5,500 research outputs found

    MOSAIC roadmap for mobile collaborative work related to health and wellbeing.

    Get PDF
    The objective of the MOSAIC project is to accelerate innovation in Mobile Worker Support Environments. For that purpose MOSAIC develops visions and illustrative scenarios for future collaborative workspaces involving mobile and location-aware working. Analysis of the scenarios is input to the process of road mapping with the purpose of developing strategies for R&D leading to deployment of innovative mobile work technologies and applications across different domains. One of the application domains where MOSAIC is active is health and wellbeing. This paper builds on another paper submitted to this same conference, which presents and discusses health care and wellbeing specific scenarios. The aim is to present an early form of a roadmap for validation

    Formulating and managing viable SLAs in cloud computing from a small to medium service provider's viewpoint: A state-of-the-art review

    Full text link
    © 2017 Elsevier Ltd In today's competitive world, service providers need to be customer-focused and proactive in their marketing strategies to create consumer awareness of their services. Cloud computing provides an open and ubiquitous computing feature in which a large random number of consumers can interact with providers and request services. In such an environment, there is a need for intelligent and efficient methods that increase confidence in the successful achievement of business requirements. One such method is the Service Level Agreement (SLA), which is comprised of service objectives, business terms, service relations, obligations and the possible action to be taken in the case of SLA violation. Most of the emphasis in the literature has, until now, been on the formation of meaningful SLAs by service consumers, through which their requirements will be met. However, in an increasingly competitive market based on the cloud environment, service providers too need a framework that will form a viable SLA, predict possible SLA violations before they occur, and generate early warning alarms that flag a potential lack of resources. This is because when a provider and a consumer commit to an SLA, the service provider is bound to reserve the agreed amount of resources for the entire period of that agreement – whether the consumer uses them or not. It is therefore very important for cloud providers to accurately predict the likely resource usage for a particular consumer and to formulate an appropriate SLA before finalizing an agreement. This problem is more important for a small to medium cloud service provider which has limited resources that must be utilized in the best possible way to generate maximum revenue. A viable SLA in cloud computing is one that intelligently helps the service provider to determine the amount of resources to offer to a requesting consumer, and there are number of studies on SLA management in the literature. The aim of this paper is two-fold. First, it presents a comprehensive overview of existing state-of-the-art SLA management approaches in cloud computing, and their features and shortcomings in creating viable SLAs from the service provider's viewpoint. From a thorough analysis, we observe that the lack of a viable SLA management framework renders a service provider unable to make wise decisions in forming an SLA, which could lead to service violations and violation penalties. To fill this gap, our second contribution is the proposal of the Optimized Personalized Viable SLA (OPV-SLA) framework which assists a service provider to form a viable SLA and start managing SLA violation before an SLA is formed and executed. The framework also assists a service provider to make an optimal decision in service formation and allocate the appropriate amount of marginal resources. We demonstrate the applicability of our framework in forming viable SLAs through experiments. From the evaluative results, we observe that our framework helps a service provider to form viable SLAs and later to manage them to effectively minimize possible service violation and penalties

    Semantic validation of affinity constrained service function chain requests

    Get PDF
    Network Function Virtualization (NFV) has been proposed as a paradigm to increase the cost-efficiency, flexibility and innovation in network service provisioning. By leveraging IT virtualization techniques in combination with programmable networks, NFV is able to decouple network functionality from the physical devices on which they are deployed. This opens up new business opportunities for both Infrastructure Providers (InPs) as well as Service Providers (SPs), where the SP can request to deploy a chain of Virtual Network Functions (VNFs) on top of which its service can run. However, current NFV approaches lack the possibility for SPs to define location requirements and constraints on the mapping of virtual functions and paths onto physical hosts and links. Nevertheless, many scenarios can be envisioned in which the SP would like to attach placement constraints for efficiency, resilience, legislative, privacy and economic reasons. Therefore, we propose a set of affinity and anti-affinity constraints, which can be used by SPs to define such placement restrictions. This newfound ability to add constraints to Service Function Chain (SFC) requests also introduces an additional risk that SFCs with conflicting constraints are requested or automatically generated. Therefore, a framework is proposed that allows the InP to check the validity of a set of constraints and provide feedback to the SP. To achieve this, the SFC request and relevant information on the physical topology are modeled as an ontology of which the consistency can be checked using a semantic reasoner. Enabling semantic validation of SFC requests, eliminates inconsistent SFCs requests from being transferred to the embedding algorithm.Peer Reviewe
    • …
    corecore