8,340 research outputs found

    Training of Crisis Mappers and Map Production from Multi-sensor Data: Vernazza Case Study (Cinque Terre National Park, Italy)

    Get PDF
    This aim of paper is to presents the development of a multidisciplinary project carried out by the cooperation between Politecnico di Torino and ITHACA (Information Technology for Humanitarian Assistance, Cooperation and Action). The goal of the project was the training in geospatial data acquiring and processing for students attending Architecture and Engineering Courses, in order to start up a team of "volunteer mappers". Indeed, the project is aimed to document the environmental and built heritage subject to disaster; the purpose is to improve the capabilities of the actors involved in the activities connected in geospatial data collection, integration and sharing. The proposed area for testing the training activities is the Cinque Terre National Park, registered in the World Heritage List since 1997. The area was affected by flood on the 25th of October 2011. According to other international experiences, the group is expected to be active after emergencies in order to upgrade maps, using data acquired by typical geomatic methods and techniques such as terrestrial and aerial Lidar, close-range and aerial photogrammetry, topographic and GNSS instruments etc.; or by non conventional systems and instruments such us UAV, mobile mapping etc. The ultimate goal is to implement a WebGIS platform to share all the data collected with local authorities and the Civil Protectio

    Agent-based modelling of air transport demand

    Get PDF
    Constraints such as opening hours or passenger capacities influence travel options that can be offered by an airport and by the connecting airlines. If infrastructure, policy or technological measures modify transport options, then the benefits do not only depend on the technology, but also on possibly heterogeneous user preferences such as desired arrival times or on the availability of alternative travel modes. This paper proposes an agent-based, iterative assignment procedure to model European air traffic and German passenger demand on a microscopic level, capturing individual passenger preferences. Air transport technology is simulated microscopically, i.e. each aircraft is represented as single unit with attached attributes such as departure time, flight duration or seat availability. Trip-chaining and delay propagation can be added. Microsimulation is used to verify and assess passengers’ choices of travel alternatives, where those choices improve over iterations until an agent-based stochastic user equilibrium is reached. This requires fast simulation models, thus, similar to other approaches in air traffic modelling a queue model is used. In contrast to those approaches, the queue model in this work is solved algorithmically. Overall, the approach is suited to analyze, forecast and evaluate the consequences of mid-distance transport measures

    Artificial neural networks in geospatial analysis

    Full text link
    Artificial neural networks are computational models widely used in geospatial analysis for data classification, change detection, clustering, function approximation, and forecasting or prediction. There are many types of neural networks based on learning paradigm and network architectures. Their use is expected to grow with increasing availability of massive data from remote sensing and mobile platforms

    Development of a land use regression model for black carbon using mobile monitoring data and its application to pollution-avoiding routing

    Get PDF
    Black carbon is often used as an indicator for combustion-related air pollution. In urban environments, on-road black carbon concentrations have a large spatial variability, suggesting that the personal exposure of a cyclist to black carbon can heavily depend on the route that is chosen to reach a destination. In this paper, we describe the development of a cyclist routing procedure that minimizes personal exposure to black carbon. Firstly, a land use regression model for predicting black carbon concentrations in an urban environment is developed using mobile monitoring data, collected by cyclists. The optimal model is selected and validated using a spatially stratified cross-validation scheme. The resulting model is integrated in a dedicated routing procedure that minimizes personal exposure to black carbon during cycling. The best model obtains a coefficient of multiple correlation of R = 0.520. Simulations with the black carbon exposure minimizing routing procedure indicate that the inhaled amount of black carbon is reduced by 1.58% on average as compared to the shortest-path route, with extreme cases where a reduction of up to 13.35% is obtained. Moreover, we observed that the average exposure to black carbon and the exposure to local peak concentrations on a route are competing objectives, and propose a parametrized cost function for the routing problem that allows for a gradual transition from routes that minimize average exposure to routes that minimize peak exposure
    corecore