csi1,0 + Csi2,0 + Csq(n) + Css(n)

For the same considerations as before, the costs of i1 and i2 in the body of the clause

defining p are not taken into account (i.e., Csi1,0 = Csi2,0 = 0). Replacing values we have

that:

Csp(n) = n2 + 2n+ 1.

The inference of the accumulated cost in s for predicates p, q, and s has finished, and

we start now the inference of the accumulated costs in q. By Lemma 3, Cqs(n) = 0, i.e.,

we do not need to analyze predicate s, since it does not call q. However, now the costs

of i1 and i3 in the body of the second clause of q do have to be taken into account. To

this end, the recurrence equations expressing the accumulated cost in q for a call to q

are:

C
q
q(0) = 0

C
q
q(n) = C

q
q(n− 1) + Ci1q,1 + Ci3q,1.

C
q
q(0) = 0

C
q
q(n) = C

q
q(n− 1) + 2.

The solution to the recurrence above is:

C
q
q(n) = 2 n.

Now, the accumulated cost in q for a call to p is expressed as:

C
q
p(n) = C

q
q(n) + C

q
s(n)

20

Replacing values we have that:

C
q
p(n) = 2 n

Let us compute now the accumulated cost in p. Since it is not called from q nor s, we

have that C
p
q(n) = C

p
s(n) = 0. The accumulated cost in p for a call to p is just the cost of

i1 and i2:

C
p
p(n) = C

p
i1,1 + C

p
i2,1 = Ci1 + Ci2.

Thus:

C
p
p(n) = 2.

Note that the standard cost of p (Cp(n)) can be expressed in terms of the accumulated

costs in each of the cost centers:

Cp(n) = C
p
p(n) + C

q
p(n) + Csp(n).

Example 7

Consider the following program where the predicates p and q are mutually recursive.
✞ ☎

1 coupled (X, Y):- f(X, Y).
2

3 p(0,[]).

4 p(N,[a|R]) :- N1 is N-1, q(N1,R).
5

6 q(0,[]).
7 q(N,[a|R]) :-N1 is N-1, p(N1,R).
✝ ✆

Assuming that we want to infer the standard cost of this program in terms of resolution

steps, the analysis sets up the following cost relations for coupled, p and q, we have the

following cost relations:

Cp(n) = 1 if n = 0

Cp(n) = 1 + Cq(n− 1) if n > 0

Cq(n) = 1 if n = 0

Cq(n) = 1 + Cp(n− 1) if n > 1

Ccoupled(n) = 1 + Cp(n)

After composing the closed forms, the analysis obtains the following function representing

an upper bound on the resource usage of coupled, p and q:

Ccoupled(n) = n+ 2

Cp(n) = n+ 1

Cq(n) = n+ 1

Notice that in this program the cost relations for p and q are mutually recursive (i.e.,

they are defined in terms of each other), and for this reason the cost functions representing

the upper bound on the resolution steps in the two are same (n+ 1). Hence, the cost of

each mutually-recursive predicate subsumes the cost of the other. However, this cost is

in fact distributed between the p and q predicates. In order to identify the cost that each

of these predicates contributes to this n+1 expression and to the overall cost of coupled

(n + 2), we perform the accumulated cost analysis, declaring all the predicates as cost

21

centers. The instantiation of the equational framework described in Sect. 4 obtains the

following accumulated costs for coupled, p, and q:

C
coupled
coupled(n) = 1

C
p
coupled(n) =

n
2 + (−1)n

4 + 3
4

C
q
coupled(n) =

n
2 − (−1)n

4 + 1
4

It is now clear how much cost each of coupled, p, and q contributes to the standard cost

of the whole program (n + 2). Note that the standard cost of the mutually recursive

predicates p and q, which is n+1, is now halved among the two as accumulated costs of

p and q.

In this example we have shown a hypothetical scenario highlighting that the accumu-

lated cost information is more useful for mutually recursive parts of a program in order

to identify how much each of the mutually recursive predicates contributes to the overall

cost. This was not possible using only the standard cost information.

Example 8

Consider the following program to determine the parity of a number where predicates

even and odd are mutually recursive.
✞ ☎

1 even(0).

2 even(N):- N > 0, N1 is N - 1, odd(N1).
3

4 odd(1).
5 odd(N):- N > 1, N1 is N - 1, even(N1).
✝ ✆

Similar to the Example 7, this program contains mutually recursive predicates even and

odd. Since both are defined in terms of each other, the standard analysis obtains a same

cost function for them representing an upper bound on the resource usage.

Ceven(n) = n+ 1

Codd(n) = n+ 1

In order to identify the cost that each of these predicates contributes to the overall

cost of the program n+1, we perform the accumulated cost analysis, declaring both even

and odd as as cost centers. The instantiation of the equational framework described in

Sect. 4 obtains the following accumulated costs for even and odd:

Ceveneven(n) =
n
2 + (−1)n

4 + 3
4

Coddeven(n) =
n
2 − (−1)n

4 + 1
4

22

Appendix B

Additional Comments on the Relation of the Standard and Accumulated

Cost

Assume that predicate p is a cost center. As already said, in this case the standard

cost of a single call p(x̄) is the sum of its accumulated costs in all the cost centers in

the program. This is formalized by Theorem 1 in (Haemmerlé et al. 2016), which holds

under the assumption that p is a cost center. Intuitively, predicate c is “reachable” from

predicate p if c = p or c can be invoked (either directly or indirectly) by p. If p is a cost

center, Theorem 1 also holds if we restrict to the set of cost centers that are reachable

from p, or to the set of cost centers that are descendants (in the call stack) of p. The

reason is that if p is a cost center, and another cost center c (different from p) is not

reachable from p, then no part of the cost of a call to p is attributed to c. This is stated

in Lemma 3.

Assume that p is the main (entry) predicate in a program, and that we are interested in

knowing how its total (standard) cost is distributed over the (user-defined) cost centers.

In this case, p should be declared as a cost center. This is because if p is a cost center, the

residual cost (as defined in Section 4) of the call to the main predicate will be assigned

to p. Otherwise the residual cost will be left unassigned to any cost center.

If p is not a cost center, the standard cost of a single call p(x̄) is the sum of its

accumulated costs in all the cost centers that are descendants (in the call stack) of p,

plus the residual cost of that call.

23

	1 Introduction
	2 The Standard Parametric Cost Relations Framework
	3 Generalizing the Standard Cost Relations Approach
	4 Instantiation for Parametric Accumulated-cost Static Profiling
	5 Implementation and Experimental Results
	6 Conclusions
	References
	Appendix A Additional Examples
	Appendix B Additional Comments on the Relation of the Standard and Accumulated Cost

