9,740 research outputs found

    A Narrowing-based Instantiation Rule for Rewriting-based Fold/Unfold Transformations

    Get PDF
    AbstractIn this paper we show how to transfer some developments done in the field of functionalī“ølogic programming (FLP) to a pure functional setting (FP). More exactly, we propose a complete fold/unfold based transformation system for optimizing lazy functional programs. Our main contribution is the definition of a safe instantiation rule which is used to enable effective unfolding steps based on rewriting. Since instantiation has been traditionally considered problematic in FP, we take advantage of previous experiences in the more general setting of FLP where instantiation is naturally embedded into an unfolding rule based on narrowing. Inspired by the so called needed narrowing strategy, our instantiation rule inherits the best properties of this refinement of narrowing. Our proposal optimizes previous approaches (that require more transformation effort) defined in the specialized literature of pure FP by anticipating bindings on unifiers used to instantiate a given program rule and by generating redexes at different positions on instantiated rules in order to enable subsequent unfolding steps. As a consequence, our correct/complete technique avoids redundant rules and preserves the natural structure of programs

    Program transformations using temporal logic side conditions

    Get PDF
    This paper describes an approach to program optimisation based on transformations, where temporal logic is used to specify side conditions, and strategies are created which expand the repertoire of transformations and provide a suitable level of abstraction. We demonstrate the power of this approach by developing a set of optimisations using our transformation language and showing how the transformations can be converted into a form which makes it easier to apply them, while maintaining trust in the resulting optimising steps. The approach is illustrated through a transformational case study where we apply several optimisations to a small program

    Program transformation for development, verification, and synthesis of programs

    Get PDF
    This paper briefly describes the use of the program transformation methodology for the development of correct and efficient programs. In particular, we will refer to the case of constraint logic programs and, through some examples, we will show how by program transformation, one can improve, synthesize, and verify programs

    Applications and extensions of context-sensitive rewriting

    Full text link
    [EN] Context-sensitive rewriting is a restriction of term rewriting which is obtained by imposing replacement restrictions on the arguments of function symbols. It has proven useful to analyze computational properties of programs written in sophisticated rewriting-based programming languages such asCafeOBJ, Haskell, Maude, OBJ*, etc. Also, a number of extensions(e.g., to conditional rewritingor constrained equational systems) and generalizations(e.g., controlled rewritingor forbidden patterns) of context-sensitive rewriting have been proposed. In this paper, we provide an overview of these applications and related issues. (C) 2021 Elsevier Inc. All rights reserved.Partially supported by the EU (FEDER), and projects RTI2018-094403-B-C32 and PROMETEO/2019/098.Lucas Alba, S. (2021). Applications and extensions of context-sensitive rewriting. Journal of Logical and Algebraic Methods in Programming. 121:1-33. https://doi.org/10.1016/j.jlamp.2021.10068013312
    • ā€¦
    corecore