
Streaming and Massively Parallel Algorithms for
Edge Coloring
Soheil Behnezhad
University of Maryland, College Park, MD, USA
soheil@cs.umd.edu

Mahsa Derakhshan
University of Maryland, College Park, MD, USA
mahsa@cs.umd.edu

MohammadTaghi Hajiaghayi
University of Maryland, College Park, MD, USA
hajiagha@cs.umd.edu

Marina Knittel
University of Maryland, College Park, MD, USA
mknittel@cs.umd.edu

Hamed Saleh
University of Maryland, College Park, MD, USA
hamed@cs.umd.edu

Abstract
A valid edge-coloring of a graph is an assignment of “colors” to its edges such that no two incident
edges receive the same color. The goal is to find a proper coloring that uses few colors. (Note that
the maximum degree, ∆, is a trivial lower bound.) In this paper, we revisit this fundamental problem
in two models of computation specific to massive graphs, the Massively Parallel Computations (MPC)
model and the Graph Streaming model:
Massively Parallel Computation. We give a randomized MPC algorithm that with high probability

returns a ∆ + Õ(∆3/4) edge coloring in O(1) rounds using O(n) space per machine and O(m)
total space. The space per machine can also be further improved to n1−Ω(1) if ∆ = nΩ(1). Our
algorithm improves upon a previous result of Harvey et al. [SPAA 2018].

Graph Streaming. Since the output of edge-coloring is as large as its input, we consider a standard
variant of the streaming model where the output is also reported in a streaming fashion. The
main challenge is that the algorithm cannot “remember” all the reported edge colors, yet has to
output a proper edge coloring using few colors.
We give a one-pass Õ(n)-space streaming algorithm that always returns a valid coloring and
uses 5.44∆ colors with high probability if the edges arrive in a random order. For adversarial
order streams, we give another one-pass Õ(n)-space algorithm that requires O(∆2) colors.

2012 ACM Subject Classification Theory of computation → Massively parallel algorithms; Theory
of computation → Streaming, sublinear and near linear time algorithms

Keywords and phrases Massively Parallel Computation, Streaming, Edge Coloring

Digital Object Identifier 10.4230/LIPIcs.ESA.2019.15

Funding Supported in part by Guggenheim Fellowship, NSF grants CCF:SPX 1822738, IIS:BIGDATA
1546108, DARPA grant SI3CMD, UMD Year of Data Science Program Grant, and Northrop
Grumman Faculty Award.

Acknowledgements We thank the anonymous reviewers for many helpful comments and suggestions.

© Soheil Behnezhad, Mahsa Derakhshan, MohammadTaghi Hajiaghayi, Marina Knittel, and Hamed
Saleh;
licensed under Creative Commons License CC-BY

27th Annual European Symposium on Algorithms (ESA 2019).
Editors: Michael A. Bender, Ola Svensson, and Grzegorz Herman; Article No. 15; pp. 15:1–15:14

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Dagstuhl Research Online Publication Server

https://core.ac.uk/display/228086816?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
mailto:soheil@cs.umd.edu
mailto:mahsa@cs.umd.edu
mailto:hajiagha@cs.umd.edu
mailto:mknittel@cs.umd.edu
mailto:hamed@cs.umd.edu
https://doi.org/10.4230/LIPIcs.ESA.2019.15
https://creativecommons.org/licenses/by/3.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de


15:2 Streaming and Massively Parallel Algorithms for Edge Coloring

1 Introduction

Given a graph G(V,E), an edge coloring of G is an assignment of “colors” to the edges in E
such that no two incident edges receive the same color. The goal is to find an edge coloring
that uses few colors. Edge coloring is among the most fundamental graph problems and has
been studied in various models of computation, especially in distributed and parallel settings.

Denoting the maximum degree in the graph by ∆, it is easy to see that ∆ colors are
necessary in any proper edge coloring. On the other hand, Vizing’s celebrated theorem
asserts that ∆ + 1 colors are always sufficient [39]. While determining whether a graph
can be ∆ colored is NP-hard, a ∆ + 1 coloring can be found in polynomial time [5, 21].
These algorithms are, however, highly sequential. As a result, in restricted settings, it is
standard to consider more relaxed variants of the problem where more colors are allowed
[2, 8, 20, 24, 25, 27, 29, 32, 34, 35, 36].

In this paper, we study edge coloring in large-scale graph settings. Specifically, we focus
on the Massively Parallel Computations (MPC) model and the Graph Streaming model.

1.1 Massively Parallel Computation
The Model. The MPC model [10, 26, 31] is a popular abstraction of modern parallel
frameworks such as MapReduce, Hadoop, Spark, etc. In this model, there are N machines,
each with a space of S words1 that all run in parallel. The input, which in our case is the
edge-set of graph G(V,E), is initially distributed among the machines arbitrarily. Afterwards,
the system proceeds in synchronous rounds wherein the machines can perform any arbitrary
local computation on their data and can also send messages to other machines. The messages
are then delivered at the start of the next round so long as the total messages sent and
received by each machine is O(S) for local machine space S. The main parameters of interest
are S and the round-complexity of the algorithm, i.e., the number of rounds it takes until
the algorithm stops. Furthermore, the total available space over all machines should ideally
be linear in the input size, i.e., S ·N = O(|E|).

Related Work in MPC. We have seen a plethora of results on graph problems ever since
the formalization of MPC. The studied problems include matching and vertex cover [1, 6, 14,
17, 22, 33, 12, 15], maximal independent set [22, 28, 12, 15], vertex coloring [7, 16, 28, 37, 38],
as well as graph connectivity and related problems [3, 4, 13, 30, 9]. (This is by no means a
complete list of the prior works.)

We have a good understanding of the complexity of vertex coloring in the MPC model,
especially if the local space is near linear in n: Assadi et al. [7] gave a remarkable algorithm
that using Õ(n) space per machine, finds a (∆ + 1) vertex coloring in a constant number of
rounds. The algorithm is based on a sparsification idea that reduces the number of edges
from m to O(n log2 n). But this algorithm alone cannot be used for coloring the edges, even
if we consider the more relaxed (2∆− 1) edge coloring problem which is equivalent to (∆ + 1)
vertex coloring on the line graph. The reason is that the line-graph has O(m) vertices where
here m is the number of edges in the original graph. Therefore even after the sparisification
step, we have Õ(m) vertices in the graph which is much larger than the local space available
in the machines.

1 Throughout the paper, the stated space bounds are in the number of words that each denotes
O(log n) bits.



S. Behnezhad, M. Derakhshan, M.T. Hajiaghayi, M. Knittel, and H. Saleh 15:3

Not much work has been done on the edge coloring problem in the MPC model. The only
exception is the algorithm of Harvey et al. [28] which roughly works by random partitioning
the edges, and then coloring each partition in a different machine using a sequential (∆ + 1)
edge coloring algorithm. The choice of the number of partitions leads to a trade-off between
the number of colors used and the space per machine required. The main shortcoming of
this idea, however, is that if one desires a ∆ + Õ(∆1−Ω(1)) edge coloring, then a strongly
super linear local space of n∆Ω(1) is required.

Our main MPC result is the following algorithm which uses a more efficient partitioning.
The key difference is that we use a vertex partitioning as opposed to the algorithm of Harvey
et al. which partitions the edges.

I Result 1 (Theorem 1). There exists an MPC algorithm that using O(n) space per
machine and O(m) total space, returns a ∆ + Õ(∆3/4) edge coloring in O(1) rounds.

The algorithm exhibits a tradeoff between the space and the number of colors (see
Theorem 1) and can be made more space-efficient as the maximum degree gets larger. For
instance, if ∆ > nε for any constant ε > 0, it requires a strictly sublinear space of n1−Ω(1)

to return a ∆ + o(∆) edge coloring in O(1) rounds. This is somewhat surprising since all
previous non-trivial algorithms in the strictly sublinear regime of MPC require ω(1) rounds.

Our algorithm can also be implemented in O(1) rounds of Congested Clique, leading to a
∆ + Õ(∆3/4) edge coloring there. Prior to our work, no sublogarithmic round Congested
Clique algorithm was known even for (2∆− 1) edge coloring.

1.2 Streaming
The Model. In the standard graph streaming model, the edges of a graph arrive one by
one and the algorithm has a space that is much smaller than the total number of edges. A
particularly important choice of space is Õ(n) – which is also known as the semi-streaming
model [19] – so that the algorithm has enough space to store the vertices but not the edges.
For edge coloring, the output is as large as the input, thus, we cannot hope to be able to
store the output and report it in bulk at the end. For this, we consider a standard twist on
the streaming model where the output is also reported in a streaming fashion. This model is
referred to in the literature as the “W-streaming” model [18, 23]. We particularly focus on
one-pass algorithms.

Designing one-pass W-streaming algorithms is particularly challenging since the algorithm
cannot “remember” all the choices made so far (e.g., the reported edge colors). Therefore,
even the sequential greedy algorithm for (2∆ − 1) edge coloring, which iterates over the
edges in an arbitrary order an assigns an available to each color upon visiting it, cannot be
implemented since we are not aware of the colors used incident to an edge.

Our first result is to show that a natural algorithm w.h.p.2 provides an O(∆) edge
coloring if the edges arrive in a random-order.

I Result 2 (Theorem 9). If the edges arrive in a random-order, there is a one-pass Õ(n)
space W-streaming edge coloring algorithm that always returns a valid edge coloring and
w.h.p. uses (2e+ o(1))∆ ≈ 5.44∆ colors.

2 Throughout, we use “w.h.p.” to abbreviate “with high probability” implying probability at least
1− 1/ poly(n).

ESA 2019



15:4 Streaming and Massively Parallel Algorithms for Edge Coloring

If the edges arrive in an arbitrary order, we give another algorithm that requires more
colors.

I Result 3 (Theorem 10). For any arbitrary arrival of edges, there is a one-pass Õ(n)
space W-streaming edge coloring algorithm that succeeds w.h.p. and uses O(∆2) colors.

These are, to our knowledge, the first streaming algorithms for edge coloring.

2 The MPC Algorithm

In this section, we consider the edge coloring problem in the MPC model. Our main result in
this section is an algorithm that achieves the following:

I Theorem 1. For any parameter k (possibly dependent on ∆) such that n/k � logn, there
exists an MPC algorithm with O(n∆

k2 + n
k

√
∆ logn/k) space per machine and O(m) total

space that w.h.p. returns a ∆ +O(
√
k∆ logn) edge coloring in O(1) rounds.

By setting k =
√

∆ + logn, the space required per machine will be O(n) and the number
of colors would be ∆ + Õ(∆3/4). Using a reduction from [11], this also leads to an O(1)
round Congested Clique algorithm using the same number of colors.

I Corollary 2. There exists a randomized MPC algorithm with O(n) local space, as well as a
Congested Clique algorithm, that both w.h.p. find a ∆+Õ(∆3/4) edge coloring in O(1) rounds.

Moreover, assuming that ∆ = nΩ(1), by setting k = ∆0.5+ε for a small enough constant
ε ∈ (0, 1), we get the following O(1) round algorithm which requires n1−Ω(1) machine space,
which is notably strictly sublinear in n:

I Corollary 3. If ∆ = nΩ(1), there exists a randomized MPC algorithm with O(n/∆2ε) =
n1−Ω(1) space per machine and O(m) total space that w.h.p. returns a ∆ + Õ(∆0.75+ε/2) edge
coloring in O(1) rounds.

The Idea Behind the Algorithm. The first step in the algorithm is a random partitioning
of the vertex set into k groups, V1, . . . , Vk. We then introduce one subgraph for each vertex
subset, called G1, . . . , Gk, and one subgraph for every pair of groups which we denote
as G1,2, . . . , G1,k, . . . , Gk−1,k. Any such Gi is simply the induced subgraph of G on Vi.
Moreover, any such Gi,j is the subgraph on vertices Vi ∪ Vj , with edges with one point in Vi
and the other in Vj .

The general idea is to assign different palettes, i.e., subsets of colors, to different subgraphs
so that the palettes assigned to any two neighboring subgraphs (i.e., those that share a
vertex) are completely disjoint. A key insight to prevent this from blowing up the number of
colors, is that since any two edges from Gi,j and Gi′,j′ with i 6= i′ and j 6= j′ cannot share
endpoints by definition, it is safe to use the same color palette for them.

To assign these color palettes, we consider a complete k-vertex graph with each vertex vi
in it corresponding to partition Vi and each edge (vi, vj) in it corresponding to the subgraph
Gi,j . We then find a k edge coloring of this complete graph, which exists by Vizing’s theorem
since maximum degree in it is k−1. This edge coloring can actually be constructed extremely
efficiently using merely the edges’ endpoint IDs. Thereafter, we map each of these k colors to
a color palette. By carefully choosing k and the number of colors in each palette, we ensure
that: (1) The total number of colors required is close to ∆. (2) Each subgraph Gi,j can be



S. Behnezhad, M. Derakhshan, M.T. Hajiaghayi, M. Knittel, and H. Saleh 15:5

properly edge-colored with those colors in its palette. (3) Each subgraph fits the memory of
a single machine so that we can put it in whole there and run the sequential edge coloring
algorithm on it.

Algorithm 1 An MPC algorithm for edge coloring.

Parameter: k.;
Output: An edge coloring of a given graph G = (V,E) with maximum degree ∆

using Ψ := ∆ + d
√
k∆ logn colors for some large enough constant d.

Independently and u.a.r. partition V into k subsets V1, . . . , Vk.;
For every i ∈ [k], let Gi be the induced subgraph of G on Vi.;
For every i, j ∈ [k] with i 6= j, let Gi,j be the subgraph of G including an edge e ∈ E
iff one end-point of e is in Vi and the other is in Vj .;

Partition [Ψ] into k+ 1 disjoint subsets C1, . . . , Ck, C
′, which we call color palettes, in

an arbitrarily way such that each palette has exactly Ψ
k+1 colors.;

for each graph Gi in parallel do
Color Gi sequentially in a single machine with palette C ′.;

end
// In what follows, we implicitly construct a k edge coloring of a complete k-vertex

graph Kk and assign palette Cα to subgraph Gi,j where α is the color of edge
(i, j) in Kk.

for each graph Gi,j in parallel do
Color Gi,j sequentially in a machine with palette Cα where
α = ((i+ j) mod k) + 1.;

end

The algorithm outlined above is formalized as Algorithm 1. We start by proving certain
bounds on subgraphs’ size and degrees.

B Claim 4. W.h.p., every subgraph of type Gi or Gi,j has maximum degree ∆
k +O(

√
∆ log n

k )
and has at most O(n∆

k2 + n
k

√
∆ logn/k) edges.

Proof. Let us start with bounding the degree of an arbitrary vertex v ∈ Vi in subgraph Gi.
The degree of vertex v in Gi is precisely the number of its neighbors that are assigned to
partition Vi. Since there are k partitions, the expected degree of v in Gi is degG(v)/k ≤ ∆/k.
Furthermore, since the assignment of vertices to the partitions is done independently and
uniformly at random, by a simple application of Chernoff bound, v’s degree in Gi should be
highly concentrated around its mean. Namely, with probability at least 1 − n−2, it holds
that degGi

(v) ≤ ∆
k +O(

√
∆ logn/k). Now, a union bound over the n vertices in the graph,

proves that the degree of all vertices in their partitions should be at most ∆
k +O(

√
∆ logn/k)

with probability 1− 1/n.
Bounding vertex degrees in subgraphs of type Gi,j also follows from essentially the same

argument. The only difference is that we have to union bound over n · k choices, as we
would like to bound the degree of any vertex v with say v ∈ Vi in k subgraphs Gi,1, . . . , Gi,k.
Nonetheless, since k ≤ n, there are still poly(n) many choices to union bound over. Thus, by
changing the constants in the lower terms of the concentration bound, we can achieve the
same high probability result.

Finally, we focus on the number of edges in each of the subgraphs. Each partition Vi has
n/k vertices in expectation since the n vertices are partitioned into k groups independently
and uniformly at random. A simple application of Chernoff and union bounds, implies that
the number of vertices in each partition Vi is at most O(nk ) w.h.p., so long as n/k � logn,

ESA 2019



15:6 Streaming and Massively Parallel Algorithms for Edge Coloring

which is the case. Since the number of edges in each partition is less than the number of
vertices times max degree, combined with the aforementioned bounds on the max degree, we
can bound the number of edges in Gi and Gi,j for any i and j by

O
(n
k

)
·O

(
∆
k

+
√

∆
k

logn
)

= O

(
n∆
k2 + n

k

√
∆
k

logn
)
,

which is the claimed bound. C

Next, observe that we use palettes C1, . . . , Ck+1, C
′, each of size Ψ

k+1 to color the subgraphs.
We need to argue that the maximum degree in each subgraph is at most Ψ

k+1 − 1 to be able
to argue that using Vizing’s theorem in one machine, we can color any of the subgraphs with
the assigned palettes. This can indeed be easily guaranteed if the constant d is large enough:

I Observation 5. If constant d in Algorithm 1 is large enough, then maximum degree of
every graph is at most Ψ

k+1 − 1, w.h.p.

Proof. We have Ψ = ∆ + d
√
k∆ logn in Algorithm 1, therefore:

Ψ
k + 1 = ∆

k + 1 + d
√
k∆ logn
k + 1 = ∆

k
+ Θ(

√
∆ logn/k),

where the hidden constants in the second term of the last equation can be made arbitrarily
large depending on the choice of constant d. On the other hand, recall from Claim 4 that
the maximum degree in any of the subgraphs is also at most ∆

k +O(
√

∆ logn/k). Thus, the
palette sizes are sufficient to color the subgraphs if d is a large enough constant. J

We are now ready to prove the algorithm’s correctness.

I Lemma 6. Algorithm 1 returns a proper edge coloring of G using ∆ + O(
√
k∆ logn)

colors.

Proof. The algorithm clearly uses Ψ = ∆ +O(
√
k∆ logn) colors, it remains to argue that

the returned edge coloring is proper. Each subgraph (of type Gi or Gi,j) is sent to a single
machine and edge-colored there using the palette that it is assigned to. Since by Observation 5,
each palette has at least ∆′ + 1 colors for ∆′ being the max degree in the subgraphs, there
will be no conflicts in the colors associated to the edges within a partition. We only need to
argue that two edges e and f sharing a vertex v that belong to two different subgraphs are
not assigned the same color. Note that all subgraphs of type Gi are vertex disjoint and all
receive the special color palette C ′, thus there cannot be any conflict there. To complete the
proof, it suffices to prove that any two subgraphs Gi,j and Gi′,j′ that share a vertex receive
different palettes. Note that in this case, either i = i′ or j = j′ by the partitioning. Assume
w.l.o.g. that i = i′ and thus j 6= j′. Based on Algorithm 1 for Gi,j and Gi′,j′ to be assigned
the same color palette, it should hold that

((i+ j) mod k) + 1 = ((i′ + j′) mod k) + 1.

Since i = i′, this would imply that (j mod k) = (j′ mod k), though this would not be possible
given that both j and j′ are in [k] and that j 6= j′. Therefore, any two subgraphs that
share a vertex receive different palettes and thus there cannot be any conflicts, completing
the proof. J

Next, we turn to prove the space bounds.



S. Behnezhad, M. Derakhshan, M.T. Hajiaghayi, M. Knittel, and H. Saleh 15:7

I Lemma 7 (Implementation and Space Complexity). Algorithm 1 can be implemented with
total space O(m) and space per machine of O(n∆

k2 + n
k

√
∆ logn/k) w.h.p.

Proof. We start with an implementation that uses the specified space per machine but can
be wasteful in terms of the total space, then describe how we can overcome this problem and
also achieve an optimal total space of O(m).

We can use k +
(
k
2
)
machines, each with a space of size O(n∆

k2 + n
k

√
∆ logn/k) to assign

colors to the edges in parallel. The first m1, . . . ,mk machines will be used for edge coloring
on G1, G2, . . . , Gk respectively. The other mk+1, . . . ,mk+(k

2) machines will be used for edge
coloring on the Gi,j graphs. Lemma 4 already guarantees that each subgraph has size
O(n∆

k2 + n
k

√
∆ logn/k) w.h.p., and thus fits the memory of a single machine.

In the implementation discussed above, since the machines use Õ(n∆/k2) space and there
are O(k2) machines, the total memory can be Õ(n∆) which may be much larger than O(m).
This is because we allocate O(n∆/k2) space to each machine regardless of how much data it
actually received. Though, observe that each edge of the graph belongs to exactly one of
the subgraphs, i.e., the machines together only handle a total of O(m) data. So we must
consolidate into fewer machines. We do this by putting multiple subgraphs in each machine.

We start by recalling a sorting primitive in the MPC model which was proved in [26].
Basically, if there are N items to be sorted and the space per machine is NΩ(1), then the
algorithm of [26] sorts these items into the machines within O(1) rounds. To use this
primitive, we first label each edge e = (u, v) of the graph by its subgraph name (e.g. Gi or
Gi,j) which can be determined solely based on the end-points of the edge. After that, we
sort the edges based on these labels. This way, all the edges inside each subgraph can be
sent to the same machine within O(1) rounds while also ensuring that the total required
space remains O(m). J

The algorithm for Theorem 1 was formalized as Algorithm 1. We showed in Lemma 6
that the algorithm correctly finds an edge coloring of the graph with the claimed number of
colors. We also showed in Lemma 7 that the algorithm can be implemented with O(m) total
space and O(n∆

k2 + n
k

√
∆ logn/k) space per machine. This completes the proof of Theorem 1.

3 Streaming Algorithms

We start in Section 3.1 by describing our streaming algorithm and its analysis when the
arrival order is random. Then in Section 3.2, we give another algorithm for adversarial
order streams.

3.1 Random Edge Arrival Setting
In this section, we give a streaming algorithm for O(∆) edge coloring using Õ(n) space
where the edges come in a random stream. That is, a permutation over the edges is chosen
uniformly at random and then the edges arrive according to this permutation.

We first note that if ∆ = O(logn) then the problem is trivial as we can store the whole
graph and then report a ∆ + 1 edge coloring (even without knowledge of ∆). As such, we
assume ∆ = ω(logn).

The algorithm – formalized as Algorithm 2 – maintains a counter cv for each vertex v. At
any point during the algorithm, this counter cv basically denotes the highest color number
used for the edges incident to v so far, plus 1. Therefore, upon arrival of an edge (u, v), it is
safe to color this edge with max(cu, cv) as all edges incident to u and v have a color that is

ESA 2019



15:8 Streaming and Massively Parallel Algorithms for Edge Coloring

strictly smaller than this. Then, we increase the counters of both v and u to max(cu, cv) + 1.
It is not hard to see that the solution is always a valid coloring, in the remainder of this
section, we mainly focus on the number of colors required by this algorithm and show that
w.h.p., it is only O(∆) for random arrivals.

Algorithm 2 Edge coloring for random streams.

Result: A feasible coloring C : E → [Ψ] for a given graph G = (V,E) with maximum
degree ∆ in a random stream

cv ← 0 ∀v ∈ V ;
while (u, v) is read from stream do
C(u, v)← max(cu, cv);
cu, cv ← C(u, v) + 1;

end

We start by noting that this algorithm can actually be extremely bad if the order is
adversarial. To see this, consider a path of size n. In an adversarial stream where the edges
arrive in the order of the path, Algorithm 2 uses as many as n− 1 colors while the maximum
degree is only 2! It is easy to see why this example is very unlikely to occur in random order
streams: For a fixed path, it is very unlikely that the edges are randomly ordered in this
very specific way.

To make this intuition rigorous for general graphs, we first prove the following crucial
lemma which gives us the correct parameter to bound.

I Lemma 8. Let Ψ be the size of the longest monotone (in the order of arrival) path in the
line-graph of G. Then Algorithm 2 uses exactly Ψ colors.

Proof. Take a monotone path v1, v2, . . . , vΨ in the line-graph of G and let e1, e2, . . . , eΨ be
the edges of the original graph that correspond to these vertices respectively, i.e., e1 arrives
before e2 which arrives before e3 and so on. Since for any i, vi and vi+1 are neighbors in the
line-graph, then ei and ei+1 should share an end-point v. This means that at the time of
arrival of ei+1, we have cv ≥ C(ei) + 1 which in turn, implies C(eΨ) > C(eΨ−1) > . . . > C(e1).
Therefore, C(eΨ) ≥ Ψ.

On the other hand, suppose that there is an edge e1 = (u, v) for which C(e1) = Ψ in
Algorithm 2. This means that at least one of cu or cv equals Ψ when e1 arrives, say cu
w.l.o.g. Let e2 be the last edge incident to u that has arrived before e1. It should hold that
C(e2) = Ψ − 1. Using the same argument, for each 1 < i ≤ Ψ, we can find a neighboring
edge ei such that C(ei) = C(ei−1) − 1. This way, we end up with a sequence e1, . . . , eΨ of
edges, the path corresponding to this sequence in the line graph will be a monotone path of
length Ψ, completing the proof. J

I Theorem 9. There is a streaming edge coloring algorithm that for any graph G = (V,E)
uses at most (2e+ ε)∆ ≈ 5.44∆ colors w.h.p. for any constant ε > 0 given that the edges in
E arrive in a random order.

Proof. We first prove that Algorithm 2 gives us a feasible coloring of graph G. Consider two
edges e1 = (u, v) and e2 = (u, v′) incident to vertex u such that e1 appears earlier than e2 in
the stream. For any edge e we represent by C(e) the color assigned to that by the algorithm.
After the algorithm colors e1 with C(e1), it sets cu to C(e1) + 1. Thus, cu is at least C(e1) + 1
when e2 arrives and C(e2) ≥ C(e1) + 1 consequently. Therefore, C(e2) > C(e1) for any pair of
edges incident to a common vertex, and C is a feasible coloring.



S. Behnezhad, M. Derakhshan, M.T. Hajiaghayi, M. Knittel, and H. Saleh 15:9

Next, for some constant α that we fix later, we show that the probability that an edge is
assigned a color number at least α∆ is at most n−c for some constant c ≥ 2, implying via a
union bound over all the edges that indeed w.h.p., Ψ ≤ α∆.

We showed in Lemma 8 that if the number of colors Ψ used is α∆, then there should
exist a monotone path in the line-graph with size at least α∆. Let e0, e2, . . . , eα∆ be the
corresponding edges to this path. Thus, it suffices to bound the probability of this event.
Let Π denote the set of all such paths in the line graph. For a specific path π ∈ Π, the
probability that it is monotone is 1/(α∆)!. Call this event Xπ. On the other hand, we can
upper bound the number of such paths by (2∆)α∆, i.e., |Π| ≤ (2∆)α∆. This follows from the
fact that each path should start from the corresponding vertex to e0 in the line-graph, and
that maximum degree in the line graph is 2∆− 2 (which is the upper bound on the number
of neighboring edges to each edge). Thus:

Pr[C(e0) ≥ α∆] = Pr[
∨
π∈Π

Xπ] ≤
∑
π∈Π

Pr[Xπ = 1] ≤ (2∆)α∆

(α∆)! ,

where the last inequality is obtained by replacing Pr[Xπ = 1] and |Π| by the aforementioned
bounds. Taking the logarithm of each side of the inequality, we get

ln(Pr[C(e0) ≥ α∆]) ≤ α∆ ln(2∆)− ln((α∆)!)
≤ α∆ ln(2∆)− ((α∆ + 1/2) ln(α∆)− α∆) (1)
= α∆ ln(2e/α)− 1/2 ln(α∆) (2)
≤ α∆ ln(2e/α). (3)

To obtain (1), we use Stirling’s approximation of factorials to lower-bound ln((α∆)!). Finally,
we rearranged terms to imply (2). By plugging in α = 2e(1 + ε), we get

ln(Pr[C(e0) ≥ 2e(1 + ε)∆]) ≤ 2e(1 + ε)∆ ln
(

1
1 + ε

)
= −2e(1 + ε) ln(1 + ε)∆

≤ −2e(1 + ε) ln(1 + ε) c

2e(1 + ε) ln(1 + ε) ln(n) (4)

= −c ln(n)

Since ∆ = ω(log(n)), we have ∆ > c′ ln(n) for any constant c′. Inequality (4) follows from
setting c′ = c/(2e(1 + ε) ln(1 + ε)) in ∆ > c′ ln(n), where c is the constant for which we want
to show the probability is upper-bounded by n−c. Hence,

Pr[C(e0) ≥ 2e(1 + ε)∆] ≤ n−c.

Thus, Algorithm 2 returns a feasible coloring of the input graph G using at most 2e(1 + ε)∆
colors, for any constant ε > 0 w.h.p. if the edges arrive in a random order. J

To further evaluate the performance of Algorithm 2, we implemented and ran it for
cliques of different size. The result of this experiment is provided in Table 1. The numbers
are obtained by running the experiment 100 times and taking the average number of colors
used. As it can be observed from Table 1, for cliques of size 100 to 1000, the number of
colors used by the algorithm is in range [3.3∆, 3.9∆] and it slightly increases by the size of
the graph. Our analysis, however, shows that it should never exceed 5.44∆.

ESA 2019



15:10 Streaming and Massively Parallel Algorithms for Edge Coloring

Table 1 The number of colors used by Algorithm 2 on cliques averaged over 100 trials.

Clique Size 100 200 300 400 500 600 700 800 900 1000
Colors Used 3.363∆ 3.563∆ 3.665∆ 3.717∆ 3.756∆ 3.787∆ 3.815∆ 3.838∆ 3.849∆ 3.863∆

3.2 Adversarial Edge Arrival Setting
In this section, we turn to arbitrary (i.e., adversarial) arrivals of the edges. We assume that
the adversary is oblivious, i.e., the order of the edges is determined before the algorithm
starts to operate so that the adversary cannot abuse the random bits used by the algorithm.
Having this assumption, we give a randomized algorithm that w.h.p., outputs a valid edge
coloring of the graph using O(∆2) colors while using Õ(n) space. The algorithm is formalized
as Algorithm 3. We note that this algorithm, as stated, requires knowledge of ∆. However
we later show that we can get rid of this assumption. Overall, we get the following result:

Algorithm 3 Edge coloring in the adversarial order.

Result: A feasible coloring for a given graph G = (V,E) with maximum degree ∆
for any vertex v ∈ V do

rv ← a sequence of log(n) independent random bits.
for any i ∈ [logn] do

cv,i ← 0
end

end
for any edge e = (u, v) in the stream do

Let i be the smallest index for which rv,i 6= ru,i.
if ∆2−i > logn then

if ru,i = 1 then
Assign color (cu,i, cv,i, i) to e.

else
Assign color (cv,i, cu,i, i) to e.

end
Increase both cv,i and cu,i by one.

else
Store edge e.

end
end
Color the stored edges using a new set of colors.

I Theorem 10. Given a graph G with maximum degree ∆, there exists a one pass streaming
algorithm, that outputs a valid edge coloring of the G using O(∆2) colors w.h.p., using
Õ(n) memory.

Consider two vertices v and u and their string of random bits rv and ru defined in the
algorihtm. Let du,v be the smallest index i where ru,i 6= rv,i. Upon arrival of an edge
e = (u, v), we first find i := du,v. If ∆2−i > logn, we color the edge immediately. Otherwise,
we store it. We will show that all the stored edges fit in the memory thus after reading all
the stream we can color them with a palette of at most ∆ + 1 new colors. In the algorithm,
for any vertex v and any i ∈ [logn], we define a counter cu,i. If ∆2−i > logn for any edge
e, then we immediately assign e a color which is represented by a tuple (cu,i, cv,i, i). Then,



S. Behnezhad, M. Derakhshan, M.T. Hajiaghayi, M. Knittel, and H. Saleh 15:11

we increase counters cu,i and cv,i. Note that we say two colors are the same if all three
elements of them are equal. We first show that this gives us a valid coloring, which means it
does not assign the same color to two edges adjacent to the same vertex. We use proof by
contradiction. Assume that our algorithm assigns the same color to edges e1 = (u, v1) and
e2 = (u, v2) adjacent to vertex u. None of them can be from the stored edges since we color
them using a new palette. This means that du,v1 = du,v2 . Let us denote it by i. Without
loss of generality, we assume that ru,i = 1 and that in the input stream e1 arrives before e2.
Note that the first element of the colors (which are tuples) assigned to these edges is the
value of counter cu,i when they arrive. However, the algorithm increases cu,i by one after
arrival of e1 thus the colors assigned to e1 and e2 cannot be the same.

Now, it suffices to show that the total number of colors used by the algorithm is O(∆2).
Given a vertex v, and a number l ∈ [logn] let us compute an upper-bound for counter cv,i.
Let Nv be the set of neighbors of this vertex and let Nv,i be the set of neighbors like u where
dv,u = i. We know that cv,i = |Nv,i|, thus given any vertex v and i ∈ [log(n)], we need to
find a bound for |Nv,i|. Given any edge e = (v, u) the probability of e being in set Nv,i is 2−i
which means E[|Nv,i|] = deg(v)2−i where deg(v) is the degree of vertex v in the input graph.

Using a simple application of the Chernoff bound, for any vertex v, we get:

Pr
[
|Nv,i| ≥ deg(v)2−i +O

(√
deg(v)2−i logn

)]
≤ 1
nc
.

Setting c to be a large enough constant, one can use union bound and show that w.h.p., for
any vertex v and i ∈ [logn] where deg(v)2−i ≥ logn, we have |Nv,i| ≤ O(deg(v)2−i).

Having this, we conclude that for any i ∈ [logn], where ∆2−i > logn, the number of
colors used by the algorithm whose third element is i is at most O(∆22−2i) since the first
and the second element of the color can get at most O(∆2−i) different values. Therefore, the
total number of colors used for any such i is at most O

(∑
i∈[logn] ∆22−2i) = O(∆2). We

will also show that the stored edges fit in the memory and thus we can color them using
O(∆) new colors. As a result the total number of colors used is O(∆2).

To give an upper-bound for the number of stored edges we first show that the expected
number of stored edges for each vertex is O(logn). Let j := log( ∆

logn ). Recall that we store
an edge (u, v) when ∆2−du,v < logn. Thus the expected number of stored edges adjacent to
a single vertex v is at most∑

j≤i≤logn
dv2−i ≤

∑
j≤i≤logn

∆2−i ≤
∑

j≤i≤logn
log(n)2−i+j = O(logn).

To get the last equation we use the fact that ∆2−j ≤ logn. By a similar argument that
we used above (using Chernoff and Union bounds), with a high probability the total number
of stored edges is O(n logn) which can be stored in the memory. Therefore the proof of this
theorem is completed.

Knwoledge of ∆. As written, our algorithm depends on the knowledge of ∆ because we
must check ∆2−i > logn. We can get rid of this condition by keeping track of the degree
degHv of a vertex in the subgraph H we have seen so far, and then computing the max degree
degHmax. This only requires an additional O(n) space. Thereafter, instead of checking if
∆2−i > logn, we check if degHmax 2−i > logn. Whenever degHmax increases, we iterate over
all stored edges and recompute whether or not degHmax 2−i > logn. If so, we color the edge
and remove it from the buffer, else we keep it. It is easy to see that this will not exceed the
space bounds because at any timestep, we can assume the input graph was H in the first

ESA 2019



15:12 Streaming and Massively Parallel Algorithms for Edge Coloring

place. Then its max degree is ∆H = degHmax, and we can apply the same argument for the
space bounds as before, but using ∆H instead of ∆. All other parts of the proof still hold.
Therefore our algorithm does not require knowledge of ∆.

Finally, we remark that if one allows more space, then one can modify Algorithm 3 to
use fewer number of colors. Though we focused only on the Õ(n) memory regime.

4 Open Problems

We believe the most notable future direction is to improve the number of colors used in our
streaming algorithms. Specifically, our streaming algorithm for adversarial arrivals requires
O(∆2) colors. A major open question is whether this can be improved to O(∆) while also
keeping the memory near-linear in n. Also for random arrival streams, we showed that
Algorithm 2 achieves a 5.44∆ coloring and showed, experimentally, that it uses at least 3.86∆
colors. A particularly interesting open question is whether there is an algorithm that uses
arbitrarily close to 2∆ colors using Õ(n) space in random arrival streams.

References
1 Kook Jin Ahn and Sudipto Guha. Access to Data and Number of Iterations: Dual Primal

Algorithms for Maximum Matching under Resource Constraints. In Proceedings of the 27th
ACM on Symposium on Parallelism in Algorithms and Architectures, SPAA 2015, Portland,
OR, USA, June 13-15, 2015, pages 202–211, 2015. doi:10.1145/2755573.2755586.

2 Noga Alon, László Babai, and Alon Itai. A Fast and Simple Randomized Parallel Algorithm
for the Maximal Independent Set Problem. J. Algorithms, 7(4):567–583, December 1986.
doi:10.1016/0196-6774(86)90019-2.

3 Alexandr Andoni, Aleksandar Nikolov, Krzysztof Onak, and Grigory Yaroslavtsev. Parallel
algorithms for geometric graph problems. In Symposium on Theory of Computing, STOC
2014, New York, NY, USA, May 31 - June 03, 2014, pages 574–583, 2014. doi:10.1145/
2591796.2591805.

4 Alexandr Andoni, Zhao Song, Clifford Stein, Zhengyu Wang, and Peilin Zhong. Parallel Graph
Connectivity in Log Diameter Rounds. In 59th IEEE Annual Symposium on Foundations
of Computer Science, FOCS 2018, Paris, France, October 7-9, 2018, pages 674–685, 2018.
doi:10.1109/FOCS.2018.00070.

5 Eshrat Arjomandi. An efficient algorithm for colouring the edges of a graph with ∆+ 1 colours.
INFOR: Information Systems and Operational Research, 20(2):82–101, 1982.

6 Sepehr Assadi, MohammadHossein Bateni, Aaron Bernstein, Vahab S. Mirrokni, and Cliff
Stein. Coresets Meet EDCS: Algorithms for Matching and Vertex Cover on Massive Graphs.
Proceedings of the 30th annual ACM-SIAM Symposium on Discrete Algorithms (SODA), to
appear, 2019.

7 Sepehr Assadi, Yu Chen, and Sanjeev Khanna. Sublinear Algorithms for (∆+1) Vertex Coloring.
In Proceedings of the Thirtieth Annual ACM-SIAM Symposium on Discrete Algorithms,
SODA 2019, San Diego, California, USA, January 6-9, 2019, pages 767–786, 2019. doi:
10.1137/1.9781611975482.48.

8 Leonid Barenboim, Michael Elkin, Seth Pettie, and Johannes Schneider. The Locality of
Distributed Symmetry Breaking. J. ACM, 63(3):20:1–20:45, June 2016. doi:10.1145/2903137.

9 MohammadHossein Bateni, Soheil Behnezhad, Mahsa Derakhshan, MohammadTaghi
Hajiaghayi, Raimondas Kiveris, Silvio Lattanzi, and Vahab S. Mirrokni. Affinity Clus-
tering: Hierarchical Clustering at Scale. In Advances in Neural Information Processing
Systems 30: Annual Conference on Neural Information Processing Systems 2017, 4-9 Decem-
ber 2017, Long Beach, CA, USA, pages 6867–6877, 2017. URL: http://papers.nips.cc/
paper/7262-affinity-clustering-hierarchical-clustering-at-scale.

https://doi.org/10.1145/2755573.2755586
https://doi.org/10.1016/0196-6774(86)90019-2
https://doi.org/10.1145/2591796.2591805
https://doi.org/10.1145/2591796.2591805
https://doi.org/10.1109/FOCS.2018.00070
https://doi.org/10.1137/1.9781611975482.48
https://doi.org/10.1137/1.9781611975482.48
https://doi.org/10.1145/2903137
http://papers.nips.cc/paper/7262-affinity-clustering-hierarchical-clustering-at-scale
http://papers.nips.cc/paper/7262-affinity-clustering-hierarchical-clustering-at-scale


S. Behnezhad, M. Derakhshan, M.T. Hajiaghayi, M. Knittel, and H. Saleh 15:13

10 Paul Beame, Paraschos Koutris, and Dan Suciu. Communication Steps for Parallel Query
Processing. J. ACM, 64(6):40:1–40:58, 2017. doi:10.1145/3125644.

11 Soheil Behnezhad, Mahsa Derakhshan, and MohammadTaghi Hajiaghayi. Brief Announcement:
Semi-MapReduce Meets Congested Clique. CoRR, abs/1802.10297, 2018. arXiv:1802.10297.

12 Soheil Behnezhad, Mahsa Derakhshan, MohammadTaghi Hajiaghayi, and Richard M. Karp.
Massively Parallel Symmetry Breaking on Sparse Graphs: MIS and Maximal Matching. CoRR,
abs/1807.06701, 2018. arXiv:1807.06701.

13 Soheil Behnezhad, Laxman Dhulipala, Hossein Esfandiari, Jakub Lacki, and Vahab Mirrokni.
Near-Optimal Massively Parallel Graph Connectivity. In 60th IEEE Annual Symposium on
Foundations of Computer Science, FOCS 2019, to appear, 2019.

14 Soheil Behnezhad, MohammadTaghi Hajiaghayi, and David G. Harris. Exponentially Faster
Massively Parallel Maximal Matching. In 60th IEEE Annual Symposium on Foundations of
Computer Science, FOCS 2019, to appear, 2019.

15 Sebastian Brandt, Manuela Fischer, and Jara Uitto. Matching and MIS for Uniformly Sparse
Graphs in the Low-Memory MPC Model. CoRR, abs/1807.05374, 2018. arXiv:1807.05374.

16 Yi-Jun Chang, Manuela Fischer, Mohsen Ghaffari, Jara Uitto, and Yufan Zheng. The
Complexity of (∆ + 1) Coloring in Congested Clique, Massively Parallel Computation, and
Centralized Local Computation. CoRR, abs/1808.08419, 2018. arXiv:1808.08419.

17 Artur Czumaj, Jakub Lacki, Aleksander Madry, Slobodan Mitrovic, Krzysztof Onak, and
Piotr Sankowski. Round Compression for Parallel Matching Algorithms. In Proceedings of the
50th Annual ACM SIGACT Symposium on Theory of Computing, STOC 2018, Los Angeles,
CA, USA, June 25-29, 2018, pages 471–484, 2018. doi:10.1145/3188745.3188764.

18 Camil Demetrescu, Irene Finocchi, and Andrea Ribichini. Trading off space for passes in graph
streaming problems. In Proceedings of the Seventeenth Annual ACM-SIAM Symposium on
Discrete Algorithms, SODA 2006, Miami, Florida, USA, January 22-26, 2006, pages 714–723,
2006. URL: http://dl.acm.org/citation.cfm?id=1109557.1109635.

19 Joan Feigenbaum, Sampath Kannan, Andrew McGregor, Siddharth Suri, and Jian Zhang. On
Graph Problems in a Semi-streaming Model. In Automata, Languages and Programming: 31st
International Colloquium, ICALP 2004, Turku, Finland, July 12-16, 2004. Proceedings, pages
531–543, 2004. doi:10.1007/978-3-540-27836-8_46.

20 Pierre Fraigniaud, Marc Heinrich, and Adrian Kosowski. Local Conflict Coloring. In IEEE
57th Annual Symposium on Foundations of Computer Science, FOCS 2016, 9-11 October 2016,
Hyatt Regency, New Brunswick, New Jersey, USA, pages 625–634, 2016. doi:10.1109/FOCS.
2016.73.

21 H. N. Gabow, T. Nishizeki, O. Kariv, D. Leven, , and O. Terada. Algorithms for edgecoloring
graphs. Technical report, Tohoku University, 1985.

22 Mohsen Ghaffari, Themis Gouleakis, Christian Konrad, Slobodan Mitrovic, and Ronitt Ru-
binfeld. Improved Massively Parallel Computation Algorithms for MIS, Matching, and
Vertex Cover. In Proceedings of the 2018 ACM Symposium on Principles of Distributed
Computing, PODC 2018, Egham, United Kingdom, July 23-27, 2018, pages 129–138, 2018.
doi:10.1145/3212734.3212743.

23 Christian Glazik, Jan Schiemann, and Anand Srivastav. Finding Euler Tours in One Pass in the
W-Streaming Model with O(n log(n)) RAM. CoRR, abs/1710.04091, 2017. arXiv:1710.04091.

24 A. Goldberg, S. Plotkin, and G. Shannon. Parallel Symmetry-breaking in Sparse Graphs. In
Proceedings of the Nineteenth Annual ACM Symposium on Theory of Computing, STOC ’87,
pages 315–324, New York, NY, USA, 1987. ACM. doi:10.1145/28395.28429.

25 Andrew V. Goldberg and Serge A. Plotkin. Parallel (∆ + 1)-coloring of Constant-degree
Graphs. Inf. Process. Lett., 25(4):241–245, June 1987. doi:10.1016/0020-0190(87)90169-4.

26 Michael T. Goodrich, Nodari Sitchinava, and Qin Zhang. Sorting, Searching, and Simulation in
the MapReduce Framework. In Algorithms and Computation - 22nd International Symposium,
ISAAC 2011, Yokohama, Japan, December 5-8, 2011. Proceedings, pages 374–383, 2011.
doi:10.1007/978-3-642-25591-5_39.

ESA 2019

https://doi.org/10.1145/3125644
http://arxiv.org/abs/1802.10297
http://arxiv.org/abs/1807.06701
http://arxiv.org/abs/1807.05374
http://arxiv.org/abs/1808.08419
https://doi.org/10.1145/3188745.3188764
http://dl.acm.org/citation.cfm?id=1109557.1109635
https://doi.org/10.1007/978-3-540-27836-8_46
https://doi.org/10.1109/FOCS.2016.73
https://doi.org/10.1109/FOCS.2016.73
https://doi.org/10.1145/3212734.3212743
http://arxiv.org/abs/1710.04091
https://doi.org/10.1145/28395.28429
https://doi.org/10.1016/0020-0190(87)90169-4
https://doi.org/10.1007/978-3-642-25591-5_39


15:14 Streaming and Massively Parallel Algorithms for Edge Coloring

27 David G Harris, Johannes Schneider, and Hsin-Hao Su. Distributed (∆ + 1)-coloring in
sublogarithmic rounds. In Proceedings of the forty-eighth annual ACM symposium on Theory
of Computing, pages 465–478. ACM, 2016.

28 Nicholas J. A. Harvey, Christopher Liaw, and Paul Liu. Greedy and Local Ratio Algorithms
in the MapReduce Model. In Proceedings of the 30th on Symposium on Parallelism in
Algorithms and Architectures, SPAA ’18, pages 43–52, New York, NY, USA, 2018. ACM.
doi:10.1145/3210377.3210386.

29 Öjvind Johansson. Simple Distributed Delta+1-coloring of Graphs. Inf. Process. Lett.,
70(5):229–232, 1999. doi:10.1016/S0020-0190(99)00064-2.

30 Tomasz Jurdzinski and Krzysztof Nowicki. MST in O(1) rounds of congested clique. In
Proceedings of the Twenty-Ninth Annual ACM-SIAM Symposium on Discrete Algorithms,
SODA 2018, New Orleans, LA, USA, January 7-10, 2018, pages 2620–2632, 2018. doi:
10.1137/1.9781611975031.167.

31 Howard J. Karloff, Siddharth Suri, and Sergei Vassilvitskii. A Model of Computation for
MapReduce. In Proceedings of the Twenty-First Annual ACM-SIAM Symposium on Discrete
Algorithms, SODA 2010, Austin, Texas, USA, January 17-19, 2010, pages 938–948, 2010.
doi:10.1137/1.9781611973075.76.

32 Fabian Kuhn and Rogert Wattenhofer. On the Complexity of Distributed Graph Coloring.
In Proceedings of the Twenty-fifth Annual ACM Symposium on Principles of Distributed
Computing, PODC ’06, pages 7–15, New York, NY, USA, 2006. ACM. doi:10.1145/1146381.
1146387.

33 Silvio Lattanzi, Benjamin Moseley, Siddharth Suri, and Sergei Vassilvitskii. Filtering: a method
for solving graph problems in MapReduce. In SPAA 2011: Proceedings of the 23rd Annual
ACM Symposium on Parallelism in Algorithms and Architectures, San Jose, CA, USA, June
4-6, 2011 (Co-located with FCRC 2011), pages 85–94, 2011. doi:10.1145/1989493.1989505.

34 Nathan Linial. Locality in Distributed Graph Algorithms. SIAM J. Comput., 21(1):193–201,
February 1992. doi:10.1137/0221015.

35 M Luby. A Simple Parallel Algorithm for the Maximal Independent Set Problem. In Proceedings
of the Seventeenth Annual ACM Symposium on Theory of Computing, STOC ’85, pages 1–10,
New York, NY, USA, 1985. ACM. doi:10.1145/22145.22146.

36 Alessandro Panconesi and Aravind Srinivasan. Improved Distributed Algorithms for Coloring
and Network Decomposition Problems. In Proceedings of the Twenty-fourth Annual ACM
Symposium on Theory of Computing, STOC ’92, pages 581–592, New York, NY, USA, 1992.
ACM. doi:10.1145/129712.129769.

37 Merav Parter. (∆ + 1) Coloring in the Congested Clique Model. In 45th International
Colloquium on Automata, Languages, and Programming, ICALP 2018, July 9-13, 2018,
Prague, Czech Republic, pages 160:1–160:14, 2018. doi:10.4230/LIPIcs.ICALP.2018.160.

38 Merav Parter and Hsin-Hao Su. Randomized (∆ + 1)-Coloring in O(log∗ ∆) Congested Clique
Rounds. In 32nd International Symposium on Distributed Computing, DISC 2018, New Orleans,
LA, USA, October 15-19, 2018, pages 39:1–39:18, 2018. doi:10.4230/LIPIcs.DISC.2018.39.

39 Vadim G Vizing. On an estimate of the chromatic class of a p-graph. Discret Analiz, 3:25–30,
1964.

https://doi.org/10.1145/3210377.3210386
https://doi.org/10.1016/S0020-0190(99)00064-2
https://doi.org/10.1137/1.9781611975031.167
https://doi.org/10.1137/1.9781611975031.167
https://doi.org/10.1137/1.9781611973075.76
https://doi.org/10.1145/1146381.1146387
https://doi.org/10.1145/1146381.1146387
https://doi.org/10.1145/1989493.1989505
https://doi.org/10.1137/0221015
https://doi.org/10.1145/22145.22146
https://doi.org/10.1145/129712.129769
https://doi.org/10.4230/LIPIcs.ICALP.2018.160
https://doi.org/10.4230/LIPIcs.DISC.2018.39

	Introduction
	Massively Parallel Computation
	Streaming

	The MPC Algorithm
	Streaming Algorithms
	Random Edge Arrival Setting
	Adversarial Edge Arrival Setting

	Open Problems

