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Abstract: Unplanned charging supervision of electric vehicles may deteriorate their penetration in alleviating 

pollution and reducing the driving efficiency, and proper management is critical to reduce charging waiting 

time and efficiently design driving behaviours from spots to charging stations. Motivated by this, a novel bi-

functional charging management strategy in virtue of the mobile edge computation based framework is 

proposed in this study to effectively book the charging piles with less waiting time and meanwhile achieve 

better energy efficiency during charging booking. First, a novel charging booking algorithm is developed to 

determine the most suitable charging station and optimally plan the shortest route to the preferred charging 

station. Second, a driving behaviour optimization method is designed to plan the efficient velocity profile of 

the trip to the selected station under the constrained time calculated by the charging booking algorithm. The 

simulation analysis validates that the proposed bi-functional management strategy can reasonably book 

suitable charging stations and efficiently reduce energy consumption in the charging booking process, 

highlighting its anticipated preferable performance.  

Key words: Charging management strategy (CMS), charging booking algorithm (CBA), driving behaviour 

optimization (DBO), mobile edge computation (MEC), electric vehicles (EVs) 

 

1. INTRODUCTION 

Nowadays, severe social conflicts among development, environment and natural resources expedites 

technology evolution [1-3]. Academia and industries have spared no effect to dramatically mitigate these 

passive concerns by means of transportation electrification [4, 5]. Electric vehicles (EVs), as one of ideal 

solutions that completely avoid greenhouse gas emission, have attracted substantial attention [6]. Recent 

prominent progress in charging infrastructure construction accelerates market penetration of EVs [7]. Despite 

the achievement in development of charging facilities, great challenges still exist in charging management of 

EVs [8]. Improper charging management may adversely affect daily use and acceptance of EVs in aggravating 

the range anxiety and triggering indirectly other social issues, such as traffic congestion and travel disruption. 

Indeed, charging management has become one of vital problems in EV promotion that deserves to be properly 

tackled.  
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The EV charging management, generally, can be divided into two categories: fixed charging scheduling 

(FCS) for EVs when parking at homes, and dynamic charging administration (DCA) for on-the-move EVs [9-

11]. Since the FCS mode is relatively direct and easy to be tailored, in this study, we focus mainly on 

developing optimal strategies for DCA of on-the-move EVs. Presently, a variety of progress has been made 

for the development of on-the-move charging management and the main task can be divided into the following 

three steps: appropriate charging planning, management of CSs to grid and path planning from spots to CSs. 

The charging planning mainly accounts for selecting a suitable CS with less waiting time and optimally 

allocating the charging schedule to reduce cost and grid load. Ref. [12] proposes an efficient coordinated 

management strategy for on-the-move EVs to reduce the charging waiting time. Actually, the designed 

publish/subscribe framework enables reduction of the charging time to a large extent. A case study in Helsinki 

manifests the preferable performance of raised strategy. Ref. [13] reveals a charging scheduling algorithm to 

minimize the charging cost and charging load. The daily charging demand profile is predicted and incorporated 

into the charging appointment of each EV. Management from CSs to the power grid is mainly focused on 

rationally allocating load to CSs from power grid based on the charging requirement while keeping the grid 

stable. Ref. [14] introduces an instant smart load management solution by optimizing the maximum sensitivity 

selection, whereby the EV charging can be scheduled more flexibly to minimize the grid overload and promote 

its stability and reliability. Ref. [15] successfully minimizes the load at CSs by heuristic based manners and 

genetic algorithm (GA). Based on the proposed method, the CS can determine whether they can meet the 

charging request under the constraint of current grid load. Currently, path plan for EV charging from spots to 

CSs has been actively investigated. By means of effective path plan, efficient routes from spots to CSs can be 

generated along with optimization of different targets, such as energy consumption and travelling time. 

Actually, path plan can be regarded as a dynamic optimization problem and undoubtedly can be effectively 

solved by typical optimization algorithms, such as dynamic programming (DP) and its extensions including 

stochastic DP (SDP) and approximate DP (ADP) [16]. In [17], the charging booking problem of individual EV 

owners is considered, and the shortest path on an extended transportation graph is searched. A so-called social 

planner is employed to determine the optimal route with less travel time and energy consumption.  

Existing solutions for charging management claim to accomplish charging scheduling in on-board vehicle 

control units (VCUs) or global controllers (GCs) located in cloud servers; however, despite of VCUs or GCs, 

the burdensome computation load incurred by complex algorithms weakens their real-time application 

potential. The rapid development of communication technologies [18], artificial intelligence [19] and remote 

sensing technologies [20] promote the research with respect of charging booking management to a new stage. 

In this context, the emerged mobile edge computation (MEC) accelerates further optimization in terms of 

charging management. Ref. [21] applies the MEC to integrally resolve charging management and manifests 

the favourable improvements. In addition to satisfactory performance in general charging management, more 

exploration and/or exploitation is encouraged with respect to MEC based charging management for wider 

implementation scenarios. In most applications, charging booking is necessary when electric energy/power is 

limited. Moreover, how to arrive at CSs with minimum energy consumption should also be incorporated when 
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scheduling charging booking. Even though the path plan of charging management can provide efficient routes, 

it is not comprehensive, and particularly driving behaviours can also affect energy consumption. If driving 

behaviour optimization (DBO) can be integrated into charging management, it would be further beneficial for 

energy saving and efficiency improvement for charging management. To the best of the authors’ knowledge, 

there is no released research and publications in terms of the combined optimizations.  

DBO has been one of mainstream directions in the development of driving assistant systems (DAS) for 

both EVs [22] and autonomous vehicles [23]. DAS is capable of generating optimal suggestions on driving 

manoeuvres to achieve preeminent energy economy and driving safety. The optimal instructions of energy-

saving and driving-securing DAS are usually interpreted from the inclusively planned solution supplied by 

DBO, which are optimal velocity profiles in most cases [24-29]. On this basis, DAS can efficiently guide 

drivers to manipulate EVs, or control autonomous vehicles, to follow the planned routes and keep safe 

distances from front vehicles with adaptive velocity. In [26], a computationally efficient multi-layered control 

strategy is proposed for velocity optimization, thereby contributing to performance improvement of eco-

driving. The strategy divides the driving task into several operation modes, and model predictive control 

(MPC) is applied to enable fast regulation. Ref. [27] comes up with an ecological driving system based on 

estimation of distribution algorithm (EDA) and MPC. The reference velocity profiles considering energy 

efficiency is generated by the EDA, and then the MPC is employed to track the reference profiles, thereby 

adaptively following front vehicles. The current studies on DBO, briefly summarized, employ global methods 

to generate the optimal or near-optimal velocity profiles with preferable trade-off of computation and storage 

intensity and then try to follow them by the enabled methods. No doubt, the inherent time-consuming 

characteristic of global optimization methods deteriorates possibility of real-time implementation. To enable 

faster generation of optimal reference velocity profiles, Ref. [30] introduces iterative DP (IDP) to realize eco-

driving control of EVs. IDP, compared to conventional DP, can achieve satisfactory accuracy of optimal 

solution with less computation duration through an adaptive objective function, whereby the reference velocity 

trajectories corresponding to given travel time can be iteratively obtained. Given this reason, IDP can be a 

qualified candidate for EV charging management. As far as we know, the application of IDP in a more specific 

scenario that is rarely reported in the literature.  

According to the literature review, most of the raised CMSs focus on the pre-booking process in the 

charging management. However, the after-booking process is seldom considered in previous studies that is of 

the vital importance to energy saving. The after-booking process mainly accounts for planning shortest or 

efficient paths to the chosen CSs and optimizing velocity profiles in the trips to the chosen CSs. Motivated by 

this, a novel CMS for EVs is herein proposed based on a service oriented MEC framework. The CBA in the 

brand new strategy books the charging request after comprehensively considering multiple constraints and 

plans the shortest route to the chosen CSs. Then, the IDP is subsequently executed to achieve the DBO, thereby 

minimizing the energy consumption from spot to the reserved CS. The main contributions of this study can be 

attributed to the following two main aspects: 
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1)  A novel CBA is developed in the raised CMS to reduce the charging waiting time exhaustively. The most 

suitable CS is picked up by comprehensively considering traffic conditions, workload of CSs and vehicle 

status. After charging is booked, the CBA also takes charge of planning the shortest route to the chosen 

CS from current spot by the A-star algorithm.  

2) The DBO is firstly incorporated into the CMS. The IDP optimizes velocity profiles from spots to CSs 

with the pre-set travel time estimated by the CBA. The optimal velocity profiles are tracked by applying 

the MPC algorithm in DASs of EVs, thereby generating detailed optimal manoeuvre suggestions. Through 

the DBO based on the IDP and MPC algorithm, the electricity consumption of EVs in the trips of spots 

to the chosen CSs is remarkably saved with the strictly constrained travel time that is given according to 

the charging available time, prompting energy economy of EVs in charging processes.    

 The remainder of this paper is organized as follows. The EV is modelled in Section II. Section III presents 

the newly developed CMS. Section IV discusses the simulation results and comparatively validates the 

performance of the raised strategy, followed by the main conclusions drawn in Section V.  

 

II. FOUNDATION OF THE CMS: VEHICLE MODELING  

In this section, the EV model is built to help development of the CMS, and it mainly includes the vehicle 

dynamic model and powertrain model, of which the latter consists of the motor model and battery model. The 

vehicle dynamic model and powertrain model are briefly described in the following separate parts.  

2.1 Vehicle Dynamic Model  

The preferred EV is driven by a single motor placed in the front axle. The torque between wheels and 

motor is directly transmitted via the final gear. The main parameters of studied EV are listed in Table 1. The 

dynamic relationship between the motor torque and vehicle dynamic can be expressed as: 
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where 1 /fr fr wP g N r= , 2
1
2 d dP C Aρ= , and 3 ( ) ( )kP mgfcos mgsin kθ θ= + . In (1), motT  denotes the torque 

provided by the motor; m , frg ,  frN  and wr  denotes the vehicle mass, final gear efficiency, final gear ratio, 

and wheel radius, respectively; ρ ,  dC ,  dA  and v  expresses the air density, aerodynamic drag factor, frontal 

area, and vehicle speed, respectively; g , f and θ  represents the gravity acceleration, rolling resistant factor, 

and road gradient, respectively; and brkT  indicates the mechanical braking torque. The relationship among the 

vehicle acceleration, velocity and tractive torque is explained in (1). Obviously, it is in time domain. However, 

for ease of CMS development, the relationship can be transferred into the distance domain, as:  
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where s∆  is the calculation step in distance, k  and 1k +  denote the geographic location at current and next 

steps. By combining (2) and (1), we can attain:  
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Furthermore, equation (3) can be reformulated into:  
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Table 1 Main Parameters of EV 

Item Variable Values 

Vehicle 
Vehicle Mass 1552 kg 
Wheel Radius 0.307 cm 
aerodynamic drag coefficient 0.28 

Battery 
Type Lithium-ion battery 
Capacity 60 Ah 
Nominal Voltage 330 V 

Motor Maximum Power 90 kW 
Maximum Torque 300 Nm 

Performance Max Speed  160km/h 
Max Travel Mileage 170 km 

 

2.2 Vehicle Powertrain Model   

2.2.1 Motor Model  

In this study, a permanent magnet synchronous motor is equipped in the vehicle. Considering the DBO 

target in this paper, the electric motor dynamic behaviours are not taken into account for simplifying the 

optimization. The static performance of electric motor can be described by a stationary model. The electric 

motor can operate as either a tractive motor or a generator, and the relationship between the motor torque and 

power can be described, as: 
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where emω  is the angular speed of electric motor; motP  is the power of electric motor; and motη  and genη  are 

the motor efficiency in tractive mode and generator mode, respectively. The motor efficiency can be located 

from the look-up table calibrated through the benchmark test. To accelerate the computation speed in DBO, 

the motor efficiency look-up table is approximated by a multi-order polynomial function. Considering the 

fitting accuracy and calculation complexity in control algorithm, we prefer a 5th-order polynomial function, 

which is acquired by the curve fitting of the 3D look-up table, as: 
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where x  is the motor speed emω , and y  denotes the motor torque motT . The parameters in (6) are estimated 

offline by the particle filter method introduced in [31]. The relationship among the motor torque, generator 

torque and vehicle tractive torque can be expressed as: 
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where tracT  is the vehicle tractive torque.  

2.2.2 Battery Model 

 Lithium-ion batteries are a complex system that can be influenced by temperature and aging effect. The 

designed CMS, however, considers single charging booking process every time. Consequently, it is fair to 

assume there exists limited impact on charging booking performance influenced by temperature and aging 

degradation of battery each time. In other words, the designed CMS books charging piles with instantly 

unvaried battery degradation every time. The main target of this paper is to present the integrated CMS 

properly, which can definitely be outstretched to consider more constraints such as battery degradation in the 

future. Therefore, considering features of CMS, work target and modelling complexity, the temperature 

influence and aging effect are neglected, and a simple but effective equivalent circuit model is employed to 

characterize the battery’s electric performance. The model consists of an internal resistance and an open circuit 

voltage source connected in series topology, whereupon the battery current can be calculated, as: 
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where battI  and battV  denote the battery current and open circuit voltage; battr  and battP  is the battery inner 

resistant and power, respectively. The battery state of charge (SOC) can be calculated by: 
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where SOC  is the battery SOC, and battQ  is the battery capacity. The detailed description of the derivation of 

(8) and (9) is provided in our previous work [32]. In EV charging process, the charging battery power _batt chaP  

is calculated based on grid power, efficiencies of charging pile, battery, and can be expressed as:  

_ _ _ _cha p cha m batt cbatt cha gri hd aP P η η η=  (10) 
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where gridP  means the power at the grid side, _cha pη  denotes the efficiency of charging pile, _cha mη  represents 

the efficiency of the on-board charging machine, and _batt chaη  is the battery charging efficiency. The efficiency 

of charging piles _cha pη , the on-board charging machine _cha mη  and the battery charging efficiency _batt chaη  

is set to 95%, 88% and 92%, respectively.  

 

III. THE DEVELOPMENT OF NOVEL CHARGING STRATEGY 

3.1 The Service-Oriented MEC Based Framework 

Commercialization of the fifth-generation (5G) communication technologies [33] and emergence of MEC 

promote the superior-performance charging management [34, 35]. The network edge owns powerful 

computing capacity [35], and some control process can be executed at network edge instead of the vehicle. In 

this case, the vehicle needs to offload the full or part control task to network edge via wireless network. In the 

wireless network, the millimeter wave with ultra-wide bandwidth is used. The implementation of the 

millimeter wave is on the basis of the sparse radio frequency (SRF) chain antenna structure at sides of vehicle 

and the base stations (BSs) of network with less hardware cost and power consumption [36]. In this context, a 

service-oriented MEC based framework, as shown in Fig. 1, is constructed which is well suited to charging 

management particularly.  

 
Fig. 1. Illustration on the service oriented MEC framework. 

 

The MEC based framework, actually, is a service-oriented paradigm where the stakeholders including 

EVs and charging stations (CSs) subscribe the valuable information published in the framework. Drivers of 

EVs are permitted to book charging piles via the optimal management conducted in mobile edge computing 

units (MECUs).  

3.2 Development of the Novel CMS 
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The novel CMS is developed under the MEC based framework to accomplish charging management in 

MECUs. The brief charging management procedure based on the developed framework can be described as 

follows. 

Step 1: EV publishes the charging request to the network. The MECU that holds the smallest distance to 

the EV subscribes the charging requirement. Then, the corresponding MECU starts the charging booking. 

During this process, the inputs and outputs of MECUs, CSs and global server (GS) can be:  

GS 

Input: the instant traffic information from MECUs and the state information of CSs that includes number 

of available CSs, numbers of available charging piles in each CS, geographic location of CSs, instant traffic 

flow velocities, etc. 

Output: the grid adjustment order to CSs and the processed traffic information to MECUs includes data 

of road network, road information (such as speed limits), etc. 

CSs 

Input: the adjustment order on grid from GS and the charging booking order from MECU. 

Output: the state information to MECUs and GS, which includes available charging piles, geographic 

location of CSs, etc. 

MECUs 

Input: the state information of CSs and the processed traffic information.  

Output: the charging booking order, the shortest path to the chosen CS and the optimized velocity profile.  

Step 2: Once the MECU that is nearest to EV subscribes the charging request, it picks up and books the 

candidate CS with less waiting time by the CBA based on the shared CS state information. The CBA also finds 

the shortest path to the chosen CS by referring the route network information and instant traffic information 

from GS.  

Step 3: After booking the charging service in certain CSs, DBO is performed in MECUs. The DBO is a 

two-stage process that is implemented in both MECUs and on-board VCU. In the first stage of DBO, MECUs 

will generate the optimal velocity profile of the trip to the chosen CS through the cooperation with GS. 

According to the planned travel route by CBA, GS will assign the optimization work to certain MECUs that 

is beside the given travel route. It is worth noting that each MECU just generates the optimal velocity profile 

for next route segment based on the collected instant traffic information, which can prompt the ability of 

proposed CMS in real-time application. Moreover, the velocity profile of the first route segment of the travel 

to the chosen CS is also optimized by the MECU for the first route segment.  

Step 4: With the optimized velocity profile transmitted from MECUs, the on-board VCU generates the 

optimal suggestion for driving manoeuvre in the second stage of DBO.  

The proposed CMS fully takes advantage of the raised MEC framework to achieve the reasonable and 

remarkable charging management through the cooperative interaction among GS, MECUs and EV. The 

flowchart of the designed CMS is shown in Fig. 2 (a). During the charging management, the charging mode 

selection, charging reservation, path plan, travel time estimation and DBO are performed in sequence. Among 
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all the crucial tasks, the CBA accounts for the charging mode selection, charging reservation, path plan and 

travel time estimation. The DBO method generates optimal velocity profiles for the energy-efficient driving. 

The optimal velocity profiles generated by DBO are sent to vehicles via V2I communication.  

3.2.1 CBA Development in CMS 

Some researchers have performed the study on the CBA and raised some solutions by different framework 

[37] with the consideration of various factors such as power system technical constraints [38]. In this paper, 

we focused on the integrated control process in CMS which includes CBA and DBO. Therefore, the influence 

on charging pile available time from various factors like power system technical constraints is neglected. The 

optimization task of CBA is to book the most appropriate CSs and plan the reasonable route from the spots to 

the CSs. In the designed CMS, there exist two charge booking modes. The two charge booking modes are 

determined according to user behaviours or mandatory order such as the forced charge when the left electric 

energy in vehicles is low. Some users prefer to charge EVs immediately due to the serious range anxiety, while 

it is acceptable for other users to charge EVs after finishing the current journey. These two modes are also 

suitable for cases that drivers subjectively want to charge EVs in which energy in batteries is barely consumed. 

Despite the clear division in charge mode, the two modes can be mutually switched under some conditions. 

The charge mode can be switched from 1 to 2 or inversely from 2 to 1 if drivers change their mind. Once the 

charge mode switches to 1 form 2, the route will be planned again to find the most efficient route to the original 

travel destination. Even though drivers insist to choose mode 2, the charge mode will switch to 1 if the left 

electric energy cannot sustain the current trip.  

 
(a) 
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(b) 

Fig. 2. Illustration on method implementation. (a) Flowchart of CMS. (b) Illustration of IDP implementation.  

 

Mode 1: When the battery SOC is lower than the pre-set threshold or drivers demand battery charging, 

EV needs to connect with CSs, and the charging booking is reserved immediately.  

Mode 2: Charging is expected after the current journey. The vehicle is scheduled to be charged after 

finishing the current trip, and the corresponding charge booking is initiated.  

The difference in the two mode is the timing that charging is required. Charging is required immediately 

in mode 1 while the charging is required after current journey is completed in mode 2. In mode 1, charging 

request makes the predefined travel waived. However, the charging process will not sacrifice current travel in 

mode 2. In these two modes, the CBA is only activated after the charging order is given. The vehicles will 

approach to the end of travel positions along the planned routes with the minimum route length in both modes 

1 and 2. On the travel to the end of travel positions, driving behaviours are optimized by the DBO to improve 

the energy consumption economy. When designing the logic in CS booking, the principle is to achieve 

minimum waiting time when EV arrives at CS. If the CS can provide available charging piles immediately or 

before EV arrives at CS, it will be chosen as the candidate CS in charging booking. Among the candidate CSs, 

the CS with the maximum charging piles available time will be specified as the booked CS. The pseudocodes 

of the developed CBA in two charging modes are presented in respectively Tables 2 and 3, where the ramp 

mode means that vehicle runs with a very low speed, which is around 5 to 10 km/h. In addition, the DBO in 

Tables 2 and 3 will be introduced in following section.  
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Table 2 Pseudocode of CBA in charging mode 1 

1 Initializing Parameters 

2    If _( 0 & 0) || ( )avi wait wait travel estN T T T> = ≤  

3        Charge reservation and plan path 

4        _tar travel estT T=  

5        If _ 2left con p cE E≥  

6          Ask DBO algorithm run driving optimization with travel time limit tarT  

7        Else 

8          Switch into ramp mode 

9    Else if ( _wait travel estT T> ) 

10        Charge reservation and plan path  

11        ( )max minmax min( ), ,tar waitT T T T=  

12        If _ 2left con p cE E≥  

13          Ask DBO algorithm run driving optimization with travel time limit tarT  

14        Else 

15          Switch into ramp mode 

16 End  

Table 3 Pseudocode of CBA in charging mode 2 

1 Initializing Parameters 
2    If '

_( 0 & |0 | ( ))avi wait wait travel estN T T T≤=>  
3        Charge reservation and plan path 
4        '

_tar travel estT T=  
5        If 

2 _ 2p tleft con con t cE E E≥ +  

6         Ask DBO algorithm run driving optimization with travel time limit tarT  
7       Else 
8         Switch into ramp mode 
9    Else if ( '

_wait travel estT T> ) 
10       Charge reservation and plan path 
11       ( )'

_ mimax nm ,ax min( ),tar travel est TT T T=   

12       If  
13         Ask DBO algorithm run driving optimization with travel time limit tarT  
14       Else 
15         Switch into ramp mode 
16 End  

 

After the charging pile in certain CS is booked, the path plan is performed to find the shortest route from 

current spot to the chosen CS. By this manner, the travel time from current spot to the chosen CS can be 

optimized to be minimum. In this study, the widely accepted A-star algorithm is applied to plan the shortest 

path, and it employs the heuristic function to evaluate cost from the candidate node to the destination node in 

the road network [39]. In the MEC based charging booking, MECU that is closest to EV will receive the 

processed traffic information such as road network data and instant traffic flow velocities from GS. Based on 

the given road network data and other data, the A-star algorithm will search the most appropriate route segment 
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combination with minimum cost under the given search direction. In this study, the cost discussed here is the 

route length. The function to assess the cost can be expressed as:  

                                                                          ( ) ( ) ( )f x l x h x= +   (11) 

where f  denotes the evaluated cost from the candidate node to the destination, l  is the optimal cost from the 

starting node to the current node, and h  means the heuristically estimated cost from current node to the 

destination. The pseudocode of A-star algorithm is presented in Table 4.  
Table 4 Pseudocode of A-star algorithm 

1 Load road network data  
2 Define start node 0 0 0( , )N Lat Long=  and destination node ( , )d d dN Lat Long=   

3 Open Set= { 0N } 
4 Closed Set={} 
5 0( ) 0l N = , 0 0( () , )est dh N h N N= , 0( )f h N=   
6 While Open Set is not empty 
7         do CurNode←Open Set 
8         If (CurNode= dN ), then return BestPath  
9         For each neighbour node N  in CurNode 

10               If ( N ∈Closed Set), then Nothing 
11               Else if ( N ∈Open Set) 
12                   Compute  ( )l N ,  ( )h N  and  ( )f N   
13                       If (  (    )  ( )l N on the Open Set computed l N> ) 
14                           RELAX ( N , neighbour in Open Set) 
15                           N ’s parent=CurNode & add N  to Open Set 
16                Else, then compute ( )l N ,  ( )h N  and  ( )f N  
17                           N ’s parent=CurNode & add N  to Open Set 
18 End 

 

As can be found in Tables 2 and 3, the average travel times _travel estT  and '
_travel estT  on the planned route 

are estimated based on the traffic flow in route segments. The detailed process of calculating _travel estT  and 

'
_travel estT  can be found in our previous work [40]. With the shared traffic flow velocities and estimated average 

travel times, the required energy _ 2con p cE , 
2p tconE  and _ 2con t cE  for traveling from spots to CSs in Tables 3 and 

4 can be calculated by:  

                                            
2

0

cos sin( )
3600 3600 76140 3600

tarT d d

t

C A vv Gf G maE dtθ θ ξ
η

= + + +∫   (12) 

where G , tη , ξ  and  a  denotes the gravity, transmission efficiency, correction coefficient of rotation mass, 

and acceleration, respectively. 

3.2.2 DBO Method in CMS  

The essence of DBO is to acquire optimal velocity profiles for the energy-efficiency driving on the chosen 

route. The implementation of designed DBO method is a two-step process: generation and tracking of the 

optimal velocity profiles. The generation of the optimal velocity profile is a global optimization process in 

MECUs, avoiding much on-board computation pressure. In each MECU, the optimal velocity profile for next 

route segment will be generated by IDP. MECU that is in charge of the first route segment will also generate 
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the velocity profile for the current route segment by parallel computing. After the on-board VCU receives the 

optimal velocity profile, the MPC algorithm will be implemented to track the optimal velocity profile, thereby 

generating the optimal suggestion for driving manoeuvres. 

A. IDP Method Implemented in Velocity Profile Optimization  

The velocity profile optimization is essentially a nonlinear optimal control problem that is defined to 

minimize the cost function within a finite horizon, as:  

                                                         ( ) ( )
0

( ), ( ), ( ), ( ),ft
J H x t u t t L x t u t t dt= + ∫   (13) 

where x  and u  denotes the state and control inputs, respectively; t  is the time step; ft  is the time at final 

step, H  is the terminal cost; and L  is the stage cost. Additionally, the problem is subject to the given inequality 

constraints:  

                                                                          
( )

min max

min max

( )
( )

( ), ( ), 0

x x t x
u u t u
g x t u t t

 ≤ ≤
 ≤ ≤
 ≤

  (14) 

The stage cost in IDP can be formulated as:  

                                  ( ) ( ) 2 ,, , ,
( ) ( 1)

( ) ( )
i j

i j i j i jbatt k k
k k k k k k t brk k k

P v T sL x u L v T T v T
v k v k

ω
⋅ ⋅

+⋅
∆

= =
+ +

  (15) 

where s∆  is the step length, and tω  is the weight ratio. As a numerical method, IDP can achieve the 

approximate optimal solution, compared to DP, while consuming much less computation sources. The 

implementation process of IDP is depicted in Fig. 2 (b), and the comparison between DP and IDP is illustrated 

in Fig. 3 (a). As can be seen, the boundaries of IDP is obviously narrower than those in DP, and consequently 

less discrete state and control variables and acceleration of the calculation speed can be anticipated.  

For the velocity profile optimization in CMS, the optimization targets include the energy-efficient velocity 

profile and pre-estimated travel time from spot to the chosen CS. To fulfill the optimization targets, IDP is 

implemented with a tunable weight ratio that restricts the travel time and is adaptively adjusted between two 

iterations. In this study, tω  in (15) can be tuned innovatively by:  

                                      ( ) ( )2arg
ar

( ) ( )
g( ) ( ) ( ) ( )1 real t etT T

t t real t et
q qq sign qT eq qTω ω δ −+ = + − ⋅   (16) 

where q  is the iteration time, realT  is the real travel time, and targetT  is the target travel time, which can be 

expressed as:  

                                                                    
0

2
( ) ( 1)

sN

real
sT d

v k v k
τ∆

=
+ +∫   (17) 

where sN  is the number of calculation steps. In (16), the current weight ratio is ( )t qω , and the weight ratio of 

next step 1( )t qω +  can be iteratively calculated by comparing the difference between realT  and targetT . For IDP 

implementation, the functions to adjust the grid sizes of state and control variable can be redesigned, as:  
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where 1
_

q
k maxx + , 1

_
q
k minx + , 1

_
q
k maxu +  and 1

_
q
k minu + denote the upper and lower boundaries of state variables and control 

variables at step k  in iteration 1q + . 
opt

q
kx  and 

opt

q
ku  are the optimal state and control variable at step k  in 

iteration q . _
q
k maxu  and _

q
k minu  are the upper and lower boundary of control variables at step k  in iteration q . 

1
_

q
u kn +  and 1

_
q
x kn +  are the numbers of discrete state and control variables at step k  in iteration 1q + . _

max
u kn , _

min
u kn

, _
max
x kn  and _

min
x kn  represent the maximum and minimum values of the discrete control and state variables at 

step k . α  and β  are the contracted ratios. During the optimization process, some inequality constraints of 

the powertrain components are also taken into account, as: 

                                                                   _ _

_ mot _

_ _

T

min max

batt min batt batt max

mot min mot max

em min em em max

SOC SOC SOC
P P P
T T
ω ω ω

≤ ≤
 ≤ ≤
 ≤ ≤
 ≤ ≤

  (19) 

where the subscripts min and max denote the minimum value and maximum value of each variable, 

respectively. Fig. 3 (b) to (d) illustrate the implementation process of IDP in a given route with the permitted 

maximum speed. As clearly illustrated in Fig. 3 (b), the IDP algorithm searches the optimal solutions in a 

narrowed field. Hence, the velocity profiles in each iteration solved by IDP can adaptively vary. Fig. 3 (c) and 

(d) present the adjustment of constraints of state and control variables. As the iteration goes on, the boundries of 

state and control variables are gradually shrinked, thus accelerating the optimization process. The reduced 

boundries also manifest that the solution approaches to the optimal result gradually.  
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                                                          (a)                                                                                                    (b) 

  
(c) 

 
(d) 

Fig. 3. Illustration of IDP features. (a) Comparison in execution process between DDP and IDP. (b) Velocity profile of each iteration by 

IDP. (c) State variable constraint in each iteration by IDP. (d) Control variable constraint in each iteration by IDP. 

 

B. MPC in Optimal Reference Tracking  

The obtained optimal velocity profile can be tracked by a nonlinear MPC to realize energy-efficient 

driving in conventional EVs or autonomous EVs. The calculation step in the nonlinear MPC is 2 m, and the 

horizon length for the receding optimization is set to 10 m. In the optimal tracking MPC problem, the 

optimization target can be formulated, as:  

                                              
2 2* *

1

arg min( ) ( ) ( ) ( 1)
pn
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subject to: 
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where y  is the control output, Q  and R  are the weighting matrixes, and pn  is the prediction length. The 

optimal tracking problem in (20) can be reformulated as:  

                                                              1 2ˆ ˆ ˆ ˆ ˆ ˆ ( T T Tmin J min y Q y x Q x u Ru= + + )  (22) 

where 1Q  and 2Q  denote the penalty matrixes. The problem mentioned in (25) can be converted to a QP 

problem, as:  

                2 2
1 1 ( ) ( ) (ˆ ˆ ˆ ˆ ˆ ˆ) ( )
2 2

T T T T T Tmin J min u Q R u x k Q u min u Su x k Wu   = Ψ Ψ + + Φ Ψ = +   
   

  (23) 

subject to: 

                                                                          1 2ˆ ( )Pu M M x k≤ +   (24) 

where S , W , P , 1M  and 2M  are the constant matrices. In this case, the required motor torque and 

mechanical braking torque are the control variables, and the cost function in MPC can be formulated as:  

                                                                 ( )2

1

( | ) ( | )( )
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c opt
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J v i k v ik k
=

= −∑   (25) 
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  (26) 

where maxv  and minv  denotes the maximum and minimum velocity limits on the route segments, respectively.  

 

IV. SIMULATION AND EVALUATION 

To validate performance of the proposed CMS, we present a comprehensive simulation evaluation in this 

section. The active roles of CMS in CS reservation and DBO are emphatically investigated. To analyze the CS 

reservation by CBA, a demonstrated EV charging system is constructed. In the built charging system, six CSs 

are included with the provision of different charging power. The numbers of available piles in each CS are 

assigned, and the preset battery SOC threshold under which EVs require immediate charging is 0.2. For the 

evaluation of DBO, the referred optimal velocity profiles generated by IDP and tracked by MPC are both 

carefully evaluated. In the simulation, we assume that each MECU takes charge of one route segment with the 
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length of 500 m. We resort to a workstation with an Intel Xeon E3-1270 @ 3.4 GHz and 32 Gigabytes memory 

to perform the simulation. Note that the data for building the charging system are obtained from the opening 

sources in [41, 42]. 

4.1 Analysis Performance of the Novel CMS in Charging Booking  

In the CBA evaluation, two alternative methods are considered as benchmarks, including the daily travel 

habit based method (DTH) and the charging reservation strategy with minimum travel time to CSs (MTD). 

The novel raised charging booking algorithm in the evaluation is expressed as NCBA. The chosen CSs in 

simulation are located in the urban zone, London, and the detailed position is shown in Fig. 4. To better 

evaluate the performance of CBA in the novel CMS, the chosen CSs are all publicly available. The related 

parameters of CSs are listed in Table 5. Fig. 5 (a) and (b) illustrate the time comparison solved by three different 

methods which are respectively based on MEC and non-MEC framework. S2CS in Fig. 4 means from the spot 

to CS, and the total time before charging denotes the charging waiting time which also includes the travel time 

from the spot to CS.   

 
Fig. 4. Locations of CSs on the map.  

 

In Fig. 5 (a) and (b), the S2CS travel time comparison aims to analyze the performance of route selection 

in the proposed CBA, while the comparison of total time before charging provides clear understanding of the 

general ability of proposed CBA. The comparison of total time before charging is built on the condition that 

different charging booking algorithms select the same CS. As illustrated in Fig. 5 (a) and (b), the travel duration 

by NCBA to each CS from the starting point is all less than that by DTH. The travel time by NCBA can be 

saved by up to 13.2% with the MEC based framework and 6.1% with the non-MEC based framework. In other 

words, the CBA in the novel CMS can find the shortest path from spot to CS, compared to that by DTH, which 

contributes to savings of the charging waiting time and energy consumption. Meanwhile, the total time before 

charging by the NCBA in each CS is shorter than that solved by MTD. The total time before charging is reduced 

by 26.3% with the MEC based framework and 16.3% with the non-MEC based framework. The comparison 

results manifest that the proposed NCBA with the MEC based framework can select the most appropriate CS 

with the consideration of both travel time from spot to CS and charging pile available time, highlighting better 

performance than existing methods.  
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Table 5 Parameters of charging piles in CSs 

Charging Station Charging Piles Number Charging Power (kW) Charging Voltage (V) 
CS1 6 4/7 230 
CS2 4 4/7 230 
CS3 4 4/7 230 
CS4 4 4/7 230 
CS5 2 4/7 230 
CS6 4 4/7 230 

 

 
(a) 

 
(b) 

Fig. 5 Comparison among different charging booking algorithms. (a) Comparison among different charging booking algorithms based 

on MEC based framework. (b) Comparison among different charging booking algorithms based on non-MEC based framework. 

 

The path planning in NCBA contributes to the apparent reduction in travel time to each CS and total time 

before charging. Some deeper evaluation on the path planning algorithm is also conducted, including the A-

star method and Dijkstra algorithm. As well known, the Dijkstra algorithm exhaustively searches the solution 

under given constraints. Table 6 show the simulation results by the A-star method and Dijkstra algorithm. The 

results indicate that the A-start method can complete the route planning faster, compared with that by the 

Dijkstra algorithm. The computing time of the A-star method is only 2.5% of that by Dijkstra. The Dijkstra 

algorithm can search the most optimal route with the shortest length in exhaustive search. However, the A-star 
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achieves better trade-off between computing time and planning results and is therefore more suitable in the 

novel CMS.   
Table 6 Simulation results by A-star and Dijsktra 

Method Computing Time (s) Route Length (m) 

A-star 1.731 1343 

Dijsktra 46.416 1321 

 

4.2 Evaluation of the DBO in Novel CMS 

4.2.1 Investigation on Reference Velocity Profiles Generation  

To validate the computational intensity of IDP, the comparisons between IDP and DDP are firstly made. 

Fig. 6 (a) illustrates the velocity profiles generated by different methods according to the set parameters, as 

listed in Table 7. In addition, Fig. 6 (a) also provides the control inputs comparison among four different 

methods. A 1500 m route with the default velocity limits is considered, and the target travel time is 200 s. In 

Table 7, three DDP implementation cases are applied with three sets of grid numbers. According to Fig. 6 (a) 

and Table 7, the travel time becomes closer to the target value solved by DDP with the increment of numbers 

of the discrete control and state variables in each step. The improved performance incurred by the increased 

numbers of control and state variables, nevertheless, imposes huge computation burden which is reflected by 

the augmented calculation time. The travel time target can be precisely met by the IDP with less computation 

time, proving the superior performance of IDP in DBO, compared to that of DDP. Moreover, the velocity 

profiles generated by IDP with travel time constraint enable the motor to operate in higher efficiency region, 

thus contributing to less energy consumption in total.  
Table 7 Numerical results by IDP and DDP 

Method xn  un  s∆
(m) tS  (m) calT  (s) _Ini x

(m/s) 
_Ter x  

(m/s) 
_E con  

(kWh) 
_T tar  

(s) 
_T tra  

(s) 
DP_case1 200 200 5 1500 232.9236 0 2.9922 0.3153 200 208.63 

DP_case2 400 400 5 1500 686.3344 0 2.9934 0.3119 200 205.32 

DP_case3 600 600 5 1500 863.7402 0 2.9973 0.3071 200 202.19 

IDP 55-85 50-75 5 1500 87.2659 0 2.9995 0.3016 200 200.21 
Note: s∆  is the simulation step, tS  it the total travel time, calT  is the algorithm calculation time, _Ini x  and _Ter x  are the initial 
speed and target speed, _E con  is the energy consumption on the route, _T tar  is the target travel time on the route, and _T tra  is 
the real travel time on the route. 
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(a) 

 
                                                    (b)                                                                                                    (c) 

 
                                                     (d)                                                                                                    (e) 

Fig. 6. Evaluation on reference velocity profile generation. (a) Comparison in velocity profiles and control inputs by IDP and DDP. (b) 

The optimized velocity profiles by IDP in route 1 and route 2. (c) The optimized velocity profiles by IDP in route 3 and route 4. (d) 

Travel times in different iterations in route 1 and route 2. (e) Travel times in different iterations in route 3 and route 4. 

 

In Table 8, the performance of existing methods in velocity profile optimization is further studied. As can 

be found, all preferred methods can generate optimal velocity profiles with the travel times of around 200 s. 

Due to the specific iteration calculation in IDP, the optimal velocity profile by IDP achieves the travel time 

that approximates mostly to 200 s. In addition, the calculation time by IDP is obviously shortened, compared 

with other methods. The computation time by IDP respectively occupies only 10.14%, 44.5%, and 28.3% of 
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the computing time by the DP, EDA, and QP, highlighting the preferable application potential in real-time 

practice. 
Table 8 Compare results by different methods  

Method s∆ (m) tS  (m) calT  (s) _T tar (s) _T tra (s) 
DP_case 3 5 1500 863.7402 200 202.19 
EDA 5 1500 197.1138 200 203.97 
QP 5 1500 311.4963 200 203.34 
IDP 5 1500 87.6259 200 200.21 

Note: s∆  is the simulation step, tS  it the total travel time, calT  is the algorithm calculation time, _T tar  is the target travel time on 
the route, and _T tra  is the real travel time on the route. 
 

After proving the qualified capability of IDP in DBO, more in-depth investigation is performed to further 

assess the active role of IDP in velocity profile optimization. Fig. 6 (b) and (c) illustrate the velocity profiles 

derived from the real driving data or optimized by IDP on four routes in distance domain. Here, Rec LW refers 

to the recommended velocity profile under long charging pile available time, while Rec SW means the optimal 

velocity profile on the condition that the charging pile in the selected CS is available right now or the available 

time is less than the estimated travel time. TL means the traffic light on the route, and TER represents the 

travel destination. In the first two routes, the EV charging is required immediately without continuing to travel 

to destination. In the latter two cases, the EV charging is booked after the vehicle arrives at the destination. In 

the simulation, the traffic light switch timing sequence is assigned. The period between green and red light is 

60 s, and the period between red and green light is 45 s. According to Fig. 6 (b) and (c), the optimized velocity 

profiles in SW cases on four routes tend to guide the vehicle to avoid red light to reach the chosen CSs timely. 

By contrast, the optimized velocity profiles in LW cases on four routes incline to instruct the vehicle to stop 

at traffic lights to increase the total travel time, endeavoring to pilot the vehicle to arrive at the chosen CSs at 

the moment that the charging piles are just available. Fig. 6 (d) and (e) present the travel time adjustment in 

each iteration when implementing the IDP on the same four routes as before. By adaptively changing the 

weight ratio of cost functions in IDP, the travel time can be governed to approximate the target time. In Fig. 6 

(d) and (e), the travel duration of the optimized velocity profiles tends to approach the target value after five 

iterations, proving the marvelous fast optimization search capability of IDP. Even though the travel time in 

each iteration is adjusted, the IDP algorithm can still guarantee the energy-efficient velocity profile in each 

iteration, which is also proved by the numerical results listed in Table 9.  
Table 9 Numerical results by IDP on four routes 

Method Case xn  un  s∆
(m) 

tS  
(m) 

calT  by  
MEC (s) 

calT  by non-
MEC (s)  

_Ini x
(m/s) 

_Ter x  
(m/s) 

_E con  
(kWh) 

_T tar
 

(s) 

_T tra  
(s) 

IDP 
route1 

Rec LW 45-85 45-85 5 1000 92.12 204.30 6.5 0.1711 0.0742 280 280 
Rec SW 40-75 45-75 5 1000 72.79 180.97 6.5 0.1971 0.1088 200 200 
RD - - - 1000 -  6.5 0 0.1239 - 254 

IDP 
route2 

Rec LW 45-90 40-85 5 1000 93.12 206.65 3 0.1703 0.0809 390 390.06 
Rec SW 45-80 40-75 5 1000 71.45 176.62 3 0.1717 0.0843 260 260.01 
RD - - - 1000 -  3 0 1.1179 - 271 

IDP 
route3 

Rec LW 50-95 45-85 5 1500 101.46 234.45 8.5 0.1702 0.1984 450 450 
Rec SW 50-90 45-80 5 1500 91.14 189.45 8.5 0.1711 0.2142 360 360.02 
RD - - - 1500 -  8.5 0 0.2374 - 413 

IDP 
route4 

Rec LW 55-95 50-90 5 1500 101.11 232.59 3 0.1711 0.1155 470 470.01 
Rec SW 60-95 55-90 5 1500 89.13 186.42 3 0.1708 0.1504 390 390.09 
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RD - - - 1500 -  3 0 0.1768 - 436 

 

Table 9 lists the parameter sets of IDP and numerical results on four routes with MEC and non-MEC 

framework. Apparently, the computing time in different routes by the MEC based framework is less than those 

by the non-MEC based framework. The maximum time reduction by the MEC based framework can reach 

59.78%, highlighting the superior performance of the MEC based framework. It also shows that the CPU 

computation time is less than the total travel time with small numbers of discrete state and control variables, 

suggesting great potential in real-time implementation of IDP. In engineering practice, the optimal velocity 

profiles can be generated by IDP in MECUs before the vehicle enters the new segment. In Table 9, the 

prearranged travel time targets with different charging cases on four routes are all met. Compared with the real 

driving data, the generated velocity profiles achieve better energy economy in different charging cases. In 

Table 9, the total calculation times for the whole travel with the MEC based framework in route 1 and 2 ranges 

72 s to 92 s, and the total travel route is from 200 s to 390 s. For each route segment, the average calculation 

time of MECU is around 36 s to 46 s, and the average travel time is 100 s to 190 s. In the proposed CMS, each 

MECU is requested to generate the optimal velocity profile for next route segment. The results in Table 9 prove 

that the optimal velocity profile can be prepared before the vehicle drives into next segment and validates that 

the proposed CMS characterizes reasonable capability in real-time application. 
4.2.2 Investigation of Optimal Diving Suggestion Generation  

The generated optimal velocity profiles are tracked by MPC in VCU to generate energy-efficiency 

suggestions for drivers or control commands sent to motor control units (MCU) to realize eco-driving. Fig. 7 

shows the tracking results on two routes. It can be clearly observed that the MPC algorithm preferred in CMS 

can track the reference velocity profiles closely in most cases, guaranteeing that the optimal control policies 

generated in MECUs can be precisely realized by the vehicle powertrain. There also exist some minor tracking 

differences, which are caused by the errors existing in the nonlinear solving results. To be specific, the 

polynomial functions are employed to approximate the motor efficiency and the required total tractive torque, 

and definitely the estimation truthfulness on parameters in the polynomial functions can dominate the 

approximation accuracy conspicuously.  

According to the simulation results, it can be summarized that the proposed CMS is qualified in both the 

charging booking and DBO. The employed nonlinear MPC effectively completes the reference velocity profile 

tracking, ensuring that the optimal control policies can be accurately executed by the vehicle powertrain. In 

short, the presented CMS enhances the reduction of charging waiting time and achieves the eco-charging 

simultaneously.  
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Fig. 7. Reference velocity profile tracking results. 

 

V. CONCLUSION 

This paper proposes a cooperative and efficient charging management strategy for EVs. Based on a 

service-oriented MEC framework, the novel CMS can realize charging booking and driving optimization 

chronologically. The carefully designed CBA in CMS can select the most suitable CS and plan the shortest 

route from current location to the chosen CS, thereby minimizing charging waiting time remarkably. The rarely 

considered DBO in CMS is accomplished by a two-step process by means of IDP and nonlinear MPC, 

endeavoring to reduce energy consumption during the trip to CS. The simulation analysis validates the superior 

performance of the proposed strategy compared with the existing algorithms.   

In the future work, the CMS will be further investigated by extending the scope from individual EV to 

EV platoon. The positive and negative impact on grid incurred by CMSs will be further investigated, thus 

providing in-depth guide for further strategy development. Additionally, studies on DBO will be further 

conducted to realize personalized behavior optimization. Moreover, design of more adaptive and robust 

management algorithms that incorporate the vehicle’s battery capacity variation incurred by operating 

temperature and aging effect will also be investigated in our future study. 
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