1,302 research outputs found

    Design of Cooperative Non-Orthogonal Multicast Cognitive Multiple Access for 5G Systems:User Scheduling and Performance Analysis

    Get PDF
    Non-orthogonal multiple access (NOMA) is emerging as a promising, yet challenging, multiple access technology to improve spectrum utilization for the fifth generation (5G) wireless networks. In this paper, the application of NOMA to multicast cognitive radio networks (termed as MCR-NOMA) is investigated. A dynamic cooperative MCR-NOMA scheme is proposed, where the multicast secondary users serve as relays to improve the performance of both primary and secondary networks. Based on the available channel state information (CSI), three different secondary user scheduling strategies for the cooperative MCR-NOMA scheme are presented. To evaluate the system performance, we derive the closed-form expressions of the outage probability and diversity order for both networks. Furthermore, we introduce a new metric, referred to as mutual outage probability to characterize the cooperation benefit compared to non cooperative MCR-NOMA scheme. Simulation results demonstrate significant performance gains are obtained for both networks, thanks to the use of our proposed cooperative MCR-NOMA scheme. It is also demonstrated that higher spatial diversity order can be achieved by opportunistically utilizing the CSI available for the secondary user scheduling

    A Simple Cooperative Diversity Method Based on Network Path Selection

    Full text link
    Cooperative diversity has been recently proposed as a way to form virtual antenna arrays that provide dramatic gains in slow fading wireless environments. However most of the proposed solutions require distributed space-time coding algorithms, the careful design of which is left for future investigation if there is more than one cooperative relay. We propose a novel scheme, that alleviates these problems and provides diversity gains on the order of the number of relays in the network. Our scheme first selects the best relay from a set of M available relays and then uses this best relay for cooperation between the source and the destination. We develop and analyze a distributed method to select the best relay that requires no topology information and is based on local measurements of the instantaneous channel conditions. This method also requires no explicit communication among the relays. The success (or failure) to select the best available path depends on the statistics of the wireless channel, and a methodology to evaluate performance for any kind of wireless channel statistics, is provided. Information theoretic analysis of outage probability shows that our scheme achieves the same diversity-multiplexing tradeoff as achieved by more complex protocols, where coordination and distributed space-time coding for M nodes is required, such as those proposed in [7]. The simplicity of the technique, allows for immediate implementation in existing radio hardware and its adoption could provide for improved flexibility, reliability and efficiency in future 4G wireless systems.Comment: To appear, IEEE JSAC, special issue on 4

    Design of Cooperative Non-Orthogonal Multicast Cognitive Multiple Access for 5G Systems:User Scheduling and Performance Analysis

    Get PDF
    Non-orthogonal multiple access (NOMA) is emerging as a promising, yet challenging, multiple access technology to improve spectrum utilization for the fifth generation (5G) wireless networks. In this paper, the application of NOMA to multicast cognitive radio networks (termed as MCR-NOMA) is investigated. A dynamic cooperative MCR-NOMA scheme is proposed, where the multicast secondary users serve as relays to improve the performance of both primary and secondary networks. Based on the available channel state information (CSI), three different secondary user scheduling strategies for the cooperative MCR-NOMA scheme are presented. To evaluate the system performance, we derive the closed-form expressions of the outage probability and diversity order for both networks. Furthermore, we introduce a new metric, referred to as mutual outage probability to characterize the cooperation benefit compared to non cooperative MCR-NOMA scheme. Simulation results demonstrate significant performance gains are obtained for both networks, thanks to the use of our proposed cooperative MCR-NOMA scheme. It is also demonstrated that higher spatial diversity order can be achieved by opportunistically utilizing the CSI available for the secondary user scheduling

    Towards the Optimal Amplify-and-Forward Cooperative Diversity Scheme

    Full text link
    In a slow fading channel, how to find a cooperative diversity scheme that achieves the transmit diversity bound is still an open problem. In fact, all previously proposed amplify-and-forward (AF) and decode-and-forward (DF) schemes do not improve with the number of relays in terms of the diversity multiplexing tradeoff (DMT) for multiplexing gains r higher than 0.5. In this work, we study the class of slotted amplify-and-forward (SAF) schemes. We first establish an upper bound on the DMT for any SAF scheme with an arbitrary number of relays N and number of slots M. Then, we propose a sequential SAF scheme that can exploit the potential diversity gain in the high multiplexing gain regime. More precisely, in certain conditions, the sequential SAF scheme achieves the proposed DMT upper bound which tends to the transmit diversity bound when M goes to infinity. In particular, for the two-relay case, the three-slot sequential SAF scheme achieves the proposed upper bound and outperforms the two-relay non-orthorgonal amplify-and-forward (NAF) scheme of Azarian et al. for multiplexing gains r < 2/3. Numerical results reveal a significant gain of our scheme over the previously proposed AF schemes, especially in high spectral efficiency and large network size regime.Comment: 30 pages, 11 figures, submitted to IEEE trans. IT, revised versio

    Improving Third-Party Relaying for LTE-A: A Realistic Simulation Approach

    Full text link
    In this article we propose solutions to diverse conflicts that result from the deployment of the (still immature) relay node (RN) technology in LTE-A networks. These conflicts and their possible solutions have been observed by implementing standard-compliant relay functionalities on the Vienna simulator. As an original experimental approach, we model realistic RN operation, taking into account that transmitters are not active all the time due to half-duplex RN operation. We have rearranged existing elements in the simulator in a manner that emulates RN behavior, rather than implementing a standalone brand-new component for the simulator. We also study analytically some of the issues observed in the interaction between the network and the RNs, to draw conclusions beyond simulation observation. The main observations of this paper are that: ii) Additional time-varying interference management steps are needed, because the LTE-A standard employs a fixed time division between eNB-RN and RN-UE transmissions (typical relay capacity or throughput research models balance them optimally, which is unrealistic nowadays); iiii) There is a trade-off between the time-division constraints of relaying and multi-user diversity; the stricter the constraints on relay scheduling are, the less flexibility schedulers have to exploit channel variation; and iiiiii) Thee standard contains a variety of parameters for relaying configuration, but not all cases of interest are covered.Comment: 17 one-column pages, 9 figures, accepted for publication in IEEE ICC 2014 MW
    • …
    corecore