
p ()
URL: http://www.elsevier.nl/locate/entcs/volume86.html 24 pages

A Narrowing-based Instantiation Rule for
Rewriting-based Fold/Unfold Transformations

Ginés Moreno 1,2

Department of Computer Science
University of Castilla-La Mancha

Albacete 02071, Spain

Abstract

In this paper we show how to transfer some developments done in the field of
functional–logic programming (FLP) to a pure functional setting (FP). More ex-
actly, we propose a complete fold/unfold based transformation system for optimizing
lazy functional programs. Our main contribution is the definition of a safe instanti-
ation rule which is used to enable effective unfolding steps based on rewriting. Since
instantiation has been traditionally considered problematic in FP, we take advan-
tage of previous experiences in the more general setting of FLP where instantiation
is naturally embedded into an unfolding rule based on narrowing. Inspired by the so
called needed narrowing strategy, our instantiation rule inherits the best properties
of this refinement of narrowing. Our proposal optimizes previous approaches (that
require more transformation effort) defined in the specialized literature of pure FP
by anticipating bindings on unifiers used to instantiate a given program rule and
by generating redexes at different positions on instantiated rules in order to en-
able subsequent unfolding steps. As a consequence, our correct/complete technique
avoids redundant rules and preserves the natural structure of programs.

Key words: Rewriting, Narrowing, Instantiation, Fold/Unfold

1 Introduction

In this paper we are concerned with first order (lazy) functional programs
expressed as term rewriting systems (TRS’s for short). Moreover, since higher
order programs can be transformed into first order programs by using trans-
formations (suitable for narrowing too) as explained in [17,9], the results of
this paper are available for higher order programs, too. Our programming

1 This work has been partially supported by CICYT under grant TIC 2001-2705-C03-03
and by Acción Integrada Hispano-Alemana HA03-100.
2 Email: gmoreno@info-ab.uclm.es

c©2003 Published by Elsevier Science B. V.

144

CC BY-NC-ND license. Open access under

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Elsevier - Publisher Connector

https://core.ac.uk/display/81986114?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://creativecommons.org/licenses/by-nc-nd/3.0/

Moreno

language is similar to the one presented in [13,30] in which programs are writ-
ten as a set of mutually exclusive recursive equations, but we do not require
that the set of equations defining a given function f be exhaustive (i.e., we let
f to be undefined for certain elements of its domain). More precisely , we use
inductively sequential TRS’s, i.e., the mainstream class of pattern-matching
functional programs which are based on a case distinction. This is a reasonable
class of TRS’s not only for modeling pure functional programs but also for
representing multiparadigm functional–logic programs that combine the oper-
ational methods and advantages of both FP and LP (logic programming) [6].
If the operational principle of FP is based on rewriting, integrated programs
are usually executed by narrowing, a generalization of rewriting that instanti-
ates variables on a given expression and then, it applies a reduction step to a
redex of the instantiated expression. Needed narrowing extends the Huet and
Lévy’s notion of a needed reduction [23], and is the currently best narrowing
strategy for first-order (inductively sequential) integrated programs due to its
optimality properties w.r.t. the length of derivations and the disjointness of
computed solutions and it can be efficiently implemented by pattern matching
and unification [8].

The fold/unfold transformation approach was first introduced in [13] to
optimize functional programs (by reformulating function definitions) and then
used in LP [35] and FLP [2,27]. This approach is commonly based on the
construction, by means of a strategy, of a sequence of equivalent programs each
obtained from the preceding ones by using an elementary transformation rule.
The essential rules are folding and unfolding, i.e., contraction and expansion
of subexpressions of a program using the definitions of this program (or of
a preceding one). Other rules which have been considered are, for example:
instantiation, definition introduction/elimination, and abstraction.

Instantiation is a purely functional transformation rule used for introducing
an instance of an existing equation in order to enable subsequent unfolding
steps based on rewriting. For instance, if we want to apply an unfolding step
on rule R1 : f(X) → g(X) by reducing its right hand side (rhs) by using rule
R2 : g(0) → 0, we firstly need to “instantiate” the whole rule with the binding
{X �→ 0} obtaining the new (instantiated) rule R3 : f(0) → g(0). Now, we can
perform a rewriting step (note that this reduction step is unfeasible on the
original rule R1) on the rhs of R3 using R2, and then we obtain the desired
(unfolded) rule R4 : f(0) → 0. In contrast with this naive example, we will
see in Section 3 that, in general, it is not easy to decide neither the binding
to be applied nor the subterm to be converted in a reducible expression in the
considered rule.

The instantiation rule is avoided in LP and FLP transformation systems:
the use of SLD-resolution or narrowing (respectively) empowers the fold/unfold
system by implicitly embedding the instantiation rule into unfolding by means
of unification. Moreover, instantiation is not treated explicitly even in some
pure functional approaches, as is the case of [33] where the role of instantia-

145

Moreno

tion is assumed to be played by certain distribution laws for case expressions.
Nevertheless, the need for a transformation that generates redexes on rules is
crucial in a functional setting if we really want to apply unfolding steps based
on rewriting. In contrast with other methods used in FP which are based on
strictness analysis [32], our (needed) narrowing-based technique generates, at
a very low cost, useful information not only for performing instantiation steps,
but also for guiding the application of subsequent unfolding steps.

Similarly to the instantiation process generated implicitly by most unfold-
ing rules for LP ([35,30]) and FLP ([27]), classical instantiation rules for pure
FP ([13,14,30]) consider a unique subterm t in a rule R to be converted in a
redex and then, R is instantiated with the most general unifiers obtained by
unifying t with every rule in the program. Anyway (and as said in [33]), unre-
stricted instantiation is problematic because it is not even locally equivalence
preserving, since it can force premature evaluation of expressions (a problem
noted in [12], and addressed in some detail in [32]) and is better suited to a
typed language in which one can ensure that the set of instances is exhaustive.
Moreover, the use of mgu’s in (the also called “minimal”) instantiation rules 3

instead of more precise unifiers may produce sets of non mutually exclusive
(i.e., overlapping) rules, which leads to corrupt programs.

All these facts strongly contrast with the transformation methodology for
lazy (non-strict) FLP based on needed narrowing presented in [2]. The use of
needed narrowing inside an unfolding step is able to reduce redexes at different
positions in a rule once it as been instantiated by using unifiers which are more
precise than the standard most general ones. Moreover, the transformation
preserves the original structure (inductive sequentiality) of programs and offers
strong correctness results (i.e., it preserves the semantics not only of values,
but also of computed answer substitutions). Inspired by all these nice results,
we show in this paper how to extrapolate the rules presented in [2] to a pure
FP setting and, in particular, we built a safe instantiation rule that transcends
the limitations of previous approaches.

The structure of the paper is as follows. After recalling some basic defi-
nitions in the next section, we introduce our needed narrowing based instan-
tiation rule in Section 3. Section 4 defines an unfolding rule that reinforces
the effects of the previous transformation. By adding new rules for folding,
abstracting and introducing new definitions, we obtain a complete transfor-
mation system for FP in Section 5. Section 6 illustrates our approach with
practical examples and a real implementation (the Synth tool). Finally, Sec-
tion 7 concludes. More details can be found in [24].

3 Specially when trying to generate redexes at different positions on instantiated rules.

146

Moreno

2 Functional Programs versus Functional-Logic Programs

For the purposes of this paper, functional and functional–logic programs are
undistinguished by syntactic aspects since both can be seen as (inductively
sequential) TRS’s and they only differ from its corresponding operational se-
mantics which are based on rewriting and narrowing, respectively. In this
section we briefly recall some preliminary concepts and notation subjects. We
assume familiarity with basic notions from TRS’s, FP and FLP [11,19,10]. In
this work we consider a (many-sorted) signature Σ partitioned into a set C of
constructors and a set F of defined functions. The set of constructor terms
with variables is obtained by using symbols from C and X . The set of vari-
ables occurring in a term t is denoted by Var(t). We write on for the list of
objects o1, . . . , on. A pattern is a term of the form f(dn) where f/n ∈ F and
d1, . . . , dn are constructor terms (note the difference with the usual notion of
pattern in functional programming: a constructor term). A term is linear if it
does not contain multiple occurrences of one variable. A position p in a term
t is represented by a sequence of natural numbers (Λ denotes the empty se-
quence, i.e., the root position). t|p denotes the subterm of t at position p, and
t[s]p denotes the result of replacing the subterm t|p by the term s. We denote
by {x1 �→ t1, . . . , xn �→ tn} the substitution σ with σ(xi) = ti for i = 1, . . . , n
(with xi �= xj if i �= j), and σ(x) = x for all other variables x. id denotes
the identity substitution. We write t ≤ t′ (subsumption) iff t′ = σ(t) for some
substitution σ.

A set of rewrite rules l → r such that l �∈ X , and Var(r) ⊆ Var(l) is called
a term rewriting system (TRS). The terms l and r are called the left-hand side
(lhs) and the right-hand side (rhs) of the rule, respectively. In the remainder
of this paper, functional programs are a subclass of TRS’s called inductively
sequential TRS’s. To provide a precise definition of this class of programs
we introduce definitional trees [6], which are similar to standard matching
trees of FP (definitional trees can also be encoded using case expressions,
another well-known technique to implement pattern matching in FP [31]).
However, differently from left-to-right matching trees, definitional trees deal
with dependencies between arguments of functional patterns. As a good point,
optimality is achieved when definitional trees are used (in this sense, they are
closer to matching dags or index trees for TRSs [23,21]). Roughly speaking, a
definitional tree for a function symbol f is a tree whose leaves contain all (and
only) the rules used to define f and whose inner nodes contain information
to guide the (optimal) pattern matching during the evaluation of expressions.
Each inner node contains a pattern and a variable position in this pattern (the
inductive position) which is further refined in the patterns of its immediate
children by using different constructor symbols. The pattern of the root node
is simply f(xn), where xn are different variables.

It is often convenient and simplifies the understanding to provide a graphic
representation of definitional trees, where each node is marked with a pattern,

147

Moreno

the inductive position in branches is surrounded by a box, and the leaves
contain the corresponding (underlined) rules. For instance, the definitional
tree for the function “�”:

0 � N → true (R1)

s(M) � 0 → false (R2)

s(M) � s(N) → M � N (R3)

can be illustrated as follows:

0 � Y → true s(X′) � Y

s(X′) � 0 → false s(X′) � s(Y′) → X′ � Y′

X � Y

✑
✑

✑
✑✑

◗
◗

◗
◗◗

✑
✑

✑
✑✑

◗
◗

◗
◗◗

Formally, a definitional tree of a finite set of linear patterns S is a non-empty
set P of linear patterns partially ordered by subsumption having the following
properties:

Root property: There is a minimum element pattern(P), also called the pat-
tern of the definitional tree.

Leaves property: The maximal elements, called the leaves, are the elements of
S. Non-maximal elements are also called branches.

Parent property: If π ∈ P, π �= pattern(P), there exists a unique π′ ∈ P,
called the parent of π (and π is called a child of π′), such that π′ < π and
there is no other pattern π′′ ∈ T (C ∪ F ,X) with π′ < π′′ < π.

Induction property: Given π ∈ P\S, there is a position o of π with π|o ∈ X
(the inductive position), and constructors c1, . . . , cn ∈ C with ci �= cj for
i �= j, such that, for all π1, . . . , πn which have the parent π, πi = π[ci(xni

)]o
(where xni

are new distinct variables) for all 1 ≤ i ≤ n.

A defined function is called inductively sequential if it has a definitional tree. A
rewrite system R is called inductively sequential if all its defined functions are
inductively sequential. An inductively sequential TRS can be viewed as a set
of definitional trees, each defining a function symbol. There can be more than
one definitional tree for an inductively sequential function. In the following
we assume that there is a fixed definitional tree for each defined function.

The operational semantics of FP is based on rewriting. A rewrite step
is an application of a rewrite rule to a term, i.e., t →p,R s if there exists a
position p in t, a rewrite rule R = (l → r) and a substitution σ with t|p = σ(l)
and s = t[σ(r)]p. The instantiated lhs σ(l) is called a redex. →+ denotes the

148

Moreno

transitive closure of → and →∗ denotes the reflexive and transitive closure
of →. By giving priority to innermost or, alternatively outermost redexes,
we obtain two different rewriting principles, corresponding to the so called
eager (strict or call-by-value) and lazy (non-strict, or call-by-need) functional
programs, respectively.

On the other hand, the operational semantics of integrated languages is
usually based on narrowing, a combination of variable instantiation and re-
duction. Formally, t ❀p,R,σ s is a narrowing step if p is a non-variable position
in t and σ(t) →p,R s. Modern functional–logic languages are based on needed
narrowing and inductively sequential programs (a detailed description can be
found in [8]).

3 Instantiation

Following [13], the instantiation rule is used in pure functional transformation
systems to introduce, or more appropriately, to replace substitution instances
of an existing equation in a program. Similarly to the implicit instantiation
produced by the narrowing calculus, the goal here is to enable subsequent
rewriting steps. This is not an easy task, since there may exist many different
alternatives to produce bindings and redexes, and many approaches do not
offer correctness results or/and they do not consider instantiation explicitly
[13,33]. In this section we face this problem by defining a safe instantiation
rule inspired by the needed narrowing based unfolding transformation for FLP
of [2]. This last rule mirrors the needed narrowing calculus by implicitly
performing instantiation operations that use more precise bindings than mgu’s
and generate redexes at different positions on rules.

For the definition of needed narrowing we assume that t is a term rooted
with a defined function symbol and P is a definitional tree with pattern(P) =
π such that π ≤ t. We define a function λ from terms and definitional trees to
sets of tuples (position, rule, substitution) such that, for all (p,R, σ) ∈ λ(t,P),
t ❀p,R,σ t′ is a needed narrowing step 4 . Function λ is not only useful for
defining needed narrowing, but also for defining our instantiation rule. We
consider two cases for P 5 :

(i) If π is a leaf, then λ(t,P) = {(Λ, π → r, id)}, where P = {π}, and π → r
is a variant of a rewrite rule.

(ii) If π is a branch, consider the inductive position o of π and some child
πi = π[ci(xn)]o ∈ P. Let Pi = {π′ ∈ P | πi ≤ π′} be the definitional tree
where all patterns are instances of πi. Then we consider the following

4 A more precise characterization of this notion is the so called canonical representation
(p,R, φiki

◦· · ·◦φi1) ∈ λ(t,P), where σ is expressed by explicitly composing all the individual
bindings computed by (the recursive invocation of) function λ.
5 This description of a needed narrowing step is slightly different from [8] but it results in
the same needed narrowing steps.

149

Moreno

cases for the subterm t|o:

λ(t,P) �

(p,R, σ ◦ τ) if t|o = x ∈ X , τ = {x �→ ci(xn)}, and

(p,R, σ) ∈ λ(τ(t),Pi);

(p,R, σ ◦ id) if t|o = ci(tn) and (p,R, σ) ∈ λ(t,Pi);

(o.p, R, σ ◦ id) if t|o = f(tn) for f ∈ F , and (p,R, σ) ∈ λ(t|o,P ′)

where P ′ is a definitional tree for f .

Informally speaking, needed narrowing applies a rule, if possible (case 1), or
checks the subterm corresponding to the inductive positions of the branch
(case 2): if it is a variable, it is instantiated to the constructor of some child;
if it is already a constructor, we proceed with the corresponding child; if it
is a function, we evaluate it by recursively applying function λ. Thus, the
strategy differs from lazy functional languages only in the instantiation of free
variables. Note that we compose in each recursive step during the computation
of λ the substitution with the local substitution of this step (which can be the
identity).

Now, we re-use function λ for defining our instantiation rule. Given the last
(inductively sequential) program Rk in a transformation sequence R0, . . . ,Rk,
and a rule (l → r) ∈ Rk where r is rooted by a defined function symbol
with definitional tree Pr, we may get program Rk+1 by application of the
instantiation rule as follows:

Rk+1 = Rk \ {l → r} ∪ {σ(l) → σ(r) | (p,R, σ) ∈ λ(r,Pr)}.

In order to illustrate our instantiation rule, consider again a program R with
the set of rules defining “�” together with the new rules for test and double:

test(X, Y) → X � double(Y) (R4)

double(0) → 0 (R5)

double(s(X)) → s(s(double(X))) (R6)

Then, function λ computes the following set for the initial term X � double(Y):
{(Λ,R1, {X �→ 0}), (2,R5, {X �→ s(X′),Y �→ 0}), (2,R6, {X �→ s(X′), Y �→ s(Y′)})}.
Now, by application of the instantiation rule, we replace R4 in R by the rules:

test(0, Y) → 0 � double(Y) (R7)

test(s(X′), 0) → s(X′) � double(0) (R8)

test(s(X′), s(Y′)) → s(X′) � double(s(Y′)) (R9)

In contrast with the usual instantiation rule used in pure FP and similarly
to the needed narrowing calculus used in FLP, we observe two important

150

Moreno

properties enjoyed by our transformation rule:

(i) It is able to instantiate more than a unique subterm at a time. In fact,
subterms at positions Λ and 2 have been considered in the example. Ob-
serve that, if, for instance, we only perform the operation on subterm
at position Λ, only rule R7 could be achieved and then, the correctness
of the transformation would be lost (i.e., function test would remain
undefined for other terms different from 0 as first parameter).

(ii) It uses more specific unifiers than mgu’s. This is represented by the ex-
tra binding X �→ s(X′) applied in rules R8 and R9. Observe that the
generation of this extra binding is crucial to preserve the structure (in-
ductive sequentiality) of the transformed program. Otherwise, the lhs’s
of rules R8 and R9 would (erroneously) be test(X, 0) and test(X, s(Y′))
that unify with the lhs of rule R7.

Experiences in FLP show that the preservation of the program structure is
the key point to prove the correctness of a transformation system based on
needed narrowing [2,4]. Instantiation is the unique transformation rule used
throughout this paper that modifies the head of program rules, thus compro-
mising the natural structure of programs. Moreover, since the instantiation
rule is not explicitly used in [2], we now formally establish the following re-
sult (proved in the appendix section) specially formulated for this (purely
functional) transformation in an isolated way.

Theorem 3.1 The application of the instantiation rule to an inductively se-
quential program generates an inductively sequential program too.

4 Unfolding

In this section we focus on the counterpart of the instantiation rule, that
is, the unfolding transformation which basically consists of replacing a rule
by a new one obtained by the application of a rewriting step to a redex in
its rhs. This transformation is strongly related to the previous one, since it
is usually used in pure FP to generate redexes in the rhs of program rules.
In our case, we take advantage once again of the information generated by
function λ to proceed with our rewriting based unfolding rule. Hence, given
the last (inductively sequential) program Rk in a transformation sequence
R0, . . . ,Rk, and a (previously instantiated) rule (σ(l) → σ(r)) ∈ Rk such
that (p,R, σ) ∈ λ(r,Pr), then we may get program Rk+1 by application of the
unfolding rule as follows:

Rk+1 = Rk \ {σ(l) → σ(r)} ∪ {σ(l) → r′ | σ(r) →p,R r′}.
Observe that, as defined in Section 2, given a term r, if (p,R, σ) ∈ λ(r,Pr)
then t ❀p,R,σ t′ is a needed narrowing step. Hence, a program obtained by
substituting one of its rules, say l → r, by the set {σ(l) → r′ | r ❀p,R,σ r′},
can be considered as the result of transforming it by applying the appropriate

151

Moreno

instantiation and unfolding steps. In fact, the unfolding rule based on needed
narrowing presented in [2] is defined in this way, and for this reason it is said
that instantiation is naturally embedded by unfolding in FLP.

Continuing now with our example, we can unfold rule R7 by rewriting the
redex at position Λ of its rhs (i.e., the whole term 0 � double(Y)) and using
rule R1, obtaining the new rule:

test(0, Y) → true (R10)

Similarly, the unfolding of rules R8 and R9 (on subterms at position 2 of its
rhs’s, with rules R5 and R6 respectively) generates:

test(s(X′), 0) → s(X′) � 0 (R11)

test(s(X′), s(Y′)) → s(X′) � s(s(double(Y′))) (R12)

Finally, rules R11 and R12 admit empty instantiations and can be unfolded
with rules R2 and R3 respectively, obtaining:

test(s(X′), 0) → false (R13)

test(s(X′), s(Y′)) → X′ � s(double(Y′)) (R14)

Let us see now the effects that would be produced (in our original program)
by the application of unfolding steps preceded by the classical instantiation
steps used in traditional functional transformation systems. Starting again
with rule R4, we try to generate a redex in its rhs by instantiation. We
have seen in Section 3 that, by applying the binding {X �→ 0} to R4 in order
to enable a subsequent unfolding step with rule R1, we obtain an incorrect
program. Hence, we prefer to act on subterm double(Y) in rule R4 in order
to later reduce its associated redexes with rules R5 and R6. This is achieved
by applying the (“minimal”) bindings {Y �→ 0} and {Y �→ s(Y′)} to R4:

test(X, 0) → X � double(0) (R′
7)

test(X, s(Y′)) → X � double(s(Y′)) (R′
8)

This process is called “minimal” instantiation in [14], since it uses the mgu’s
obtained by exhaustively unifying the subterm to be converted in a redex with
the lhs’s of the rules in the program. The corresponding unfolding steps on
R′

7 and R′
8 return:

test(X, 0) → X � 0 (R′
9)

test(X, s(Y′)) → X � s(s(double(Y′))) (R′
10)

Now, we can perform two instantiation steps, one for rule R′
9 and one more

for rule R′
10, using the bindings {X �→ 0} and {X �→ s(X′)}, and obtaining the

152

Moreno

rules (previously generated by our method) R11 and R12 together with:

test(0, 0) → 0 � 0 (R′
11)

test(0, s(Y′)) → 0 � s(s(double(Y′))) (R′
12)

Finally, the unfolding of R′
11 and R′

12 returns:

test(0, 0) → true (R′
13)

test(0, s(Y′)) → true (R′
14)

Observe now that our method, instead of producing these last rules, only
generates the unique rule R10 that subsumes both ones. Moreover, compared
with the traditional transformation process, our method is faster apart from
producing smaller (correct) programs. Our transformation rules inherit these
nice properties from the optimality of needed narrowing (see [8]) with respect
to:

(i) the (shortest) length of successful derivations for a given goal which, in
our framework, implies that less instantiation and unfolding steps are
needed when building a transformation sequence, and

(ii) the independence of (minimal) computed solutions associated to differ-
ent successful derivations, which guarantees that no redundant rules are
produced during the transformation process.

5 Folding and Related Rules

In order to complete our transformation system, let us now introduce the
folding rule, which is a counterpart of the previous transformation, i.e., the
compression of a piece of code into an equivalent call. Roughly speaking, in FP
the folding operation proceeds in the opposite direction of the usual reduction
steps, that is, reduction is performed against a reversed program rule. Now we
adapt the folding operation of [2] to FP. Given the last (inductively sequential)
program Rk in a transformation sequence R0, . . . ,Rk, and two rules belonging
to Rk, say l → r (the “folded” rule) and l′ → r′ (the “folding” rule), such
that there exists an operation rooted subterm of r which is an instance of r′,
i.e., r|p = θ(r′), we may get program Rk+1 by application of the folding rule
as follows:

Rk+1 = Rk \ {l → r} ∪ {l → r[θ(l′)]p}.

For instance, by folding rule f(s(0)) → s(f(0)) with respect to rule g(X) →
f(X), we obtain the new rule f(s(0)) → s(g(0)). Observe that substitution θ
used in our definition is not a unifier but just a matcher. This is similar to
many other folding rules for LP and FLP, which have been defined in a similar
“functional style” (see, e.g., [30,35,2]), and can still produce at a very low cost
many powerful optimizations.

153

Moreno

In order to increase the optimization power of our folding rule we now
introduce a new kind of transformation called definition introduction rule.
So, given the last (inductively sequential) program Rk in a transformation
sequence R0, . . . ,Rk, we may get program Rk+1 by adding to Rk a new rule,
called definition rule or eureka, of the form f(x) → r, where f is a new func-
tion symbol not occurring in the sequence R0, . . . ,Rk and Var(r) = x. Now,
we can reformulate our folding rule by imposing that the “folding” rule be an
eureka belonging to any program in the transformation sequence whereas the
“folded” rule never be an eureka. Note that these new applicability condi-
tions enhances the original definition by relaxing the (strong) condition that
the “folding” rule belong to the last program in the sequence, which in general
is crucial to achieve effective optimizations [35,30,2]. Moreover, the possibility
to unsafely fold a rule by itself (“self folding”) is disallowed.

Let us illustrate our definitions. Assume a program containing the set
of rules defining “+” together with the following rule R1 : twice(X, Y) →
(X + Y) + (X + Y). Now, we apply the definition introduction rule by adding
to the program the following eureka rule R2: new(Z) → Z + Z. Finally, if we
fold R1 using R2, we obtain rule R3: twice(X, Y) → new(X + Y). Note that
the new definition of twice enhances the original one, since rules R2 and R3

can be seen as a lambda lifted version (inspired by the one presented by [33])
of the following rule, which is expressed by means of a local declaration built
with the where construct typical of functional languages: twice(X, Y) → Z +
Z where Z = X+Y. This example shows a novel, nice capability of our definition
introduction and folding rules: they can appropriately be combined in order
to implicitly produce the effects of the so-called abstraction rule of [13,33]
(often known as where–abstraction rule [30]). The use of this transformation
is mandatory in order to obtain the benefits of the powerful tupling strategy
[13,14,25], as we will see in the following section 6 .

The set of rules presented so far is correct/complete (for FP), as formalized
in the following theorem, which is an immediate consequence of the strong
correctness of the transformation system (for FLP) presented in [2] 7 .

Theorem 5.1 Let (R0, . . . ,Rn) be a transformation sequence constructed by
the application of the following transformation rules: definition introduction,
instantiation, unfolding and folding. Let t be a term without new function
symbols and s a constructor term. Then, t →∗ s in R0 iff t →∗ s in Rn.

6 In [2] we formalize an abstraction rule that allows the abstraction of different expressions
simultaneously.
7 We omit the formal proof here since it directly corresponds to the so called invariant I1
proved there. Proof details can be found in [4].

154

Moreno

6 Some examples

The building blocks of strategic program optimizations are transformation
tactics (strategies), which are used to guide the process and effect some par-
ticular kind of change to the program undergoing transformation [16,30]. One
of the most relevant quests in applying a transformation strategy is the intro-
duction of new functions, often called in the literature eureka definitions. In
the following, we illustrate the power of our transformation system by tackling
some representative examples regarding the optimizations of composition and
tupling [13]. Both strategies have been recently automated for functional–
logic programs in [3] and [25] respectively, and they can be easily adapted to
functional programming by simple considering the instantiation rule we have
just introduced in this paper. See also [1] for an implemented prototype that
optimizes both pure functional programs and functional–logic programs.

6.1 Composition

The composition strategy was originally introduced in [13] for the optimiza-
tion of pure functional programs (see [29,30] for more details). Variants of
this composition strategy are the internal specialization technique [34] and
the deforestation method [37]. By using the composition strategy (or its vari-
ants), one may avoid the construction of intermediate data structures that are
produced by some function g and consumed as inputs by another function f.

In order to illustrate the composition strategy, consider the following pro-
gram R which defines the function dapp to concatenate three lists (by applying
the standard function append twice):

dapp(X, Y, Z) → append(append(X, Y), Z) (R1)

append([], X) → X (R2)

append([H|T], X) → [H|append(T, X)] (R3)

This program is rather inefficient since dapp traverses list X twice and con-
structs an (unnecessary) intermediate list by the inner call append(X, Y). The
application of the composition algorithm on R and append(append(X, Y), Z)
gives rise to the following transformation sequence:

(i) First, we introduce the following eureka definition:

new(X, Y, Z) → append(append(X, Y), Z) (R4)

(ii) Now, since function λ applied to the term append(append(X, Y), Z) returns
the following pair of tuples: (1, R2, {X �→ []}) and (1, R3, {X �→ [H|T]}), we
apply the instantiation rule on rule R4 as follows:

new([], Y, Z) → append(append([], Y), Z) (R5)

new([H|T], Y, Z) → append(append([H|T], Y), Z) (R6)

155

Moreno

(iii) The unfolding of the underlined subterms in rules R5 and R6 using R2

and R3 respectively, generates:

new([], Y, Z) → append(Y, Z) (R7)

new([H|T], Y, Z) → append([H|append(T, Y)], Z) (R8)

(iv) Since function λ applied to the whole rhs of rule R8 returns the (unique)
tuple (Λ, R2, id), the application of the instantiation rule returns a new
rule R9 which is identical to R8 (due to the use of an empty unifier).

(v) Now, we unfold (the whole rhs of) rule R9 using R2 obtaining:

new([H|T], Y, Z) → [H|append(append(T, Y), Z)] (R10)

(vi) Finally, we fold the instances of append(append(X, Y), Z) in rules R1 and
R10 using rule R4:

dapp(X, Y, Z) → new(X, Y, Z) (R11)

new([H|T], Y, Z) → [H|new(T, Y, Z)] (R12)

Observe that this transformation sequence emerges with the desired recursive
definition for new (rules R7 and R12). Hence, the transformed program (which
is an improvement w.r.t. the original program R) is the following:

dapp(X, Y, Z) → new(X, Y, Z) (R11)

append([], X) → X (R2)

append([H|T], X) → [H|append(T, X)] (R3)

new([], [H|T], Z) → [H|append(T, Z)] (R7)

new([H|T], Y, Z) → [H|new(T, Y, Z)] (R12)

It can be argued that most of the efficiency improvements achieved by the
composition strategy can be simply obtained by lazy evaluation [16]. Never-
theless, the composition strategy often allows the derivation of programs with
improved performance also in the context of lazy evaluation [36]. Laziness
is decisive when, given a nested function call f(g(t)), the intermediate data
structure produced by g is infinite but the function f can still produce its
outcome by knowing only a finite portion of the output of g, as illustrates the
following example.

The sum prefix(X, Y) function defined in the following program R0 returns
the sum of the Y consecutive natural numbers, starting from X. This function
first generates an infinite list of consecutive numbers starting from X, and then

156

Moreno

it adds the first Y numbers of the list:

sum prefix(X, Y) → suml(from(X), Y) (R1)

suml(L, 0) → 0 (R2)

suml([H|T], s(X)) → H + suml(T, X) (R3)

from(X) → [X|from(s(X))] (R4)

0 + X → X (R5)

s(X) + Y → s(X + Y) (R6)

Note that function from is non-terminating (which does not affect the correct-
ness of the transformation). We can improve the efficiency of R0 by avoiding
the creation and subsequent use of the intermediate, partial list generated by
the call to function from:

(i) Definition introduction:

new(X, Y) → suml(from(X), Y) (R7)

(ii) Now, function λ applied to suml(from(X), Y) returns the pair of tuples
(Λ, R2, {Y �→ 0}) and (1, R4, {Y �→ s(Y′)}). It is important to note here
that our strategy generates this second tuple with a non empty identifier
(as would produce other simpler methods that simply would unfold sub-
term from(X) without instantiating the whole rule,hence damaging the
program structure) in order to preserve the inductive sequentiality of the
resulting program. Now, we apply the instantiation rule as follows:

new(X, 0) → suml(from(X), 0) (R8)

new(X, s(Y′)) → suml(from(X), s(Y′)) (R9)

(iii) Unfolding of the underlined subtems on rules R8 and R9 using R2 and
R4:

new(X, 0) → 0 (R10)

new(X, s(Y′)) → suml([X|from(s(X))], s(Y′)) (R11)

(iv) Instantiation of rule R11 using the tuple (Λ, R3, id):

new(X, s(Y′)) → suml([X|from(s(X))], s(Y′)) (R12)

Observe that since the unifier generated by the call to function λ is
empty and hence, it is not relevant for the instantiation step itself, we
need the more significant position and rule information to perform the
next unfolding step.

(v) Unfolding of the underlined subterm in R12 using R3 (note that this is
infeasible with an eager strategy):

new(X, s(Y′)) → X + suml(from(s(X)), Y′) (R13)

157

Moreno

(vi) Folding of the underlined subterm (which is an instance of the lhs of rule
R7)in rule R10 using the eureka rule R7:

new(X, s(Y′)) → X + new(s(X), Y′) (R14)

(vii) Folding of the rhs of rule R1 using R7:

sum prefix(X, Y) → new(X, Y) (R15)

Then, the transformed and enhanced final program is:

sum prefix(X, Y) → new(X, Y) (R15)

new(X, 0) → 0 (R10)

new(X, s(Y′)) → X + new(s(X), Y′) (R14)

(together with the initial definitions for +, from, and suml). Note that the use
of instantiation and unfolding rules based on needed narrowing is essential in
the above example. It ensures that no redundant rules are produced and it also
allows the transformation to succeed even in the presence of non-terminating
functions. Table 1 shows two more examples (lengthapp and doubleflip) of
program optimization by using the composition strategy.

6.2 Tupling

While other transformation techniques (like partial evaluation or composition)
have been widely investigated, tupling is a less known—but equally powerful—
transformation strategy based on the fold/unfold methodology. The tupling
strategy was originally introduced in [13,15] to optimize functional programs.
Essentially, it proceeds by grouping calls with common arguments together so
that their results are computed simultaneously. When the strategy succeeds,
multiple traversals of data structures can be avoided, thus transforming a
nonlinear recursive program into a linear recursive one [30]. Unfortunately, the
tupling strategy is more involved than the composition strategy. In contrast
with the composition strategy, where eureka rules always contains nested call
in its rhs, the tupling strategy often requires complex analyses in order to
extract appropriate tuples of calls to be grouped together [14]. The following
well-known example illustrates the tupling strategy.

The fibonacci numbers can be computed in an inefficient way by the fol-
lowing initial program R0:

fib(0) → s(0) (R1)

fib(s(0)) → s(0) (R2)

fib(s(s(X))) → fib(s(X)) + fib(X) (R3)

(together with the rules for addition +). Observe that this program has an
exponential complexity that can be reduced to linear by applying the tupling

158

Moreno

strategy as follows:

(i) Definition introduction:

new(X) → (fib(s(X)), fib(X)) (R4)

(ii) Instantiation of rule R4 by using the intended tuples (1, R2, {X �→ 0}) and
(1, R3, {X �→ s(X′)}):

new(0) → (fib(s(0)), fib(0))) (R5)

new(s(X′)) → (fib(s(s(X′))), fib(s(X′))) (R6)

(iii) Unfolding (the underlined subterms in) rules R5 and R6 using R2 and
R3, respectively, obtaining:

new(0) → (s(0), fib(0)) (R7)

new(s(X′)) → (fib(s(X′)) + fib(X′), fib(s(X′))) (R8)

Before continuing with our transformation sequence we firstly reduce
subterm fib(0) in rule R7 in order to obtain the following rule R9 which
represents a case base definition for new:

new(0) → (s(0), s(0)) (R10)

This kind of normalizing step (which obviously is a particular case
of unfolding step) that does not require a previous instantiation step is
performed automatically by the incremental tupling algorithm described
in [25].

(iv) In order to proceed with the abstraction of rule R8, we decompose the
process in two low level transformation steps as described in Section 5:
• Definition introduction:

new aux((Z1, Z2)) → (Z1 + Z2, Z1) (R10)

• Folding R8 w.r.t. R10:

new(s(X′)) → new aux((fib(s(X′)), fib(X′))) (R11)

(v) Folding R11 using R4:

new(s(X′)) → new aux(new(X′)) (R12)

(vi) Abstraction of R3:
• Definition introduction:

fib aux((Z1, Z2)) → Z1 + Z2 (R13)

• Folding R3 w.r.t. R13:

fib(s(s(X))) → fib aux((fib(s(X)), fib(X))) (R14)

(vii) Folding R14 using R4:

fib(s(s(X))) → fib aux(new(X)) (R15)

159

Moreno

Now, the transformed program (with linear complexity thanks to the use of
the recursive function new), is the following:

fib(0) → s(0)

fib(s(0)) → s(0)

fib(s(s(X))) → Z1 + Z2 where (Z1, Z2) = new(X)

new(0) → (s(0), s(0))

new(s(X)) → (Z1 + Z2, Z1) where (Z1, Z2) = new(X)

where the abstracted and folded rules (R13, R15) and (R10, R12) are expressed
by using local declarations for readability.

The three last programs shown in Table 1 are also well-known examples of
tupling optimizations. In particular, the hanoi’s towers problem has special
significance in this setting since it requires the generation of two eureka defi-
nitions in order to be solved. In [26] we have recently proposed in incremental
version of tupling which is able to deal with this kind of problems for both
pure functional and functional–logic programs.

6.3 The transformation system Synth

The basic rules presented so far 8 together with a fully automatic composition
strategy 9 have been implemented by the prototype system Synth [1]. The
Synth system is written in SICStus Prolog v3.6 and the complete implemen-
tation consists of about 680 clauses (2450 lines of code). The transformator
is expressed by 330 clauses (including the user interface and the code needed
to handle the ground representation), the parser and other utilities by 190
clauses, needed narrowing is implemented by 90 clauses and definitional trees
are constructed by means of 70 clauses. We have recently incorporated a
graphical interface (written in Java) to the system that enhances the interac-
tion with the user.

Language syntax follows mainly that of the language Curry, a modern mul-
tiparadigm declarative language based on needed narrowing which extends
Haskell with features for logic and concurrent programming and which is in-
tended to become a standard in the functional–logic community [20,22]. How-
ever, the subset of Curry programs accepted by the system are also Haskell
programs, which confirms the adequacy of the tool to deal not only with in-
tegrated programs, but also with pure functional programs.

8 The system performs automatic instantiation during unfolding. Moreover, since trans-
formed programs respect both the Curry and Haskell syntax, and thanks to the correctness
results exposed in this paper, they can be safely executed by narrowing and rewriting,
respectively.
9 Nowadays we are also including the incremental version of tupling described in [26], where
several eureka definitions are produced in multiple transformation phases hence obtaining
powerful optimizations by means of a simple (purely syntactic) and fully automatic method.

160

Moreno

Table 1
Examples of transformation strategies

Original program Final program

lengthapp Composition

lengthapp(L1, L2) → len(app(L1, L2)) lengthapp(L1, L2) → new(L1, L2)

len([]) → 0 new([], L) → len(L)

len([H|T]) → s(len(T)) new([H|T], L) → s(new(T, L))

app([], L) → L

app([H|T], L) → [H|app(T, L)]

doubleflip Composition

doubleflip(T) → flip(flip(T)) doubleflip(T) → new(T)

flip(leaf(N)) → leaf(N) new(leaf(N)) → leaf(N)

flip(tree(L, N, R) → tree(flip(R), N, flip(L)) new(tree(L, N, R) → tree(new(L), N, new(R))

factlist tupling

factlist(0) → [] factlist(0) → []

factlist(s(N)) → [fact(s(N))|factlist(N)] factlist(s(N)) → [U|V] where (U, V) = new(N)

fact(0) → s(0) new(0) → (s(0), [])

fact(s(N)) → s(N) ∗ fact(N) new(s(N)) → (s(s(N)) ∗ U, U : V) where (U, V) = new(N)

average tupling

average(L) → sum(L)/length(L) average(L) → U/V where (U, V) = new(L)

sum([]) → 0 new([]) → (0, 0)

sum([H|T]) → H + sum(T) new([H|T]) → (H + U, s(V)) where (U, V) = new(T)

length([]) → 0

length([H|T]) → s(length(T))

hanoi tupling

h(0, A, B, C) → [] h(0, A, B, C) → []

h(s(N), A, B, C) → app(h(N, A, C, B), [mov(A, B)|h(N, C, B, A)]) h(s(N), A, B, C) → app(U, [mov(A, B)|V])
where (U, V) = new(N, A, C, B)

new(0, A, B, C) → ([], [])

new(s(N), A, B, C) → (app(U, [mov(A, B)|V]),
app(W, [mov(B, C)|U]))
where (U, V, W) = new2(N, A, C, B)

new2(0, A, B, C) → ([], [], [])

new2(s(N), A, B, C) → (app(U, [mov(A, B)|V]),
app(W, [mov(B, C)|U]),
app(V, [mov(C, A)|W]))

where (U, V, W) = new2(N, A, C, B)

7 Conclusions

We have defined a safe instantiation rule that combined with other transforma-
tion rules for unfolding, folding, abstracting and introducing new definitions, is
able to optimize lazy functional programs. The main novelty of our approach
is that it is inspired by the kind of instantiation that needed narrowing im-
plicitly produces before reducing a given term. As a nice consequence, our
transformation methodology inherits the best properties of needed narrowing
and enhances previous pure FP approaches in several senses. For instance, it
preserves the structure of transformed programs, it is able to use specific (as
opposed to most general) unifiers and it produces redexes at different positions

161

Moreno

of a given rule after being instantiated with different unifiers, thus minimizing
not only the set of transformed rules but also the transformation effort.

Beyond instantiation, the set of rules presented so far has been imple-
mented and proved correct/complete in FLP i.e., all them preserve the se-
mantics of values (corresponding to its functional dimension) and computed
answer substitutions (which is associated to its logic counterpart). Since the
operational semantics of FLP is based on narrowing, and narrowing subsumes
rewriting (i.e., the operational semantics of FP), this directly implies that the
whole transformation system specially tailored for FP is also semantics pre-
serving in this context, which guarantees its effective use in real tools. For the
future, we plan to extend our transformation system in order to cope with lazy
functional programs with different pattern matching semantics and sharing.
Moreover, a new, natural and conceptually challenging extension that would
greatly expand the applicability of the proposed transformation system is the
treatment of non-deterministic functions, following the ideas of [18,7].

Acknowledgements.

Many thanks to Maŕıa Alpuente, Moreno Falaschi and Germán Vidal for col-
laborative work on fold/unfold transformations in FLP and helpful discussions
on its extensions. I am also grateful to the anonymous referees for their accu-
rate and useful remarks and suggestions, which helped to improve this paper.

References

[1] M. Alpuente, M. Falaschi, C. Ferri, G. Moreno, G. Vidal, and I. Ziliotto. The
Transformation System synth. Technical Report DSIC-II/16/99, UPV, 1999.
Available in URL: http://www.dsic.upv.es/users/elp/papers.html.

[2] M. Alpuente, M. Falaschi, G. Moreno, and G. Vidal. A Transformation
System for Lazy Functional Logic Programs. In A. Middeldorp and T. Sato,
editors, Proc. of the 4th Fuji International Symposyum on Functional and Logic
Programming, FLOPS’99, Tsukuba (Japan), pages 147–162. Springer LNCS
1722, 1999.

[3] M. Alpuente, M. Falaschi, G. Moreno, and G. Vidal. An Automatic
Composition Algorithm for Functional Logic Programs. In V. Hlaváč, K. G.
Jeffery, and J. Wiedermann, editors, Proc. of the 27th Annual Conference on
Current Trends in Theory and Practice of Informatics, SOFSEM’2000, pages
289–297. Springer LNCS 1963, 2000.

[4] M. Alpuente, M. Falaschi, G. Moreno, and G. Vidal. Rules + Strategies for
Transforming Lazy Functional Logic Programs. Theoretical Computer Science,
page (56), 2003. Accepted for publication (to appear).

[5] M. Alpuente, M. Hanus, S. Lucas, and G. Vidal. Specialization of
Inductively Sequential Functional Logic Programs. In P. Lee, editor, Proc.

162

Moreno

of 1999 International Conference on Functional Programming, ICFP’99, Paris
(France). ACM, New York, 1999.

[6] S. Antoy. Definitional trees. In Proc. of the 3rd Int’l Conference on Algebraic
and Logic Programming, ALP’92, pages 143–157. Springer LNCS 632, 1992.

[7] S. Antoy. Optimal non-deterministic functional logic computations. In Proc.
of the Int’l Conference on Algebraic and Logic Programming, ALP’97, pages
16–30. Springer LNCS 1298, 1997.

[8] S. Antoy, R. Echahed, and M. Hanus. A Needed Narrowing Strategy. In Proc.
21st ACM Symp. on Principles of Programming Languages, Portland, pages
268–279, New York, 1994. ACM Press.

[9] S. Antoy and A. Tolmach. Typed higher-order narrowing without higher-
order strategies. In 4th Fuji International Symposium on Functional and Logic
Programming (FLOPS’99), volume 1722, pages 335–350, Tsukuba, Japan, 11
1999. Springer LNCS.

[10] Sergio Antoy. Evaluation strategies for functional logic programming. In
Bernhard Gramlich and Salvador Lucas, editors, Electronic Notes in Theoretical
Computer Science, volume 57. Elsevier Science Publishers, 2001.

[11] F. Baader and T. Nipkow. Term Rewriting and All That. Cambridge University
Press, 1998.

[12] R.S. Bird. Using Circular Programs to Eliminate Multiple Traversals of Data.
Acta Informatica, 21(1):239–250, 1984.

[13] R.M. Burstall and J. Darlington. A Transformation System for Developing
Recursive Programs. Journal of the ACM, 24(1):44–67, 1977.

[14] W. Chin. Towards an Automated Tupling Strategy. In Proc. of Partial
Evaluation and Semantics-Based Program Manipulation, 1993, pages 119–132.
ACM, New York, 1993.

[15] J. Darlington. Program transformation. In J. Darlington, P. Henderson, and
D. A. Turner, editors, Functional Programming and its Applications, pages 193–
215. Cambridge University Press, 1982.

[16] M. S. Feather. A Survey and Classification of some Program Transformation
Approaches and Techniques. In IFIP 87, pages 165–195, 1987.

[17] J.C. González-Moreno. A correctness proof for Warren’s HO into FO
translation. In Proc. GULP’ 93, pages 569–585, Gizzeria Lido, IT, Oct. 1993.

[18] J.C. González-Moreno, F.J. López-Fraguas, M.T. Hortalá-González, and
M. Rodŕıguez-Artalejo. An approach to declarative programming based on
a rewriting logic. Journal of Logic Programming, 40:47–87, 1999.

[19] M. Hanus. The Integration of Functions into Logic Programming: From Theory
to Practice. Journal of Logic Programming, 19&20:583–628, 1994.

163

Moreno

[20] M. Hanus, H. Kuchen, and J.J. Moreno-Navarro. Curry: A Truly Functional
Logic Language. In Proc. ILPS’95 Workshop on Visions for the Future of Logic
Programming, pages 95–107, 1995.

[21] M. Hanus, S. Lucas, and A. Middeldorp. Strongly sequential and inductively
sequential term rewriting systems. Information Processing Letters, 67(1):1–8,
1998.

[22] M. Hanus (ed.). Curry: An Integrated Functional Logic Language. Available
in http://www-i2.informatik.rwth-aachen.de/~hanus/curry, 1999.

[23] G. Huet and J.J. Lévy. Computations in orthogonal rewriting systems, Part I
+ II. In J.L. Lassez and G.D. Plotkin, editors, Computational Logic – Essays
in Honor of Alan Robinson, pages 395–443. The MIT Press, Cambridge, MA,
1992.

[24] G. Moreno. A Safe Transformation System for Optimizing Functional
Programs. Technical Report DIAB-02-07-27, UCLM, 2002. Available in URL:
http://www.info-ab.uclm.es/~personal/gmoreno/gmoreno.htm.

[25] G. Moreno. Automatic Optimization of Multi-Paradigm Declarative Programs.
In F. J. Garijo, J. C. Riquelme, and M. Toro, editors, Proc. of the 8th Ibero–
American Conference on Artificial Intelligence, IBERAMIA’2002, pages 131–
140. Springer LNAI 2527, 2002.

[26] G. Moreno. Incremental Tupling in a Functional-Logic Setting. In Proc. of
Segundas Jornadas sobre Lenguajes de Programación, PROLE’02, El Escorial
(Spain), page 16. Universidad Complutense de Madrid, 2002.

[27] G. Moreno. Transformation Rules and Strategies for Functional-Logic
Programs. AI Communications, IO Press (Amsterdam), 15(2):3, 2002.

[28] J.J. Moreno-Navarro and M. Rodŕıguez-Artalejo. Logic Programming with
Functions and Predicates: The language Babel. Journal of Logic Programming,
12(3):191–224, 1992.

[29] A. Pettorossi and M. Proietti. Transformation of Logic Programs: Foundations
and Techniques. Journal of Logic Programming, 19,20:261–320, 1994.

[30] A. Pettorossi and M. Proietti. Rules and Strategies for Transforming Functional
and Logic Programs. ACM Computing Surveys, 28(2):360–414, 1996.

[31] Simon L. Peyton Jones. The Implementation of Functional Programming
Languages. Prentice-Hall, 1987.

[32] C. Runciman, M. Firth, and N. Jagger. Transformation in a non-strict language:
An approach to instantiation. In K. Davis and R. J. M. Hughes, editors,
Functional Programming: Proceedings of the 1989 Glasgow Workshop, 21-23
August 1989, pages 133–141, London, UK, 1990. Springer-Verlag.

[33] D. Sands. Total Correctness by Local Improvement in the Transformation
of Functional Programs. ACM Transactions on Programming Languages and
Systems, 18(2):175–234, March 1996.

164

Moreno

[34] W.L. Scherlis. Program Improvement by Internal Specialization. In Proc. of
8th Annual ACM Symp. on Principles of Programming Languages, pages 41–49.
ACM Press, New York, 1981.

[35] H. Tamaki and T. Sato. Unfold/Fold Transformations of Logic Programs. In
S. Tärnlund, editor, Proc. of Second Int’l Conf. on Logic Programming, Uppsala,
Sweden, pages 127–139, 1984.

[36] P.L. Wadler. Listlessness is better than Laziness. Computer Science
Department, CMU-CS-85-171, Carnegie Mellon Univertsity, Pittsburgh, PA,
1985. Ph.D. Thesis.

[37] P.L. Wadler. Deforestation: Transforming programs to eliminate trees.
Theoretical Computer Science, 73:231–248, 1990.

165

Moreno

Appendix

In order to prove Theorem 3.1, we need the following technical results from
[5]. The first proposition shows that each substitution in a needed narrowing
step instantiates only variables occurring in the initial term.

Proposition .1 [5] If (p,R, φk ◦· · ·◦φ1) ∈ λ(t,P) is a needed narrowing step,
then, for i = 1, . . . , k, φi = id or φi = {x �→ c(xn)} (where xn are pairwise
different variables) with x ∈ Var(φi−1 ◦ · · · ◦ φ1(t)).

The next lemma shows that for different narrowing steps there is always a
variable which is instantiated to different constructors:

Lemma .2 [5] Let t be a term rooted with a defined function symbol, P a
definitional tree with pattern(P) ≤ t and (p,R, φk ◦ · · · ◦ φ1), (p′, R′, φ′

k′ ◦ · · · ◦
φ′

1) ∈ λ(t,P), k ≤ k′. Then, for all i ∈ {1, . . . , k},
• either φi ◦ · · · ◦ φ1 = φ′

i ◦ · · · ◦ φ′
1, or

• there exists some j < i with
(i) φj ◦ · · · ◦ φ1 = φ′

j ◦ · · · ◦ φ′
1, and

(ii) φj+1 = {x �→ c(· · ·)} and φ′
j+1 = {x �→ c′(· · ·)} with c �= c′.

Now we proceed with the proof of Theorem 3.1.

Proof. Let R′ be the program obtained by application of the instantiation
rule to the inductively sequential program R. By Definition of our instantia-
tion rule, program R′ has been obtained from R by removing a rule R =
(l → r) ∈ R and adding a new set of rules whose lhs’s are represented
by the set Sinst = {φ1(l), . . . , φm(l)}, where r ❀φi

ri, i = 1, . . . ,m, are all
the one-step needed narrowing derivations from r in R. Assume that l is
rooted with the defined function f , and f is defined in R by a set of rules
{Rj = (lj → rj) | j = 0, . . . , n, n > 0}. Since R is inductively sequential,
there exists a definitional tree P for f in R. Then, we know that the root of
P is the pattern f(xp) (where p is the arity of f) and S = {l1, . . . , ln} is the
set of leaves of P, where obviously l ∈ S and l ∈ P. To show the inductive
sequentiality of R′, it suffices to show that there exists a definitional tree P ′

for the set

S ′ = (S\{l}) ∪ Sinst .

Consider for each needed narrowing step r ❀φi
ri the associated canonical

representation (p,R, φiki
◦ · · · ◦ φi1) ∈ λ(r,Pr) (where Pr is a definitional tree

for the root of r). Let

P ′ = P ∪ {φij ◦ · · · ◦ φi1(l) | 1 ≤ i ≤ m, 1 ≤ j ≤ ki} .

We prove that P ′ is a definitional tree for S ′ by showing that each of the four
properties of a definitional tree holds for P ′:

Root property: The minimum elements (root patterns) are identical for both
definitional trees, since only instances of a leaf of P are added in P ′.

166

Moreno

Leaves property: The maximal elements of P are S. Since all substitutions
computed by needed narrowing along different derivations are indepen-
dent by Lemma .2, the substitutions φ1, . . . , φm are pairwise independent.
Thus, the replacement of the element l in S by the set {φ1(l), . . . , φm(l)}
does not introduce any comparable (w.r.t. the subsumption ordering) terms.
This implies that S ′ is the set of maximal elements of P ′.

Parent property: Let π ∈ P ′\{pattern(P ′)}. We consider two cases for π:
(i) π ∈ P: Then the parent property trivially holds since only instances of

a leaf of P are added in P ′.
(ii) π �∈ P : By definition of P ′, π = φij ◦ · · · ◦φi1(l) for some 1 ≤ i ≤ m and

1 ≤ j ≤ ki. We show by induction on j that the parent property holds
for π.
Base case (j = 1): Then π = φi1(l). It is φi1 �= id (otherwise π = l ∈ P).
Thus, by Proposition .1, φi1 = {x �→ c(xn)} with x ∈ Var(r) ⊆ Var(l).
Due to the linearity of the initial pattern l and all substituted terms
(cf. Proposition .1), l has a single occurrence o of the variable x and,
therefore, π = l[c(xn)]o, i.e., l is the unique parent of π.
Induction step (j > 1): We assume that the parent property holds for
π′ = φi,j−1 ◦ · · · ◦ φi1(l). Let φij �= id (otherwise the induction step is
trivial). By Proposition .1, φij = {x �→ c(xn)} with x ∈ Var(φi,j−1 ◦
· · · ◦ φi1(l)) (since Var(r) ⊆ Var(l)). Now we proceed as in the base
case to show that π′ is the unique parent of π.

Induction property: Let π ∈ P ′\S ′. We consider two cases for π:
(i) π ∈ P\{l}: Then the induction property holds for π since it already

holds in P and only instances of l are added in P ′.
(ii) π = φij ◦· · ·◦φi1(l) for some 1 ≤ i ≤ m and 0 ≤ j < ki. Assume φi,j+1 �=

id (otherwise, do the identical proof with the representation π = φi,j+1 ◦
· · · ◦φi1(l)). By Proposition .1, φi,j+1 = {x �→ c(xn)} and π has a single
occurrence of the variable x (due to the linearity of the initial pattern
and all substituted terms). Therefore, π′ = φi,j+1◦· · ·◦φi1(l) is a child of
π. Consider another child π′′ = φi′j′ ◦ · · · ◦φi′1(l) of π (other patterns in
P ′ cannot be children of π due to the induction property for P). Assume
φi′j′ ◦ · · · ◦φi′1 �= φi,j+1 ◦ · · · ◦φi1 (otherwise, both children are identical).
By Lemma .2, there exists some k with φi′k ◦ · · · ◦ φi′1 = φil ◦ · · · ◦ φi1,
φi′,k+1 = {x′ �→ c′(· · ·)}, and φi,k+1 = {x′ �→ c′′(· · ·)} with c′ �= c′′.
Since π′′ and π′ are children of π (i.e., immediate successors w.r.t. the
subsumption ordering) it must be x′ = x (otherwise, π′ differs from π
at more than one position) and φi′,j′ = · · · = φi′,k+2 = id (otherwise, π′′

differs from π at more than one position). Thus, π′ and π′′ differ only in
the instantiation of the variable x which has exactly one occurrence in
their common parent π, i.e., there is a position o of π with π|o = x and
π′ = π[c′(xn′

i
)]o and π′′ = π[c′′(xn′′

i
)]o. Since π′′ was an arbitrary child

of π, the induction property holds. ✷

167

