51 research outputs found

    Round Compression for Parallel Matching Algorithms

    Get PDF
    For over a decade now we have been witnessing the success of {\em massive parallel computation} (MPC) frameworks, such as MapReduce, Hadoop, Dryad, or Spark. One of the reasons for their success is the fact that these frameworks are able to accurately capture the nature of large-scale computation. In particular, compared to the classic distributed algorithms or PRAM models, these frameworks allow for much more local computation. The fundamental question that arises in this context is though: can we leverage this additional power to obtain even faster parallel algorithms? A prominent example here is the {\em maximum matching} problem---one of the most classic graph problems. It is well known that in the PRAM model one can compute a 2-approximate maximum matching in O(log⁥n)O(\log{n}) rounds. However, the exact complexity of this problem in the MPC framework is still far from understood. Lattanzi et al. showed that if each machine has n1+Ω(1)n^{1+\Omega(1)} memory, this problem can also be solved 22-approximately in a constant number of rounds. These techniques, as well as the approaches developed in the follow up work, seem though to get stuck in a fundamental way at roughly O(log⁥n)O(\log{n}) rounds once we enter the near-linear memory regime. It is thus entirely possible that in this regime, which captures in particular the case of sparse graph computations, the best MPC round complexity matches what one can already get in the PRAM model, without the need to take advantage of the extra local computation power. In this paper, we finally refute that perplexing possibility. That is, we break the above O(log⁥n)O(\log n) round complexity bound even in the case of {\em slightly sublinear} memory per machine. In fact, our improvement here is {\em almost exponential}: we are able to deliver a (2+Ï”)(2+\epsilon)-approximation to maximum matching, for any fixed constant Ï”>0\epsilon>0, in O((log⁥log⁥n)2)O((\log \log n)^2) rounds

    Brief Announcement: Streaming and Massively Parallel Algorithms for Edge Coloring

    Get PDF
    A valid edge-coloring of a graph is an assignment of "colors" to its edges such that no two incident edges receive the same color. The goal is to find a proper coloring that uses few colors. In this paper, we revisit this problem in two models of computation specific to massive graphs, the Massively Parallel Computations (MPC) model and the Graph Streaming model: Massively Parallel Computation. We give a randomized MPC algorithm that w.h.p., returns a (1+o(1))Delta edge coloring in O(1) rounds using O~(n) space per machine and O(m) total space. The space per machine can also be further improved to n^{1-Omega(1)} if Delta = n^{Omega(1)}. This is, to our knowledge, the first constant round algorithm for a natural graph problem in the strongly sublinear regime of MPC. Our algorithm improves a previous result of Harvey et al. [SPAA 2018] which required n^{1+Omega(1)} space to achieve the same result. Graph Streaming. Since the output of edge-coloring is as large as its input, we consider a standard variant of the streaming model where the output is also reported in a streaming fashion. The main challenge is that the algorithm cannot "remember" all the reported edge colors, yet has to output a proper edge coloring using few colors. We give a one-pass O~(n)-space streaming algorithm that always returns a valid coloring and uses 5.44 Delta colors w.h.p., if the edges arrive in a random order. For adversarial order streams, we give another one-pass O~(n)-space algorithm that requires O(Delta^2) colors

    Streaming and Massively Parallel Algorithms for Edge Coloring

    Get PDF
    A valid edge-coloring of a graph is an assignment of "colors" to its edges such that no two incident edges receive the same color. The goal is to find a proper coloring that uses few colors. (Note that the maximum degree, Delta, is a trivial lower bound.) In this paper, we revisit this fundamental problem in two models of computation specific to massive graphs, the Massively Parallel Computations (MPC) model and the Graph Streaming model: - Massively Parallel Computation: We give a randomized MPC algorithm that with high probability returns a Delta+O~(Delta^(3/4)) edge coloring in O(1) rounds using O(n) space per machine and O(m) total space. The space per machine can also be further improved to n^(1-Omega(1)) if Delta = n^Omega(1). Our algorithm improves upon a previous result of Harvey et al. [SPAA 2018]. - Graph Streaming: Since the output of edge-coloring is as large as its input, we consider a standard variant of the streaming model where the output is also reported in a streaming fashion. The main challenge is that the algorithm cannot "remember" all the reported edge colors, yet has to output a proper edge coloring using few colors. We give a one-pass O~(n)-space streaming algorithm that always returns a valid coloring and uses 5.44 Delta colors with high probability if the edges arrive in a random order. For adversarial order streams, we give another one-pass O~(n)-space algorithm that requires O(Delta^2) colors

    Equivalence Classes and Conditional Hardness in Massively Parallel Computations

    Get PDF
    The Massively Parallel Computation (MPC) model serves as a common abstraction of many modern large-scale data processing frameworks, and has been receiving increasingly more attention over the past few years, especially in the context of classical graph problems. So far, the only way to argue lower bounds for this model is to condition on conjectures about the hardness of some specific problems, such as graph connectivity on promise graphs that are either one cycle or two cycles, usually called the one cycle vs. two cycles problem. This is unlike the traditional arguments based on conjectures about complexity classes (e.g., P ? NP), which are often more robust in the sense that refuting them would lead to groundbreaking algorithms for a whole bunch of problems. In this paper we present connections between problems and classes of problems that allow the latter type of arguments. These connections concern the class of problems solvable in a sublogarithmic amount of rounds in the MPC model, denoted by MPC(o(log N)), and some standard classes concerning space complexity, namely L and NL, and suggest conjectures that are robust in the sense that refuting them would lead to many surprisingly fast new algorithms in the MPC model. We also obtain new conditional lower bounds, and prove new reductions and equivalences between problems in the MPC model

    A Massively Parallel Dynamic Programming for Approximate Rectangle Escape Problem

    Full text link
    Sublinear time complexity is required by the massively parallel computation (MPC) model. Breaking dynamic programs into a set of sparse dynamic programs that can be divided, solved, and merged in sublinear time. The rectangle escape problem (REP) is defined as follows: For nn axis-aligned rectangles inside an axis-aligned bounding box BB, extend each rectangle in only one of the four directions: up, down, left, or right until it reaches BB and the density kk is minimized, where kk is the maximum number of extensions of rectangles to the boundary that pass through a point inside bounding box BB. REP is NP-hard for k>1k>1. If the rectangles are points of a grid (or unit squares of a grid), the problem is called the square escape problem (SEP) and it is still NP-hard. We give a 22-approximation algorithm for SEP with k≄2k\geq2 with time complexity O(n3/2k2)O(n^{3/2}k^2). This improves the time complexity of existing algorithms which are at least quadratic. Also, the approximation ratio of our algorithm for k≄3k\geq 3 is 3/23/2 which is tight. We also give a 88-approximation algorithm for REP with time complexity O(nlog⁥n+nk)O(n\log n+nk) and give a MPC version of this algorithm for k=O(1)k=O(1) which is the first parallel algorithm for this problem
    • 

    corecore