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Electric Vehicle Charging Station Placement:
Formulation, Complexity, and Solutions

Albert Y.S. Lam, Member, IEEE, Yiu-Wing Leung, Senior Member, IEEE, and
Xiaowen Chu, Senior Member, IEEE

Abstract—To enhance environmental sustainability, many
countries will electrify their transportation systems in their future
smart city plans, so the number of electric vehicles (EVs) running
in a city will grow significantly. There are many ways to recharge
EVs’ batteries and charging stations will be considered as the
main source of energy. The locations of charging stations are crit-
ical; they should not only be pervasive enough such that an EV
anywhere can easily access a charging station within its driving
range, but also widely spread so that EVs can cruise around the
whole city upon being recharged. Based on these new perspec-
tives, we formulate the EV charging station placement problem
(EVCSPP) in this paper. We prove that the problem is nonde-
terministic polynomial-time hard. We also propose four solution
methods to tackle EVCSPP, and evaluate their performance on
various artificial and practical cases. As verified by the simulation
results, the methods have their own characteristics and they are
suitable for different situations depending on the requirements
for solution quality, algorithmic efficiency, problem size, nature
of the algorithm, and existence of system prerequisite.

Index Terms—Charging station, electric vehicle (EV), location,
smart city planning.

NOMENCLATURE

G Undirected graph modeling the city.
N Set of potential charging station construction sites.
E Set of connections connecting pairs of the construc-

tion sites.
n Size of N .
d(i, j) Distance of the shortest path from nodes i to j.
fi Charging capacity of node i.
Fi Demand requirement of node i.
D Average traversable distance of fully charged elec-

tric vehicles.
N ′ Set of nodes with charging stations constructed.
α A discount factor.
hij Number of hops of the shortest path from nodes i

to j in G.
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xi Boolean variable for construction at node i.
x Vector of xi’s.
ci Construction cost at node i.
N αD

i Set of nodes within distance αD from node i.
Ĝ Induced graph from G.
N̂ Set of nodes in Ĝ.
Ê Set of edges in Ĝ.
H Induced subgraph of Ĝ.
0i Source node of flow attached to node i.
xi

0 Residue of flow remained in 0i.

yi
jk Amount of flow on edge (j, k) originated from 0i.

N(H) Set of nodes associated to H.
C A cost bound.
G̃ Undirected graph for the vertex cover problem.
Ñ Set of nodes in G̃.
Ẽ Set of edges in G̃.
N Set of node for node selection in the greedy algo-

rithm.

I. INTRODUCTION

DUE TO the world’s shortage of fossil fuels, nations
compete to secure enough reserves of natural resources

for sustainability. Seeking alternative energy sources becomes
crucial to a nation’s future development. One of the major
fossil fuel consumptions is transportation. Many daily heavily
demanded vehicles are powered by gasoline. A major con-
sequence of burning fossil fuels is the release of tremendous
amount of harmful gases, which partially constitutes the global
warming effect and deteriorates people’s health. Electricity is
considered as the most universal form of energy, which can
be transformed from and to another form effectively. By con-
verting the endurable renewable energy, like solar and wind
energies, to electricity, we can manipulate energy in a much
cleaner manner. Electrification of transportation, like deploy-
ment of electric vehicles (EVs), can not only alleviate our
demand on fossil fuels, but also foster a better environment
for living. Therefore, EVs will become the major components
in the future transportation system.

EVs take the central role in this paper and they have been
being studied actively since the boom of the smart grid.
Incorporating EVs into an existing self-contained transporta-
tion system is challenging. Solely expanding the population
of EVs in a city without enough road connections and cor-
responding charging and parking infrastructure will suppress
the practicability of EVs due to their limiting moving ranges.
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See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.



LAM et al.: ELECTRIC VEHICLE CHARGING STATION PLACEMENT: FORMULATION, COMPLEXITY, AND SOLUTIONS 2847

Moreover, existing gas stations are primarily designed for
gas refueling; combining charging infrastructure with the
conventional gas stations may not be appropriate as the rela-
tively longer charging process will saturate the limited space of
the gas stations. We need to carefully plan EV charging facil-
ities to modernize the transportation system. To be precise,
we study how EVs will be integrated into the transportation
system seamlessly with a focus on charging stations and this
will help make our cities “smart.”

We study the EV charging station placement problem
(EVCSPP) by finding the best locations to construct charg-
ing stations in a city. An EV should always be able to access
a charging station within its capacity anywhere in the city.
Charging stations should be built widely enough such that the
moving range of an EV can be extended to every corner of the
city by having the EV recharged at a charging station available
nearby. We study the locations where charging stations should
be constructed in a city such that we can minimize the con-
struction cost with coverage extended to the whole city and
fulfillment of drivers’ convenience. In this paper, we formulate
the problem as an optimization problem, based on the charging
station accessibility and coverage in the city. We also study its
complexity and propose various methods to solve the problem.

In this paper, we focus on the long-term human aspects
rather than the technological ones. The smart city plan and
technology advancement take different time-spans for real-
ization. To meet the government policy in some countries,
the population of EVs needs to be boosted. Satisfaction and
convenience of drivers have strong impacts on the growth of
EVs in a city. The ease of recharging their EVs is one of the
most important considering factors when one decides to buy
an EV [2]. Population density and the demand for charging
facilities for their EVs are passive factors. The influence of
these human factors usually takes longer (say 5–10 years) to
be realized. On the other hand, technology advances in a much
faster pace and the impact of the charging loads to the grid will
be lessened with practical technological solutions, especially
for security and reliability issues.

As a whole, the complete charging station problem with
consideration of all possible considering factors can be framed
as a two-level problem. In the first level, a set of potential
locations for charging station constructions can be determined
based on some urban planning factors, e.g., land use type,
environment impact, and safety, and also some engineering
factors addressed in some of the previous work explained in
the next section. In the second level, charging station place-
ment is further enhanced from the drivers’ perspective and we
place charging stations in the potential locations determined
from the first level. So this paper mainly falls into the sec-
ond level. This arrangement allows us to focus on examining
the problem from a new angle. Furthermore, a model with-
out too much technical details of the charging facilities allows
us to retain flexibility for different charging technologies and
standards. For example, charging with connected power cables
can be replaced by battery swapping. Our model can still be
applied to the scenario with battery swapping EVs. We focus
on the human factors and it can be served as the foundation
for various kinds of charging specifications.

Our main contributions include formulating the new prob-
lem EVCSPP, analyzing its complexity, and proposing several
solutions to the problem. The rest of this paper is organized
as follows. Related work is given in Section II. We formu-
late the problem in Section III and discuss its complexity
in Section IV. Section V presents four solution methods.
In Section VI, simulation results are provided for perfor-
mance evaluation and we also compare the solution methods in
terms of characteristics and suitability for different situations.
Finally, we conclude this paper in Section VII.

II. RELATED WORK

Most of the existing work on EVs is related to study-
ing the operational influence of EVs on the grid, i.e., how
power is transferred from and to the grid. Besides charging
scheduling [3], in a vehicle-to-grid (V2G) system, hundreds
of EVs are coordinated to act as a power source selling power
back to the grid or to support auxiliary services, like reg-
ulation. A multilayer market for V2G energy trading was
proposed in [4]. The market price was settled via double
auction and the proposed mechanism could maximize the
EVs’ revenues. In [5], a queueing network was utilized to
model the dynamics of EVs participating in V2G. The model
could facilitate service contract engagement for regulation
ancillary services. Yu et al. [6] investigated the joint schedul-
ing of EVs and unit commitment and this allowed us to
optimize the system’s total running cost with the presence
of EVs. Guo et al. [7] discussed the incorporation of PV
equipment into charging stations. It considered that charg-
ing facilities equipped with PV panels and the stored solar
energy, together with the power requested from the grid,
can be used to power EVs. Etezadi-Amoli et al. [8] and
Masoum et al. [9] studied the impact of EV charging to the
performance of power distribution networks with the presence
of charging stations, which can represent rapid heavy loads.
Etezadi-Amoli et al. [8] illustrated the effect of fast-charging
EVs in terms of power-flow, short-circuit, and protection while
Masoum et al. [9] proposed a new smart load management
strategy to coordinate EVs for peak load shaving, power
loss minimization, and voltage profile improvement. However,
this paper is dedicated to studying the locations for build-
ing charging stations, which is an important aspect of the
smart city plan.

References [10] and [11] investigated the location and siz-
ing issues of charging stations; Liu et al. [10] handled the two
issues separately while Liu et al. [11] considered a joint opti-
mization for both. In consideration of environmental factors
(e.g., load locations, load balance, power quality, etc.) and ser-
vice radius of charging stations, candidate sites in [10] were
selected with a two-step screening method instead of opti-
mization. Liu et al. [11] constructed an optimization problem
in which various kinds of costs (including construction, oper-
ating, and charging costs) were minimized with traffic flow
and charging requirement constraints and particle swarm opti-
mization heuristic was adopted to compute the solution of the
nonconvex problem. Jia et al. [12] studied the siting and sizing
issues, where the locations and numbers of chargers at each
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site are determined at the same time with consideration of
charging demand. Pashajavid and Golkar [13] discussed how
to allocate charging stations with the presence of solar genera-
tion. Chen et al. [14] determined the charging station locations
with real-world public parking information of Seattle as inputs.
It formed a mixed-integer program (MIP) by minimizing
the total access costs to drivers’ destinations from charg-
ing stations. Wang et al. [15] discussed the design of power
architectures and power electronics circuit topologies for high
power superfast EV charging stations with enhanced grid sup-
port functionality. Another related problem is the gas station
problem described in [16]. However, it was not related to gas
station placement but determined the cheapest route connect-
ing gas stations with other locations. In operations research,
the study of placing facilities, such as gas stations and fire
stations, is generally cast as facility location problems [17],
e.g., the maximal covering location problem [18]. It concerned
about the distances or times to travel to individual facilities
from various locations. Such a model cannot guarantee that the
induced subgraph constituted by the facility locations is con-
nected but this condition is significant in our charging station
placement model. Moreover, Mayfield [19] gave a general dis-
cussion about the interior design of charging stations in various
parking facility types instead of analyzing in the engineering
perspective. However, in this paper, we focus on the long-term
issues of charging station placement for smart city planning,
where the short-term factors (e.g., instantaneous loads) will
be of relatively less importance. To the best of our knowl-
edge, we are the first to study charging station placement from
the new perspectives of the drivers’ convenience and EVs’
accessibility. Other factors, like traffic conditions, may also
be taken into account but they are out of the scope of this
paper.

III. PROBLEM FORMULATION

A. System Model

We model a city with an undirected graph G = (N , E),
where N and E denote the sets of possible sites for construct-
ing charging stations and connections between pairs of sites,
respectively. Suppose |N | = n. Let d : N × N → R

+ be
the distance function, where d(i, j) denotes the distance of
the shortest path from nodes i to j by traversing the connec-
tions.1 Let fi be the capacity of node i representing the average
capacity of charging service supported if a charging station is
constructed at location i. It is related to the size of the site
and traffic conditions in the surrounding. Each node i also has
a demand requirement Fi, which refers to its average local
charging demand. The more EVs are based at location i, the
higher Fi is. Fi can be estimated from the population size and
the EV penetration rate of that location. Without loss of gen-
erality, we assume that some Fi’s are positive while some are
of zero value.

We define D to be the average distance able to be traversed
by most typical EVs available in the market when being fully

1The distance d(i, j) refers to the distance of an actual path connecting
locations i and j but not the Euclidean distance.

charged. A subset of nodes N ′ ⊂ N is said to be reachable
by D if the following conditions hold.

1) For each i ∈ N ′, there exists a node j ∈ N ′ such that
d(i, j) ≤ D.

2) For each i ∈ N , the total capacity, constituted from those
nodes j ∈ N ′ such that d(i, j) ≤ αD with discount factor
α ∈ (0, 1], is greater than or equal to Fi.

3) For any i, j ∈ N ′, suppose hij be the number of hops of
the shortest path from i to j in G. The distance of the
path d(i, j) should be smaller than or equal to hijD.

N ′ represents the set of locations which have been selected
with charging stations constructed. A city is well planned if N ′
is reachable by D. With Condition 1, an EV, which has been
fully charged at one location, can recharge at another site within
distance D away. Condition 1 guarantees that EVs will not be
confined in one single location (or area). Condition 2 says that
the local charging demand at a location (e.g., Fi at node i)
must be satisfied by the total charging capacities contributed
by those charging stations located within distance αD away.
α is used to model the tolerance of drivers to move away from
their current locations for recharging. Its maximum value is
one because an EV can traverse for a distance at most D. The
smaller α, the more conservative the model is, i.e., more charging
stations should be placed around every possible location. With
Condition 3, the charging station network, where each charging
station is separated with another of at most distance D, spans
the whole city. Note that, we use one single D to characterize
the accessibility of the whole city for all kinds of EV models
because the distribution of the charging stations should cater for
all possible EVs traveling on the roads. To do this, we should
assign D with a more conservative value, e.g., the maximum
travel distance of the most basic EV model in the market when
being fully charged. To summarize, the conditions all together
guarantee that the serving areas of the charging stations cover
every corner of the city for all possible EVs.

B. Formulation

Let xi be the decision (Boolean) variable indicating if node
i is chosen for placement and ci be its construction cost. We
minimize the total cost as the objective, i.e.,

∑n
i=1 cixi.

For each i, we define N αD
i = {j ∈ N |d(i, j) ≤ αD}, repre-

senting the set of nodes (including node i itself) within distance
αD from i. We can restate Condition 2 as

∑
j∈N αD

i
fjxj ≥

Fi,∀i ∈ N . As Condition 3 holds for any pair of nodes,
Condition 3 implies Condition 1. To restate Condition 3, we
first create a graph Ĝ = (N̂ , Ê), where N̂ is set to N and
Ê is equal to {(i, j)|i, j ∈ N , d(i, j) ≤ D, i 
= j} (see the
example shown in [1, Fig. 1]). Consider those nodes i in G
with xi = 1 (i.e., N ′) and they constitute the corresponding
induced subgraph H of Ĝ. Condition 3 is equivalent to hav-
ing H connected. In other words, H has one single connected
component. Instead of inspecting the original graph G, we can
focus on Ĝ to formulate the problem. Similar to [20], we adopt
a network flow model to address Condition 3. Consider that
there is some virtual flow2 flown from some sources to some
sinks. If the sources and the sinks are not connected, the flow

2The virtual flow here is independent of the traffic flow.
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from the sources cannot reach the sinks. Imagine that there is
a source node 0i attached to node i and it has n units of flow
available to be sent along Ĝ through node i. Let 0 ≤ xi

0 ≤ n be
the residue of flow not consumed by the network. Each node
j with xj = 1 will consume one unit of flow. For each edge
(j, k) ∈ Ê , we indicate the amount of flow on (j, k) originated
from 0i with variable yi

jk. Hence, we can guarantee that the

flow can reach those nodes j with xj = 1 from node i on Ĝ
with the following:

xi
0 + yi

0i = n (1)

0 ≤ yi
jk ≤ nxk,∀(j, k) ∈ Ê ∪ (0i, i) (2)

∑

j|(j,k)∈Ê
yi

jk = xk +
∑

l|(k,l)∈Ê
yi

kl,∀k ∈ N̂ (3)

∑

j∈N̂
xj = yi

0i (4)

0 ≤ xi
0. (5)

Equation (1) says that the total amount of flow yi
0i going

out of the source 0i and the retained xi
0 in 0i is n, where

n is the number of nodes in G and it is the upper bound
of flow possible to be absorbed in the network. Equation (2)
confines that only a sink can receive incoming flow and (3)
describes that the total incoming flow to a node is equal to the
total outgoing flow plus the amount for a sink. Equation (4)
explains that the total flow getting out of the source is equal
to the total absorbed by the sinks and (5) restricts nonnegative
residue remained in the source. An illustrative example of the
network flow model is given in the Appendix.

Note that (1)–(5) require node i to be selected for charg-
ing station construction. Otherwise, no flow from source 0i

is allowed to be delivered to the sinks. To cater for this
requirement, we attach a source node to each node in N̂ and
the overall mathematical formulation of EVCSPP is modified
accordingly as follows:

minimize
n∑

i=1

cixi (6a)

subject to
∑

j∈N αD
i

fjxj ≥ Fi,∀i (6b)

xi = {0, 1},∀i (6c)

xi
0 + yi

0i = n,∀i ∈ N̂ (6d)

0 ≤ yi
jk ≤ nxixk,∀(j, k) ∈ Ê ∪ (0i, i),∀i ∈ N̂ (6e)

∑

j|(j,k)∈Ê
yi

jk = xixk +
∑

l|(k,l)∈Ê
yi

kl,∀i, k ∈ N̂ (6f)

xi

∑

j∈N̂
xj = yi

0i,∀i ∈ N̂ (6g)

0 ≤ xi
0,∀i ∈ N̂ . (6h)

Equations (6a) and (6b) have been discussed before.
Equation (6c) confines xi to be a Boolean variable.
Equations (6d)–(6h) correspond to the induced connected
subgraph condition [i.e., (1)–(5)] for all nodes.

Equation (6) is an MIP with Boolean variables xi’s and con-
tinuous variables yi

jk’s. With the quadratic terms in equality

constraints (6f) and (6g), it is not a mixed-integer linear
program (MILP). Hence, this problem is not easy to be solved.

Before examining the complexity of the problem, we discuss
the relationship of our model with the grid. The range of power
demand from a charging station can be inferred from the scale
of the charging station (in terms of the number of chargers) and
the usage pattern. With this information, the utility company
which manages the distribution network can assess the risk
of potential security problems from the expected loads of the
charging stations. In the initial set of potential locations, we
only consider those feasible places which allow power facility
upgrade. We can make use of the charging capacity defined
in constraint (6b) to model this. Moreover, many practical
solutions for security and reliability are available to be incor-
porated into the grid easily. The charging stations can also be
equipped with energy storage and renewable energy generation
[e.g., from solar photovoltaic (PV) setup]. In addition, practical
methods, like installation of electric spring [21] and distributed
active and reactive power injection control [22], can be eas-
ily adopted to regulate the voltage with fast response time.
Hence, the impact of sudden large energy demand leading to
high voltage drop can be alleviated.

IV. COMPLEXITY ANALYSIS

The decision version of EVCSPP can be framed as follows.
Let N(H) be the set of nodes associated to the induced sub-
graph H. Each node i has a capacity fi ∈ Z

+ and a demand
Fi and it is associated with the node set N αD

i . Given an undi-
rected graph Ĝ = (N̂ , Ê), with the cost ci ∈ Z

+,∀i, and a
cost bound C ∈ Z

+, does there exist an induced subgraph
H of Ĝ such that: 1) for each i ∈ N̂ ,

∑
j∈N αD

i ∩N(H) fj ≥ Fi;
2) H is connected; and 3)

∑
i∈N(H) ci ≤ C?

Theorem 1: The decision version of EVCSPP is nondeter-
ministic polynomial-time (NP)-complete.3

Proof: Similar to [20], we construct a reduction from
the vertex cover problem (VCP) to EVCSPP. In the graph

G̃ = (Ñ , Ẽ), a vertex cover is a subset of nodes N ′ ⊂ Ñ
such that each edge (i, j) ∈ Ẽ has either i or j, or both in Ñ .
Without loss of generality, we assume Ẽ 
= ∅. VCP determines
if there exists a vertex cover N ′ of G̃ with |N ′| ≤ C.

We create a graph Ĝ = (N̂ , Ê), where N̂ = Ñ ∪ Ẽ and
Ê is constructed as follows. For each pair of distinct nodes
i, j ∈ Ñ , we create an edge (i, j) in Ê ; for each e = (i, j) ∈ Ẽ ,
we append (i, e) and (e, j) to Ê . For each i ∈ Ñ , its cost is set
as ci = 1 and zero otherwise. For each e ∈ Ẽ , we set fe = 1
and zero otherwise. We also set N αD

i = Ẽ and Fi = |Ẽ | for
all i ∈ N̂ .

We claim that VCP on G̃ has a cost upper bound C if and
only if EVCSPP has a solution with cost at most C. Let N ′
be a vertex cover of G̃ with |N ′| ≤ C and H be the induced
subgraph of Ĝ by nodes N ′ ∪ Ẽ . It is easy to verify that
|N αD

i ∩ N(H)| = |Ẽ | and thus
∑

j∈N αD
i ∩N(H) fj = |Ẽ | = Fi.

As N ′ is a vertex cover, each e = (i, j) ∈ Ẽ must have at least

3In computational complexity theory, a decision problem is NP-complete
if it is in the intersection of NP and NP-hard problem sets [23]. There is no
known method to solve such problem in polynomial time.
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one of i and j in Ñ and thus H must contain an edge (e, k)

for some k ∈ N ′. Moreover, Ñ forms a clique in Ĝ. Hence, H
must be connected. Since each e ∈ Ẽ ⊂ N̂ imposes no cost,
H has the same cost as N ′ in G̃. Therefore, EVCSPP has a
solution with cost at most C.

Consider that an induced subgraph H is a solution of
EVCSPP. We set N ′ = N(H) ∩ Ñ . H contains Ẽ : As fj = 1
for j ∈ Ẽ , for any i ∈ N̂ , Fi = |Ẽ | guarantees Ẽ ⊂ N(H).
Since H is connected, each i ∈ N ′ must have an edge with an
e ∈ Ẽ in Ĝ. Moreover, N ′ has at most C nodes. Hence, N ′ is
a vertex cover of G̃ with |N ′| ≤ C.

With Theorem 1, we have an immediate corollary as
follows.

Corollary 1: EVCSPP is NP-hard.4

V. PROPOSED SOLUTIONS

Since the problem is NP-hard, there is no trivial way to
solve it. In this section, we propose four solution methods to
tackle the problem. They possess their own pros and cons and
one method may be more suitable for a particular situation
than another.

A. Method I: Iterative MILP

Equations (1)–(5) can be used to guarantee that the solution
subgraph constituted by all nodes j with xj = 1 is connected
as long as xi = 1. If we assume that node i is one of locations
for charging station construction, i.e., xi = 1, Equation (6) can
be reduced to

minimize
n∑

k=1

ckxk (7a)

subject to
∑

j∈N αD
k

fjxj ≥ Fk, ∀k ∈ N̂ (7b)

xk = {0, 1},∀k ∈ N̂ (7c)

xi
0 + yi

0i = n (7d)

0 ≤ yi
jk ≤ nxk,∀(j, k) ∈ Ê ∪ (0i, i) (7e)

∑

j|(j,k)∈Ê
yi

jk = xk +
∑

l|(k,l)∈Ê
yi

kl,∀k ∈ N̂ (7f)

∑

j∈N̂
xj = yi

0i (7g)

0 ≤ xi
0 (7h)

xi = 1. (7i)

Equation (7) is an MILP and it can be solved with standard
MIP solvers applying methods like branch-and-bound. Now the
questionbecomeswhichnode i shouldbechosen for thispurpose.

We write the solution of (7) as infx∈�i

∑n
j=1 cjxj, where �i

is the solution space constituted by (7b)–(7i) and inf refers to
the infimum operator. We have the following theorem.

Theorem 2: The solution of (6) can be determined by
solving

min
1≤i≤n

( inf
x∈�i

n∑

j=1

cjxj). (8)

4An optimization problem is NP-hard if it is at least as hard as the hardest
problems in the NP problem set [23].

Proof: The solution of (6) can induce a connected subgraph
of Ĝ where (6b) is satisfied and the total cost function (6a)
is minimized. When we solve (7), its solution induces a con-
nected subgraph of Ĝ with minimum total cost satisfying (6b)
where node i is included. To compute (8), we apply (7) to
every node i (thus we solve (7) n times) and its solution is the
minimum among the n subgraphs. Since (6a) and (6b) exist
in every (7), the solution of (6) must be one of the computed
subgraphs with some node i included. Hence, addressing (8)
can solve (6).

With this result, the original mixed-integer nonlinear pro-
gram becomes n solvable MILPs. Since we need to go through
all nodes iteratively, we call this method iterative MILP.

Besides the fact that the computational time of solving
MILP (7) grows super-linearly with n, this method also suffers
from the problem that the number of MILPs [i.e., (7)] needed
to be solved also increases with n. Hence, the combined effect
of increasing n will make its computation time accelerating
extraordinarily fast. Hence, this method is only applicable
to small problem instances. If the solver applied to (7) can
produce the optimal solution, Method I will guarantee the
optimality.

B. Method II: Greedy Approach

Here, we present an efficient greedy algorithm, which is
applicable to the original formulation (6) and requires much
shorter computation time. Before discussing its details, we
have the following lemma to facilitate its development.

Lemma 1: Equations (6) and (7) is feasible if and only if
x = [x1, . . . , xn] = [1, . . . , 1] is a feasible solution, which
gives an upper bound of the objective function value

∑n
i=1 ci.

Proof: First, we consider the only if-direction. As the prob-
lem is feasible, there exists a feasible x′ = [x′1, . . . , x′n], com-
posed of some 0s and/or 1s, satisfying constraints (6b)–(6h).
If x′i = 1 for all i, then we have the result. Consider that there
is at least one j such that x′j = 0. If we produce another x′′
by modifying x′j with value one, besides (6c), x′′ will always
satisfy constraint (6b), as we will not change or increase the
sum on the left-hand side of (6b). Moreover, as 0 < α ≤ 1,
if x′j = 0 satisfies (6b), there exists at least one node k with
x′k = x′′k = 1 within distance D away from node j. In this
way, if we have x′′j = 1, we will attach node j to the subgraph
induced by x′ through node k. In other words, the subgraph
induced by x′′ is still connected, i.e., satisfying (6d)–(6h). We
can repeat this process until we change all 0s to 1s and this
produces x with upper bound

∑n
i=1 ci.

The if-direction is trivial. We complete the proof.
Corollary 2: If x = [x1, . . . , xn] = [1, . . . , 1] is not

feasible, EVCSPP is infeasible.
Corollary 2 can be used to check the feasibility of a problem

instance.
Assume that we have a feasible problem instance. We con-

struct a greedy algorithm by reducing the total cost as much as
possible in each iteration and it results in a sub-optimal solu-
tion. Its pseudocode is given in Algorithm 1. In Line 1, we
start with the feasible x = [x1, . . . , xn] = [1, . . . , 1] explained
in Lemma 1 and then go through a certain number of iterations
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Algorithm 1 Greedy Algorithm
1: Set xi = 1 for i = 1, . . . , n.
2: repeat
3: Construct a node set N composed of nodes i with xi = 1 where the

induced subgraph is still connected when xi is set to zero.
4: x′ ← x
5: flag← 0
6: repeat
7: Select j with the largest cj in N .
8: Modify x′ by setting x′j = 0
9: if x′ satisfies (6b) then

10: x← x′
11: flag← 1
12: else
13: x′j ← 1

14: Remove j from N
15: end if
16: until flag = 1 OR N = ∅
17: until N = ∅

Fig. 1. Node selection in the greedy algorithm.

(Lines 2–17). In each iteration, we select those nodes in the
subgraph induced by x which will not disconnect the sub-
graph if we remove them from the subgraph and we call this
selection N (Line 3). For example, Fig. 1 shows a graph Ĝ
of six nodes, where a dot i and a hole j mean xi = 1 and
xj = 0, respectively. In this case, we have N = {1, 3, 6}.
We can see that the resultant x′ formed by removing any one
node in N will still satisfy Constraints (6d)–(6h). Then, we
attempt to deselect the one (say node j) with the highest cost
cj in N (Line 7). If the resultant x′ satisfies (6b), x′ is a fea-
sible point and we proceed to the next iteration (Lines 9–11).
Otherwise, we remove j from N (Line 14). Instead of deselect-
ing j (Line 13), we deselect the one with the next highest cost.
The iterations terminate when no nodes remain in N (Line 17).
The final solution x is the best determined by the greedy algo-
rithm. Note that the resultant solution is usually sub-optimal,
especially when the problem size n becomes larger.

C. Method III: Effective MILP

Recall that in Method I, we need to apply MILP (7) to
every node since we are not sure which node i has xi = 1
in the optimal solution and thus it is usually subject to long
computation time. However, if we know the node which has
unity in the solution, we can save lots of effort by applying (7)
to that node only. With Theorem 3, under a general condition,
we find that not all nodes i are required to generate the solution
as in Method I.

Theorem 3: Suppose that the demand requirements Fi for
all i are positive. Then for any node i, at least one node j in
i’s one-hop neighborhood in Ĝ, i.e., N αD

i , must have xj = 1
in the optimal solution of (6).

Proof: Since all Fi’s are positive, [x1, . . . , xn] = [0, . . . , 0]
can never be a solution. Hence, the solution must contain at
least one node i with xi = 1. Consider any particular node i.
If xi is set to one in the optimal solution, then the result holds
by assigning j to i as i ∈ N αD

i .
Consider that xi is set to zero. As Fi is positive, at least

one term fjxj on the left-hand side of (6b) must be positive.
In other words, at least one node (e.g., j) in N αD

i has xj = 1.
Since α ≤ 1, node j must be a one-hop neighbor of node i.
Since all Fi’s are positive, the condition applies to every node.

Hence, the result is true for every node in the graph.
With this theorem, we compose Method III by choosing

any node i and applying (7) with respect to those nodes in
N αD

i only. The number of (7) required to be solved depends
on the cardinality of N αD

i . We can minimize the computa-
tional time by choosing the node i with the smallest degree
in Ĝ. In this way, we can simplify Method I by exploiting
the network structure of the graph and the solutions of both
Methods I and III are equivalent. Similar to Method I, If
the solver applied to (7) can produce the optimal solution,
Method III will also guarantee the optimality. Since EVs are
movable in a city, it is common to have EVs appearing in
every location (node) in a certain time-span, and thus we have
positive Fi for all nodes i. Hence, the condition imposed in
Theorem 3 generally holds in most situations.

D. Method IV: Chemical Reaction Optimization

Chemical reaction optimization (CRO) is a recently pro-
posed nature-inspired metaheuristic for optimization [24].
Under certain conditions, it has been proved to be able to
converge to the global optimum for combinatorial optimization
problems (like EVCSPP) [25] and it has been demonstrated
to have very good performance in solving real-world prob-
lems, e.g., [26] and [27]. CRO is general-purpose and we
apply CRO to EVCSPP. In CRO, the manipulated agents are
molecules, each of which carries a solution. The molecules
explore the solution space of the problem through a random
series of elementary reactions taking place in a container. We
define four types of elementary reactions, each of which has
its own way to modify the solutions carried by the involved
molecules. Due to space limitation, we do not illustrate every
detail of CRO but explain the necessary modifications based
on the framework described in [24]. We basically follow [24]
to construct the algorithm. It consists of four elementary reac-
tions, including on-wall ineffective collision, decomposition,
intermolecular ineffective collision, and synthesis. They are
implemented as follows.

1) On-Wall Ineffective Collision: It mimics that a molecule
hits a wall of the Container and then bounces back. This
elementary reaction is not vigorous and we only have small
modifications to the molecule. Let x and x′ be the solu-
tions held by the molecules before and after the change. We
apply our greedy approach (Method II)5 to x to produce x′,
i.e., x

greedy−−−→ x′.

5Note that we can initiate the greedy algorithm with any x instead of the
unity vector [1, . . . , 1] by skipping Line 1 in Algorithm 1.
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TABLE I
SIMULATION RESULTS FOR n = 50 AND D = 20 KM

2) Decomposition: It describes that one molecule hits a
wall and breaks into two separate molecules. It involves vig-
orous changes to the molecules. Let x be the solution held by
the reactant molecule and x′1 and x′2 be the solutions of the
resultant molecules. Here, x′1 and x′2 are randomly generated
in the solution space. A random solution can be produced by
modifying Algorithm 1 where the repeat loop (Lines 6–16)
iterates for a random number of times (between 1 to n) and
we select a random node in N in Line 7.6 A decomposition

can be described as x
random−−−−→ x′1 + x′2.

3) Intermolecular Ineffective Collision: It portrays that two
molecules collide with each other and then bounce away. The
change is not vigorous. Let x1 and x2 be the two reactant
molecules and x′1 and x′2 be the resultant molecules. Similar
to the on-wall ineffective collision, we apply the greedy algo-
rithm to the respective molecules to modify the solutions,

i.e., x1 + x2
greedy−−−→ x′1 + x′2.

4) Synthesis: Synthesis describes that two molecules col-
lide with each other and then combine into one molecule. The
change is vigorous. Similar to decomposition, we produce a
new molecule by randomly generating its solution in the solu-
tion space. Let x1 and x2 be the two reactant molecules and

x′ be the resultant molecule. We have x1 + x2
random−−−−→ x′.

When initializing the algorithm, we assign random solutions
in the solution space to the molecules (this can be done by
the random solution generation used in decomposition). It is
clear that Method II is embedded in this method except that
Method II always start with a unity vector x. We can guarantee
that Method IV is always superior to Method II in terms of
solution quality by having at least one molecule possessing a
unity vector as its initial solution. So we can assign the unity
vector to some initial molecules (say 10%) in the initialization
phase. Since CRO is a probabilistic algorithm, the solutions
produced in different runs could be different.

VI. PERFORMANCE STUDY

A. Simulation Results

We perform a series of simulations to evaluate the perfor-
mance of the four solution methods. All simulations are run
on the same computer with Intel Core i7-3770 CPU at 3.40
GHz and 16 GB of RAM, and conducted in the MATLAB
environment. For Methods I and III, the MILP is computed

6Although the generations of x′1 and x′2 do not rely on x, the energies stored
in the molecules do. Interested readers may refer to [24] for more information.

with the CPLEX solver [28] and YALMIP [29]. Recall that
Methods I, II, and III are deterministic while Method IV is
probabilistic. For illustrative purposes, we repeat Method IV
ten times for each simulation case. After several trial runs, we
set the parameter values for Method IV as: “function evalu-
ation (FE) limit” = 2000, “initial kinetic energy (KE)” = 10,
“initial population size” = 40, “initial buffer” = 10, “colli-
sion ratio” = 0.5, “synthesis threshold” = 0.5, “decomposition
threshold” = 20, and “KE loss rate” = 0.9. We conduct three
tests. In the first test, we examine the solutions’ performance
with changing α. The second aims to study how the compu-
tation time grows with the problem size. In the third, we test
how the solution methods perform in a real-world scenario.

In the first test, we randomly generate 100 feasible
instances. Each instance of G is constructed by randomly
placing 50 nodes in an area of 100 × 100 km2, where we
assign a random value in the range of (0, 1] to the cost ci,
and D, fi and Fi, for all i, are set to 20 km, 0.5, and 1,
respectively. For simplicity, we assume that the nodes are inter-
connected and the length of the shortest path of each pair
of nodes is determined with the Euclidean distance between
them. As explained in Section III, we can produce Ĝ from G.
Then, we can check the feasibility of each instance with
Corollary 2.

We verify the performance of the four methods with respect
to the computed solution quality and the computation time.
The results are given in Table I. The second column indi-
cates the number of feasible and matched cases among the
100 graphs. All graphs are feasible when α is equal to one.
When α decreases, the number of resulted feasible cases
will also decrease as constraint (6b) becomes stronger. The
matched cases indicate those of the feasible ones producing
the same objective function values by all the four approaches.
Regardless of the nonstatistically significant cases with α =
0.7, all the four methods can produce the best solutions for
around 1/3 of the feasible cases. The other columns show the
average objective function values and computation times of the
four methods for the feasible cases. For Method IV, we also
provide the average (among the cases) of the best (among the
repeats) and the worst (among the repeats) for reference. The
average numbers of charging stations appeared in the solutions
are put in brackets. Methods I and III always give the best solu-
tions and Method IV always outperforms Method II. In terms
of computation time, Method II is the fastest and Method III
comes the second. Method IV is the next and Method I takes
the longest.
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Fig. 2. Computation time changing with problem size.

TABLE II
AVERAGE NUMBER OF STATIONS COMPUTED IN THE SECOND TEST

Fig. 3. Convergence of Method IV.

In the second test, we study how the computation time
changes with the problem size. The setting is similar but we
fix α to one for different values of n. We generate 10 feasible
cases for n equal to 10, 50, 100, 150, and 200. Fig. 2 shows
the average computation times of the four methods in the log-
arithmic scale. The corresponding objective function values
normalized by computed minimums are also given for refer-
ence. All the computation times increase with n. Method I
takes the longest computation time which also grows the
fastest. Method III needs less time than Method IV when
n is small. However, when n is larger than 100, Method III
requires more time to compute the solution. In other words,
the computation time of Method III grows faster than that
of Method IV. Method II needs the shortest time but its com-
puted solution quality is the worst. Although Methods I and III
require relatively more time, their solutions are the best. Note
that the results of Methods I and III for n = 200 are not

Fig. 4. Charging station distribution (adopted from [30]).

TABLE III
CHARGING STATION DATA (FROM THE 2006 CENSUS)

shown because they are not computable by YALMIP/CPLEX
due to the out-of-memory problem. This implies the MILP
approaches are not suitable for large problems.7 As before,
Method IV always produces better solutions than Method II.
The average numbers of charging stations constructed by the
four methods are given in Table II. Moreover, we perform
a series of tests to check the convergence of Method IV.
We run CRO for some cases of different sizes used in the
second test with duration up to 10 000 FEs. Fig. 3 gives
the convergence curves for particular cases; for clear illus-
tration (of the performance at the beginning), we give the
performance in first 500 FEs only. The results show that the
algorithm converges very fast and can converge within 500 FEs
in all the cases. Hence, it is concluded that our evaluation
limit of 2000 for Method IV applied to all the three tests is
sufficient.

7We run the simulations in MATLAB. The out-of-memory problem may
happen at another n with a different combination of machine and platform.
Here, we just demonstrate that Methods I and III are not scalable.
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TABLE IV
SIMULATION RESULTS FOR THE HONG KONG CASE

In the third test, we apply the problem to a real-world envi-
ronment; we determine the locations for building charging
stations in Hong Kong (HK). The HK Government plans to
introduce more EVs (e.g., taxi) into the city and the construc-
tion of charging stations is one of the crucial steps in the
plan. We can see how this can be realized through solving
EVCSPP. HK is composed of three zones (New Territories,
Kowloon, and HK Island) and each zone is further divided
into districts. There are total 18 districts in HK. We select one
location in each district for potential charging station construc-
tion. The location distribution is given in Fig. 4. The distance
between each pair of locations is retrieved from the route con-
necting them suggested by Google Map [30]. We relate the
location parameters to the district data obtained from [31]. We
assign the population size to the demand Fi and the median
monthly income per capita to the cost ci. We set the capacity fi
inversely proportional to the density with some proportionality
constants. The location parameter values are listed in Table III.
We perform simulations with several combinations of D
(30, 35, 40, 45, and 50 km) and α (1, 0.8, and 0.6) and the
performance of the methods is given in Table IV where the
best objective function values are bold and the numbers of
stations constructed are put in brackets. The number of nodes
matched in the solutions of the four methods (the best solu-
tions for Method IV) for each feasible case is also provided.
In Fig. 4, for the case with α and D equal to 0.6 and 45
km, respectively, those locations in red indicate that charg-
ing stations should be constructed according to the solutions
computed by the four methods; the roman numbers beside a
location reveal which methods have included that location in
their solutions.8

Methods I and III always find the best solutions for all
cases. Method IV can determine the best solutions in most
cases while Method II can still achieve the best solutions in
some cases. For computation time, on the average, Method II
is the fastest, and then Method IV. Method III comes next and
Method I takes the longest. In general, the computation times
of Methods I, II, and IV decrease with D since Ĝ becomes

8As the solutions of Method IV computed in different runs can be different,
only its solution of a particular run is given in Fig. 4.

denser with D and we need less effort to locate the solutions.
But Method III does the opposite because nodes tend to have
larger degrees with D. Thus, the number of MILPs needed to
be solved increases together with the minimum degree of Ĝ.

B. Discussion

From the simulations above, we can see that each method
has its own characteristics and is suitable for different situa-
tions. Here, we try to compare them in terms of five different
perspectives independently.

1) Solution Quality: If the adopted MILP solver can guar-
antee optimality,9 Methods I and III can obtain the best results.
As Method II is embedded in Method IV, Method IV is always
superior to Method II but they may not produce the optimal
solutions, especially when the solution space is getting larger.
They can be ranked as: I = III > IV > II.

2) Computation Time: Method II is of the simplest design
and takes very limited amount of time to obtain a (usually
sub-optimal) solution. Method I needs to apply MILP to all
nodes of the problem while Method III requires only a subset.
Hence, Method III is always faster than Method I. Method IV
is a metaheuristic and we can terminate the algorithm when
certain stopping criteria are satisfied (in our cases, we limit the
computation time by setting an FE limit). As a whole, they
can be ranked as: II > IV > III > I.

3) Solvable Problem Size: Solving MILP is the major
building block of Methods I and III and it relies on the adopted
solver. As most existing solvers can handle relatively small
problems (in our case with MATLAB/YALMIP/CPLEX, the
problem is only solvable with n ≤ 150 in this paper). However,
since the manipulating mechanisms of Methods II and IV are
mainly about how to modify and evaluate temporary solutions,
they are more resistive to the growing problem size. So they
can be ranked as: II = IV > I = III.

4) Algorithmic Nature: All methods are deterministic
except Method IV. In other words, we always come up with the
identical result in different runs of the same problem instance.
Method IV is probabilistic in nature. For each instance, we

9Most MIP solvers can generate the optimal solutions when the problem
size is small.



LAM et al.: ELECTRIC VEHICLE CHARGING STATION PLACEMENT: FORMULATION, COMPLEXITY, AND SOLUTIONS 2855

TABLE V
SOLUTION METHOD CHARACTERISTIC COMPARISON

repeat the simulations several times to obtain its average
performance.

5) Prerequisite: Recall that Method III is valid only when
the condition imposed in Theorem 3 holds. Although this con-
dition is very general and held in most practical situations, the
other methods do not require it.

We summarize the characteristics of the four methods in
Table V. Note that the above conclusions are drawn indepen-
dently of each other from our observations on the simulation.
When evaluating a particular method, we usually take several
aspects into account simultaneously, e.g., correlating solution
quality with computation time and problem size. However, we
aim to give an extensive assessment and thus we appraise their
individual abilities from one aspect to another. In general, each
method has its own pros and cons and none is outstanding pre-
dominantly. In practice, we select the most suitable method
according to our need.

As a final remark, we aim to show that the greedy algo-
rithm can be considered as a component in a metaheuristic,
whose performance is guaranteed to be better than that of
Method II. Method IV can be interpreted in a broader sense; it
is a greedy-algorithm embedded metaheuristic approach where
we can replace CRO with any metaheuristic like Genetic
Algorithm [32]. Further exploration of Method IV with other
metaheuristics will be left for the future work.

VII. CONCLUSION

Gasoline is a heavily demanded natural resource and most is
consumed on transportation. Transportation electrification can
relieve our dependence on gasoline and tremendously reduce
the amount of harmful gases released, which partially con-
stitute global warming and worsen our health. In the 21st
century, advancing EV technologies has become one of the
keys to boost a nation’s economy and maintain (and improve)
people’s quality of living. For long-term planning, modern-
izing our cities with EVs is of utmost importance. EVs will
be integrated into the transportation system seamlessly and
this will help make our cities “smart.” To do this, we need
to determine the best locations to construct charging stations
in the city. In this paper, we focus on human factors rather
than technological ones for charging station placement. An
EV should always be able to access a charging station within
its driving capacity anywhere in the city. Our contributions in
this paper include: 1) formulating the problem; 2) identifying
its properties; and 3) developing the corresponding solution
methods. We formulate the problem as an optimization model,
based on the charging station coverage and the convenience of
drivers. We prove the problem NP-hard and propose four solu-
tion methods to tackle the problem. Each method has its own

Fig. 5. Example of four nodes.

characteristics and is suitable for different situations depending
on the requirements for solution quality, algorithmic efficiency,
problem size, nature of the algorithm, and existence of system
prerequisite.

APPENDIX

ILLUSTRATIVE EXAMPLE FOR THE NETWORK

FLOW MODEL

We make use of the example of Ĝ given in Fig. 5 to illustrate
the network flow model discussed in Section III-B.

Consider that nodes 1 and 2 have charging stations con-
structed and thus we have node 01 sends out two units of flow
on (01, 1) and hence y1

01 = 2. Equation (3) indicates that the
conversation of flow and thus we have y1

12 = 1 as node 1 is
a sink of one unit of flow. Similarly, we get y1

23 = 0. In this
way, we can ensure that the resultant locations of the charging
stations (nodes 1 and 2 in this case) are connected.

Consider another case that nodes 1 and 3 are the locations
of charging stations. So we have x1 = x3 = 1 and x2 = 0.
Equation (4) results in y1

01 = 2. Node 2 is not a sink and (2)
confines y1

12 = 0. To balance the incoming and outgoing flows
at node 2, (3) makes y1

23 = 0. However, node 3 is a sink of
one unit and when (3) is applied to node 3, we need to have
y1

23 = 1. This results in a contradiction and hence we cannot
allow constructing charging stations at nodes 1 and 3 without
node 2.

Therefore, connectivity of the charging station network can
be enforced with the network flow model.

REFERENCES

[1] A. Y. S. Lam, Y.-W. Leung, and X. Chu, “Electric vehicle charging
station placement,” in Proc. IEEE Int. Conf. Smart Grid Commun.,
Vancouver, BC, Canada, Oct. 2013, pp. 510–515.

[2] K. Lebeau, J. Van Mierlo, P. Lebeau, O. Mairesse, and C. Macharis,
“Consumer attitudes towards battery electric vehicles: A large-scale
survey,” Int. J. Elect. Hybrid Veh., vol. 5, no. 1, pp. 28–41, 2013.

[3] S. Chen and L. Tong, “iEMS for large scale charging of electric vehicles:
Architecture and optimal online scheduling,” in Proc. IEEE Int. Conf.
Smart Grid Commun., Tainan City, Taiwan, Nov. 2012, pp. 629–634.

[4] A. Y. S. Lam, L. Huang, A. Silva, and W. Saad, “A multi-layer mar-
ket for vehicle-to-grid energy trading in the smart grid,” in Proc. IEEE
Conf. Comput. Commun. Workshops (INFOCOM WKSHPS), Orlando,
FL, USA, Mar. 2012, pp. 85–90.

[5] A. Y. S. Lam, K.-C. Leung, and V. O. K. Li, “Capacity management of
vehicle-to-grid system for power regulation services,” in Proc. IEEE Int.
Conf. Smart Grid Commun., Tainan, Taiwan, Nov. 2012, pp. 442–447.

[6] J. J. Q. Yu, V. O. K. Li, and A. Y. S. Lam, “Optimal V2G schedul-
ing of electric vehicles and unit commitment using chemical reaction
optimization,” in Proc. IEEE Congr. Evol. Comput., Cancun, Mexico,
Jun. 2013, pp. 392–399.

[7] F. Guo, E. Inoa, W. Choi, and J. Wang, “Study on global optimization
and control strategy development for a PHEV charging facility,” IEEE
Trans. Veh. Technol., vol. 61, no. 6, pp. 2431–2441, Jul. 2012.

[8] M. Etezadi-Amoli, K. Choma, and J. Stefani, “Rapid-charge electric-
vehicle stations,” IEEE Trans. Power Del., vol. 25, no. 3, pp. 1883–1887,
Jul. 2010.



2856 IEEE TRANSACTIONS ON SMART GRID, VOL. 5, NO. 6, NOVEMBER 2014

[9] A. S. Masoum, S. Deilami, P. S. Moses, M. A. S. Masoum, and
A. Abu-Siada, “Smart load management of plug-in electric vehicles in
distribution and residential networks with charging stations for peak
shaving and loss minimisation considering voltage regulation,” IET
Gener. Transmiss. Distrib., vol. 5, no. 8, pp. 877–888, Aug. 2011.

[10] Z. Liu, F. Wen, and G. Ledwich, “Optimal planning of electric-vehicle
charging stations in distribution systems,” IEEE Trans. Power Del.,
vol. 28, no. 1, pp. 102–110, Jan. 2013.

[11] Z. F. Liu, W. Zhang, X. Ji, and L. Ke, “Optimal planning of charging
station for electric vehicle based on particle swarm optimization,” in
Proc. IEEE Innov. Smart Grid Technol. Asia, Tianjin, China, May 2012,
pp. 1–5.

[12] L. Jia, Z. Hu, Y. Song, and Z. Luo, “Optimal siting and sizing of elec-
tric vehicle charging stations,” in Proc. IEEE Int. Elect. Veh. Conf.,
Greenville, SC, USA, Mar. 2012, pp. 1–6.

[13] E. Pashajavid and M. A. Golkar, “Optimal placement and sizing of
plug in electric vehicles charging stations within distribution networks
with high penetration of photovoltaic panels,” J. Renew. Sustain. Energy,
vol. 5, no. 5, pp. 101–118, Jan. 2013.

[14] T. D. Chen, K. M. Kockelman, and M. Khan, “The electric vehicle
charging station location problem: A parking-based assignment method
for Seattle,” in Proc. 31st USAEE/IAEE North Amer. Conf., Austin, TX,
USA, Nov. 2012, pp. 1–14.

[15] S. Wang, R. Crosier, and Y. Chu, “Investigating the power architectures
and circuit topologies for megawatt superfast electric vehicle charging
stations with enhanced grid support functionality,” in Proc. IEEE Int.
Elect. Veh. Conf., Greenville, SC, USA, Mar. 2012, pp. 1–8.

[16] S. Khuller, A. Malekian, and J. Mestre, “To fill or not to fill: The gas
station problem,” ACM Trans. Algorithm., vol. 7, no. 3, pp. 36.1–36.16,
Jul. 2011.

[17] Z. Drezner, Facility Location: Applications and Theory, 2nd ed. Berlin,
Germany: Springer-Verlag, 2010.

[18] R. Church and C. R. Velle, “The maximal covering location problem,”
Papers Reg. Sci., vol. 32, no. 1, pp. 101–118, Jan. 1974.

[19] D. Mayfield, “Site design for electric vehicle charging stations,” Sustain.
Transport. Strategies, Tech. Rep., Jul. 2012.

[20] J. M. Conrad, C. P. Gomes, W.-J. van Hoeve, A. Sabharwal, and
J. F. Suter, “Wildlife corridors as a connected subgraph problem,”
J. Environ. Econ. Manag., vol. 63, no. 1, pp. 1–18, Jan. 2012.

[21] S. Y. Hui, C. K. Lee, and F. F. Wu, “Electric springs—A new smart
grid technology,” IEEE Trans. Smart Grid, vol. 3, no. 3, pp. 1552–1561,
Sep. 2012.

[22] B. Zhang, A. Y. S. Lam, A. Dominguez-Garcia, and D. Tse, “Optimal
distributed voltage regulation in power distribution networks,” IEEE
Trans. Power Syst., to be published.

[23] M. R. Garey and D. S. Johnson, Computers and Intractability: A Guide
to the Theory of NP-Completeness. San Francisco, CA, USA: Freeman,
1979.

[24] A. Y. S. Lam and V. O. K. Li, “Chemical-reaction-inspired meta-
heuristic for optimization,” IEEE Trans. Evol. Comput., vol. 14, no. 3,
pp. 381–399, Jun. 2010.

[25] A. Y. S. Lam, V. O. K. Li, and J. Xu, “On the convergence of chemical
reaction optimization for combinatorial optimization,” IEEE Trans. Evol.
Comput., vol. 17, no. 5, pp. 605–620, Oct. 2013.

[26] J. Xu, A. Y. S. Lam, and V. O. K. Li, “Chemical reaction optimization
for task scheduling in grid computing,” IEEE Trans. Parallel Distrib.
Syst., vol. 22, no. 5, pp. 1624–1631, Oct. 2011.

[27] A. Y. S. Lam, V. O. K. Li, and J. J. Q. Yu, “Power-controlled cognitive
radio spectrum allocation with chemical reaction optimization,” IEEE
Trans. Wireless Commun., vol. 12, no. 7, pp. 3180–3190, Jul. 2013.

[28] IBM ILOG CPLEX V12.1: User’s manual for CPLEX, International
Business Machines Corp., 2009.

[29] J. Löfberg, “YALMIP: A toolbox for modeling and optimization in
MATLAB,” in Proc. IEEE Int. Symp. Comput. Aided Control Syst. Des.,
Taipei, Taiwan, Sep. 2004, pp. 284–289.

[30] Hong Kong. (2013, Sep.). Google Maps [Online]. Available:
http://maps.google.com

[31] Wikipedia. (2013, Sep.). Districts of Hong Kong [Online]. Available:
http://en.wikipedia.org/wiki/Districts_of_Hong_Kong

[32] D. Goldberg, Genetic Algorithms in Search, Optimization and Machine
Learning. Reading, MA, USA: Addison-Wesley, 1989.

Albert Y.S. Lam (S’03–M’10) received the B.Eng.
(First Class Hons.) degree in information engineer-
ing, and the Ph.D. degree in electrical and electronic
engineering from the University of Hong Kong,
Hong Kong, in 2005 and 2010, respectively.

He is a Research Assistant Professor with the
Department of Computer Science, Hong Kong
Baptist University, Hong Kong, and was a Post-
Doctoral Scholar with the Department of Electrical
Engineering and Computer Sciences, University of
California, Berkeley, CA, USA, from 2010 to 2012.

His current research interests include optimization theory and algorithms, evo-
lutionary computation, smart grid, smart city planning, and Internet protocols
and applications.

Dr. Lam is a Croucher Research Fellow.

Yiu-Wing Leung (M’92–SM’96) received the B.Sc.
and the Ph.D. degrees in information engineer-
ing from the Chinese University of Hong Kong,
Hong Kong, in 1989 and 1992, respectively.

He has been with the Department of Computer
Science, Hong Kong Baptist University, Hong Kong,
and is currently a Full Professor. His current research
interests include networking and Internet systems,
and systems engineering and optimization. He has
published over 80 journal papers in these areas, most
of which were published in various IEEE journals.

Xiaowen Chu (M’01–SM’12) received the
B.Eng. degree in computer science from Tsinghua
University, Beijing, China, in 1999, and the Ph.D.
degree in computer science from the Hong Kong
University of Science and Technology, Hong Kong,
in 2003.

He is currently an Associate Professor with the
Department of Computer Science, Hong Kong
Baptist University, Hong Kong. His current research
interests include parallel and distributed computing,
wireless networks, and cloud computing.



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles false
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.4
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 0
  /ParseDSCComments false
  /ParseDSCCommentsForDocInfo false
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo false
  /PreserveFlatness true
  /PreserveHalftoneInfo true
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Remove
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
    /Arial-Black
    /Arial-BoldItalicMT
    /Arial-BoldMT
    /Arial-ItalicMT
    /ArialMT
    /ArialNarrow
    /ArialNarrow-Bold
    /ArialNarrow-BoldItalic
    /ArialNarrow-Italic
    /ArialUnicodeMS
    /BookAntiqua
    /BookAntiqua-Bold
    /BookAntiqua-BoldItalic
    /BookAntiqua-Italic
    /BookmanOldStyle
    /BookmanOldStyle-Bold
    /BookmanOldStyle-BoldItalic
    /BookmanOldStyle-Italic
    /BookshelfSymbolSeven
    /Century
    /CenturyGothic
    /CenturyGothic-Bold
    /CenturyGothic-BoldItalic
    /CenturyGothic-Italic
    /CenturySchoolbook
    /CenturySchoolbook-Bold
    /CenturySchoolbook-BoldItalic
    /CenturySchoolbook-Italic
    /ComicSansMS
    /ComicSansMS-Bold
    /CourierNewPS-BoldItalicMT
    /CourierNewPS-BoldMT
    /CourierNewPS-ItalicMT
    /CourierNewPSMT
    /EstrangeloEdessa
    /FranklinGothic-Medium
    /FranklinGothic-MediumItalic
    /Garamond
    /Garamond-Bold
    /Garamond-Italic
    /Gautami
    /Georgia
    /Georgia-Bold
    /Georgia-BoldItalic
    /Georgia-Italic
    /Haettenschweiler
    /Helvetica
    /Helvetica-Bold
    /HelveticaBolditalic-BoldOblique
    /Helvetica-BoldOblique
    /Impact
    /Kartika
    /Latha
    /LetterGothicMT
    /LetterGothicMT-Bold
    /LetterGothicMT-BoldOblique
    /LetterGothicMT-Oblique
    /LucidaConsole
    /LucidaSans
    /LucidaSans-Demi
    /LucidaSans-DemiItalic
    /LucidaSans-Italic
    /LucidaSansUnicode
    /Mangal-Regular
    /MicrosoftSansSerif
    /MonotypeCorsiva
    /MSReferenceSansSerif
    /MSReferenceSpecialty
    /MVBoli
    /PalatinoLinotype-Bold
    /PalatinoLinotype-BoldItalic
    /PalatinoLinotype-Italic
    /PalatinoLinotype-Roman
    /Raavi
    /Shruti
    /Sylfaen
    /SymbolMT
    /Tahoma
    /Tahoma-Bold
    /Times-Bold
    /Times-BoldItalic
    /Times-Italic
    /TimesNewRomanMT-ExtraBold
    /TimesNewRomanPS-BoldItalicMT
    /TimesNewRomanPS-BoldMT
    /TimesNewRomanPS-ItalicMT
    /TimesNewRomanPSMT
    /Times-Roman
    /Trebuchet-BoldItalic
    /TrebuchetMS
    /TrebuchetMS-Bold
    /TrebuchetMS-Italic
    /Tunga-Regular
    /Verdana
    /Verdana-Bold
    /Verdana-BoldItalic
    /Verdana-Italic
    /Vrinda
    /Webdings
    /Wingdings2
    /Wingdings3
    /Wingdings-Regular
    /ZapfChanceryITCbyBT-MediumItal
    /ZWAdobeF
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 200
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 200
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages false
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 400
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /CreateJDFFile false
  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <>
    /DEU <>
    /ESP <>
    /FRA <>
    /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
    /JPN <>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <>
    /PTB <>
    /SUO <>
    /SVE <>
    /ENU (Use these settings to create PDFs that match the "Recommended"  settings for PDF Specification 4.01)
  >>
>> setdistillerparams
<<
  /HWResolution [600 600]
  /PageSize [612.000 792.000]
>> setpagedevice


