
Comuzzi, M. & Spanoudakis, G. (2009). A Framework for Hierarchical and Recursive Monitoring of

Service Based Systems. In: H. Sasaki, G. O. Bellot, M. Ehmann & O. Dini (Eds.), Fourth

International Conference on Internet and Web Applications and Services, 2009. ICIW '09. (pp. 383-

388). IEEE. ISBN 978-1-4244-3851-8

City Research Online

Original citation: Comuzzi, M. & Spanoudakis, G. (2009). A Framework for Hierarchical and

Recursive Monitoring of Service Based Systems. In: H. Sasaki, G. O. Bellot, M. Ehmann & O. Dini

(Eds.), Fourth International Conference on Internet and Web Applications and Services, 2009.

ICIW '09. (pp. 383-388). IEEE. ISBN 978-1-4244-3851-8

Permanent City Research Online URL: http://openaccess.city.ac.uk/12613/

Copyright & reuse

City University London has developed City Research Online so that its users may access the

research outputs of City University London's staff. Copyright © and Moral Rights for this paper are

retained by the individual author(s) and/ or other copyright holders. All material in City Research

Online is checked for eligibility for copyright before being made available in the live archive. URLs

from City Research Online may be freely distributed and linked to from other web pages.

Versions of research

The version in City Research Online may differ from the final published version. Users are advised

to check the Permanent City Research Online URL above for the status of the paper.

Enquiries

If you have any enquiries about any aspect of City Research Online, or if you wish to make contact

with the author(s) of this paper, please email the team at publications@city.ac.uk.

CORE Metadata, citation and similar papers at core.ac.uk

Provided by City Research Online

https://core.ac.uk/display/42629295?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://openaccess.city.ac.uk/
mailto:publications@city.ac.uk

A Framework for Hierarchical and Recursive Monitoring of Service Based

Systems
1

Marco Comuzzi and George Spanoudakis

Department of Computing, City University

Northampton Square, EC1V 0HB, London, UK

{sbbd286, G.Spanoudakis}@soi.city.ac.uk

1
 The research has been supported by the European Community under the SLA@SOI FP7 Project (grant agreement n. 216556).

Abstract

Runtime monitoring of Service Based Systems (SBSs)

usually relies on information derived from I/O messages

exchanged within business processes implementing services.

When service provisioning is regulated by complex Service

Level Agreements (SLAs) between service requesters,

(composed) services, and infrastructure providers,

monitoring may require additional features, such as (i)

coordination among events captured at different sources

involved in service provisioning and (ii) delegation of

properties monitoring to local sites. This paper discusses an

architecture and engagement protocol supporting the two

aforementioned requirements for monitoring complex SLA-

driven service provisioning.

1. Introduction

Runtime system monitoring, as opposed to static system

analysis and testing is often the only meaningful way to

perform verification of Service Based Systems (SBSs), in

which both the involved software services and infrastructural

elements may change dynamically according to contextual

factors, such as the system load or the availability of new

components. SBSs are dynamically evolving software

systems comprising loosely coupled software services that

may be substituted at runtime when they become unavailable

or no longer satisfy non functional requirements, usually

referred to as quality of service (QoS) properties [7].

Furthermore, the infrastructure on which the services of an

SBS are executed may incorporate heterogeneous

components and change dynamically. Services may, for

example, be accessed over local area networks or through

mobile devices, while service providers may change their

service provisioning infrastructure (e.g web and hardware

servers) according to the system loads they experience or

adaptable quality profiles negotiated with service consumers.

Usually, existing approaches on runtime monitoring of

SBSs focus on monitoring workflow-based systems (i.e.

systems in which a reference business process coordinates

the constituent software services) through either the

interception of I/O messages exchanged between the business

workflow that coordinates the services of the system and

these services [3] or the instrumentation of the workflow

executable code with monitoring-related activities [2]. Thus,

current approaches to SBS monitoring do not consider some

basic features that may characterize a complex SBS.

More specifically, it should first be noted that an SBS can

be recursively defined, that is, a reference business process

requiring monitoring may orchestrate local services which

are recursively defined as a composition of other local

services. In such cases, monitoring information may need to

come from each of the services in the complex recursive

service composition. Furthermore, SBS are hierarchically

implemented. Required monitoring information may derive

from business level Key Performance Indicator (KPIs)

reported in an SLA established with the end-user. Such KPIs

result in properties verifiable at the workflow or service

interface and these can be then translated into properties of

the infrastructure on which services are being are executed.

Typical is the case of response time, usually an archetypical

dimension defining service QoS in an SLA. A business KPI

may specify constraints on the average response time of a

service in a given time window. The KPI is translated on

properties referring to the timestamps of service calls and

responses that can be captured at the service interface.

Eventually, further properties influencing the service

response time, such as the length of required DB queries,

server load, or network delay, can be captured from the

infrastructure on which the service executes.

In this context, we aim at designing a framework for

event-based monitoring of SBS for complex SLA-driven

service provisioning. On the one hand, the framework should

be hierarchical, allowing the monitoring of properties at

different layers of the SBS, such as service composition, i.e.

the workflow execution environment, service invocation, and

service execution, i.e. the set of resources on which each

single service executes. On the other hand, the framework

needs to be recursive, allowing the monitoring of properties

of a workflow and, recursively, of all the (composed)

services which constitute the workflow.

The framework is constituted by the architecture of the

monitor and an engagement protocol. The monitor is able to

coordinate monitoring events coming from different elements

composing the SBS and to delegate the monitoring of rules

derived from SLAs to local monitors, such as the ones that

may be deployed at the infrastructural level. The engagement

protocol is required to set up at runtime the monitoring

infrastructure in a transparent way.

Besides addressing the recursive and hierarchical nature

of SBS, the delegation of monitoring rules aims at (i)

improving the scalability and performance of the monitoring

process, avoiding a single centralized monitor and (ii)

exploiting the specificity of local monitors designed for

monitoring properties at different layers of an SBS. On the

one hand, in fact, a centralized monitor may become a

bottleneck for the monitoring process, since it needs to

process monitoring information provided by several elements

in the SBS. This becomes a paramount issue, for instance, if

the SBS reference workflow is primarily hosted on a mobile

device, with limited computing power and memory capacity.

On the other hand, our monitor is also able to provide a

coordination framework for delegating rule monitoring to

local monitors attached, for instance, at the workflow

interface or at specific infrastructural elements that need to

be monitored.

The paper is organized as follows. In Section 2, we

introduce an example illustrating the need for the architecture

we introduce in the paper. In Section 3, we describe the

monitoring capabilities of services required by our

monitoring framework. In Section 4, we present the

architecture and usage scenarios of the monitoring

framework. In Section 5, we discuss the interface through

which services make their monitoring capabilities available

to the framework and the engagement protocol to establish

the monitoring process. In Section 6, we discuss related work

and in Section 7 we present some basic concluding remarks

for our approach.

2. A Motivating Example
As an example of the heterogeneity and complexity of

SLA monitoring that our approach aims to address, consider

a retail SBS supporting the management of purchases on a

mobile e-commerce website. The coordinating business

process of this SBS is called Purchase Business Process

(PBP). As shown in Figure 1, PBP is executed locally on the

customer’s mobile phone and implemented as the sequential

composition of three different local services, namely

ManageCart, Checkout, and BookSale. The customer is

operating in an area covered by a mobile 3-G network

managed by the generic Mobile Network Manager. Each

service in PBP is offered by a different service provider,

possibly on a heterogeneous set of service provisioning

infrastructures.

More specifically, the Checkout service (CP) is a composite

service itself involving the services ExecutePayment and

ConfirmPayment. The ExecutePayment service is

implemented as a workflow, called Execute Payment Process

(EPP), which is hosted and executed by a Financial Service

Provider (e.g. a bank). In this process, the credit card number

provided by the customer is first validated. Validation is

performed by the ValidateCard service which issues a

transaction ID. Then, EPP debits the total amount of the

purchase to the cardholder’s account using the service

DebitCard.

Purchase Business

Process (PBP)

ManageCart

Checkout

BookSale

AddItem

UpdateTotal

checkout?

YES

NO

Execute

Payment

Confirm

Payment

Manage Cart Process (MCP)

Checkout Process (CP)

ValidateCard

DebitCard

Execute Payment

Process (EPP)

External Service Provider

Financial

Service

Provider

Customer Mobile Device

Mobile Network Manager

External

Service

Provider

User

SLASLA

SLASLA

SLASLA

SLASLA

SLASLA

Figure 1 – A running example

The provision of PBP to a specific consumer may be

regulated by a set of different SLAs, established following

negotiation among the service consumer, the service

providers, and the mobile network manager (as shown in

Figure 1). Furthermore, service providers may have internal

SLAs between the different departments of their

organizations that are in charge of the provision of different

components necessary for the provision of a service.

Starting from the functional description of a service and

the guarantees expressed in the SLAs between it and its

clients, we can create monitoring rules that during the

execution of the service will be checked against events

generated from it to assess whether the SLA has been

violated. Examples of such rules are shown in Table 1.

R1 The average response time of the Checkout service as seen at

the side of PBP should be less than X seconds.

R2 PBP should not allow purchases for which the total price is
greater than £100

R3 EPP should always be able to decrypt a card number provided
to it by one of its clients

R4 There should be at least 2 separate servers executing the
instances of EPP during peak transaction hours (i.e., from
9.00am to 5.00pm)

R5 PBP should not issue a checkout request when the customer is
involved in a phone call or when the remaining battery power
of the handheld falls below a threshold X

R6 PBP should issue checkout requests only when the customer
is in a 3G-covered cell

Table 1 – Examples of monitoring rules

The rules in SLAs may be of different types depending

on: (a) the types of information that their runtime check

requires and (b) the type of the property they express.

With respect to criterion (a), SLA monitoring rules are

distinguished into rules that can be checked based on: (i)

events captured only at the interface of services (i.e., the set

of I/O messages exchanged between services and their

environment) such as rule R1, (ii) information about the

internal state of the service (e.g. rules R2 and R3), or (iii)

information captured from the execution environment of the

service (e.g., rule R6).

With respect to criterion (b), rules can be distinguished

into rules that express functional properties (e.g., R2, R5, and

R6) and rules that express QoS properties (e.g., R1, R3, and

R4).

Finally, for some rules it is possible to exercise pre-

emptive control (i.e., block some operation or drop an inter-

service message when the rule is violated) whilst in other

only post-mortem control actions are possible. Rules R1 and

R6 in Table 1, for example, can trigger pre-emptive control

actions whilst rule R3 in the table can only by associated

with post-mortem control actions.

3. Describing Monitoring Capabilities
We argue that when a monitoring framework requires

information about the services internal state or execution

infrastructure, such information can only be made available

by services through an interface.

Services expose to the monitoring framework a set of

monitoring capabilities. It should be noted that, in this

context, the reference workflow can be considered as a

service itself, which may expose monitoring capabilities to

its own monitoring infrastructure. Monitoring capabilities

can be distinguished in two basic types: Event Emission and

Internal Monitoring capabilities (see Figure 2).

InternalMonitoringCapability

-ruleTemplate

MonitoringResultEventType

EventEmissionCapability

InteractionEventType

MonitoringCapability

InternalEventType

EventType

Figure 2 – Monitoring Capabilities

An Event Emission capability refers to the ability of a

service to provide the monitoring infrastructure with basic

events that may then be used for checking the violation of

monitoring rules. An Internal Monitoring capability, on the

other hand, signifies the ability of a service to monitor

internally a given rule and notify violations of this rule to the

monitoring infrastructure. To appreciate this distinction,

consider the PBP process in Section 2 and a monitoring rule

requiring the response time of the CP service to be less than

N time units. CP may be able to notify to the monitoring

infrastructure the timestamps of the calls and responses of its

operations, thus enabling the evaluation of its response times

and, consequently, the check of the monitoring rule. In this

case, CP would have an event emission capability.

Alternatively, CP may be able to monitor the response time

monitoring rule internally (the BPEL process implementing

CP, for example, could use an internal monitoring

infrastructure to check the rule) and report cases where the

rule does not hold to PBP. In this case CP would have an

internal monitoring capability.

The events related to monitoring can also be of three

different types, namely Internal, Interaction or Monitoring

Result events.

Internal events provide information about the internal

state of the execution of a service or the status of the

infrastructure on which a service is being executed. In their

simplest form, these may be represented by the values of

variables involved in the internal execution of a service. In

our example, the notification of the partial total amount made

by the MCP workflow, required for monitoring rule R3,

represents an internal event. When a model of the internal

execution state of a service (e.g. a state transition machine or

an algebraic specification [9]), is available, internal events

may assume a more complex form, representing also states or

state transitions. Examples of events providing information

about the execution infrastructure of a service are the CPU or

memory load of this infrastructure and the number of the

different instances of a service that are being executed at a

given time point. In the case of mobile services, such as the

PBP service in our example, infrastructure events may be

also provide information about the status of a mobile device.

They may, for example, indicate the remaining battery

power of the device or the network which the device is

connected to, currently.

Interaction events provide information concerning service

operation calls and responses. For atomic services, events are

captured at the service container level, whereas for composed

services events can be captured through the instrumentation

of the workflow execution engine. Instrumentation may

regard the definition of event captors which intercept and

analyse SOAP messages exchanged by a service and external

clients or the extraction of events from the workflow engine

or service container log files.

Monitoring result events are events that represent the

results of the monitoring process, i.e. violations or

verifications of the satisfaction of a given monitoring rule,

and can be generated only by services that have Internal

Monitoring capabilities.

Events of different types may be transmitted from their

source to their recipient under a push or pull communication

policy. In push communication, local services and/or the

reference workflow of an SBS pushes events proactively to

the monitor. In pull communication, the monitor should

periodically retrieve events from the local services or the

reference workflow.

4. The Architecture of the Monitoring

Framework
The general architecture of the Monitoring Framework

that we propose in this paper is shown in Figure 3. The figure

shows the design of the Monitoring Framework of the

reference workflow, i.e., the PBP process in our example,

and what instrumentation is required by this framework in

the reference workflow and local services execution

environment.

Local services may be implemented as a workflow (e.g.,

the MCP and CP services in our scenario), or they can be

atomic services (e.g. the BookSale service) associated with

local monitors and event captors. Event captors provide

Interaction and Internal events captured at local services that

have Event Emission capabilities, whereas local monitors are

capable of monitor rules internally (Internal Monitoring

capabilities). Additional capabilities, required for running the

engagement protocol for establishing the monitoring process,

are exported by the Capability Manager module. The

reference workflow and local services expose their

monitoring capabilities through a Monitoring Interface. The

purpose of a monitoring interface in our architecture is to

standardize access to the monitoring capabilities of the

reference workflow or the local services.

The proposed monitoring framework does not impose any

constraints on the local monitors that are associated with

different services. Thus, it allows the different services to

have monitors with different implementations and property

checking capabilities whilst providing a framework for

deploying them together and making use of their results.

Similarly, the proposed framework does not impose any

restriction on the monitoring framework at the reference

workflow either. The only requirement imposed by the

framework is that all the monitors and event captors that are

associated with the services/workflow of an SBS must adhere

to a common communication interface and be described

according to the capability model adopted by the framework.

Thus, different monitors and event captors may be plugged in

the proposed architecture as long as they are able to perform

monitoring using events and the monitoring capabilities of

the workflow and local services of an SBS.

Rule

Generator

Rule feasibility

verification

Event

ReceiverEvent

DB

Deviation

DB

Monitor

Monitoring Framework

Monitoring manager

Service

interface

Monitoring

Interface

Local

Monitor
Service

Implementation

CPU MEM

Event

Captors
Monitoring

Capabilities

Local

Atomic

Service

Service

interface

Monitoring

Interface

Workflow

engine

Event

Captors

Monitoring

Capabilities

Reference

Workflow

Service

interface

Monitoring

Interface

Workflow

engine

Event

Captors
Monitoring

Capabilities

Local

Composed

Service

Local

Service

Local

Service

- Event Emission capabilities

- Internal Monitoring

capabilities

Local

Monitor

SBS

Monitoring Broker

Capability

Manager

Capability

Manager

Capability

Manager

Figure 3 – The Monitoring Framework

The functionality of each module in the Monitoring

Framework of the reference workflow is as described below:

Rule Generator. It automatically generates monitoring rules

starting from the SLAs defined for the business process and

its local services. The automated generation of monitoring

rules from negotiated SLAs is out of scope in this paper.

Rule verification. This module is in charge of checking

whether the generated rules can be actually monitored

according to the monitoring capabilities exported by the

reference workflow and the component services (rules

monitorabillity). Some rules generated from the SLA may

not be monitored because required events are not exposed as

Event Emission monitoring capabilities by the orchestrated

services. Moreover, the monitoring of a subset of rules may

be delegated to local services in case exposed Internal

Monitoring capabilities match a subset of the rules generated

from the SLAs.

Event Receiver. This module communicates with the

services’ monitoring interfaces during the SBS execution.

The communication may involve receiving events from

Event Emission monitoring capabilities or being notified of

rule violations for Rule Type monitoring capabilities (push

communication policy). Events and information concerning

rule violations may also be queried by the Event Receiver on

monitoring capabilities (pull communication policy). Events

are stored in the Event DB, whereas rule violations are

directly stored in the Deviation DB.

Monitor. This is the monitoring engine, which checks

monitoring rules (expressed, for instance, as Event Calculus

formulas in [5, 3]) against events stored in the Event DB.

When a violation of a monitoring rule is detected, this is

stored in the Deviation DB.

Monitoring Broker. The services in the SBS register to this

registry the end point references of their monitoring

interfaces. This is required to establish the engagement

protocol between the Monitoring Framework and the SBS in

order to start the monitoring process. Details on such an

engagement protocol are discussed later in Section 5.1.

5. The Monitoring Interface

The paradigm of service oriented computing decouples

the functional description of the service interface (i.e.

exposed operations and format of input and output

messages), from the actual implementation of the service.

Hence, the service interface represents a contract stating how

external applications need to interact with a service. This

approach has also been adopted in our monitoring

framework, where the monitoring interface provides access

service monitoring capabilities at local sites in a contract-

based design approach.

The monitoring interface enriches the functional interface

of a service by exposing standard monitoring-related

operations that external entities can invoke in a service of an

SBS. These standard operations are:

• void setLocalCapability (MonitoringCapability localCapability) −

This operation allows a local service to submit a

Monitoring Capability at the reference workflow

monitoring interface. A capability reports the End Point

Reference (EPR) of the monitoring interface at the local

service;

• Capability getCapability () − This operation allows the Rule

Verification module in the Monitoring Framework to

retrieve a capability at the reference workflow. The

reference workflow is in fact in charge of assembling a

global capability including also the capabilities declared

by local services. Such a global capability is processed

by the Rule Verification module to assess the

monitorability of rules. This functionality is implemented

by the reference workflow Capability Manager;

• void setMonitorableCapability(Capability monitorableCap) − This

operation allows an external client, i.e. the Rule

Verification or the reference workflow, to deploy the list

of monitorable rules at a given monitoring interface;

• void setEventReceiverEPR(EPR er_epr) − This operation

allows an external client to set the EPR of the Event

Receiver. In the case of the reference workflow, this is

done by the Event Receiver, whereas the reference

workflow monitoring interface acts as a client of local

services’ interfaces to set the EPR of the Event Receiver;

and

• Event getEvent(Event e) − This operation allows the Event

Receiver to pull en event from a local monitoring

interface, in case the rule verification process has

established the need for a pull communication policy. As

per the description of monitoring capabilities (see Section

2), rule violations and interaction event events are

defined as subtypes of the generic type Event, and,

therefore, retrieved by the Event Receiver through this

operation.

5.1 The Monitoring Engagement Protocol
The sequence diagram in Figure 4 specifies the

engagement protocol between the monitoring framework, i.e.

Rule Verification, Monitor, Event Receiver, and Monitoring

Broker, and the SBS for establishing the monitoring process.

Initially, the local services submit their monitoring

capabilities to the reference workflow interface (message 1),

in order to enable the Capability Manager of the reference

workflow to assemble and configure an SBS-wide

monitoring capability. It should be noted that this part of the

engagement may be defined recursively. For example, a

composite local service may first assemble the monitoring

capabilities of its internal local services and then submit it to

the reference workflow. Consequently, at the level of the

workflow the assembled capabilities become visible through

the capability associated with the particular local service. In

our earlier scenario, this would be the case with the CP and

EPP workflows. More specifically, EPP will first register its

capability at CP monitoring interface. CP will then assemble

a capability to be registered by calling the PBP (reference

workflow) monitoring interface. After having assembled the

global capability, the reference workflow can register the

EPRs of all involved monitoring interfaces to the Monitoring

Broker (2). At this stage, the reference workflow is ready to

be monitored by a generic monitor.

12.1 notifyEvent()

Rule

Verification
Monitor

Event

Receiver
Reference

Workflow

Local

Service 1

Monitoring Framework
SBS

2 registerMonitoringIfEPR()

3 getWorkflowEPR()

Monitoring

Broker

1.1 setMonitorableCapability()Assemble

Capability

Document

4 getCapability()

Verify

Rules
5 deployRuleList()

6 setMonitorableCapability()

Process

Capability 7 setMonitorableCapability()

8 setEventReceiverEPR() 9 setEventReceiverEPR()

10 getLocalServiceEPR()

11 setServicesEPR()

12.2 setEvent()

12.4 getEvent()

12.5 setEvent()

12.3 setEvent()

…

Engagement

protocol

Additional

Engagement

required for pull

communication

of events

Monitoring

Process

Figure 4 – Engagement Protocol

When the Monitoring Framework needs to monitor rules

associated with the reference workflow and its related service

landscape, the Rule Verification module retrieves the EPR of

the reference workflow monitoring interface from the

Monitoring Broker (3) and, consequently, the global

capability from the reference workflow (4). After having

verified the monitorability of rules, the Rule Verification

deploys the list of monitorable rules in the Monitor (5) and to

the reference workflow (6), which, in turn, processes the

received document to send required capabilities to the local

services (7). This last phase of the engagement protocol may

also be recursive, that is, a composed local service may

process the received document in order to generate required

capabilities for its local services. When the list of required

capabilities has been processed by the SBS, the Rule

Verification sends to the reference workflows the EPR of the

Event Receiver (8), which forwards this information to local

services (9).

At the current stage, the engagement protocol is set up for

monitoring rules that require only pull communication of

events by the SBS. An additional engagement phase is

required when some of the events required for monitoring

need to be requested by the Event Receiver according to the

pull communication policy. In this case, the Rule Verification

retrieves the EPRs of the local services’ monitoring interface

from which the Event Receiver needs to pull events (10) and

register such EPRs to the Event Receiver (11). This optional

last phase ends the engagement phase, allowing the monitor

process to start (12). In Fig. 5, we represent the case in

which, during service execution, events are notified

proactively by the SBS (12.1-3) and the case in which events

are pulled from the SBS (12.4-5).

The proposed engagement protocol is built on the

assumption that the Monitoring Framework should not be

aware of which local services are involved in the reference

workflow it is bound to monitor. This is required because

local services may be provided by different organizations,

they may change over time, and they can be complex, i.e.

defined recursively as workflows that may orchestrate other

local services. With the proposed engagement protocol, the

Monitoring Framework only calls operation exposed at the

reference workflow monitoring interface, but, at the same

time, it can receive events (push communication) from all the

local services involved in such a workflow. The Monitoring

Framework requires knowledge of the EPRs of local services

only in case pull communication events is needed. This is

accommodated through additional engagement messages.

6. Related Work

The need for establishing clear and machine-readable

SLAs between service providers and consumers has been

widely recognised in industry and academia [2, 4, 8]. For

what concerns runtime monitoring, intrusive monitoring

relies on the instrumentation of the process or service

executable code in order to perform monitoring [2].

Executable code for monitoring is interleaved with the

process or service executable code and generated

automatically starting from annotations made at design time.

On the one hand, such approaches do not require the design

and deployment of external components dedicated to

monitoring, since monitoring is executed directly by the SBS

execution environment, e.g. the BPEL engine. However, on

the other hand, with intrusive monitoring it becomes harder

to achieve separation of concerns between the business and

monitoring logic of a service. Moreover, monitoring depends

on the reliability and performance of the BPEL engine, i.e. if

the BPEL engine fails or becomes unavailable, also the

monitoring infrastructure fails.

Non-intrusive monitoring [5, 3, 6, 1, 4] requires the

establishment of mechanisms for capturing runtime

information on service execution, e.g. service operation calls

and responses. In this way, the business logic of the SBS

process and the monitoring logic remain separate. Moreover,

non-intrusive monitoring decouples the monitor

infrastructure reliability from the reliability of the SBS

execution environment. The monitoring infrastructure may

indeed detect the failure of the BPEL engine as long as

events that indicate such a failure can be captured. Non-

intrusive monitoring introduces a computational overhead in

the SBS execution environment, arising from the cost of

capturing and communicating events between the SBS

execution environment and the monitoring infrastructure.

This may affect the performance of the SBS if the SBS and

the monitor are executed on the same infrastructure. A

different approach to non-intrusive monitoring is proposed in

[10], where monitoring is delegated to service clients and

regulated by an incentive mechanism that guarantees truthful

reporting of monitoring information from the service

provider side.

7. Conclusions and Future Work

The paper has presented an innovative approach to

hierarchical and recursive monitoring of complex SBS. In

particular, the proposed monitoring framework can

conceptually be adopted with runtime monitors that adopt

different techniques, as long as these monitor are able to

process monitoring information in the format required by the

monitoring interface attached to services in the SBS.

Future work concerns the implementation of the proposed

framework. We plan to include in the framework several

different monitors, implemented according to different

techniques, in order to demonstrate the flexibility of our

approach.

Furthermore, the monitoring rule verification algorithm

will be designed with a twofold objective. From the

monitoring framework side, the verification algorithm has the

objective of detecting which rule can actually be monitored

according to exposed monitoring capabilities and which

policies must be satisfied in order to perform monitoring.

From the service side, the analysis of the rules that can be

monitored according to the exposed capabilities and policies

may be exploited to build a metric regarding the

monitorability of a service in an SBS. Such a metric could

then be used as a further criterion to enhance common

approaches to SLA-driven service discovery.

References

1. F. Barbon, P. Traverso, M. Pistore, M. Trainotti, Run-

Time Monitoring of Instances and Classes of Web Service

Compositions, Proc. IEEE ICWS 2006.

2. L. Baresi and S. Guinea. Towards Dynamic Monitoring of

WS-BPEL Processes, Proc. ICSOC 2005.

3. Mahbub K., Spanoudakis G.: Monitoring WS Agreements:

An Event Calculus Based Approach, Test and Analysis of

Service Oriented Systems, (eds) L. Baresi, E. di Nitto,

Springer Verlag, 2007.

4. O. Moser, F. Rosenberg, and S. Dustdar, Non-intrusive

monitoring and service adaptation for WS-BPEL, Proc.

WWW 2008.

5. Spanoudakis G., Mahbub K.: Non Intrusive Monitoring of

Service Based Systems, International Journal of Cooperative

Information Systems, 15 (3), pp. 325-358, 2006.

6. W.M.P. Van der Aalst, M. Dumas, C. Ouyang, A. Rozinat,

and E. Verbeek, Conformance checking of Service Behavior,

ACM TOIT, 8 (3), May 2008.

7. Papazoglou, M., Traverso, P., Dustdar, S., and Leymann,

F. 2007. Service-Oriented Computing: State of the art and

research challenges. IEEE Computer 11, 38–45.

8. Keller, A. and Ludwig, H. 2004. The WSLA Framework:

Specifying and Monitoring Service Level Agreements for

Web Services. Journal of Network and Systems

Management, 11(1), 57-81.

9. D. Bianculli and C. Ghezzi. Monitoring Conversational

Web Services. Proc. IW-SOSWE’07 Workshop, pp. 15-21.

10. Jurca, R., Binder, W., and Faltings, B. Reliable QoS

Monitoring Based on Client Feedback, in WWW2007, pp.

1003-1011.

