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Abstract—With the increasing market penetration of electric 

vehicles (EVs), the charging behavior and driving characteristics of 

EVs have an increasing impact on the operation of power grids and 

traffic networks. Existing research on EV routing planning and 

charging navigation strategies mainly focuses on vehicle-road-

network interactions, but the vehicle-to-vehicle interaction has rarely 

been considered particularly in studying simultaneous charging 

requests. To investigate the interaction of multiple vehicles in routing 

planning and charging, a routing optimization of EVs for charging 

with an event-driven pricing strategy is proposed. The urban area of 

a city is taken as an case for numerical simulation, which 

demonstrates that the proposed strategy can not only alleviate 

difficulties for EV fast charging but also improve the utilization rate 

of charging infrastructures.  
 

Note to practitioners- This paper was inspired by the concerns of 

difficulties for EV's fast charging and the imbalance of the utilization 

rate of charging facilities. Existing route optimization and charging 

navigation research are mainly applicable to static traffic networks, 

which cannot dynamically adjust driving routes and charging 

strategies with real-time traffic information. Besides, the mutual 

impact between vehicles is rarely considered in these works in routing 

planning. To resolve the shortcomings of existing models, a  

receding-horizon based strategy that can be applied to dynamic traffic 

networks is proposed. In this paper, various factors that the user is 

concerned with in the course of driving are converted into driving 

costs, through which each road section of traffic networks is assigned 

the corresponding values. Combined with the graph theory analysis 

method, the mathematical form of the dynamic traffic network is 

presented. Then, the paper carefully plans and adjusts EV driving 

routes and charging strategies. The simulation case demonstrates that 

the proposed method can significantly reduce the difficulty for EV 

fast charging while alleviating unreasonable distributions of regional 

charging demand. 

 

Index Terms—electric vehicle, event-driven, routing 

optimization, navigation, receding-horizon. 

 

I.  INTRODUCTION 

ith the continuous increase of vehicle uptake, the demand 

for oil consumption has increased dramatically in recent 

years, making energy scarcity problems and environmental 

pollution increasingly serious [1]-[3]. To address it, many 

governments worldwide are actively promoting the 

application of EVs, whose large-scale popularization is bound 

to become a trend. With the increasing penetration of EVs, two 

main concerns emerge [4]-[5]: 1) The growth scale of EV 

penetration is significantly higher than that of charging 

infrastructure, expanding the gap between the twomaking it 
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difficult to charge quickly on road, and aggravating the 

mileage anxiety of EV users; 2) The driving and charging 

characteristics of a large number of EVs will bring certain 

problems to power grids and traffic systems, such as 

unbalanced charging load, traffic congestion, etc. The two 

concerns highlight the importance of adopting effective 

charging scheduling strategies to plan optimal routing and 

recommend reasonable charging stations [6]. This can not only 

reduce the mileage anxiety caused by battery capacity 

constraint, but also reduce the impact of EV driving and 

charging characteristics on power grids and traffic networks. 

The abundant literature that address these concerns can be 

divided into three main categories. 

The first category of literature mainly focuses on 

constructing and developing intelligent transportation systems 

by integrating advanced information, data communication, 

electronic sensors, and electronic control technologies [7-12]. 

Ref. [7] investigated and analyzed the development and 

research in ITS and proposed valuable insights into the current 

status and future development of ITS technologies. Ref. [8-10] 

outlined various challenges and open questions in ITS and 

discussed solutions for EV mobility, traffic control, traffic 

prediction, parking with the method of crowd intelligence, 

deep reinforcement learning, big data, etc. respectively. In [11], 

an efficient multi-metric routing protocol for ITS was 

proposed, which considered five metrics: link capacity, 

connectivity, Euclidean distance, relative velocity, and end-to-

end delay to maximizing the packet delivery ratio (PDR) while 

minimizing the delay of the network. To improve the energy 

utilization of ITS, a dynamic and intelligent traffic light 

control system was proposed in ref. [12]. Real-time traffic 

information was used to dynamically adjust the on-ff durations 

of traffic lights. Above studies focus on a specific area of the 

development and application of ITS, and they did not consider 

the combined application of EVs and power grids. Different 

from them, this paper proposes a combined application model 

of ITS with EVs and power grids for EV routing and charging 

navigation. 

 The second category of literature concentrated on 

addressing the optimal routing and charging problems of 

individual EV users or a large population of EVs, considering 

charging time, constraint of energy stored in the battery, and 

mileage anxiety, etc. [13-17]. Author [13] proposed an optimal 

routing strategy for EVs with minimal travel time cost and 

energy cost as well as the number of EVs that were dispatched. 

A regional hierarchical charging control framework was 

proposed in [14], which satisfied the charging demand of EVs, 
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and reduced the peak load of distribution networks and the 

operation cost of charging stations. The traffic flow and 

driving speed in traffic networks were assumed to be constant 

in the above literature, but in reality, they change under the 

complex and varying traffic conditions. To avoid the depletion 

of all battery power and ensure the safe operation of EVs in 

driving, a dynamic Dijkstra algorithm with some 

improvements compared with the traditional algorithm was 

adopted to search for the most energy-saving paths for 

charging in [15]. A two-stage method to compute optimal 

routing time for EVs was proposed in [16], where the multi-

objective shortest routing problem was solved through the 

adaptive Moore-Bellman-Ford algorithm. To meet the welfare 

of all passengers while maximizing the energy efficiency of 

transit service providers, an optimal routing and charging 

framework was proposed for high-efficiency dynamic transit 

systems, which considered energy efficiency and charging 

price [17]. All these papers on optimal routing and charging of 

EVs mainly focuses on the interaction between EVs, traffic 

networks and power grids. However, the driving routing and 

charging choice of EVs can also affect each other. If the multi-

vehicle interactions between EVs are ignored, the routing and 

charing results could dramatically deviate from the actual 

situation. 

The third category of work mainly studies the impact of 

electricity price incentives on EV driving and charging 

characteristics. As a movable load, EV has flexible demand 

response characteristics in space scope. A reasonable charging 

strategy was conducive to reducing travel costs while 

improving the utilization of charging infrastructure [18-22]. 

Considering the total revenue of charging stations and the 

response of users to charging prices, the pricing strategies of 

charging stations were optimized to minimize the voltage 

deviation of distribution networks in [18]. A pricing-based 

control method was adopted in [19], through which EV 

charging demand could be transferred from peak hours to non-

congestion periods, relieving congestions at charging stations. 

In [20], a threshold-based pricing strategy was proposed, 

which considered queuing time at the charging station and the 

profits of charging network operators (CNO) with a flat-rate 

charging price. Paper [21] proposed an incentive-compatible 

pricing and routing strategy, through which EV charging was 

guided to maximize social welfare or CNO’s profits. Ref. [22] 

introduced a charging price strategy that distinguished the 

busyness of charging stations, motivating users to adjust 

charging time to improve the utilization of charging 

infrastructure and reduced the waiting time at charging 

stations. In [23-24], a scheduling strategy was proposed to 

charge multiple vehicles through matching with intermittentt 

renewable generation while minimizing the total charging cost 

and. Paper [25] proposed an appointment-based mobile 

charging scheduling strategy to provide an economical and 

efficient EVs charging service. It can schedule optimal mobile 

chargers for  EVs with reservations. The above studies design 

pricing strategies that only consider a certain factor concerning 

users. However, different types of users are concerned with 

different factors when choosing driving routing and charging 

strategies. For this reason, only some users are willing to 

accept the navigation, which makes these strategies unable to 

achieve the expected effect in the actual application. 

Apat from above three categories of studies, the reasonable 

location planning of charging stations was also one measure to 

alleviate the difficulty of EV's rapid charging and uneven 

distributions of charging load [26-28]. Ref. [26] proposed a 

method to determine the optimal electrical access points of 

charging stations so as to reduce the risk of distribution 

network operation caused by EV charging loads. The semi-

invariant and Gram-Charlier series was adopted to calculate 

the dynamic probability power flow of distribution networks. 

Considering the comprehensive profits of charging station 

operators, EV users, and the power grid, a sitting and sizing 

planning model for charging stations was proposed in [27], 

solved by the chaos simulated annealing particle swarm 

optimization algorithm. Further considering EV ownership 

growth and the uncertainty of EV growth rate, H. Zang et al. 

proposed a stochastic chance-constrained dynamic 

programming for charging stations in [28]. In above papers, 

charging station location planning was modeled based on the 

distributions of EV charging load but without navigation 

strategies, which means charging loads were disorderly 

distributed. With the improvement of internet of vehicles (IoV) 

platform, EV driving routes and charging choices with 

intelligent navigation systems would be more orderly and 

appropriate, making current research not necessarily 

applicable in practice. 

To fill the aforementioned research gap, a routing 

optimization of EVs for charging with an event-driven pricing 

strategy is proposed in this paper. Specifically, an intelligent 

navigation framework based on multi-network interaction is 

first established. It is then used to explore the information 

interactive relationship between EVs, charging stations, 

intelligent transportation systems (ITSs), and information 

processing centers (IPCs) for EV routing and charging 

navigation. Thereafter, by combining the speed-flow model 

and speed-energy consumption model a comprehensive road 

impedance model, is proposed to reflect the all-day 

comprehensive travel cost of each road section. The model 

considersvarious factors, including the length of the road 

section, driving time, energy consumption, etc., which concern 

users . Then, considering the impact of multi-vehicle 

interaction between EV charging, an event-driven charging 

service pricing model and priority reservation cost mechanism 

are proposed. Thereafter, a receding-horizon based optimal 

routing method is proposed to overcome the static 

shortcomings of traditional search algorithm. It recommends 

optimal routing according to the real-time information of 

traffic networks. Finally, based on the distributions of EV 

charging demand under the proposed navigation strategy, new 

charging stations are planned to further reduce the charging 

cost of users, while balancing the utilization between charging 

stations. The numerical simulation on the urban areas of a 

selected city is conducted to illustrate the effectiveness of the 

proposed method. 

The main contributions of this paper are as follows: 

 Considering the impact of multi-vehicle interactions 

between EV charging, an event-driven pricing strategy for 

charging station charging service fee is proposed. It adjusts 

the charging price dynamically through the occurrence of 

events of EV request for charging, arriving or leaving the 

charging station. This pricing strategy closely contacts time 



 

and price, making the shortest queuing time and the lowest 

charging price compatible in charging navigation. 

 A priority reservation cost mechanism is proposed to 

implement an orderly reservation between EVs that request 

for charging simultaneously. 

 A comprehensive road impedance mode is proposed to 

reflect all-day comprehensive travel cost of each road 

section, considering various factors including the length of 

the road section, driving time, energy consumption, etc. 

concerned by users.. 

 Based on the distributions of EV charging load with the 

navigation strategy proposed in this paper, the location of 

new charging stations are planned in the traffic network. Its 

rationality is proved by the numerical study in Section V 

prove.  

The rest of the paper is organized as follows:  Section II 

gives a short description of the navigation system with the 

multi-network interaction. Section III describes the model of 

dynamic traffic. In Section IV, the modeling approach for 

routing navigation and charging service pricing for EV is 

presented. Test studies are presented in Section V, and 

conclusions are drawn in Section Ⅵ.  

II.  INTELLIGENT NAVIGATION FRAMEWORK 

With the gradual networking and commercial use of 5g 

communication, the application of intelligent communication 

technology (ICT), intelligent transportation system (ITS), etc., 

in vehicle-road collaboration has become increasingly mature. 

Edge computing technology [29] provides users with a high 

reliability and low delay operating environment. It could also 

reduce the computing load of central scheduling nodes, 

enabling information between EVs-charging stations-ITS-

information processing center (IPC) sharing and transmission. 

To coordinate the information exchange of planning EV 

driving routes and charging navigation, this paper proposes an 

intelligent system framework, which contains four modules, as 

shown in Fig.1. The functions of each module are as follows: 

 IPC is the control center of the system, which is assumed to 

be a non-profit and socially regulated agency in this 

framework. It plans the charging scheduling strategies by 

combining the information uploaded by other modules. 

 ITS mainly provides real-time traffic information for IPC for 

planning routing and charging navigation. The traffic 

condition directly constrains the driving speed, driving time, 

and energy consumption of EVs in driving. 

 Charging stations provides charging services for EVs and 

upload the facility utilization information to IPC. As 

charging facilities, the location, busyness, charging price 

directly affects the charging strategy for EV users. 

 As the user of this intelligent system, the charging decisions 

of EV drivers directly determine the degree of congestion at 

charging stations and in turn affect the charging decisions of 

other users. 

Then, the entire navigation process for EV routing and 

charging can be described as follows： 

After receiving EV navigation requests, the IPC plans the 

driving routing and charging strategy for EVs in combination 

with real-time traffic information and facility utilization 

information uploaded from ITS and charging stations 

respectively. Thereafter, the user decides whether to accept the 

navigation strategy and feedback the decision to the IPC. 

Finally, the IPC reserves charging for the driver at the 

corresponding charging station according to the decision, and 

feeds back the routing and charging strategy to ITS and 

charging stations respectively for updating information. 

To simplify calculations, communication delays, and the 

time consumed to plan a driving route and charging strategy 

are ignored in the entire navigation process.  

 

 
 

Fig. 1.  Navigation system framework  

III.  DYNAMIC TRAFFIC NETWORK MODEL 

The mathematical model of traffic networks is described 

through graph theory in this section firstly. Then, by 

introducing the speed-energy consumption and speed-flow 

model, the road impedance model and dynamic traffic network 

model are proposed, which help model routing planning and 

charging navigation. 

A.  Road Topology 

The traffic network model is the basis for routing planning 

and charging navigation. The topology of the traffic network 

is shown in Fig.2. Graph theory [30] is adopted to model the 

traffic network. 

 
 
Fig. 2. Traffic network topology  

 

𝑅𝑛 = (𝑉, 𝐸, 𝑆)  represents the traffic network, where 𝑉  is 

the set of all road intersections,  𝐸 is the set of all connected 

road sections and 𝑆  is the set of road weight, i.e. the road 

impedance in the traffic network.  

The weight matrix 𝑆 of the traffic network in Fig.2 can be 

expressed as follows by quantitatively evaluating the traffic 

network with direction and weight, 



 

𝑆 =

[
 
 
 
 
 
 
 
 
0   𝑠12 ∞ 𝑠14 𝑠15 ∞ ∞ ∞ ∞
  𝑠21 0   𝑠23 ∞ ∞ ∞ ∞ ∞ ∞
∞   𝑠32 0   𝑠34 ∞ ∞   𝑠37 ∞ ∞
  𝑠41 ∞   𝑠43 0   𝑠45 ∞ ∞ ∞ ∞
  𝑠51 ∞ ∞   𝑠54 0   𝑠56 ∞ ∞ ∞
∞ ∞ ∞ ∞   𝑠65 0   𝑠67 ∞   𝑠69
∞ ∞   𝑠73 ∞ ∞   𝑠76 0 ∞ ∞
∞ ∞ ∞ ∞ ∞ ∞   𝑠87 0   𝑠89
∞ ∞ ∞ ∞ ∞   𝑠96 ∞   𝑠98 0 ]

 
 
 
 
 
 
 
 

     (1) 

 

where 𝑠𝑖𝑗  is the element of matrix 𝑆. It's noted that if 𝑣𝑖 = 𝑣𝑗, 

𝑠𝑖𝑗=0; if 𝑒𝑖𝑗 ∉ 𝐸, 𝑠𝑖𝑗=∞. 

B.  Comprehensive Road Impedance Model 

In traffic network 𝑅𝑛 = (𝑉, 𝐸, 𝑆), road impedance 𝑠𝑖𝑗  is the 

travel cost of a road user through a certain section, which can 

be quantified by the length of the road section, the speed of 

traffic, the travel time, etc.  

Currently, the length of the road section is usually used as 

the road impedance in the traffic network model. However, the 

length of a road section is a fixed quantity that does not change 

with traffic conditions, which cannot reflect the dynamic and 

changeable characteristics of urban traffic networks. BY 

Using road length as road impedance to navigate EVs, the 

recommended road is single, prone to traffic congestion. 

However, the dynamic road impedance, such as travel speed 

and travel time, can only reflect a certain aspect of user travel 

concerns but not comprehensive. To address these issues, a 

road impedance model based on the comprehensive travel cost 

is proposed in this paper, considering the length of road section, 

driving time, energy consumption, and other factors. 

To quantify the comprehensive cost with different traffic 

conditions, the speed-flow model [31] and the speed-energy 

consumption model [32] are introduced for modeling analysis.  

In  urban traffic networks, the driving speed of EVs is 

mainly affected by road capacity and traffic flow. According 

to [31], the driving speed �̅�𝑖𝑗(𝑡) of EV at time 𝑡 on a directly 

connected road section 𝑒𝑖𝑗 can be expressed as: 

                                 �̅�𝑖𝑗(𝑡) =
𝑉𝑖𝑗
𝑓𝑟𝑒𝑒

1+(
𝑞𝑖𝑗(𝑡)

𝐶𝑖𝑗
)

𝛽                               (2) 

                                 𝛽 = 𝑎 + 𝑏 (
𝑞𝑖𝑗(𝑡)

𝐶𝑖𝑗
)
𝑛

                              (3) 

where �̅�𝑖𝑗
𝑓𝑟𝑒𝑒

 indicates the free-flow speed of road section 

𝑒𝑖𝑗, 𝐶𝑖𝑗 is the capacity of a road section 𝑒𝑖𝑗 , 𝑞𝑖𝑗(𝑡) is the traffic 

flow of road section 𝑒𝑖𝑗  at time 𝑡, the ratio of 𝑞𝑖𝑗(𝑡) and 𝐶𝑖𝑗  is 

the road saturation at time 𝑡, 𝑎 , 𝑏, 𝑛 are adaptive coefficients 

at different road levels, which can be obtained from the 

experimental data in ref [31]. The roads are divided into an 

urban expressway, main roads, and secondary roads in our 

model.  
EV energy consumption prediction is also a key content of 

charging routing planning. In urban transportation networks, 

the unit energy consumption mileage of EVs varies greatly 

under different traffic conditions [15], [33-35]. To reflect the 

relationship between energy consumption and driving speed, 

a speed-energy consumption model based on measured data of 

EVs is adopted [32]. 

{
 
 

 
 ∆𝐸𝑓(𝑡) = 0.247 +

1.52

𝑉𝑖𝑗(𝑡)
− 0.004�̅�𝑖𝑗(𝑡) + 2.992 × 10

−5�̅�𝑖𝑗(𝑡)    

∆𝐸𝑚(𝑡) = −0.179 + 0.004�̅�𝑖𝑗(𝑡) +
5.492

𝑉𝑖𝑗(𝑡)
                    (4)          

∆𝐸𝑠𝑒(𝑡) = 0.21 − 0.001�̅�𝑖𝑗(𝑇𝑖) +
1.531

𝑉𝑖𝑗(𝑡)
                                          

where ∆𝐸𝑓(𝑡), ∆𝐸𝑚(𝑡), ∆𝐸𝑠𝑒(𝑡) are energy consumption unit 

mileage in urban expressways, main roads, and secondary 

roads. 

Then, the driving time and energy consumption of the EV 

on-road section  𝑒𝑖𝑗 can be calculated as: 

 𝑡𝑑𝑟𝑖𝑣𝑒,𝑖𝑗 =
𝑒𝑖𝑗

𝑉𝑖𝑗(𝑡)
                               (5) 

                                     𝑝𝑙𝑜𝑠𝑠,𝑖𝑗 = 𝑒𝑖𝑗∆𝐸𝑖𝑗(𝑡)                       (6) 

The impedance model of a section 𝑒𝑖𝑗 is: 

                                𝑠𝑖𝑗 = 𝜃𝑡𝑑𝑟𝑖𝑣𝑒,𝑖𝑗 + 𝜂𝑝𝑙𝑜𝑠𝑠,𝑖𝑗                (7) 

where 𝜃  is the unit time cost coefficient, 𝜂  is the unit 

electricity price of the EV for last charging. 

Let the time intervals in which the user's travel rules and 

traffic conditions are similarly divided into the same period. 

The proposed dynamic traffic network model is: 

                             𝑅�̌� = (𝑉, 𝐸, 𝑇, 𝑆)                                (8)  

where 

                             𝑉 = {𝑣𝑖| 𝑖 = 1, 2, … , 𝑛}                      (9) 

                             𝐸 = {𝑒𝑖𝑗| 𝑣𝑖 ∈ 𝑉, 𝑣𝑗 ∈ 𝑉, 𝑣𝑖 ≠ 𝑣𝑗}      (10) 

                             𝑇 = {𝑡𝑖| 𝑖 = 1, 2, … , 𝑛}                             (11) 

                             𝑆 = {𝑠𝑖𝑗
𝑡𝑖| 𝑒𝑖𝑗 ∈ 𝐸, 𝑡𝑖 ∈ 𝑇}                        (12) 

where 𝑇  is the time series set. The day is divided into 𝑛 

periods, and the update frequency is 𝑡𝑖+1 − 𝑡𝑖. 

IV.  ROUTING AND CHARGING NAVIGATION STRATEGY                      

The receding-horizon based optimal routing method is 

firstly introduced for EV routing planning without charging 

demand in subsection IV.A. Then, a single EV model with 

charging demand is taken as an example to describe the event-

driven charging service pricing strategy in IV.B. It contributes 

to modeling charging navigation strategy presented in 

subsection IV.C, combined with the method in IV.A. Based on 

subsections IV.A-C, the charging navigation strategy of EVs 

considering multi-vehicle interactions is described in 

subsection IV.D. The overall framework of Section IVis 

shown in Fig.3. 
 

 
 
Fig. 3. Overall framework of Section IV 
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A.  Routing Planning With No Charging  

1) Problem Description: The origin 𝑣𝑖 and destination 𝑣𝑗 of 

EV at time 𝑡 can be obtained by OD analysis [36], while there 

are usually multiple routes in the traffic network from 𝑣𝑖 to 𝑣𝑗  

for users. The route with the lowest comprehensive cost 

between 𝑣𝑖  and 𝑣𝑗  can be obtained by searching traffic 

network impedance matrix 𝑆 with the Floyd algorithm [37]. 

The traditional search algorithm is only suitable for route 

planning of static traffic network models, i.e. to solve optimal 

routing one time before the departure of EVs. It means that the 

route does not change with the real-time information of traffic 

networks. Thus, the congested road sections due to changes in 

traffic network conditions cannot be avoided in the actual 

driving route, causing the routing planned by the traditional 

search algorithm not to be optimal in dynamic traffic networks. 

2) Solution: To solve optimal routing planning in dynamic 

traffic networks, a receding-horizon based optimal routing 

method is proposed, whose specific steps are shown in Fig.4. 

 

 
 
Fig. 4. Receding-horizon based optimal routing method 

 

As seen from Fig.4, starting from origin 𝑣𝑖, at each time the 

EV reaches the next traffic network node  𝑣𝑢 , the traffic 

network impedance matrix 𝑆𝑡𝑖 at time 𝑡𝑖 is recalculated. Then, 

it is to determine whether the new impedance matrix 𝑆𝑡𝑖 is the 

same as the previous impedance matrix 𝑆𝑡𝑖−1. If yes, the EV 

continues to drive according to the previous driving routing; 

otherwise, the Floyd algorithm is called to search for a new 

route, and the EV will follow the new route.  

Then, the routing formed by all driving nodes is the optimal 

routing. 

𝑙𝑖𝑗 = {𝑣𝑖 , … , 𝑣𝑎, … , 𝑣𝑗}                          (13) 

B.  Dynamic Charging Service Pricing Strategy 

1)Problem Description: In real situations, the user’s 

decision on where to charge is independent and “selfish”, 

without any consideration of the operation of charging stations, 

traffic networks and power grids, etc. This large-scale 

disorderly EV charging will cause serious congestions at 

charging stations in urban core areas, which further increases 

the burden on the regional power grid. Simultaneously, the 

utilization rate of charging stations in non-urban core areas is 

very low, making charging facilities not effectively used.  

2) Solution: To address the imbalance caused by the large-

scale disorderly EV charging, a charging service pricing 

strategy is proposed. The charging service fee is adjusted 

dynamically through the occurrence of events that EVs request 

for charging, arrive, or leave charging stations to guide EVs to 

underutilized charging stations, realizing the spatial transfer of 

charging demand load.  

  𝑝𝑠,𝑘(𝑡𝑟) 

=

{
 
 

 
 𝑝𝑠,0 0 ≤ 𝐶𝑘(𝑡𝑟) + 𝑄𝑘(𝑡𝑟) <

1

𝛽
𝐺𝑘

𝛽𝑝𝑠,0
𝐶𝑘(𝑡𝑟)+𝑄𝑘(𝑡𝑟)

𝐺𝑘

1

𝛽
𝐺𝑘 ≤ 𝐶𝑘(𝑡𝑟) + 𝑄𝑘(𝑡𝑟) < 𝐺𝑘

𝛽𝑝𝑠,0 +
𝛿𝑡𝑤

𝐸𝑒𝑥−𝐸𝑟𝑒
𝐺𝑘 ≤ 𝐶𝑘(𝑡𝑟) + 𝑄𝑘(𝑡𝑟)

   (14) 

where 𝑝𝑠,0 is the basic service fee of charging station 𝑘 which 

is denoted as 𝐶𝑆𝑘 , 𝑡𝑟  is time that EV requests for 

charging,  𝐶𝑘(𝑡𝑟) is the actual number of EVs in 𝐶𝑆𝑘  at 𝑡𝑟 , 

including queue 𝐶𝑘,𝑐(𝑡𝑟)  being charged and queue 𝐶𝑘,𝑤(𝑡𝑟) 
being queued,  𝑄𝑘(𝑡𝑟)  is the reservation queue of 𝐶𝑆𝑘 , 

indicating the EVs that has already reserved for charging at 

𝐶𝑆𝑘 but has not yet arrived, 𝐺𝑘 is the number of the charger in 

𝐶𝑆𝑘 ,  𝛿  is the waiting unit time cost coefficient, 𝐸𝑒𝑥  is the 

electric quantity of EV after charging,  𝐸𝑟𝑒  is the remaining 

power when EV arrives at the 𝐶𝑆𝑘,and  𝑡𝑤 is the waiting time 

of EV in 𝐶𝑆𝑘. 

It can be seen from (14) that, when events  that  EVs request 

for charging, arrive or leave 𝐶𝑆𝑘  occur, the queue 

𝑄𝑘(𝑡𝑟)  ,  𝐶𝑘,𝑤(𝑡𝑟)  and 𝐶𝑘,𝑐(𝑡𝑟)  will change, which in turn 

changes charging service fees. In this pricing strategy, the 

charging service fee provided by charging stations with lower 

charging demand is lower than those with higher charging 

demand. This price difference will incentivise EVs to move 

from crowded charging stations to underutilized charging 

stations for charging. 

Besides, the charging service fee of an EV is only related to 

charging station charging demand when the EV requests for 

charging. It is not affected by the factors after the request, 

which ensures the timeliness of the EV's charging reservation. 

The charging choice of EV will change the reservation queue 

and the service fee of the corresponding charging station. This 

then affects the charging choices of EVs that subsequently 

Start

Let 𝑆𝑡𝑖−1 = 0,𝑆𝑡𝑖 = 0

The OD probability matrix of 𝐸𝑉𝑖  at node 𝑣𝑖
at time 𝑡𝑖  is called and the destination is 

generated by sampling

Update the traffic flow at 𝑡𝑖

Calculate the driving speed  𝑡 and energy 

consumption unit mileage ∆𝐸 𝑡 of each road section

Calculate the driving time 𝑡  𝑖𝑣𝑒 and energy   

consumption  𝑝𝑙 𝑠𝑠 of each road section

Calculate the traffic network impedance matrix 𝑆𝑡𝑖 at 

𝑡𝑖 and assign values to the traffic network

𝑆𝑡𝑖−1 = 𝑆𝑡𝑖   

Get the route 𝑣𝑖 , … , 𝑣𝑙 , … , 𝑣 with the lowest 

comprehensive cost between 𝑣𝑖 and  𝑣 through Floyd

The node closest to 𝑣𝑖 in the route is denoted as 𝑣 

Arrive at 𝑣 

𝑠  = 0 

End

𝑣𝑖 = 𝑣 

𝑆𝑡𝑖−1 = 𝑆𝑡𝑖

Update 𝑡𝑖

Yes

No

No

Yes



 

request for charging, reflecting the interactive impact between 

EVs charging strategies.  

C.  Charging Navigation Model 

The charging navigation strategy proposed in this paper is 

particulalry suitable for guiding EVs with fast charging 

requirements to the charging station for energy replenishment. 

The conventional charging mode of EV (i.e. low-power 

charging) and electric buses with fixed driving routing is not 

within the scope of discussion. In this section, the modeling 

and analysis of a single EV are firstly carried out according to 

its charging characteristics. Then the charging decision 

function is established for charging navigation of EVs to 

minimize the total cost. Finally, based on all modeling and 

analysis, the flowchart of the route planning and charging 

navigation for EVs is given. 

1) Charging Model of Single EV: The travel destination of 

an EV at each time of the day can be obtained through OD 

analysis [36]. Assuming that at 𝑡𝑖, there is an EV denoted as 

𝐸𝑉𝑖  at node 𝑣𝑖 . The destination 𝑣𝑗  of 𝐸𝑉𝑖  for the next travel 

can be obtained by OD probability matrix sampling. 

Before starting the next travel, whether the 𝐸𝑉𝑖  needs 

charging can be determined through:  

               𝐸𝑖(𝑡) ≤ 𝛾𝐸𝑏𝑎𝑡           𝐸𝑖(𝑡) ≤ 𝑙𝑖𝑗Δ𝐸(𝑡)                  (15) 

where 𝐸𝑖(𝑡) is the remaining power of 𝐸𝑉𝑖  at time 𝑡, 𝐸𝑏𝑎𝑡  is 
the battery capacity, 𝛾 is mileage anxiety coefficient, Δ𝐸(𝑡) is 

energy consumption unit mileage. 

If the operating state of the 𝐸𝑉𝑖  does not meet (15),  𝐸𝑉𝑖 
drives to destination 𝑣𝑗   according to the dynamic routing 

planning model described; if it meets (15), the 𝐸𝑉𝑖  charging 

request flag 𝐶𝑟(𝑖) will be triggered, and then the intelligent 

navigation system plans the charging strategy for 𝐸𝑉𝑖. 

 𝐶𝑟(𝑖) = {
1 𝐸𝑖(𝑡) ≤ 𝛾𝐸𝑏𝑎𝑡           𝐸𝑖(𝑡) ≤ 𝑙𝑖𝑗Δ𝐸(𝑡)

0 𝐸𝑖(𝑡) > 𝛾𝐸𝑏𝑎𝑡   𝑎𝑛   𝐸𝑖(𝑡) > 𝑙𝑖𝑗Δ𝐸(𝑡)
       (16) 

During the travel of 𝐸𝑉𝑖, driving time, driving distance, and 

charging cost are all factors that users are concerned with. 

These factors are uniformly converted into the cost, and the 

charging strategy is planned to minimize the total charging 

cost of EV drivers. 

 Record the time when 𝐸𝑉𝑖 requests charging as 𝑡𝑟, then the 

charging price of the 𝐸𝑉𝑖 at 𝐶𝑆𝑘 is: 

 𝑝𝑘(𝑡𝑟)= 𝑝0(𝑡𝑟) + 𝑝𝑠,𝑘(𝑡𝑟)                         (17) 

where 𝑝0(𝑡𝑟) is the real-time electricity price of the power grid 

at 𝑡𝑟. 
The remaining power of 𝐸𝑉𝑖 when it reaches 𝐶𝑆𝑘 is: 

𝐸𝑟𝑒,𝑖,𝑘 = 𝐸𝑖(𝑡𝑟) − 𝑙𝑖𝑗∆𝐸𝑡                        (18) 

where 𝐸𝑖(𝑡𝑟) is the remaining power of 𝐸𝑉𝑖 at 𝑡𝑟 . 
The time of the 𝐸𝑉𝑖 arriving at 𝐶𝑆𝑘 is: 

                                    𝑡𝑎 = 𝑡𝑟 +
𝑙𝑖𝑗

𝑉𝑡
                                       (19) 

The charging time of 𝐸𝑖(𝑡𝑟) at 𝐶𝑆𝑘 is: 

                                    𝑡𝑐 =
𝐸𝑒𝑥,𝑖,𝑘−𝐸𝑟𝑒,𝑖,𝑘

𝑃
                               (20) 

where 𝑃 is the power of charger, 휀 is charging efficiency. 

The waiting time of the 𝐸𝑉𝑖 at the 𝐶𝑆𝑘 depends on the sum 

of the electric power demand of EVs charging and queuing 

before the 𝐸𝑉𝑖 . The queuing time varies with the dynamic 

queue of 𝐶𝑆𝑘, which can be solved by the steps in Fig.5. 

 
 
Fig. 5. Flowchart for computing the waiting time 

 

The time 𝐸𝑉𝑖 departure from 𝐶𝑆𝑘 is: 

                                    𝑡𝑙 = 𝑡𝑤 + 𝑡𝑎 + 𝑡𝑐                           (21) 

The charging expense of 𝐸𝑉𝑖 at 𝐶𝑆𝑘 is: 

                          𝐶𝑖,𝑘 = (𝐸𝑒𝑥,𝑖,𝑘 − 𝐸𝑟𝑒,𝑖,𝑘)𝑝𝑘(𝑡𝑟)                (22) 

The total cost of 𝐸𝑉𝑖’s charging strategy includes not only 

the charging expense but also the driving cost from the origin 

𝑣𝑖 to the 𝐶𝑆𝑘 and from 𝐶𝑆𝑘 to the destination 𝑣𝑗. The total cost 

is: 

           𝐶𝑎𝑙𝑙,𝑖,𝑘 =∑∑𝑠𝑖𝑗
𝑜𝑘

𝑛

𝑗=1
𝑖≠𝑗

𝑛

𝑖=1

𝑥𝑖𝑗 +∑∑𝑠𝑖𝑗
𝑘𝑑

𝑛

𝑗=1
𝑖≠𝑗

𝑛

𝑖=1

𝑥𝑖𝑗 + 𝐶𝑖,𝑘    (23) 

where 𝑛 is the total number of the traffic network node, 𝑠𝑖𝑗
𝑜𝑘, 

𝑠𝑖𝑗
𝑘𝑑  represents the impedances of the road section with 𝑖 

and   as both endpoints from the origin to the 𝐶𝑆𝑘 and from the 

𝐶𝑆𝑘 to the destination respectively, 𝑥𝑖𝑗  is the 0-1 variable, if 

the road with 𝑖,   as the endpoint is in the actual driving route, 

𝑥𝑖𝑗 = 1, otherwise 𝑥𝑖𝑗 = 0. 

The 𝐶𝑆𝑘  is the centralized load of the 10kV distribution 

network. For the distribution network node where 𝐶𝑆𝑘  is 

Start

𝐶𝑘,𝑐 𝑡𝑎 + 𝐶𝑘,𝑤 𝑡𝑎 < 𝐺𝑘  

Obtain the charging queue 𝐶𝑘,𝑐 𝑡𝑎  and queuing 

queue 𝐶𝑘,𝑤 𝑡𝑎 of the 𝐶𝑆𝑘 when  𝐸𝑉𝑖 arrives at 𝐶𝑆𝑘

Generate time set 𝑇 of the EV's charging end time 

in the charging queue 𝐶𝑘,𝑐 𝑡𝑎  in ascending order, 

𝑇=  𝑡𝑙,1,  𝑡𝑙,1 , … , 𝑡𝑙,𝑛 .

Record the charging end time of the EV that ranks 

first in the queuing queue  𝐶𝑘,𝑤 𝑡𝑎  as 𝑡𝑐,1.

𝑡  𝑡𝑙,1 

The EV ranked first in the queuing queue enters 

the charging queue. Update the time set 𝑇, 

where 𝑡𝑙,1 = 𝑡𝑙,1 + 𝑡𝑐,1.

Rearrange the time set 𝑇 in ascending order, 

                    𝑇 =  𝑡𝑙,1,  𝑡𝑙,1 , … , 𝑡𝑙,𝑛 .

Update queuing queue 𝐶𝑘,𝑤 𝑡𝑎 ,

                      𝐶𝑘,𝑤 𝑡𝑎 = 𝐶𝑘,𝑤 𝑡𝑎 − 1. 

Record the charging end time of the EV ranking

first in the queuing queue  𝐶𝑘,𝑤 𝑡𝑎  as 𝑡𝑐,1.

 𝐶𝑘,𝑤 𝑡𝑎 > 0 

𝑡𝑤 = 𝑡𝑙,1 − 𝑡𝑎

Output waiting time 𝑡𝑤

End

Update 𝑡

𝑡𝑤=0

Yes

No

Yes

No
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located, the total charging load 𝑃𝑘  in any period is the 

accumulation of the charging power of EVs charged in 𝐶𝑆𝑘. 

                                   𝑃𝑘 = ∑ 𝑃𝑖,𝑡
�̃�
𝑖=1                               (24) 

where �̃�  is the total number of EVs in period 𝑡  , 𝑃𝑖,𝑡  is the 

charging power of 𝐸𝑉𝑖 in period 𝑡.  
 

 
 
 

Fig. 6. Flowchart of the route planning and charging navigation 

 

2) Charging Decision Function: With the lowest total cost 

as the objective to plan the optimal charging strategy for users, 

the charging decision function proposed is as follows, with the 

constraint of the waiting time tolerance, remaining mileage 

coverage, and driving speed  

     𝐶𝑜𝑏𝑗 = 𝑚𝑖𝑛{𝐶𝑎𝑙𝑙,𝑖,1, … , 𝐶𝑎𝑙𝑙,𝑖,𝑘, … , 𝐶𝑎𝑙𝑙,𝑖,𝑧}               (25) 

             𝑠. 𝑡.                    𝐸𝑖(𝑡𝑟)  𝑙𝑜𝑘∆𝐸(𝑡)                  (26) 

      �̅�𝑖𝑗(𝑡)  𝜆�̅�𝑖𝑗−𝑧                    (27) 

                                        𝑡𝑤,𝑜𝑏𝑗 ≤ 𝜇𝑡𝑤,𝑐𝑙𝑜𝑠𝑒                    (28)  

where 𝐶𝑎𝑙𝑙,𝑖,𝑘 is the total cost, 𝑙𝑜𝑘 is the optimal route from the 

origin to 𝐶𝑆𝑘  , 𝑡𝑤,𝑜𝑏𝑗  and 𝑡𝑤,𝑐𝑙𝑜𝑠𝑒  is the waiting time at the 

target charging station and the nearest charging station 

respectively. 

Constraint (26) limits the target charging station to be within 

the remaining mileage of 𝐸𝑉𝑖 . Constraint (27) is to avoid 

congested roads, limiting the speed of recommended road 

sections. Constraint (28) is to avoid the congestion  of some 

charging stations due to a large number of EV charging 

reservations.  

Based on the foregoing modeling and method analysis, 

Fig.6 shows the flowchart of the routing planning and charging 

navigation of EVs. 

 

D.  Priority Reservation Cost Mechanism 

1)Problem Description: In the above discussion on the 

charging service pricing strategies, it is assumed the 

reservation time of each EV is in order. However, in real 

situations, sometimes multiple EVs request for charging 

simultaneously particularly during peak hours. It has rarely 

been studied regarding how to deal with the reservation 

sequence of these EVs that request for charging 

simultaneously.  

2) Solution: To solve the problem, a priority reservation cost 

mechanism is proposed. Suppose that at time 𝑡𝑟 , 𝑀  EVs, 

denoted as 𝐸𝑉1, 𝐸𝑉2,…, 𝐸𝑉𝑖,…, 𝐸𝑉𝑚, simultaneously request 

for charging.  

For 𝐸𝑉𝑖, the charging stations which is within its remaining 

mileage, are all its possible charging choices. The estimated 

arrival time of 𝐸𝑉𝑖 at 𝐶𝑆𝑘 is: 

  𝑡𝑎,𝑖,𝑘 = 𝑡𝑟 +
𝐿𝑘

𝑉(𝑡)
              𝑘 ∈ [1.7]          (29) 

The time set of all EV’s estimated arrival time is: 

𝑇 = {… , 𝑡𝑎,1,𝑘, … , 𝑡𝑎,𝑖,𝑘, … , 𝑡𝑎,𝑚,𝑘}   𝑘 = 1,2, … ,7      (30)  

For 𝐶𝑆𝑘 , it may be within the remaining mileage of more 

than one EVs among these M EVs. According to the order in 

which these EVs arrive at 𝐶𝑆𝑘, the estimated reservation queue 

𝑄𝑘 of 𝐶𝑆𝑘 is generated. 

𝑄𝑘 = {𝐸𝑉𝑖 , … , 𝐸𝑉𝑗 , … 𝐸𝑉𝑒}    

 𝑖,  , 𝑒 ∈ [1,𝑚]     𝑘 = 1,2, … ,7  (31) 

Record the smallest 𝑡𝑖  in 𝑇  as 𝑡𝑚𝑖𝑛 . Record the charging 

station and EV corresponding to 𝑡𝑚𝑖𝑛 as 𝐶𝑆𝑟1, 𝐸𝑉𝑟1.  𝐸𝑉𝑟1 is 

assumed to have priority reservation opportunity in these M 

EVs. 

As seen from (14), the charging service fee is determined 

by the queue 𝐶𝑘(𝑡𝑟),  𝑄𝑘(𝑡𝑟) of the charging station when the 

EV requests for charging. With this pricing strategy,  𝐶𝑆𝑟1 is 

the fastest arriving charging station for 𝐸𝑉𝑟1 , but it is not 

necessarily the one with the lowest comprehensive charging 

cost. The navigation of the charging station for 𝐸𝑉𝑟1 needs to 

be further determined. 

By assuming the reservation queue of 𝐶𝑆𝑘 to be 𝑄𝑘, it can 

be written as: 

           𝑄𝑘 = {𝐸𝑉𝑖 , … , 𝐸𝑉𝑟1, … 𝐸𝑉𝑒}      𝑖, 𝑒 ∈ [1,𝑚]       (32) 

In 𝑄𝑘, record the queue before 𝐸𝑉𝑟1 as 𝑄𝑏𝑘, and the queue 

after 𝐸𝑉𝑟1 as 𝑄𝑎𝑘 . The charging service fee of 𝐸𝑉𝑟1 at 𝐶𝑆𝑘 is: 

Start

Input EV scale, Location of nodes and CS, 

Battery capacity of EV, Number of charger in CS, 

Length of road section

Update traffic flow, Location of EV, 

Remaining power of EV, Charging service fee of CS, 

EV number of actual queue and reservation 

queue in CS

Sampling to generate destination 𝑣𝑗 through 

OD probability matrix

𝐶𝑟 𝑖 = 1 

Plan the charging strategy with 𝐶𝑜𝑏𝑗 minimum as 

the goal and choose charging station 𝐶𝑆𝑘

Change   destination   to   𝐶𝑆𝑘

Plan optimal route to 𝐶𝑆𝑘 by receding-horizon based 

optimal routing method

Arrive at the 𝐶𝑆𝑘 and charge EV with 

constant power

𝐸𝑖 𝑡 < 𝐸𝑒𝑥,𝑖 

Change     destination     to      𝑣𝑗

Update 𝑡

Plan optimal route to destination by receding-

horizon based optimal routing method

Arrive at destination 𝑣𝑗 and update the 

Remaining power 𝐸𝑖 𝑡

Have all EVs 

been navigated?

End

Yes

No

Yes

No

No
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  𝑝𝑠,𝑘(𝑡𝑟) =

{
 

 
 𝑝𝑠,0    

𝛽𝑝𝑠,0
𝐶𝑠(𝑡𝑟)+ 𝑄𝑠(𝑡𝑟)+𝑄𝑏𝑘

𝐺𝑘
 

𝛽𝑝𝑠,0 +
𝛿𝑡𝑤

,

𝐸𝑒𝑥−𝐸𝑟𝑒

   

0 ≤ 𝐶𝑘(𝑡𝑟) + 𝑄𝑘(𝑡𝑟) + 𝑄𝑏𝑘 <
1

𝛽
𝐺𝑘  

1

𝛽
𝐺𝑘 ≤ 𝐶𝑘(𝑡𝑟) + 𝑄𝑘(𝑡𝑟) + 𝑄𝑏𝑘 < 𝐺𝑘

𝐺𝑘 ≤ 𝐶𝑘(𝑡𝑟) + 𝑄𝑘(𝑡𝑟) + 𝑄𝑏𝑘               

         (33)                                                                                      

   The comprehensive charging cost of 𝐸𝑉𝑟1 at 𝐶𝑆𝑘is: 

𝐶𝑎𝑙𝑙,𝑟1,𝑘 =∑∑𝑠𝑖𝑗
𝑜𝑘

𝑛

𝑗=1
𝑖≠𝑗

𝑛

𝑖=1

𝑥𝑖𝑗 +∑∑𝑠𝑖𝑗
𝑘𝑑

𝑛

𝑗=1
𝑖≠𝑗

𝑛

𝑖=1

𝑥𝑖𝑗  

                       +(𝐸𝑒𝑥,𝑟1,𝑘 − 𝐸𝑟𝑒,𝑟1,𝑘)(𝑝𝑠,𝑘(𝑡𝑟) + 𝑝0(𝑡𝑟))    (34) 

   Compared with (23), there is an extra cost in 𝐶𝑎𝑙𝑙,𝑟1,𝑘 caused 

by 𝑄𝑏𝑘, which is denoted as a priority reservation cost in this 

paper. It is the extra cost for 𝐸𝑉𝑟1 to pay for reserve charging 

before EVs that is the queue 𝑄𝑏𝑘 . If 𝑄𝑏𝑘  is 0, it means that 

𝐸𝑉𝑟1  is at the top of the queue 𝑄𝑘 . After considering the 

priority reservation cost, the 𝐶𝑆𝑘  with the lowest 

comprehensive charging cost is the final choice of 𝐸𝑉𝑟1. 

  𝐶𝑎𝑙𝑙,𝑟1,𝑖 = 𝑚𝑖𝑛{𝐶𝑎𝑙𝑙,𝑟1,𝑘}     𝑘 = 1,2, … , 𝑔           (35) 

where g is the number of charging station, which is located 

within the remaining mileage of 𝐸𝑟1. 

Increase the number of EVs in the reservation queue 𝑄𝑖(𝑡𝑟) 
of 𝐶𝑆𝑖 by (36): 

                               𝑄𝑖(𝑡𝑟) =  𝑄𝑖(𝑡𝑟) + 1                                 (36) 

By repeating above process, the reservation orders and 

charging choices of the M EVs can be obtained in turn. 

 

V.  CASE STUDY                               

In this section, simulation results are presented to 

demonstrate the performance of the proposed method. The 

traffic network topology and other parameters used in the 

simulation are given in Section V.A. The effects of navigation 

strategies on the queue, charging load, charging price and 

service rate of charging stations are analyzed. 

A.  Case Description   

The numerical cases for an urban city is modelled to verify 

the feasibility of the route planning and charging navigation 

strategy. According to traffic functions, the urban city is 

divided into: residential area (nodes of 2-3-4-9-8-14-13-7 and 

nodes of 28-29-34-33-32), commercial area (nodes of 14-15-

16-23-22-21-18), working area (nodes of 9-10-11-16-15 and 

nodes of 20-21-27-26). The urban city contains 7 charging 

stations, which are denoted as cs1,cs2,…,cs7. The traffic 

network topology and charging station locations are shown in 

Fig.7.  

A total of 1800 identical BYD Qin ev450 are used as 

simulations, whose battery capacity is 60 kWh [38]. 

Considering that the charging mode in this paper is all in the 

fast charging situation, the charging power  𝑃  [39] and the 

charging efficiency 휀 [14] of the charger are uniformly set as 

90kW and 0.9 respectively. To avoid damage to the battery 

caused by overcharging, 𝐸𝑒𝑥 is set to 0.9 𝐸𝑏𝑎𝑡  after charging 

[40]. Referring to [41], 𝜃 is set to 0.39. Referring to the test 

data of reference [32], 𝑎 , 𝑏, 𝑛 in (3), (4) is set to 1.726, 3.15, 

3 in the urban expressway. For main roads and secondary 

roads, 𝑎 , 𝑏, 𝑛 is set as 2.076, 2.870, 3, respectively. Referring 

to [44], 𝑝𝑠,0 is set as 0.8 Yuans, while 𝑝0 is: 

 𝑝0 = {

1.0044     𝑌 𝑎𝑛/𝑘𝑊ℎ
0.6950     𝑌 𝑎𝑛 /𝑘𝑊ℎ
0.3946     𝑌 𝑎𝑛/𝑘𝑊ℎ

 

 𝑇 ∈ (10: 00,15: 00) ∪ (18: 00,21: 00)                                  

𝑇 ∈ (07: 00,10: 00) ∪ (15: 00,18: 00) ∪ (21: 00,23: 00)

𝑇 ∈ (23: 00,07: 00)                                                                    

(37) 

 Besides  𝛾 , 𝛽 , 𝜇 , 𝜆 ,  𝛿  are set as 0.15, 2, 2.5, 0.3, 0.18 

respectively according to the model in this paper. 

                  
 
Fig. 7. Traffic network topology 

 

B.  Discussion  

In this section, the simulation results are analyzed from 

different aspects to verify the effectiveness of the proposed 

method, which cannot only alleviate difficulty for EV’s fast 

charging but also improve the utilization rate of charging 

facilities. 

This program runs on ThinkPad notebooks configured as i5-

6200u and 16gm and the simulation platform is MATLAB. 

The simulation time of a single time interval is 3.13 s. 

1)Analysis of changing demand distribution: Without 

routing and charging navigation, the EV users choose the 

nearest driving route and charging station during daily driving. 

The distribution of EV’s charging demand without navigation 

for the whole day in the traffic network is displayed in Fig.8. 

The peak time of EV’s charging demand is 13:00-16:00, which 

is between the morning and evening travel peaks of users. 

Besides, the charging demand is unevenly distributed in space, 

mainly concentrated in the area where the traffic network node 

10 to node 20 are located. To show this more clearly, the 

charging demand of each road section in the peak period is 

given in Fig.9. As can be seen, the charging demand is mainly 

concentrated in the working area and the commercial area as 

well as its adjacent road sections, which makes cs3, cs4, cs5 

may face greater charging pressure during peak hours, but cs1, 

cs6, cs7 are not fully used. The service situation of each 

charging station at 15:00 is shown in Fig.10. It’s obvious that, 

the number of EVs in the actual queue and reservation queue 

at cs3, cs4, cs5 has exceeded it’s service capacity cap, 

especially at cs3, which has exceeded twice it’s service 

capacity cap. 

Simulation results in Figs.8-10 demonstrate that the 

distribution of EV’s charging demands without navigation is 

unbalanced. This unbalanced distribution will lead to the two 



 

concerns mentioned in the first Section, i.e. the difficulty of 

fast charging for EVs and the inefficient use of charging 

infrastructures.  

2)Analysis of different routing strategies: To illustrate the 

advantage of the receding-horizon based optimal routing 

method in routing planning over the traditional search 

algorithm, the driving route of an EV with node 2 as the origin 

and node 22 as the destination with different strategies is 

showed in Fig.11.  

In Fig.11, routing 1 is the shortest route, and routing 2 , 

routing 3 are the driving routes obtained by the traditional 

search algorithm and the receding-horizon based algorithm. 

Routing 1, routing 2, and routing 3 are marked on the traffic 

network with orange, red, and green lines respectively. 

Besides, the traffic condition of the road sections when EV 

driving on it is represented by some composite colour on the 

basis of orange, red and green. Pure orange, pure red, pure 

green represent the road section is unblocked. green black, 

orange black, red black and black green, black orange, black 

red represent the road section is crawl and blocked 

respectively. Combined with the information in Table.1, 

routing 1 has the shortest distance among the three routings, 

which is 16.07 km. However, compared with routing 2 and 

routing 3 obtained by the comprehensive road impedance 

model, the driving time 26.137 min and driving cost 15.12 

yuans of routing 1 are the most among the three routings. The 

reason is that the traffic condition of each section will not be 

taken into account when planning the driving route with the 

shortest distance, which will cause some congested road 

sections to be planned into the driving routing. 

 

 
 

Fig. 8. Spatiotemporal distribution of charging demand    

 

 
 

Fig. 9. Network distribution of charging demand 

 
 
Fig. 10. The actual number and reservation number of EV 

 

To further analyze the difference between routing 2 and 

routing 3, it can be seen that although routing 3 is longer 

routing 2, the driving time and driving cost are reduced. It's 

easy to understand, because routing 2 is planned by the 

traditional search algorithm one time according to traffic 

network information before the departure of the EV, which 

means that routing 2 does not change with the real-time 

information of traffic network. Thus, the congested road 

sections due to changes in traffic network condition cannot be 

avoided. 

The shortcomings of traditional search algorithm can be 

solved by the receding-horizon based optimal routing 

algorithm proposed. As shown in Fig.11, when the EV arrives 

at node 13, 𝑠13−17−18−21−22 obtained by the receding-horizon 

based optimal routing algorithm is less than 𝑠13−14−18−21−22 
due to the change in traffic condition. EV will adjust the 

driving routing from routing 𝑙13−17−18−21−22  to the 

destination instead of routing 𝑙13−14−18−21−22 . As listed in 

Table.1, the driving time and driving cost is further reduced to 

21.933 min and 11.79 yuans. 

 

 
 
Fig. 11. Routing of 𝐸𝑉𝑖 in different strategies. 

 
TABLE I.   

INFORMATION  OF ROUTING 

Routing Actual Route Dis(km) Time(min) Cost(yuans) 

1 2-7-8-14-18-21-22 16.07                                26.137 15.12 
2 2-7-13-14-18-21-22 16.41 22.853 12.54 

      3 2-7-13-17-18-21-22 16.45 21.933 11.79 



 

 
Fig. 12. Number of  EVs in reservation queue at each charging station in different user participation levels 
 

 
Fig. 13. Number of  EVs in actual queue at each charging station in different user participation levels     

           

 
Fig. 14. Charging load of charging station in different user participation levels     

    

            
 

Fig. 15. Charging price of charging station in different user participation levels       

 

  
                                                                                                       

Fig. 16. Service rate of charging station in different user participation level 
 
 

 

3)Analysis of charging strategy: To verify the effectiveness 

of the proposed charging strategy, simulation results with 

three different user participation degrees, 0% acceptance, 50% 

acceptance, and 100% acceptance, are presented. EV users, 

who do not accept charging navigation, choose the nearest 

charging station.  

The number of EVs in the reservation queue and actual 

queue at each charging station with three user participation 

levels is displayed in Fig.12-13. As can be seen from the 

scenario of 0% user participation, the number of EVs reserved 

for charging in cs3 accounts for the majority of EVs with 

charging demand, which leads to the result that cs3 will face 

the number of EVs far exceeding the upper limit of it’s 

charging service capacity. With the increasing user 

participation, the EVs that originally choose cs3 turn to other 

charging stations for charging. As the result, more EVs can 

receive charging services instead of queuing at cs3, which not 

only relieves the charging pressure of charging stations in the 

central area but also improves the utilization rate of remote 

charging stations. 

To analyze the impact of charging behavior on the 

distribution network, the EV’s charging load of each charging 

station is showed in Fig.14. Compared with three subgraphs 

with different participation, it can be seen that with 0% 

participation, the charging load distribution of each charging 

station is unbalanced, making the peak-valley difference 

among stations larger. With increasing participation, the peak-

to-valley difference of the maximum load is reduced from 

2520kW to 1350kW. The results show that the peak-valley 

difference of the charging load among charging stations is 

reduced, which is beneficial to the operation of charging 

stations. 

It can be seen from (14) that the charging service fee is 

related to the charging demand of the charging station. The 



 

change in charging demand will be directly reflected in the 

charging price. The charging price curve of each charging 

station is displayed in Fig.15. The charging price difference 

between different charging stations is very large in the 

scenario of 0% user participation. The charging price of cs3 

during peak hours is close to 3 yuans, while that of cs7 all day 

is less than 1.8 yuans. With increasing participation, this price 

difference among charging stations tends to decrease and even 

disappears in some periods, which means a more balanced 

distribution of charging demand. 

To further explain the utilization rate of each charging 

station in a day, the service rate is introduced as the evaluation 

index. 

                                   𝑆𝑟(𝑡) =
𝐶𝑘(𝑡)

𝐺𝑘
                               (38) 

𝑆𝑟(𝑡) = 1 indicates the ideal running state of the charging 

station, which means that the charger is fully used and there 

are no queued EVs. The more 𝑆𝑟(𝑡) is greater than 1, the more 

congested the charging station is; The more 𝑆𝑟(𝑡)is smaller 

than 1, the lower the utilization of the charging station is.  

The service rate curve of the charging station is displayed 

in Fig.16. As can be seen, in the scenario of 0% user 

participation, the service rate of cs3 has exceeded 1 from time 

12, especially the service rate at time 14 is as high as 4. 

Meanwhile, the service rate of cs1 and cs7 are both lower than 

0.5 throughout the day. It shows that the distribution of 

charging services between charging stations is very 

unreasonable. In contrast, the charging service rate of charging 

stations is closer to 1 along with the increase in user 

participation, which means more rational operation state of 

charging station. 

 

 
 
Fig. 17. Distribution of EV in three participation levels 

 
TABLE II.   

CHARGING DEMAND FREQUENCE  

Node  Number  Number Node  Node  Number  

1 5 13 27 24 30 

2 20 14 230 25 2 
3 74 15 118 26 35 

4 17 16 125 27 40 

5 2 17 17 28 58 
6 1 18 222 29 30 

7 41 9 4 30 2 

8 162 20 40 31 8 
9 156 21 152 32 24 

10 54 22 121 33 14 

11 56 23 55 34 11 
12 5     

 

The distribution of EV driving distance, charging cost, and 

charging time of users with different participation levels is 

shown in Fig.17. Compared with the scenario of 0% 

participation, although the average charging distance increases 

from 3.13 km to 4.75 km, the charging time and charging cost 

reduces from 68.93 min to 40.32 min, 70.91 yuans to 64.96 

yuans, respectively. It shows that compared with the charging 

strategy without navigation, the charging strategy under 

navigation can better satisfy the charging demands of users. 

Finally, based on the charging demand distribution with the 

scenario of 100% user participation, the locations of new 

charging stations are planned. After 50 simulations, Table.2 

gives the charging demand frequency of each traffic network 

node in one day. Combined with the research on the location 

planning of the charging station [26-28], node 14 and node 18 

are selected as the new charging station locations, as shown in 

Fig.18. The information comparison of EV charging strategy 

in different scenarios is displayed in Table.3. For more directly 

illustrate it, the relative values of average charging distance, 

charging time, and charging expense of users with different 

scenarios are shown in Fig.19, in which the value of 0% 

participation is taken as the base. 
 

 
 
Fig. 18. Traffic network topology with new charging stations 
 

TABLE III.   
TABLE IV.  CHARGING STRATEGY INFORMATION    

Scenarios  Distance(km) Time(min)    Cost(yuans) 

0% acceptance    3.13                                                 68.93                   70.91 
50% acceptance 4.16         42.65 68.06 

100% acceptance    4.75         40.32 64.96 

100% acceptance with 
new charging station 

   3.56         37.23 62.60 
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Fig. 19. Information on charging strategy in different scenarios 

The results show that after the new charging station is added, 

the average charging distance, charging expense, and charging 

time is further reduced. They prove that it is reasonable to plan 

the location of charging stations based on the EV’s charging 

demand distribution with the navigation strategy. 

VI.  CONCLUSION 

To solve the problem of EV fast charging on the road and 

the unbalanced utilization of charging infrastructures, a 

routing optimization of EVs for charging with an event-driven 

pricing strategy is proposed. Taking the numerical analysis of 

an urban area as an example, the effectiveness of the proposed 

strategy is verified by simulation results, which show that: 

1) Compared with the static shortcoming of the traditional 

search algorithm, the receding-horizon based optimal 

routing algorithm can recommend the optimal routing 

according to the real-time information of the traffic 

network. It can not only be used as the navigation 

algorithm to plan the driving route but can also search 

for the optimal charging strategy by comprehensive 

cost road impedance. 

2) The dynamic service pricing strategy proposed can 

reflect the congestion of charging stations, which lays 

the foundation for developing charging navigation 

strategies. 

3) With the integration of real-time traffic information and 

charging station information, the routing planning and 

charging navigation strategy can reasonably control the 

number of EVs in each charging station. This can 

shorten the queuing time of EVs into the station while 

improving the safety of charging station operation. 

4) After the new charging stations are planned in the 

traffic network, the charging time and charging cost 

further is reduced by 7.66%, 3.63% respectively, which 

verifies the rationality to plan the charging station 

location based on the distribution of EV charging 

demand with the navigation strategy. It provides a 

theoretical basis for further research on the planning of 

the charging station location. 

Considering the effects of various time-varying external 

factors on EV’s charging cost, the method proposed in this 

paper plan the routing and charging strategy for users. 

However, different types of EV users have their own 

personalized needs about travel behaviors. The study on the 

user's charging habit and routing choice preference in 

multiple scenarios is not covered in this article, which will 

be further explored for meeting the personalized needs of 

EV drivers in the follow-up research.  
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