3 research outputs found

    Understanding the IKEA Warehouse Processes and Modeling using Modular Petri Nets

    Get PDF
    Nowadays, large warehouses handle a huge number of products. Handling the enormity and different types of (range) products also demand complex warehouse processes. In this paper, the IKEA warehouse in Stavanger, Norway, is taken as an example, which stores, manages, and sells ready-to-assemble furniture, kitchen appliances and home accessories. The focus of this paper is to understand the warehouse processes that make the warehouse popular with the customers. Petri net is used to model the processes, and by simulation, the effect of the processes are understood. This paper shows how the processes integrate the large range of products, customer service, and the supply chain. The logistics flow is represented with a modular Petri Net model using the tool known as the General-purpose Petri Net Simulator (GPenSim). The goal of this paper is also to determine and propose any changes for a more efficient warehouse performance.publishedVersio

    The Knowledge Application and Utilization Framework Applied to Defense COTS: A Research Synthesis for Outsourced Innovation

    Get PDF
    Purpose -- Militaries of developing nations face increasing budget pressures, high operations tempo, a blitzing pace of technology, and adversaries that often meet or beat government capabilities using commercial off-the-shelf (COTS) technologies. The adoption of COTS products into defense acquisitions has been offered to help meet these challenges by essentially outsourcing new product development and innovation. This research summarizes extant research to develop a framework for managing the innovative and knowledge flows. Design/Methodology/Approach – A literature review of 62 sources was conducted with the objectives of identifying antecedents (barriers and facilitators) and consequences of COTS adoption. Findings – The DoD COTS literature predominantly consists of industry case studies, and there’s a strong need for further academically rigorous study. Extant rigorous research implicates the importance of the role of knowledge management to government innovative thinking that relies heavily on commercial suppliers. Research Limitations/Implications – Extant academically rigorous studies tend to depend on measures derived from work in information systems research, relying on user satisfaction as the outcome. Our findings indicate that user satisfaction has no relationship to COTS success; technically complex governmental purchases may be too distant from users or may have socio-economic goals that supersede user satisfaction. The knowledge acquisition and utilization framework worked well to explain the innovative process in COTS. Practical Implications – Where past research in the commercial context found technological knowledge to outweigh market knowledge in terms of importance, our research found the opposite. Managers either in government or marketing to government should be aware of the importance of market knowledge for defense COTS innovation, especially for commercial companies that work as system integrators. Originality/Value – From the literature emerged a framework of COTS product usage and a scale to measure COTS product appropriateness that should help to guide COTS product adoption decisions and to help manage COTS product implementations ex post

    A Novel Locality Algorithm and Peer-to-Peer Communication Infrastructure for Optimizing Network Performance in Smart Microgrids

    Full text link
    [EN] Peer-to-Peer (P2P) overlay communications networks have emerged as a new paradigm for implementing distributed services in microgrids due to their potential benefits: they are robust, scalable, fault-tolerant, and they can route messages even with a large number of nodes which are frequently entering or leaving from the network. However, current P2P systems have been mainly developed for file sharing or cycle sharing applications where the processes of searching and managing resources are not optimized. Locality algorithms have gained a lot of attention due to their potential to provide an optimized path to groups with similar interests for routing messages in order to get better network performance. This paper develops a fully functional decentralized communication architecture with a new P2P locality algorithm and a specific protocol for monitoring and control of microgrids. Experimental results show that the proposed locality algorithm reduces the number of lookup messages and the lookup delay time. Moreover, the proposed communication architecture heavily depends of the lookup used algorithm as well as the placement of the communication layers within the architecture. Experimental results will show that the proposed techniques meet the network requirements of smart microgrids even with a large number of nodes on stream.This work is supported by the Spanish Ministry of Economy and Competitiveness (MINECO) and the European Regional Development Fund (ERDF) under Grant ENE2015-64087-C2-2R. This work is supported by the Spanish Ministry of Economy and Competitiveness (MINECO) under BES-2013-064539.Marzal-Romeu, S.; González-Medina, R.; Salas-Puente, RA.; Figueres Amorós, E.; Garcerá, G. (2017). A Novel Locality Algorithm and Peer-to-Peer Communication Infrastructure for Optimizing Network Performance in Smart Microgrids. Energies. 10(9):1-25. https://doi.org/10.3390/en10091275S125109Khan, R. H., & Khan, J. Y. (2013). A comprehensive review of the application characteristics and traffic requirements of a smart grid communications network. Computer Networks, 57(3), 825-845. doi:10.1016/j.comnet.2012.11.002Dada, J. O. (2014). Towards understanding the benefits and challenges of Smart/Micro-Grid for electricity supply system in Nigeria. Renewable and Sustainable Energy Reviews, 38, 1003-1014. doi:10.1016/j.rser.2014.07.077Lidula, N. W. A., & Rajapakse, A. D. (2011). Microgrids research: A review of experimental microgrids and test systems. Renewable and Sustainable Energy Reviews, 15(1), 186-202. doi:10.1016/j.rser.2010.09.041Hussain, A., Arif, S. M., Aslam, M., & Shah, S. D. A. (2017). Optimal siting and sizing of tri-generation equipment for developing an autonomous community microgrid considering uncertainties. Sustainable Cities and Society, 32, 318-330. doi:10.1016/j.scs.2017.04.004Dehghanpour, K., Colson, C., & Nehrir, H. (2017). A Survey on Smart Agent-Based Microgrids for Resilient/Self-Healing Grids. Energies, 10(5), 620. doi:10.3390/en10050620Palizban, O., Kauhaniemi, K., & Guerrero, J. M. (2014). Microgrids in active network management – part II: System operation, power quality and protection. Renewable and Sustainable Energy Reviews, 36, 440-451. doi:10.1016/j.rser.2014.04.048Shi, W., Li, N., Chu, C.-C., & Gadh, R. (2017). Real-Time Energy Management in Microgrids. IEEE Transactions on Smart Grid, 8(1), 228-238. doi:10.1109/tsg.2015.2462294Deng, R., Yang, Z., Chow, M.-Y., & Chen, J. (2015). A Survey on Demand Response in Smart Grids: Mathematical Models and Approaches. IEEE Transactions on Industrial Informatics, 11(3), 570-582. doi:10.1109/tii.2015.2414719Moazami Goodarzi, H., & Kazemi, M. (2017). A Novel Optimal Control Method for Islanded Microgrids Based on Droop Control Using the ICA-GA Algorithm. Energies, 10(4), 485. doi:10.3390/en10040485Erol-Kantarci, M., Kantarci, B., & Mouftah, H. (2011). Reliable overlay topology design for the smart microgrid network. IEEE Network, 25(5), 38-43. doi:10.1109/mnet.2011.6033034Hassan Youssef, K. (2016). Optimal management of unbalanced smart microgrids for scheduled and unscheduled multiple transitions between grid-connected and islanded modes. Electric Power Systems Research, 141, 104-113. doi:10.1016/j.epsr.2016.07.015Giotitsas, C., Pazaitis, A., & Kostakis, V. (2015). A peer-to-peer approach to energy production. Technology in Society, 42, 28-38. doi:10.1016/j.techsoc.2015.02.002Kazmi, S. A. A., Shahzad, M. K., Khan, A. Z., & Shin, D. R. (2017). Smart Distribution Networks: A Review of Modern Distribution Concepts from a Planning Perspective. Energies, 10(4), 501. doi:10.3390/en10040501Werth, A., Andre, A., Kawamoto, D., Morita, T., Tajima, S., Tokoro, M., … Tanaka, K. (2018). Peer-to-Peer Control System for DC Microgrids. IEEE Transactions on Smart Grid, 9(4), 3667-3675. doi:10.1109/tsg.2016.2638462Deconinck, G., Vanthournout, K., Beitollahi, H., Qui, Z., Duan, R., Nauwelaers, B., … Belmans, R. (2008). A Robust Semantic Overlay Network for Microgrid Control Applications. Architecting Dependable Systems V, 101-123. doi:10.1007/978-3-540-85571-2_5Bandara, H. M. N. D., & Jayasumana, A. P. (2012). Collaborative applications over peer-to-peer systems–challenges and solutions. Peer-to-Peer Networking and Applications, 6(3), 257-276. doi:10.1007/s12083-012-0157-3Palizban, O., & Kauhaniemi, K. (2015). Hierarchical control structure in microgrids with distributed generation: Island and grid-connected mode. Renewable and Sustainable Energy Reviews, 44, 797-813. doi:10.1016/j.rser.2015.01.008Khatibzadeh, A., Besmi, M., Mahabadi, A., & Reza Haghifam, M. (2017). Multi-Agent-Based Controller for Voltage Enhancement in AC/DC Hybrid Microgrid Using Energy Storages. Energies, 10(2), 169. doi:10.3390/en10020169Planas, E., Gil-de-Muro, A., Andreu, J., Kortabarria, I., & Martínez de Alegría, I. (2013). General aspects, hierarchical controls and droop methods in microgrids: A review. Renewable and Sustainable Energy Reviews, 17, 147-159. doi:10.1016/j.rser.2012.09.032Olivares, D. E., Mehrizi-Sani, A., Etemadi, A. H., Canizares, C. A., Iravani, R., Kazerani, M., … Hatziargyriou, N. D. (2014). Trends in Microgrid Control. IEEE Transactions on Smart Grid, 5(4), 1905-1919. doi:10.1109/tsg.2013.2295514Vandoorn, T. L., Vasquez, J. C., De Kooning, J., Guerrero, J. M., & Vandevelde, L. (2013). Microgrids: Hierarchical Control and an Overview of the Control and Reserve Management Strategies. IEEE Industrial Electronics Magazine, 7(4), 42-55. doi:10.1109/mie.2013.2279306Zhou, B., Li, W., Chan, K. W., Cao, Y., Kuang, Y., Liu, X., & Wang, X. (2016). Smart home energy management systems: Concept, configurations, and scheduling strategies. Renewable and Sustainable Energy Reviews, 61, 30-40. doi:10.1016/j.rser.2016.03.047Ancillotti, E., Bruno, R., & Conti, M. (2013). The role of communication systems in smart grids: Architectures, technical solutions and research challenges. Computer Communications, 36(17-18), 1665-1697. doi:10.1016/j.comcom.2013.09.004Llaria, A., Terrasson, G., Curea, O., & Jiménez, J. (2016). Application of Wireless Sensor and Actuator Networks to Achieve Intelligent Microgrids: A Promising Approach towards a Global Smart Grid Deployment. Applied Sciences, 6(3), 61. doi:10.3390/app6030061Luna, A. C., Diaz, N. L., Graells, M., Vasquez, J. C., & Guerrero, J. M. (2016). Cooperative energy management for a cluster of households prosumers. IEEE Transactions on Consumer Electronics, 62(3), 235-242. doi:10.1109/tce.2016.7613189Gungor, V. C., Lu, B., & Hancke, G. P. (2010). Opportunities and Challenges of Wireless Sensor Networks in Smart Grid. IEEE Transactions on Industrial Electronics, 57(10), 3557-3564. doi:10.1109/tie.2009.2039455Zhao, C., He, J., Cheng, P., & Chen, J. (2017). Consensus-Based Energy Management in Smart Grid With Transmission Losses and Directed Communication. IEEE Transactions on Smart Grid, 8(5), 2049-2061. doi:10.1109/tsg.2015.2513772Lo, C.-H., & Ansari, N. (2013). Decentralized Controls and Communications for Autonomous Distribution Networks in Smart Grid. IEEE Transactions on Smart Grid, 4(1), 66-77. doi:10.1109/tsg.2012.2228282Li, C., Savaghebi, M., Guerrero, J., Coelho, E., & Vasquez, J. (2016). Operation Cost Minimization of Droop-Controlled AC Microgrids Using Multiagent-Based Distributed Control. Energies, 9(9), 717. doi:10.3390/en9090717Wu, X., Jiang, P., & Lu, J. (2014). Multiagent-Based Distributed Load Shedding for Islanded Microgrids. Energies, 7(9), 6050-6062. doi:10.3390/en7096050Kantamneni, A., Brown, L. E., Parker, G., & Weaver, W. W. (2015). Survey of multi-agent systems for microgrid control. Engineering Applications of Artificial Intelligence, 45, 192-203. doi:10.1016/j.engappai.2015.07.005Lopes, A. L., & Botelho, L. M. (2008). Improving Multi-Agent Based Resource Coordination in Peer-to-Peer Networks. Journal of Networks, 3(2). doi:10.4304/jnw.3.2.38-47Cameron, A., Stumptner, M., Nandagopal, N., Mayer, W., & Mansell, T. (2015). Rule-based peer-to-peer framework for decentralised real-time service oriented architectures. Science of Computer Programming, 97, 202-234. doi:10.1016/j.scico.2014.06.005Zhang, C., Wu, J., Cheng, M., Zhou, Y., & Long, C. (2016). A Bidding System for Peer-to-Peer Energy Trading in a Grid-connected Microgrid. Energy Procedia, 103, 147-152. doi:10.1016/j.egypro.2016.11.264Malatras, A. (2015). State-of-the-art survey on P2P overlay networks in pervasive computing environments. Journal of Network and Computer Applications, 55, 1-23. doi:10.1016/j.jnca.2015.04.014Eng Keong Lua, Crowcroft, J., Pias, M., Sharma, R., & Lim, S. (2005). A survey and comparison of peer-to-peer overlay network schemes. IEEE Communications Surveys & Tutorials, 7(2), 72-93. doi:10.1109/comst.2005.1610546Xu, J., Kumar, A., & Yu, X. (2004). On the Fundamental Tradeoffs Between Routing Table Size and Network Diameter in Peer-to-Peer Networks. IEEE Journal on Selected Areas in Communications, 22(1), 151-163. doi:10.1109/jsac.2003.818805Stoica, I., Morris, R., Karger, D., Kaashoek, M. F., & Balakrishnan, H. (2001). Chord. ACM SIGCOMM Computer Communication Review, 31(4), 149-160. doi:10.1145/964723.383071Rowstron, A., & Druschel, P. (2001). Pastry: Scalable, Decentralized Object Location, and Routing for Large-Scale Peer-to-Peer Systems. Lecture Notes in Computer Science, 329-350. doi:10.1007/3-540-45518-3_18Yuh-Jzer Joung, Li-Wei Yang, & Chien-Tse Fang. (2007). Keyword search in DHT-based peer-to-peer networks. IEEE Journal on Selected Areas in Communications, 25(1), 46-61. doi:10.1109/jsac.2007.070106Stoica, I., Morris, R., Liben-Nowell, D., Karger, D. R., Kaashoek, M. F., Dabek, F., & Balakrishnan, H. (2003). Chord: a scalable peer-to-peer lookup protocol for internet applications. IEEE/ACM Transactions on Networking, 11(1), 17-32. doi:10.1109/tnet.2002.808407Gottron, C., König, A., & Steinmetz, R. (2010). A Survey on Security in Mobile Peer-to-Peer Architectures—Overlay-Based vs. Underlay-Based Approaches. Future Internet, 2(4), 505-532. doi:10.3390/fi2040505Seyedi, Y., Karimi, H., & Guerrero, J. M. (2017). Centralized Disturbance Detection in Smart Microgrids With Noisy and Intermittent Synchrophasor Data. IEEE Transactions on Smart Grid, 8(6), 2775-2783. doi:10.1109/tsg.2016.2539947Youssef, T., Elsayed, A., & Mohammed, O. (2016). Data Distribution Service-Based Interoperability Framework for Smart Grid Testbed Infrastructure. Energies, 9(3), 150. doi:10.3390/en9030150Liu, X., Xia, H., & Chien, A. A. (2004). Validating and Scaling the MicroGrid: A Scientific Instrument for Grid Dynamics. Journal of Grid Computing, 2(2), 141-161. doi:10.1007/s10723-004-4200-3Kansal, P., & Bose, A. (2012). Bandwidth and Latency Requirements for Smart Transmission Grid Applications. IEEE Transactions on Smart Grid, 3(3), 1344-1352. doi:10.1109/tsg.2012.2197229Kuo, M.-T., & Lu, S.-D. (2013). Design and Implementation of Real-Time Intelligent Control and Structure Based on Multi-Agent Systems in Microgrids. Energies, 6(11), 6045-6059. doi:10.3390/en6116045Del Val, E., Rebollo, M., & Botti, V. (2012). Enhancing decentralized service discovery in open service-oriented multi-agent systems. Autonomous Agents and Multi-Agent Systems, 28(1), 1-30. doi:10.1007/s10458-012-9210-0Howell, S., Rezgui, Y., Hippolyte, J.-L., Jayan, B., & Li, H. (2017). Towards the next generation of smart grids: Semantic and holonic multi-agent management of distributed energy resources. Renewable and Sustainable Energy Reviews, 77, 193-214. doi:10.1016/j.rser.2017.03.107Frey, S., Diaconescu, A., Menga, D., & Demeure, I. (2015). A Generic Holonic Control Architecture for Heterogeneous Multiscale and Multiobjective Smart Microgrids. ACM Transactions on Autonomous and Adaptive Systems, 10(2), 1-21. doi:10.1145/2700326Miers, C., Simplicio, M., Gallo, D., Carvalho, T., Bressan, G., Souza, V., … Damola, A. (2010). A Taxonomy for Locality Algorithms on Peer-to-Peer Networks. IEEE Latin America Transactions, 8(4), 323-331. doi:10.1109/tla.2010.5595121Porsinger, T., Janik, P., Leonowicz, Z., & Gono, R. (2017). Modelling and Optimization in Microgrids. Energies, 10(4), 523. doi:10.3390/en10040523Ali, M., Zakariya, M., Asif, M., & Ullah, A. (2012). TCP/IP Based Intelligent Load Management System in Micro-Grids Network Using MATLAB/Simulink. Energy and Power Engineering, 04(04), 283-289. doi:10.4236/epe.2012.44038Shin, I.-J., Song, B.-K., & Eom, D.-S. (2017). International Electronical Committee (IEC) 61850 Mapping with Constrained Application Protocol (CoAP) in Smart Grids Based European Telecommunications Standard Institute Machine-to-Machine (M2M) Environment. Energies, 10(3), 393. doi:10.3390/en10030393Loh, P. C., Li, D., Chai, Y. K., & Blaabjerg, F. (2013). Autonomous Operation of Hybrid Microgrid With AC and DC Subgrids. IEEE Transactions on Power Electronics, 28(5), 2214-2223. doi:10.1109/tpel.2012.2214792Overlay networks for smart gridshttp://users.atlantis.ugent.be/cdvelder/papers/2013/wauters2013sgv.pdfEugster, P. T., Felber, P. A., Guerraoui, R., & Kermarrec, A.-M. (2003). The many faces of publish/subscribe. ACM Computing Surveys, 35(2), 114-131. doi:10.1145/857076.857078Ali, I. (2012). High-speed Peer-to-peer Communication based Protection Scheme Implementation and Testing in Laboratory. International Journal of Computer Applications, 38(4), 16-24. doi:10.5120/4596-6793Yoo, B.-K., Yang, S.-H., Yang, H.-S., Kim, W.-Y., Jeong, Y.-S., Han, B.-M., & Jang, K.-S. (2011). Communication Architecture of the IEC 61850-based Micro Grid System. Journal of Electrical Engineering and Technology, 6(5), 605-612. doi:10.5370/jeet.2011.6.5.605Dou, X., Quan, X., Wu, Z., Hu, M., Yang, K., Yuan, J., & Wang, M. (2014). Hybrid Multi-Agent Control in Microgrids: Framework, Models and Implementations Based on IEC 61850. Energies, 8(1), 31-58. doi:10.3390/en801003
    corecore