12,598 research outputs found

    Multiple domination models for placement of electric vehicle charging stations in road networks

    Get PDF
    Electric and hybrid vehicles play an increasing role in the road transport networks. Despite their advantages, they have a relatively limited cruising range in comparison to traditional diesel/petrol vehicles, and require significant battery charging time. We propose to model the facility location problem of the placement of charging stations in road networks as a multiple domination problem on reachability graphs. This model takes into consideration natural assumptions such as a threshold for remaining battery load, and provides some minimal choice for a travel direction to recharge the battery. Experimental evaluation and simulations for the proposed facility location model are presented in the case of real road networks corresponding to the cities of Boston and Dublin.Comment: 20 pages, 5 figures; Original version from March-April 201

    Optimal Pricing to Manage Electric Vehicles in Coupled Power and Transportation Networks

    Full text link
    We study the system-level effects of the introduction of large populations of Electric Vehicles on the power and transportation networks. We assume that each EV owner solves a decision problem to pick a cost-minimizing charge and travel plan. This individual decision takes into account traffic congestion in the transportation network, affecting travel times, as well as as congestion in the power grid, resulting in spatial variations in electricity prices for battery charging. We show that this decision problem is equivalent to finding the shortest path on an "extended" transportation graph, with virtual arcs that represent charging options. Using this extended graph, we study the collective effects of a large number of EV owners individually solving this path planning problem. We propose a scheme in which independent power and transportation system operators can collaborate to manage each network towards a socially optimum operating point while keeping the operational data of each system private. We further study the optimal reserve capacity requirements for pricing in the absence of such collaboration. We showcase numerically that a lack of attention to interdependencies between the two infrastructures can have adverse operational effects.Comment: Submitted to IEEE Transactions on Control of Network Systems on June 1st 201

    Autonomous Recharging and Flight Mission Planning for Battery-operated Autonomous Drones

    Full text link
    Autonomous drones (also known as unmanned aerial vehicles) are increasingly popular for diverse applications of light-weight delivery and as substitutions of manned operations in remote locations. The computing systems for drones are becoming a new venue for research in cyber-physical systems. Autonomous drones require integrated intelligent decision systems to control and manage their flight missions in the absence of human operators. One of the most crucial aspects of drone mission control and management is related to the optimization of battery lifetime. Typical drones are powered by on-board batteries, with limited capacity. But drones are expected to carry out long missions. Thus, a fully automated management system that can optimize the operations of battery-operated autonomous drones to extend their operation time is highly desirable. This paper presents several contributions to automated management systems for battery-operated drones: (1) We conduct empirical studies to model the battery performance of drones, considering various flight scenarios. (2) We study a joint problem of flight mission planning and recharging optimization for drones with an objective to complete a tour mission for a set of sites of interest in the shortest time. This problem captures diverse applications of delivery and remote operations by drones. (3) We present algorithms for solving the problem of flight mission planning and recharging optimization. We implemented our algorithms in a drone management system, which supports real-time flight path tracking and re-computation in dynamic environments. We evaluated the results of our algorithms using data from empirical studies. (4) To allow fully autonomous recharging of drones, we also develop a robotic charging system prototype that can recharge drones autonomously by our drone management system

    Routing Optimization of Electric Vehicles for Charging With Event-Driven Pricing Strategy

    Get PDF
    With the increasing market penetration of electric vehicles (EVs), the charging behavior and driving characteristics of EVs have an increasing impact on the operation of power grids and traffic networks. Existing research on EV routing planning and charging navigation strategies mainly focuses on vehicle-road-network interactions, but the vehicle-to-vehicle interaction has rarely been considered, particularly in studying simultaneous charging requests. To investigate the interaction of multiple vehicles in routing planning and charging, a routing optimization of EVs for charging with an event-driven pricing strategy is proposed. The urban area of a city is taken as a case for numerical simulation, which demonstrates that the proposed strategy can not only alleviate the long-time queuing for EV fast charging but also improve the utilization rate of charging infrastructures. Note to Practitioners - This article was inspired by the concerns of difficulties for electric vehicle (EV)'s fast charging and the imbalance of the utilization rate of charging facilities. Existing route optimization and charging navigation research are mainly applicable to static traffic networks, which cannot dynamically adjust driving routes and charging strategies with real-time traffic information. Besides, the mutual impact between vehicles is rarely considered in these works in routing planning. To resolve the shortcomings of existing models, a receding-horizon-based strategy that can be applied to dynamic traffic networks is proposed. In this article, various factors that the user is concerned about within the course of driving are converted into driving costs, through which each road section of traffic networks is assigned the corresponding values. Combined with the graph theory analysis method, the mathematical form of the dynamic traffic network is presented. Then, the article carefully plans and adjusts EV driving routes and charging strategies. Numerical results demonstrate that the proposed method can significantly increase the adoption of EV fast charging while alleviating unreasonable distributions of regional charging demand.</p

    Electric Vehicle Charging Station Placement: Formulation, Complexity, and Solutions

    Get PDF
    To enhance environmental sustainability, many countries will electrify their transportation systems in their future smart city plans. So the number of electric vehicles (EVs) running in a city will grow significantly. There are many ways to re-charge EVs' batteries and charging stations will be considered as the main source of energy. The locations of charging stations are critical; they should not only be pervasive enough such that an EV anywhere can easily access a charging station within its driving range, but also widely spread so that EVs can cruise around the whole city upon being re-charged. Based on these new perspectives, we formulate the Electric Vehicle Charging Station Placement Problem (EVCSPP) in this paper. We prove that the problem is non-deterministic polynomial-time hard. We also propose four solution methods to tackle EVCSPP and evaluate their performance on various artificial and practical cases. As verified by the simulation results, the methods have their own characteristics and they are suitable for different situations depending on the requirements for solution quality, algorithmic efficiency, problem size, nature of the algorithm, and existence of system prerequisite.Comment: Submitted to IEEE Transactions on Smart Grid, revise

    DEVELOPING A SMART AND SUSTAINABLE PUBLIC TRANSPORTATION SYSTEM: A CASE STUDY IN CAMDEN, NEW JERSEY

    Get PDF
    The transportation sector is a major contributor to air pollution and Greenhouse Gas (GHG) emissions. As a significant source of emissions, public transportation presents an opportunity for mitigation through electrification. However, transitioning to an electric bus fleet necessitates substantial investments in bus procurement and charging infrastructure. To address the associated costs, this study introduces a mixed-integer linear mathematical model developed to optimize the location of on-route fast charging stations within bus networks. The central objective of this optimization formulation is to minimize the overall cost of establishing the charging infrastructure. The study employs a real-world case study focusing on a Camden, NJ, USA bus network. Key considerations include optimizing charging station locations considering time constraints at bus stops to avoid schedule delays and inconvenience for passengers during the charging process. Furthermore, the study investigates the sensitivity of the optimization model in response to variations in parameters. Notably, battery capacity, charger power, average energy consumption, dwell time, and minimum and maximum state of charge significantly affect the optimal locations and required number of chargers. The insights generated from this study are anticipated to offer valuable guidance to policymakers, practitioners, and researchers involved in planning the transition of bus fleets towards zero-emission vehicles
    • …
    corecore