300 research outputs found

    Calculating the minimum bounds of energy consumption for cloud networks

    Get PDF
    This paper is aiming at facilitating the energy-efficient operation of an integrated optical network and IT infrastructure. In this context we propose an energy-efficient routing algorithm for provisioning of IT services that originate from specific source sites and which need to be executed by suitable IT resources (e. g. data centers). The routing approach followed is anycast, since the requirement for the IT services is the delivery of results, while the exact location of the execution of the job can be freely chosen. In this scenario, energy efficiency is achieved by identifying the least energy consuming IT and network resources required to support the services, enabling the switching off of any unused network and IT resources. Our results show significant energy savings that can reach up to 55% compared to energy-unaware schemes, depending on the granularity with which a data center is able to switch on/off servers

    A heuristic for placement of limited range wavelength converters in all-optical networks

    Get PDF
    Wavelength routed optical networks have emerged as a technology that can effectively utilize the enormous bandwidth of the optical fiber. Wavelength converters play an important role in enhancing the fiber utilization and reducing the overall call blocking probability of the network. As the distortion of the optical signal increases with the increase in the range of wavelength conversion in optical wavelength converters, limited range wavelength conversion assumes importance. Placement of wavelength converters is a NP complete problem [K.C. Lee, V.O.K. Li, IEEE J. Lightwave Technol. 11 (1993) 962-970] in an arbitrary mesh network. In this paper, we investigate heuristics for placing limited range wavelength converters in arbitrary mesh wavelength routed optical networks. The objective is to achieve near optimal placement of limited range wavelength converters resulting in reduced blocking probabilities and low distortion of the optical signal. The proposed heuristic is to place limited range wavelength converters at the most congested nodes, nodes which lie on the long lightpaths and nodes where conversion of optical signals is significantly high. We observe that limited range converters at few nodes can provide almost the entire improvement in the blocking probability as the full range wavelength converters placed at all the nodes. Congestion control in the network is brought about by dynamically adjusting the weights of the channels in the link thereby balancing the load and reducing the average delay of the traffic in the entire network. Simulations have been carried out on a 12-node ring network, 14-node NSFNET, 19-node European Optical Network (EON), 28-node US long haul network, hypothetical 30-node INET network and the results agree with the analysis. (C) 2001 Elsevier Science B.V, All rights reserved

    Dynamic wavelength routing in multifiber WDM networks

    Get PDF
    The research, development, and deployment of wavelength division multiplexing (WDM) technology are now evolving at a rapid pace to fulfill the increasing bandwidth requirement and deploy new network services. Routing and wavelength assignment algorithms play a key role in improving the performance of wavelength-routed all-optical networks. We study networks with dynamic wavelength routing and develop accurate analytical models for evaluating the blocking performance under dynamic input traffic in different topologies. Two dynamic routing algorithms are first developed and the performances of the algorithms in single-fiber WDM networks are studied using both analytical models and simulation. We also develop efficient algorithms to optimally place a given number of wavelength converters on a path of a network. Finally we consider the effect of multiple fibers on WDM networks without wavelength conversion. We develop analytical models for evaluating the blocking performance of multifiber networks with fixed-path routing, alternate-path routing, and fixed-path least-congestion routing algorithms. The number of fibers required to provide high performance in multifiber networks with different routing algorithms are also studied

    Centralized vs. Distributed Connection Management Schemes under Different Traffic Patterns in Wavelength-Convertible Optical Networks

    Get PDF
    Centralized and Distributed methods are two connection management schemes in wavelength convertible optical networks. In the earlier work, the centralized scheme is said to have lower network blocking probability than the distributed one. Hence, much of the previous work in connection management has focused on the comparison of different algorithms in only distributed scheme or in only centralized scheme. However, we believe that the network blocking probability of these two connection management schemes depends, to a great extent, on the network traffic patterns and reservation times. Our simulation results reveal that the performance improvement (in terms of blocking probability) of centralized method over distributed method is inversely proportional to the ratio of average connection interarrival time to reservation time. After that ratio increases beyond a threshold, those two connection management schemes yield almost the same blocking probability under the same network load. In this paper, we review the working procedure of distributed and centralized schemes, discuss the tradeoff between them, compare these two methods under different network traffic patterns via simulation and give our conclusion based on the simulation data

    Resource allocation and scalability in dynamic wavelength-routed optical networks.

    Get PDF
    This thesis investigates the potential benefits of dynamic operation of wavelength-routed optical networks (WRONs) compared to the static approach. It is widely believed that dynamic operation of WRONs would overcome the inefficiencies of the static allocation in improving resource use. By rapidly allocating resources only when and where required, dynamic networks could potentially provide the same service that static networks but at decreased cost, very attractive to network operators. This hypothesis, however, has not been verified. It is therefore the focus of this thesis to investigate whether dynamic operation of WRONs can save significant number of wavelengths compared to the static approach whilst maintaining acceptable levels of delay and scalability. Firstly, the wavelength-routed optical-burst-switching (WR-OBS) network architecture is selected as the dynamic architecture to be studied, due to its feasibility of implementation and its improved network performance. Then, the wavelength requirements of dynamic WR-OBS are evaluated by means of novel analysis and simulation and compared to that of static networks for uniform and non-uniform traffic demand. It is shown that dynamic WR-OBS saves wavelengths with respect to the static approach only at low loads and especially for sparsely connected networks and that wavelength conversion is a key capability to significantly increase the benefits of dynamic operation. The mean delay introduced by dynamic operation of WR-OBS is then assessed. The results show that the extra delay is not significant as to violate end-to-end limits of time-sensitive applications. Finally, the limiting scalability of WR-OBS as a function of the lightpath allocation algorithm computational complexity is studied. The trade-off between the request processing time and blocking probability is investigated and a new low-blocking and scalable lightpath allocation algorithm which improves the mentioned trade-off is proposed. The presented algorithms and results can be used in the analysis and design of dynamic WRONs

    Inside all-optical networks

    Get PDF
    Imagine a world where lightning speed Internet is as common as telephones today. Imagine when light, the fastest moving thing in the universe, is the signal-carrying transport medium. Imagine when bandwidth no more remains a constraint for any application. Imagine when imagination is the only limit! This all can be made possible with only one technology and that is optical communication. Optical networks have thus far provided a realization to a greater extent to the unlimited bandwidth dreams of this era, but as the demands are increasing, the electro-optic conversions seem to become bottlenecks in blended optical networks. The only answer to this is a complete migration to `All-Optical Networks\u27 (AONs) which promise an end-to-end optical transmission. This thesis will investigate various aspects of all-optical networks and prove that AONs perform better than currently existing electro-optical networks. In today\u27s\u27 electro-optical networks, routing and switching is performed in electronic domain. Performance analysis of electro-optical and all-optical networks would include node utilization, link utilization and percentage of traffic routed. It will be shown through Opnet Transport Planner simulations that AONs work better under various traffic conditions. The coming decade will see a great boom in demands on telecommunications networks. The development in bandwidth-hungry applications like real-time video transmission, telemedicine, distance learning and video on demand require both an unlimited amount of bandwidth and dependable QoS. It is well understood that electrically switched networks and copper cables will not be able to meet the future network demands effectively. The world has already agreed to move towards optical communication techniques through the introduction of fiber in access parts of the networks replacing copper. Now the race is to bring optics in higher layers of OSI reference model. Optical communication is on the horizon, and new discoveries are still underway to add to the value of available bandwidth through this technology. My research thesis will primarily focus on the design, architecture and network properties of AONs and challenges being faced by AONs in commercial deployment. Optical components required in AONs will be explored. A comparison between AONs and electro-optical networks will also be shown through optical transport planner simulations

    Wavelength assignment in all-optical networks for mesh topologies

    Get PDF
    All-Optical Networks employing Dense Wavelength Division Multiplexing (DWDM) are believed to be the next generation networks that can meet the ever-increasing demand for bandwidth of the end users. This thesis presents some new heuristics for wavelength assignment and converter placement in mesh topologies. Our heuristics try to assign the wavelengths in an efficient manner that results in very low blocking probability. We propose novel static and dynamic assignment schemes that outperform the assignments reported in the literature even when converters are used. The proposed on-line scheme called Round-Robin assignment outperforms previously proposed strategies such as first-fit and random assignment schemes. The performance improvement obtained with the proposed static assignments is very significant when compared with the dynamic schemes. We designed and developed a simulator in the C language that supports the 2D mesh topology with DWDM. We ran extensive simulations and compared our heuristics with those reported in the literature. We have examined converter placement in mesh topologies and proposed that placing converters at the center yields better results than uniform placement when dimension order routing is employed. We introduced a new concept called wavelength assignment with second trial that results in extremely low blocking probabilities when compared to schemes based on a single trial. Our proposed schemes are simple to implement and do not add to the cost. Thus we conclude that wavelength assignment plays more significant role in affecting the blocking probability than wavelength converters. We further conclude that static schemes without converters could easily outperform dynamic schemes thus resulting in great savings
    • …
    corecore