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ABSTRACT
For over a decade now we have been witnessing the success ofmas-
sive parallel computation (MPC) frameworks, such as MapReduce,

Hadoop, Dryad, or Spark. One of the reasons for their success is

the fact that these frameworks are able to accurately capture the

nature of large-scale computation. In particular, compared to the

classic distributed algorithms or PRAM models, these frameworks

allow for much more local computation. The fundamental question

that arises in this context is though: can we leverage this additional

power to obtain even faster parallel algorithms?

A prominent example here is the maximum matching problem—

one of the most classic graph problems. It is well known that in

the PRAM model one can compute a 2-approximate maximum

matching inO(logn) rounds. However, the exact complexity of this

problem in theMPC framework is still far from understood. Lattanzi

et al. (SPAA 2011) showed that if each machine has n1+Ω(1) memory,

this problem can also be solved 2-approximately in a constant

number of rounds. These techniques, as well as the approaches

developed in the follow up work, seem though to get stuck in a

fundamental way at roughly O(logn) rounds once we enter the

(at most) near-linear memory regime. It is thus entirely possible

that in this regime, which captures in particular the case of sparse

graph computations, the best MPC round complexity matches what

one can already get in the PRAM model, without the need to take

advantage of the extra local computation power.
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In this paper, we finally refute that possibility. That is, we break

the above O(logn) round complexity bound even in the case of

slightly sublinear memory per machine. In fact, our improvement

here is almost exponential: we are able to deliver a (2+ϵ)-approximate

maximummatching, for any fixed constant ϵ > 0, inO
(
(log logn)2

)
rounds.

To establish our result we need to deviate from the previous

work in two important ways that are crucial for exploiting the

power of the MPC model, as compared to the PRAM model. Firstly,

we use vertex–based graph partitioning, instead of the edge–based

approaches that were utilized so far. Secondly, we develop a tech-

nique of round compression. This technique enables one to take a
(distributed) algorithm that computes an O(1)-approximation of

maximum matching in O(logn) independent PRAM phases and im-

plement a super-constant number of these phases in only a constant

number of MPC rounds.
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• Theory of computation → MapReduce algorithms; Mas-
sively parallel algorithms;
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1 INTRODUCTION
Over the last decade, massive parallelism became a major paradigm

in computing, and we have witnessed the deployment of a number

of very successful massively parallel computation frameworks, such

as MapReduce [16, 17], Hadoop [38], Dryad [25], or Spark [39].

This paradigm and the corresponding models of computation are

rather different from classical parallel algorithmsmodels considered

widely in literature, such as the PRAM model. In particular, in this

paper, we study the Massive Parallel Computation (MPC) model

(also known as Massively Parallel Communication model) that was

abstracted out of capabilities of existing systems, starting with the

work of Karloff, Suri, and Vassilvitskii [3, 8, 9, 21, 29]. The main

https://doi.org/10.1145/3188745.3188764
https://doi.org/10.1145/3188745.3188764
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difference between this model and the PRAM model is that the

MPC model allows for much more (in principle, unbounded) local

computation. This enables it to capture a more “coarse–grained,”

and thus, potentially, more meaningful aspect of parallelism. It is

often possible to simulate one clock step of PRAM in a constant

number of rounds on MPC [21, 29]. This implies that algorithms

for the PRAM model usually give rise to MPC algorithms without

incurring any asymptotic blow up in the number of parallel rounds.

As a result, a vast body of work on PRAM algorithms naturally

translates to the new model.

It is thus natural to wonder: Are the MPC parallel round bounds

“inherited” from the PRAM model tight? In particular, which prob-

lems can be solved in significantly smaller number of MPC rounds

than what the lower bounds established for the PRAM model sug-

gest?

It is not hard to come up with an example of a problem for

which indeed the MPC parallel round number is much smaller than

its PRAM round complexity. For instance, computing the parity

of n Boolean values takes only O(1) parallel rounds in the MPC

model when space per machine is nΩ(1), while on PRAM it provably

requires Ω(logn/log logn) time [7] (as long as the total number of

processors is polynomial). However, the answer is typically less

obvious for other problems. This is particularly the case for graph

problems, whose study in a variant of the MPC model was initiated

already by Karloff et al. [29].

In this paper, we focus on one such problem, which is also one

of the most central graph problems both in sequential and parallel

computations: maximummatching. Maximummatchings have been

the cornerstone of algorithmic research since 1950s and their study

inspired many important ideas, including the complexity class P

[18]. In the PRAM model we can compute (1 + ϵ)-approximate

matching in O(logn) rounds [32] using randomization. Determin-

istically, a (2 + ϵ)-approximation can be computed in O
(
log

2 n
)

rounds [20]. We note that these results hold in a distributed message

passing setting, where processors are located at graph nodes and

can communicate only with neighbors. In such a distributed setting,

Ω
(√

logn/log logn
)
time lower bound is known for computing

any constant approximation to maximum matching [30].

So far, in the MPC setting, the prior results are due to Lattanzi,

Moseley, Suri, and Vassilvitskii [31], Ahn and Guha [1] and Assadi

and Khanna [6]. Lattanzi et al. [31] put forth algorithms for several

graph problems, such as connected components, minimum span-

ning tree, and maximum matching problem, that were based on a

so-called filtering technique. In particular, using this technique, they

have obtained an algorithm that can compute a 2-approximation to

maximum matching in O(1/δ )MPC rounds, provided S , the space
per machine, is significantly larger than the total number of vertices

n, that is S = Ω
(
n1+δ

)
, for some constant δ ∈ (0, 1). Later on, Ahn

and Guha [1] provided an improved algorithm that computes a

(1+ ϵ)-approximation inO(1/(δϵ)) rounds, provided S = Ω
(
n1+δ

)
,

for some constant δ > 0. Both these results, however, crucially

require that space per machine is significantly superlinear in n, the
number of vertices. In fact, if the space S is linear in n, which is a

very natural setting for massively parallel graph algorithms, the

performance of both these algorithms degrades to O(logn) parallel

rounds, which matches what was known for the PRAM model. Re-

cently, Assadi and Khanna [6] showed how to construct randomized

composable coresets of size Õ(n) that give an O(1)-approximation

for maximum matching. Their techniques apply to the MPC model

only if the space per machine is Õ(n
√
n).

We also note that the known PRAM maximal independent set

and maximal matching algorithms [2, 26, 33] can be used to find a

maximal matching (i.e., 2-approximation to maximum matching) in

O(logn) MPC rounds as long as space per machine is at least nΩ(1)

(i.e., S ≥ nc for some constant c > 0). We omit further details here,

except mentioning that a more or less direct simulation of those

algorithms is possible via an O(1)-round sorting subroutine [21].

The above results give rise to the following fundamental question:

Can the maximum matching be (approximately) solved in o(logn)
parallel rounds in O(n) space per machine? The main result of this

paper is an affirmative answer to that question. We show that, for

any S = Ω(n), one can obtain an O(1)-approximation to maximum

matching using O
(
(log logn)2

)
parallel MPC rounds. So, not only

do we break the existing Ω(logn) barrier, but also provide an almost

exponential improvement over the previous work. Our algorithm

can also provide a (2 + ϵ), instead of O(1)-approximation, at the

expense of the number of parallel rounds increasing by a factor

of O(log(1/ϵ)). Finally, our approach can also provide algorithms

that have o(logn) parallel round complexity also in the regime of

S being (mildly) sublinear. For instance, we obtain O
(
(log logn)2

)
MPC rounds even if space per machine is S = n/(logn)O (log logn).
The exact comparison of our bounds with previous results is given

in Table 1.

1.1 The Model
In this work, we adopt a version of the model introduced by Karloff,

Suri, and Vassilvitskii [29] and refined in later works [3, 8, 21]. We

call it massive parallel computation (MPC), which is a mutation of

the name proposed by Beame et al. [8].

In the MPC model, we havem machines at our disposal and each

of them has S words of space. Initially, each machine receives its

share of the input. In our case, the input is a collection E of edges

and each machine receives approximately |E |/m of them.

The computation proceeds in rounds. During the round, each

of the machines processes its local data without communicating

with other machines. At the end of each round, machines exchange

messages. Each message is sent only to a single machine specified

by the machine that is sending the message. All messages sent

and received by each machine in each round have to fit into the

machine’s local memory. Hence, their total length is bounded by

S .1 This in particular implies that the total communication of the

MPC model is bounded bym · S in each round. The messages are

processed by recipients in the next round.

At the end of the computation, machines collectively output the

solution. The data output by each machine has to fit in its local

memory. Hence again, each machine can output at most S words.

The Range of Values for S andm. If the input is of size N , one

usually wants S sublinear in the N , and the total space across all

1
This for instance allows a machine to send a single word to S/100machines or S/100
words to one machine, but not S/100 words to S/100 machines if S = ω(1), even if

the messages are identical.
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Table 1: Comparison of our results for computing approximate maximum size matchings to the previous results for the MPC
model.

Source Approx. Space Rounds Remarks

[31] 2

n1+Ω(1) O (1)
Maximal matching

O (n) O (logn)

[1] 1 + ϵ O
(
n1+1/p

)
O (p/ϵ ) p > 1

2 nΩ(1) O (logn)
Maximal matching

Simulate [2, 26, 33]

O (1)
O (n)

O
(
(log logn)2

)
2 + ϵ O

(
(log logn)2 · log(1/ϵ )

)
ϵ ∈ (0, 1/2)

here O (1)
O (n)/f (n)

O
(
(log logn)2 + log f (n)

)
2 ≤ f (n) = O

(
n1/2

)
2 + ϵ O

(
(log logn)2 + log f (n)

)
· log(1/ϵ )

the machines to be at least N—so the input fits onto the machines—

and ideally not much larger. Formally, one usually considers S ∈
Θ

(
N 1−ϵ )

, for some ϵ > 0.

In this paper, the focus is on graph algorithms. If n is the number

of vertices in the graph, the input size can be as large as Θ
(
n2

)
.

Our parallel algorithm requires Θ(n) space per machine (or even

slightly less), which is polynomially less than the size of the input

for dense graphs.

Sparse Graphs. Many practical large graphs are believed to have

only O(n) edges. One natural example is social networks, in which

most participants are likely to have a bounded number of friends.

The additional advantage of our approach is that it allows for a small

number of processing rounds even if a sparse input graph does not

fit onto a single machine. If a small number—say, f (n)—of machines

is needed even to store the graph, our algorithm still requires only

O
(
(log logn)2 + log f (n)

)
rounds forO(n/f (n)) space per machine.

Communication vs. Computation Complexity. The main focus of

this work is the number of (communication) rounds required to

finish computation. Also, even though we do not make an effort to

explicitly bound it, it is apparent from the design of our algorithms

that every machine performs O(S polylog S) computation steps lo-

cally. This in particular implies that the overall work across all the

machines is O(rN polylog S), where r is the number of rounds and

N is the input size (i.e., the number of edges).

The total communication during the computation isO(rN )words.
This is at most O

(
rn2

)
words and it is known that computing a

(1 + ϵ)-approximate matching in the message passing model with

Θ(n) edges per player may require Ω
(
n2/(1 + ϵ)2

)
bits of communi-

cation [24]. Since our value of r isO
(
(log logn)2

)
when Θ(n) edges

are assigned to each player, we lose a factor of Θ̃(logn) compared

to this lower bound if words (and vertex identifiers) have Θ(logn)
bits.

1.2 Our Results
In our work, we focus on computing an O(1)-approximate max-

imum matching in the MPC model. We collect our results and

compare to the previous work in Table 1. The table presents two

interesting regimes for our algorithms. On the one hand, when the

space per machine is S = O(n), we obtain an algorithm that requires

O((log logn)2) rounds. This is the first known algorithm that, with

linear space per machine, breaks theO(logn) round barrier. On the

other hand, in the mildly sublinear regime of space per machine,

i.e., when S = O(n/f (n)), for some function f (n) that is no(1), we
obtain an algorithm that still requires o(logn) rounds. This, again,
is the first such result in this regime. In particular, we prove the

following result.

Theorem 1.1. There exists an MPC algorithm that constructs an
O(1)-approximation to maximummatching with constant probability
in O

(
(log logn)2 +max

(
log

n
S , 0

) )
rounds, where S = nΩ(1) is the

amount of space on each machine.

As a corollary, we obtain the following result that provides nearly

2-approximate maximum matching.

Corollary 1.2. For any ϵ ∈ (0, 1
2
), there exists an MPC algorithm

that constructs a (2 + ϵ)-approximation to maximum matching with
constant probability in O

(
(log logn)2 +max

(
log

n
S , 0

) )
· log(1/ϵ)

rounds, where S = nΩ(1) is the amount of space on each machine.

Assadi et al. [5] observe that one can use a technique of McGre-

gor [34] to extend our algorithm to compute a (1+ϵ)-approximation

in O((log logn)2) · (1/ϵ)O (1/ϵ ) rounds.
It should also be noted that (as pointed out to us by Seth Pettie)

any O(1)-approximation algorithm for unweighted matchings can

be used to obtain a (2 + ϵ)-approximation algorithm for weighted

matchings (see Section 4 of his paper with Lotker and Patt-Shamir

[32] for details). In our setting this implies that Theorem 1.1 yields

an algorithm that computes a (2 + ϵ)-approximation to maximum

weight matching in O((log logn)2 · (1/ϵ)) rounds and O(n logn)
space per machine.

1.3 Related Work
We note that there were efforts at modeling MapReduce computa-

tion [19] before the work of Karloff et al. Also a recent work [37]

investigates the complexity of the MPC model.

In the filtering technique, introduced by Lattanzi et al. [31], the

input graph is iteratively sparsified until it can be stored on a

single machine. For the matching problem, the sparsification is

achieved by first obtaining a small sample of edges, then finding
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a maximal matching in the sample, and finally removing all the

matched vertices. Once a sufficiently small graph is obtained, a

maximal matching is computed on a single machine. In the S =
Θ(n) regime, the authors show that their approach reduces the

number of edges by a constant factor in each iteration. Despite

this guarantee, until the very last step, each iteration may make

little progress towards obtaining even an approximate maximal

matching, resulting in aO(logn) round complexity of the algorithm.

Similarly, the results of Ahn and Guha [1] require n1+Ω(1) space
per machine to compute a O(1)-approximate maximum weight

matching in a constant number of rounds and do not imply a similar

bound for the case of linear space.

We note that the algorithm of Lattanzi et al. [31] cannot be turned

easily into a fast approximation algorithm when space per machine

is sublinear. Even with Θ(n) space, their method is able to remove

only a constant fraction of edges from the graph in each iteration, so

Ω(logn) rounds are needed until only a matching is left. When S =
Θ(n), their algorithmworks as follows: sample uniformly at random

Θ(n) edges of the graph, find maximal matching on the sampled set,

remove thematched vertices, and repeat.We do not provide a formal

proof here, but on the following graph this algorithm requires

Ω̃(logn) rounds, even to discover a constant factor approximation.

Consider a graph consisting of t separate regular graphs of degree
2
i
, for 0 ≤ i ≤ t − 1, each on 2

t
vertices. This graph has t2t nodes

and the algorithm requires Ω̃(t) rounds even to find a constant

approximate matching. The algorithm chooses edges uniformly at

random, and few edges are selected each round from all but the

densest remaining subgraphs. Thus, it takes multiple rounds until

a matching of significant size is constructed for sparser subgraphs.

This example emphasizes the weakness of direct edge sampling and

motivates our vertex sampling scheme that we introduce in this

paper.

Similarly, Ahn and Guha [1] build on the filtering approach of

Lattanzi et al. and design a primal-dual method for computing a (1+

ϵ)-approximate weighted maximummatching. They show that each

iteration of their distributed algorithm either makes large progress

in the dual, or they can construct a large approximate matching.

Regardless of their new insights, their approach is inherently edge-

sampling based and does not break the O(logn) round complexity

barrier when S = O(n).
Despite the fact that MPCmodel is rather new, computing match-

ing is an important problem in this model, as the above mentioned

two papers demonstrate. This is further witnessed by the fact that

the distributed and parallel complexity of maximal matching has

been studied for many years already. The best deterministic PRAM

maximal matching algorithm, due to Israeli and Shiloach [27], runs

in O
(
log

3 n
)
rounds. Israeli and Itai [26] gave a randomized algo-

rithm for this problem that runs inO(logn) rounds. Their algorithm
works as well in CONGEST, a distributed message-passing model

with a processor assigned to each vertex and a limit on the amount

of information sent along each edge per round. A more recent paper

by Lotker, Patt-Shamir, and Pettie [32] gives a (1+ϵ)-approximation

to maximum matching in O(logn) rounds also in the CONGEST

model, for any constant ϵ > 0. On the deterministic front, in the

LOCAL model, which is a relaxation of CONGEST that allows for

an arbitrary amount of data sent along each edge, a line of research

initiated by Hańćkowiak, Karoński, and Panconesi [22, 23] led to

an O
(
log

3 n
)
-round algorithm by Fischer and Ghaffari [20].

On the negative side, Kuhn, Moscibroda, and Wattenhofer [30]

showed that any distributed algorithm, randomized or determinis-

tic, that performs communication only between neighbors requires

Ω
(√

logn/log logn
)
rounds to compute a constant approximation

to maximum matching. This lower bound applies to all distributed

algorithms that have been mentioned above. Our algorithm circum-

vents this lower bound by loosening the only possible assumption

there is to be loosened: single-hop communication. In a sense, we

assign subgraphs to multiple machines and allow multi-hop com-

munication between nodes in each subgraph.

Finally, the ideas behind the peeling algorithm that is a starting

point for this paper can be traced back to the papers of Israeli,

Itai, and Shiloach [26, 27], which can be interpreted as matching

high-degree vertices first in order to reduce the maximum degree.

A sample distributed algorithm given in a work of Parnas and

Ron [36] uses this idea to compute an O(logn) approximation for

vertex cover. Their algorithm was extended by Onak and Rubin-

feld [35] in order to provide anO(1)-approximation for vertex cover

and maximummatching in a dynamic version of the problems. This

was achieved by randomly matching high-degree vertices to their

neighbors in consecutive phases while reducing the maximum de-

gree in the remaining graph. This approach was further developed

in the dynamic graph setting by a number of papers [12–15]. Ideas

similar to those in the paper of Parnas and Ron [36] were also used

to compute polylogarithmic approximation in the streaming model

by Kapralov, Khanna, and Sudan [28]. Our version of the peeling

algorithm was directly inspired by the work of Onak and Rubin-

feld [35] and features important modifications in order to make our

analysis go through.

1.4 Future Challenges
We show a parallel matching algorithm in the MPCmodel by taking

an algorithm that can be seen as a distributed algorithm in the so-

called LOCAL model. This algorithm requires Θ(logn) rounds and
can be simulated in Θ(logn) MPC rounds relatively easily with

nΩ(1) space per machine. We develop an approximate version of the

algorithm that uses much fewer rounds by repeatedly compressing

a superconstant number of rounds of the original algorithm toO(1)
rounds. It is a great question if this kind of speedup can be obtained

for other—either distributed or PRAM—algorithms.

As for the specific problem considered in this paper, an obvious

question is whether our round complexity is optimal. We conjecture

that there is a better algorithm that requires O(log logn) rounds,
the square root of our complexity. Unfortunately, a factor of logn
in one of our functions (see the logarithmic factor in α , a parameter

defined later in the paper) propagates to the round complexity,

where it imposes a penalty of log logn.
Note also that as opposed to the paper of Onak and Rubinfeld [35],

we do not obtain anO(1)-approximation to vertex cover. This stems

from the fact that we discard so-called reference sets, which can be

much bigger than the minimum vertex cover. This is unfortunately

necessary in our analysis. Is there a way to fix this shortcoming of

our approach?
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Finally, we suspect that there is a simpler algorithm for the prob-

lem that avoids the intricacies of our approach and proceeds by sim-

ply greedily matching high-degree vertices on induced subgraphs

without sophisticated sampling in every phase. Unfortunately, we

do not know how to analyze this kind of approach.

1.5 Recent Developments
Since an earlier version of this work was shared on arXiv, it has

inspired two followup works. First, Assadi [4] applied the round

compression idea to the distributed O(logn)-approximation algo-

rithm for vertex cover of Parnas and Ron [36]. Using techniques

from his recent work with Khanna [6], he gave a simple MPC

algorithm that in O(log logn) rounds and n/polylog(n) space per
machine computes an O(logn)-approximation to minimum vertex

cover.

Second, a new paper by Assadi et al. [5] addresses, among other

things, several open questions from this paper. They give an MPC

algorithm that computes O(1)-approximation to both vertex cover

and maximum matching in O(log logn) rounds and Õ(n) space per
machine (though the space is strictly superlinear). Their result

builds on techniques developed originally for dynamic matching

algorithms [10, 11] and composable coresets [6]. It is worth to note

that their construction critically relies on the vertex sampling ap-

proach (i.e., random assignment of vertices to machines) introduced

in our work.

2 OVERVIEW
In this section we present the main ideas and techniques behind

our result. Our paper contains two main technical contributions.

First, our algorithm randomly partitions vertices across the ma-

chines, and on each machine considers only the corresponding

induced graph. We prove that it suffices to consider these induced

subgraphs to obtain an approximate maximum matching. Note that

this approach greatly deviates from previous works, that used edge

based partitioning.

Second, we introduce a round compression technique. Namely, we

start with an algorithm that executesO(logn) phases and can be nat-
urally implemented in O(logn) MPC rounds and then demonstrate

how to emulate this algorithm using only o(logn)MPC rounds. The

underlying idea is quite simple: each machine independently runs

multiple phases of the initial algorithm. This approach, however,

has obvious challenges since the machines cannot communicate in

a single round of the MPC algorithm. The rest of the section is de-

voted to describing our approach and illustrating how to overcome

these challenges.

2.1 Vertex Based Sampling
The algorithms for computing maximal matching in PRAM and

their simulations in the MPC model [2, 26, 27, 33] are designed to,

roughly speaking, either halve the number of the edges or halve

the maximum degree in each round. Therefore, in the worst case

those algorithms inherently require Ω(logn) rounds to compute a

maximal matching.

On the other hand, all the algorithm for the maximal matching

problem in theMPCmodel prior to ours ([1, 6, 31]) process the input

graph by discarding edges, and eventually aggregate the remaining

edges on a single machine to decide which of them are part of the

final matching. It is not known how to design approaches similar

to [1, 6, 31] while avoiding a step in which the maximal matching

computation is performed on a single machine. This seems to be a

barrier for improving upon O(logn) rounds, if the space available
on each machine is O(n).

The starting point of our new approach is alleviating this issue

by resorting to a more careful vertex based sampling. Specifically,

at each round, we randomly partition the vertex set into vertex sets

V1, . . . ,Vm and consider induced graphs on those subsets indepen-

dently. Such sampling scheme has the following handy property:

the union of matchings obtained across the machines is still a

matching. Furthermore, we show that for the appropriate setting

of parameters this sampling scheme allows us to handle vertices

of a wide range of degrees in a single round, unlike handling only

high-degree vertices (that is, vertices with degree within a constant

factor of the maximum degree) as guaranteed by [26, 27].

2.2 Global algorithm
To design an algorithm executed on machines locally, we start

from a sequential peeling algorithm GlobalAlg (see Algorithm 1),

which is a modified version of an algorithm used by Onak and

Rubinfeld [35]. The algorithm had to be significantly adjusted in

order to make our later analysis of a parallel version possible.

The execution of GlobalAlg is divided into Θ(logn) phases. In
each phase, the algorithm first computes a set H of high-degree

vertices. Then it selects a set F of vertices, which we call friends.
Next the algorithm selects a matching M̃ between H and F , using
a simple randomized strategy. F is carefully constructed so that

both F and M̃ are likely to be of order Θ(|H |). Finally, the algorithm
removes all vertices in H ∪ F , hence reducing the maximum ver-

tex degree in the graph by a constant factor, and proceeds to the

next phase. The central property of GlobalAlg is that it returns an

O(1) approximation to maximum matching with constant probabil-

ity (Corollary 3.4). A detailed discussion of GlobalAlg is given in

Section 3.

Algorithm 1: GlobalAlg(G, ∆̃)
Global matching algorithm

Input: Graph G = (V , E) of maximum degree at most ∆̃
Output: A matching in G

1 ∆← ∆̃, M ← ∅, V ′ ← V
2 while ∆ ≥ 1 do

/* Invariant: the maximum degree in G[V ′] is at

most ∆ */

3 Let H ⊂ V ′ be a set of vertices of degree at least ∆/2 in G[V ′].
We call vertices in H heavy.

4 Create a set F of friends by selecting each vertex v ∈ V ′

independently with probability |N (v) ∩ H |/4∆.
5 Compute a matching M̃ in G[H ∪ F ] using MatchHeavy(H, F )

and add it to M .

6 V ′ ← V ′ \ (H ∪ F ), ∆← ∆/2

7 return M
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Algorithm 2: MatchHeavy(H , F )
Computing a matching in G[H ∪ F ]

Input: set H of heavy vertices and set F of friends

Output: a matching in G[H ∪ F ]

1 For every vertex v ∈ F pick uniformly at random a heavy neighbor

v⋆ in N (v) ∩ H .

2 Independently at random color each vertex in H ∪ F either red or

blue.

3 Select the following subset of edges:

E⋆ ← {(v, v⋆) : v ∈ F ∧ v is red ∧ v⋆ ∈ H ∧ v⋆ is blue}.

4 For every blue vertex w incident to an edge in E⋆, select one such
edge and add it to M̃ .

5 return M̃

2.3 Parallel Emulation of the Global Algorithm
(Section 4)

The following two ways could be used to execute GlobalAlg in

the MPC model: (1) place the whole graph on one machine, and

trivially execute all the phases of GlobalAlg in a single round; or

(2) simulate one phase of GlobalAlg in one MPC round while using

O(n) space per machine, by distributing vertices randomly onto

machines. However, each of these approaches has severe draw-

backs. The first approach requires Θ(|E |) space per machine, which

is likely prohibitive for large graphs. On the other hand, while the

second approach uses O(n) space, it requires Θ(logn) rounds of
MPC computation. We achieve the best of both worlds by showing

how to emulate the behavior of multiple phases of GlobalAlg in a

single MPC round with each machine usingO(n) space, thus obtain-
ing an MPC algorithm requiring o(logn) rounds. More specifically,

we show that it is possible to emulate the behavior of GlobalAlg
in O

(
(log logn)2

)
rounds with each machine using O(n) (or even

only n/(logn)O (log logn)) space.
Before we provide more details about our parallel multi-phase

emulation of GlobalAlg, let us mention the main obstacle such an

emulation encounters. At the beginning of every phase, GlobalAlg
has access to the full graph. Therefore, it can easily compute the

set of heavy vertices H . On the other hand, machines in our MPC

algorithm use O(n) space and thus have access only to a small

subgraph of the input graph (when |E | ≫ n). In the first phase

this is not a big issue, as, thanks to randomness, each machine can

estimate the degrees of high-degree vertices. However, the degrees

of vertices can significantly change from phase to phase. Therefore,

after each phase it is not clear how to select high-degree vertices

in the next phase without inspecting the entire graph again. Hence,

one of the main challenges in designing a multi-phase emulation

of GlobalAlg is to ensure that machines at the beginning of every

phase can estimate global degrees of vertices well enough to identify
the set of heavy vertices, while each machine still having access

only to its local subgraph. This property is achieved using a few

modifications to the algorithm.

2.3.1 Preserving Randomness. Our algorithm partitions the ver-

tex set intom disjoint subsets Vi by assigning each vertex indepen-

dently and uniformly at random. Then the graph induced by each

subsetVi is processed on a separate machine. Each machine finds a

set of heavy vertices, Hi , by estimating the global degree of each

vertex of Vi . It is not hard to argue (using a standard concentration

bound) that there is enough randomness in the initial partition so

that local degrees in each induced subgraph roughly correspond

to the global degrees. Hence, after the described partitioning, sets

H and

⋃
i ∈[m] Hi have very similar properties. This observation

crucially relies on the fact that initially the vertices are distributed

independently and uniformly at random.

However, if the second phase of GlobalAlg is executed with-

out randomly reassigning vertices to sets after the first phase, the

remaining vertices are no longer distributed independently and

uniformly at random. In other words, after inspecting the neigh-

borhood of every vertex locally and making a decision based on it,

the randomness of the initial random partition may significantly

decrease.

Let us now make the following thought experiment. Imagine

for a moment that there is an algorithm that emulates multiples

phases of GlobalAlg in parallel and in every phase inspects only
the vertices that end-up being matched. Then, from the point of

view of the algorithm, the vertices that are not matched so far are

still distributed independently and uniformly at random across the

machines. Or, saying in a different way, if randomness of some

vertices is not inspected while emulating a phase, then at the begin-

ning of the next phase those vertices still have the same distribution

as in the beginning of that MPC round. But, how does an algorithm

learn about vertices that should be matched by inspecting no other

vertex? How does the algorithm learn even only about high-degree

vertices without looking at their neighborhood?

In the sequel we show how to design an algorithm that looks only

"slightly" at the vertices that do not end-up being matched. As

we prove, that is sufficient to design a multi-phase emulation of

GlobalAlg.
We now discuss in more detail how to preserve two crucial

properties of our vertex assignments throughout the execution of

multiple phases: independent and nearly-uniform distribution.

2.3.2 Independence (Lemma 4.2). As noted above, it is not clear

how to compute vertex degrees without inspecting their local neigh-

borhood. A key, and at first sight counter-intuitive, step in our

approach is to estimate even local degrees of vertices (in contrast

to computing them exactly). To obtain the estimates, it suffices to

examine only small neighborhoods of vertices and in turn preserve

the independent distribution of the intact ones. More precisely, we

sample a small set of vertices on each machine, called reference sets,
and use the set to estimate the local degrees of all vertices assigned

to this machine. Furthermore, we show that with a proper adjust-

ments of GlobalAlg these estimates are sufficient for capturing

high-degree vertices.

Very crucially, all the vertices that are used in computing a

matching in one emulated phase (including the reference sets) are

discarded at the end of the phase, even if they do not participate in

the obtained matching. In this way we disregard the vertices which

position is fixed and, intuitively, secure an independent distribution

of the vertices across the machines in the next phase.

We also note, without going into details, that obtaining full in-

dependence required modifying how the set of friends is selected,

compared to the original approach of Onak and Rubinfeld [35]. In

their approach, each heavy vertex selected one friend at random.
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However, as before, in order to select exactly one friend would

require examining neighborhood of heavy vertices. This, however,

introduces dependencies between vertices that have not been se-

lected. So instead, in our GlobalAlg, every vertex selects itself as

a friend independently and proportionally to the number of high-

degree vertices (found using the reference set), which again secures

an independent distribution of the remaining vertices. The final

properties of the obtained sets in either approach are very similar.

2.3.3 Uniformity (Lemma 4.3). A very convenient property in

the task of emulating multiple phases of GlobalAlg is a uniform
distribution of vertices across all the machines at every phase – for

such a distribution, we know the expected number of neighbors of

each desired type assigned to the same machine. Obtaining perfect

uniformity seems difficult—if not impossible in our setting—and we

therefore settle for near uniformity of vertex assignments. The prob-

ability of the assignment of each vertex to each machine is allowed

to differ slightly from that in the uniform distribution. Initially, the

distribution of each vertex is uniform and with every phase it can

deviate more and more from the uniform distribution. We bound

the rate of the decay with high probability and execute multiple

rounds as long as the deviation from the uniform distribution is

negligible. More precisely, in the execution of the entire parallel

algorithm, the sufficiently uniform distribution is on average kept

over Ω
(

logn
(log logn)2

)
phases of the emulation of GlobalAlg.

11
2

1

1
2

µH(r)

r

Figure 1: An idealized version of µH : R → [0, 1], in which n
was fixed to a small constant and themultiplicative constant
inside the exponentiation operator was lowered.

In order to achieve the near uniformity, we modify the procedure

for selecting H , the set of high-degree vertices. Instead of a hard

threshold on the degrees of vertices that are included in H as in

the sequential algorithm, we randomize the selection by using a

carefully crafted threshold function µH . This function specifies the

probability with which a vertex is included in H . It takes as input

the ratio of the vertex’s degree to the current maximum degree (or,

more precisely, the current upper bound on the maximum degree)

and it smoothly transitions from 0 to 1 in the neighborhood of the

original hard threshold (see Figure 1). The main intuition behind

the introduction of this function is that we want to ensure that

a vertex is not selected for H with almost the same probability,

independently of the machine on which it resides. Using a hard

threshold instead of µH could result in the following deficiency.

Consider a vertex v that has slightly too few neighbors to qualify

as a heavy vertex. Still, it could happen, with a non-negligible

probability, that the reference set of some machine contains so

many neighbors of v that v would be considered heavy on this

machine. However, if v is not included in the set of heavy vertices

on that machine, it becomes clear after even a single phase that

the vertex is not on the given machine, i.e. the vertex is on the

given machine with probability zero. At this point the distribution

is clearly no longer uniform.

Function µH has further useful properties that we extensively

exploit in our analysis. We just note that in order to ensure near

uniformity with high probability, we also have to ensure that each

vertex is selected for F , the set of friends, with roughly the same

probability on each machine.

2.4 Organization of This Extended Abstract
We start by analyzing GlobalAlg in Section 3. Section 4 describes

how to emulate a single phase of GlobalAlg in the MPCmodel. Sec-

tion 5 gives and analyzes our parallel algorithm by putting together

components developed in the previous sections. The resulting par-

allel algorithm can be implemented in the MPC model in a fairly

straightforward way by using the result of [21]. The details of the

implementation and missing proofs are given in the full version of

this paper (see also https://arxiv.org/abs/1707.03478).

3 GLOBAL ALGORITHM
3.1 Overview
The starting point of our result is a peeling algorithm GlobalAlg
that takes as input a graphG , and removes from it vertices of lower

and lower degree until no edge is left. See page 5 for its pseudocode.

We use the term phase to refer to an iteration of the main loop in

Lines 2–6.

Each phase is associated with a threshold ∆. Initially, ∆ equals ∆̃,
the upper bound on the maximum vertex degree. In every phase, ∆
is divided by two until it becomes less than one and the algorithm

stops. Since during the execution of the algorithm we maintain the

invariant that the maximum degree in the graph is at most ∆, the
graph has no edge left when the algorithm terminates.

In each phase the algorithm matches, in expectation, a constant

fraction of the vertices it removes. We use this fact to prove that,

across all the phases, the algorithm computes a constant-factor

approximate matching. In the rest of this section, we analyze this

algorithm.

3.2 Analysis
We start our analysis of the algorithm by showing that the execution

of MatchHeavy in each phase of GlobalAlg finds a relatively large

matching in expectation.

Lemma 3.1. Consider one phase of GlobalAlg. Let H be the set of

heavy vertices. MatchHeavy finds a matching M̃ such that E
[���M̃ ���] ≥

1

40
|H |.

https://arxiv.org/abs/1707.03478
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Proof. Observe that the set E⋆ is a collection of vertex-disjoint

stars: each edge connects a red vertex with a blue vertex and the red

vertices have degree 1. Thus, a subset of E⋆ forms a valid matching

as long as no blue vertex is incident to two matched edges. Note

that this is guaranteed by how edges are added to M̃ in Line 4.

The size of the computed matching is the number of blue vertices

in H that have at least one incident edge in E⋆. Let us now lower

bound the number of such vertices. Consider an arbitrary u ∈
H . It has the desired properties exactly when the following three

independent events happen: some v is selected in F and v selects u
in Line 1;u is colored blue; andv is colored red. The joint probability

of the two latter events is exactly
1

4
. The probability that u is not

selected by some its neighbor v (either because v is not selected in

F , or v is selected in F but v does not select u in Line 1) is(
1 −

1

4∆

) |N (u)∩V ′ |
≤

(
1 −

1

4∆

)∆/2
≤ exp

(
−
1

8

)
≤

9

10

.

This implies that u is selected by a neighbor v ∈ F with probability

at least
1

10
. Therefore, with probability at least

1

10
· 1
4
= 1

40
, u is blue

and incident to an edge in E⋆. Hence, E
[���M̃ ���] ≥ 1

40
|H |. �

Next we show an upper bound on the expected size of F , the set
of friends.

Lemma 3.2. Let H be the set of heavy vertices selected in a phase of
GlobalAlg. The following bound holds on the expected size of F , the
set of friends, created in the same phase: E [|F |] ≤ 1

4
|H |.

Proof. At the beginning of a phase, every vertex u ∈ V ′—
including those in H—has its degree, |N (u) ∩ V ′ |, bounded by ∆.
Reversing the order of the summation and applying this fact, we

get:

E [|F |] =
∑
v ∈V ′

|N (v) ∩ H |

4∆
=

∑
u ∈H

|N (u) ∩V ′ |

4∆
≤
|H | · ∆

4∆
=
|H |

4

.

�

We combine the last two bounds to lower bound the expected

size of the matching computed by GlobalAlg.

Lemma 3.3. Consider an input graph G with an upper bound ∆̃ on
the maximum vertex degree. Assume that GlobalAlg(G, ∆̃) executes
T

def

= ⌊log ∆̃⌋ + 1 phases. Let Hi , Fi , and M̃i be the sets H , F , and M̃
constructed in phase i for i ∈ [T ]. The following relationship holds on
the expected sizes of these sets:

T∑
i=1
E

[���M̃i

���] ≥ 1

50

T∑
i=1
E [|Hi | + |Fi |]

Proof. For each phase i ∈ [T ], by applying the expectation over

all possible settings of the setHi , we learn from Lemmas 3.1 and 3.2

that

E
[���M̃i

���] ≥ 1

40

E [|Hi |] and E [|Fi |] ≤
1

4

E [|Hi |] .

It follows that

1

50

E [|Hi | + |Fi |] ≤
1

50

E [|Hi |]+
1

200

E [|Hi |] =
1

40

E [|Hi |] ≤ E
[���M̃i

���] ,
and the statement of the lemma follows by summing over all phases.

�

We do not use this fact directly in our paper, but note that the

last lemma can be used to show that GlobalAlg can be used to find

a large matching.

Corollary 3.4. GlobalAlg computes a constant factor approxima-
tion to the maximum matching with Ω(1) probability.

Proof. First, note that GlobalAlg finds a correct matching, i.e.,

no two different edges in M share an endpoint. This is implied

by the fact thatM is extended in every phase by a matching on a

disjoint set of vertices.

Let T and sets Hi , Fi , and M̃i for i ∈ [T ] be defined as in the

statement of Lemma 3.3. Let MOPT be a maximum matching in

the graph. Observe that at the end of the algorithm execution, the

remaining graph is empty. This implies that the size of themaximum

matching can be bounded by the total number of removed vertices,

because each removed vertex decreases the maximum matching

size by at most one:

T∑
i=1
|Hi | + |Fi | ≥ |MOPT | .

Hence, using Lemma 3.3,

E [|M |] =
T∑
i=1
E

[���M̃i

���] ≥ 1

50

T∑
i=1
E [|Hi | + |Fi |] ≥

1

50

|MOPT | .

Since |M | ≤ |MOPT |, |M | ≥
1

100
|MOPT | with probability at least

1

100
. Otherwise, E [|M |] would be strictly less than

1

100
· |MOPT | +

1 · 1

100
|MOPT | =

1

50
|MOPT |, which is not possible. �

4 EMULATION OF A PHASE IN A RANDOMLY
PARTITIONED GRAPH

In this section, we introduce a modified version of a single phase

(one iteration of the main loop) of GlobalAlg. Our modifications

later allow for implementing the algorithm in the MPC model. The

pseudocode of the new procedure, EmulatePhase, is presented as

Algorithm 3. We partition the vertices of the current graph into

m sets Vi , 1 ≤ i ≤ m. Each vertex is assigned independently and

almost uniformly at random to one of the sets. For each set Vi , we
run a subroutine LocalPhase (presented as Algorithm 4). This sub-

routine runs a carefully crafted approximate version of one phase

of GlobalAlg with an appropriately rescaled threshold ∆. More

precisely, the threshold passed to the subroutine is scaled down

by a factor ofm, which corresponds to how approximately vertex

degrees decrease in subgraphs induced by each of the sets. The

main intuition behind this modification is that we hope to break

the problem up into smaller subproblems on disjoint induced sub-

graphs, and obtain similar global properties by solving the problem

approximately on each smaller part. Later, in Section 5, we design

an algorithm that assigns the subproblems to different machines

and solves them in parallel.

We now discuss LocalPhase (i.e., Algorithm 4) in more detail.

Table 2 introduces two parameters, α and µR , and two functions,

µH and µF , which are used in LocalPhase. Note first that α is a

parameter used in the definition of µH but it is not used in the

pseudocode of LocalPhase (or EmulatePhase) for anything else. It
is, however, a convenient abbreviation in the analysis and the later
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Algorithm 3: EmulatePhase(∆,G⋆,m,D)
Emulation of a single phase in a randomly

partitioned graph

Input:
• threshold ∆
• induced subgraph G⋆ = (V⋆, E⋆) of maximum degree

3

2
∆

• numberm of subgraphs

• ϵ -near uniform and independent distribution D on

assignments of V⋆ to [m]
Output: Remaining vertices and a matching

1 Pick a random assignment Φ : V⋆ → [m] from D
2 for i ∈ [m] do
3 Vi ← {v ∈ V⋆ : Φ(v) = i }
4 (V ′i , Mi ) ← LocalPhase(i, G⋆[Vi ], ∆/m) /* Algorithm 4

*/

5 return
(⋃m

i=1V
′
i ,

⋃m
i=1 Mi

)
Table 2: Global parameters α ∈ (1,∞) and µR ∈ (0, 1) and func-
tions µH : R → [0, 1] and µF : R → [0, 1] used in the parallel
algorithm. α , µR , and µH depend on n, the total number of
vertices in the graph.

A multiplicative constant used in the exponent of µH :

α def

= 96 lnn .

The probability of the selection for a reference set:

µR
def

=
(
10

6 · logn
)−1

.

The probability of the selection for a heavy set (used with r equal to

the ratio of the estimated degree to the current threshold):

µH (r )
def

=

{
1

2
exp

( α
2
(r − 1/2)

)
if r ≤ 1/2,

1 − 1

2
exp

(
− α

2
(r − 1/2)

)
if r > 1/2.

The probability of the selection for the set of friends (used with r
equal to the ratio of the number of heavy neighbors to the current

threshold):

µF (r )
def

=

{
max{r/4, 0} if r ≤ 4,

1 if r > 4.

parallel algorithm. The other three mathematical objects specify

probabilities withwhich vertices are included in sets that are created

in an execution of LocalPhase.
Apart from creating its own versions of H , the set of heavy

vertices, and F , the set of friends, LocalPhase constructs also a set

Ri , which we refer to as a reference set. In Line 1, the algorithm puts

each vertex in Ri independently and with the same probability µR .
The reference set is used to estimate the degrees of other vertices in

the same induced subgraph in Line 2. For each vertexvi , its estimate

d̂v is defined as the number of v’s neighbors in Ri multiplied by

µ−1R to compensate for sampling. Next, in Line 3, the algorithm

uses the estimates to create Hi , the set of heavy vertices. Recall

that GlobalAlg uses a sharp threshold for selecting heavy vertices:

all vertices of degree at least ∆/2 are placed in Hi . LocalPhase
works differently. It divides the degree estimate by the current

threshold ∆⋆ and uses function µH to decide with what probability

Algorithm 4: LocalPhase(i,Gi ,∆⋆)

Emulation of a single phase on an induced

subgraph

Input:
• induced subgraph number i (useful only for the analysis)

• induced subgraph Gi = (Vi , Ei )
• threshold ∆⋆ ∈ R+

Output: Remaining vertices and a matching on Vi

1 Create a reference set Ri by independently selecting each vertex in

Vi with probability µR .
2 For each v ∈ Vi , d̂v ← |N (v) ∩ Ri |/µR .
3 Create a set Hi of heavy vertices by independently selecting each

v ∈ Vi with probability µH
(
d̂v /∆⋆

)
.

4 Create a set Fi of friends by independently selecting each vertex in

v ∈ Vi with probability µF ( |N (v) ∩ Hi |/∆⋆).

5 Compute a maximal matching Mi in G[Hi ∪ Fi ].
6 return (Vi \ (Ri ∪ Hi ∪ Fi ), Mi )

the corresponding vertex is included inHi . A sketch of the function

can be seen in Figure 1. The function transitions from almost 0 to

almost 1 in the neighborhood of
1

2
at a limited pace. As a result

vertices of degrees smaller than, say,
1

4
∆ are very unlikely to be

included in Hi and vertices of degree greater than
3

4
∆ are very

likely to be included in Hi . GlobalAlg can be seen as an algorithm

that instead of µH , uses a step function that equals 0 for arguments

less than
1

2
and abruptly jumps to 1 for larger arguments. Observe

that without µH , the vertices whose degrees barely qualify them

as heavy could behave very differently depending on which set

they were assigned to. We use µH to guarantee a smooth behavior

in such cases. That is one of the key ingredients that we need for

making sure that a set of vertices that remains on one machine

after a phase has almost the same statistical properties as a set of

vertices obtained by new random partitioning.

Finally, in Line 4, LocalPhase creates a set of friends. This step

is almost identical to what happens in the global algorithm. The

only difference is that this time we have no upper bound on the

number of heavy neighbors of a vertex. As a result that number

divided by 4∆⋆ can be greater than 1, in which case we have to

replace it with 1 in order to obtain a proper probability. This is

taken care of by function µF . OnceHi and Fi have been created, the

algorithm finds a maximal matchingMi in the subgraph induced

by the union of these two sets. The algorithm discards from the

further consideration not onlyHi and Fi , but alsoRi . This eliminates

dependencies in the possible distribution of assignments of vertices

that have not been removed yet if we condition this distribution on

the configuration of sets that have been removed. Intuitively, the

probability of a vertex’s inclusion in any of these sets depends only

on Ri and Hi but not on any other vertices. Hence, once we fix the

sets of removed vertices, the assignment of the remaining vertices

to subgraphs is fully independent.
2
The output of LocalPhase is

a subset of Vi to be considered in later phases and a matching

2
By way of comparison, consider observing an experiment in which we toss the same

coin twice. The bias of the coin is not fixed but comes from a random distribution. If we

do not know the bias, the outcomes of the coin tosses are not independent. However,

if we do know the bias, the outcomes are independent, even though they have the

same bias.
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Mi , which is used to expand the matching that we construct for

the entire input graph. We now introduce additional concepts and

notation. They are useful for describing and analyzing properties

of the algorithm. A configuration describes sets Ri , Hi , and Fi , for
1 ≤ i ≤ m, constructed in an execution of EmulatePhase. We use it

for conditioning a distribution of vertex assignments as described

in the previous paragraph. We also formally define two important

properties of distributions of vertex assignments: independence

and near uniformity.

Configurations. Letm andV⋆ be the parameters to EmulatePhase:
the number of subgraphs and the set of vertices in the graph to be

partitioned, respectively. We say that

C =
(
{Ri }i ∈[m], {Hi }i ∈[m], {Fi }i ∈[m]

)
is an m-configuration if it represents a configuration of sets Ri ,
Hi , and Fi created by EmulatePhase in the simulation of a phase.

Recall that for any i ∈ [m], Ri , Hi , and Fi are the sets created (and

removed) by the execution of LocalPhase for Vi , the i-th subset of

vertices.

We say that a vertex v is fixed by C if it belongs to one of the

sets in the configuration, i.e.,

v ∈
⋃
i ∈[m]

(Ri ∪ Hi ∪ Fi ) .

Conditional Distribution. LetD be a distribution on assignments

φ : V⋆ → [m]. Suppose that we execute EmulatePhase for D and

let C be a non-zero probabilitym-configuration—composed of sets

Ri ,Hi , and Fi for i ∈ [m]—that can be created in this setting. LetV ′⋆
be the set of vertices in V⋆ that are not fixed by C. We write D[C]

to denote the conditional distribution of possible assignments of

vertices in V ′⋆ to [m], given that for all i ∈ [m], Ri , Hi , and Fi in
C were the sets constructed by LocalPhase for the i-th induced

subgraph.

Near Uniformity and Independence. Let D be a distribution on

assignments φ : Ṽ → [m] for some set Ṽ andm. For each vertex

v ∈ Ṽ , let pv : [m] → [0, 1] be the probability mass function of

the marginal distribution of v’s assignment. For any ϵ ≥ 0, we say

that D is ϵ-near uniform if for every vertex v and every i ∈ [m],
pv (i) ∈ [(1 − ϵ)/m, (1 + ϵ)/m]. We say that D is an independent
distribution if the probability of every assignment φ in D equals

exactly

∏
v ∈V ′ pv (φ(v)).

4.1 Overview of the Main Lemmas
In this section we state our main lemmas. Their proofs are deferred

to the full version of the paper.

We start by showing that EmulatePhase computes a large match-

ing as follows. Each vertex belonging toHi or Fi that EmulatePhase
removes in the calls to LocalPhase can decrease the maximum

matching size in the graph induced by the remaining vertices by

one. We show that the matching that EmulatePhase constructs in

the process captures on average at least a constant fraction of that

loss. We also show that the effect of removing Ri is negligible. More

precisely, we prove the following.

Lemma 4.1. Let ∆, G⋆ = (V⋆,E⋆), m, and D be parameters for
EmulatePhase such that

• D is an independent and ϵ-near uniform distribution on as-
signments of vertices V⋆ to [m] for ϵ ∈ [0, 1/200],
• ∆

m ≥ 4000µ−2R ln
2 n,

• the maximum degree of a vertex in G⋆ is at most 3

2
∆.

For each i ∈ [m], let Hi , Fi , and Mi be the sets constructed by
LocalPhase for the i-th induced subgraph. Then, the following rela-
tionship holds for their expected sizes:∑

i ∈[m]

E [|Hi ∪ Fi |] ≤ n−9 + 1200
∑
i ∈[m]

E [|Mi |] .

Note that Lemma 4.1 requires that the vertices are distributed

independently and near uniformly in them sets. This is trivially the

case right after the vertices are partitioned independently at random.

However, in the final algorithm, after we partition the vertices, we

run multiple phases on each machine. In the rest of this section we

show that running a single phase preserves independence of vertex
distribution and only slightly disturbs the uniformity (Lemma 4.2

and Lemma 4.3). As we have mentioned before, independence stems

from the fact that we use reference sets to estimate vertex degrees.

We discard them at the end and condition on them, which leads

to the independence of the distribution of vertices that are not

removed.

Lemma 4.2. LetD be an independent distribution of assignments of
vertices inV⋆ to [m]. Let C be a non-zero probabilitym-configuration
that can be constructed by EmulatePhase for D. Let V ′⋆ be the set of
vertices of V⋆ that are not fixed by C. Then D[C] is an independent
distribution of vertices in V ′⋆ on [m].

Independence of the vertex assignment is a very handy feature

that allows us to use Chernoff-like concentration inequalities in

the analysis of multiple phase emulation. However, although the

vertex assignment of non-removed vertices remains independent

across machines from phase to phase, as stated by Lemma 4.2, their

distribution is not necessarily uniform. Fortunately, we can show it

is near uniform.

The proof of near uniformity is the most involved proof in this

paper. In a nutshell, the proof is structured as follows. We pick an

arbitrary vertex v that has not been removed and show that with

high probability it has the same number of neighbors in all sets Ri .
The same property holds forv’s neighbors in all setsHi . We use this

to show that the probability of a fixed configuration of sets removed

in a single phase is roughly the same for all assignments of v to

subgraphs. In other words, if v was distributed nearly uniformly

before the execution of EmulatePhase, it is distributed only slightly
less uniformly after the execution.

Lemma 4.3. Let ∆, G⋆ = (V⋆,E⋆), m, and D be parameters for
EmulatePhase such that
• D is an independent and ϵ-near uniform distribution on as-
signments of vertices V⋆ to [m] for ϵ ∈ [0, (200 lnn)−1],
• ∆

m ≥ 4000µ−2R ln
2 n.

Let C be an m-configuration constructed by EmulatePhase. With
probability at least 1 − n−4 both the following properties hold:
• The maximum degree in the graph induced by the vertices not
fixed in C is bounded by 3

4
∆.

• D[C] is 60α
((

∆
m

)−1/4
+ ϵ

)
-near uniform.
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5 PARALLEL ALGORITHM
In this section, we introduce our main parallel algorithm. It builds

on the ideas introduced in EmulatePhase. EmulatePhase randomly

partitions the graph intom induced subgraphs and runs on each of

them LocalPhase, which resembles a phase of GlobalAlg. As we
have seen, the algorithm performs well even if vertices are assigned

to subgraphs not exactly uniformly so long as the assignment is fully

independent. Additionally, with high probability, if we condition

on the configuration of sets Ri , Hi , and Fi that were removed, the

distribution of assignments of the remaining vertices is still nearly

uniform and also independent.

These properties allow for the main idea behind the final par-

allel algorithm. We partition vertices randomly into m induced

subgraphs and then run LocalPhase multiple times on each of

them with no repartitioning in the meantime. In each iteration,

for a given subgraph, we halve the local threshold ∆⋆. This corre-

sponds to multiple phases of the original global algorithm. As long

as we can show that this approach leads to finding a large matching,

the obvious gain is that multiple phases of the original algorithm
translate to O(1) parallel rounds. This approach enables our main

result: the parallel round complexity reduction from O(logn) to
O((log logn)2).

Algorithm 5: ParallelAlg(G, S)
The final parallel matching algorithm

Input:
• graph G = (V , E) on n vertices

• parameter S ∈ Z+ such that S ≤ n and S = nΩ(1)
(each

machine uses O (S ) space)
Output: matching in G

1 ∆← n, V ′ ← V , M ← ∅
2 while ∆ ≥ n

S (200 lnn)
32 do

/* High-probability invariant: maximum degree in

G[V ′] bounded by 3

2
∆ */

3 m ←
⌊√

n∆
S

⌋
/* number of machines used */

4 τ ←
⌈
1

16
log

120α (∆/m)
⌉
/* number of phases to emulate

*/
5 Partition V ′ intom sets V1, . . . , Vm by assigning each vertex

independently uniformly at random.

6 foreach i ∈ [m] do in parallel
7 If the number of edges in G[Vi ] is greater than 8S , Vi ← ∅.
8 for j ∈ [τ ] do

(Vi , Mi, j ) ← LocalPhase
(
i, G[Vi ], ∆/

(
2
j−1m

) )
9 V ′ ←

⋃m
i=1Vi

10 M ← M ∪
⋃m
i=1

⋃τ
j=1 Mi, j

11 ∆← ∆/2τ

12 Compute degrees of vertices V ′ in G[V ′] and remove from V ′

vertices of degree at least 2∆.
13 Directly simulate M ′ ← GlobalAlg(G[V ′], 2∆), using O (1) rounds

per phase.

14 return M ∪M ′

We present ParallelAlg, our parallel algorithm, as Algorithm 5.

We write S to denote a parameter specifying the amount of space

per machine. After the initialization of variables, the algorithm

enters the main loop in Lines 2–11. The loop is executed as long

as ∆, an approximate upper bound on the maximum degree in

the remaining graph, is large enough. The loop implements the

idea of running multiple iterations of LocalPhase on each induced

subgraph in a random partition. At the beginning of the loop, the

algorithm decides onm, the number of machines, and τ , the number

of phases to be emulated. Then it creates a random partition of the

current set of vertices that results inm induced subgraphs. Next for

each subgraph, the algorithm first runs a security check that the

set of edges fits onto a single machine (see Line 7). If it does not,

which is highly unlikely, the entire subgraph is removed from the

graph. Otherwise, the entire subgraph is sent to a single machine

that runs τ consecutive iterations of LocalPhase. Then the vertices

not removed in the executions of LocalPhase are collected for

further computation and new matching edges are added to the

matching being constructed. During the execution of the loop, the

maximum degree in the graph induced by V ′, the set of vertices
to be considered is bounded by

3

2
∆ with high probability. Once

the loop finishes, we remove from the graph vertices of degree

higher than 2∆—there should be none—and we directly simulate

GlobalAlg on the remaining graph, using O(1) rounds per phase.

Concentration Inequality. We use the following version of the

Chernoff bound that depends on an upper bound on the expectation

of the underlying independent random variables. It can be shown

by combining two applications of the more standard version.

Lemma 5.1 (Chernoff bound). Let X1, . . . , Xk be independently
distributed random variables taking values in [0, 1]. Let X def

= X1 +

· · · + Xk and let U ≥ 0 be an upper bound on the expectation of
X , i.e., E[X ] ≤ U . For any δ ∈ [0, 1], Pr(|X − E[X ]| > δU ) ≤
2 exp(−δ2U /3).

5.1 Properties of Thresholds
Before we analyze the behavior of the algorithm, we observe that

the value of
∆
m inside the main loop is at least polylogarithmic

and that the same property holds for the rescaled threshold that is

passed to LocalPhase.

Lemma 5.2. Consider a single iteration of the main while loop of
ParallelAlg (Lines 2–11). Let ∆ andm be set as in this iteration.
The following two properties hold:
• ∆/m ≥ (200 logn)16.
• The threshold ∆/

(
2
j−1m

)
passed to LocalPhase in Line 8 is

always at least (∆/m)15/16 ≥ 4000µ−2R ln
2 n.

Proof. Let τ be also as in this iteration of the loop. The smallest

threshold passed to LocalPhase is∆/(2τ−1m). Let λ
def

= S∆/n, where
S is the parameter to ParallelAlg. Due to the condition in Line 2,

λ ≥ (200 lnn)32. Note that ∆ = λn/S . Hencem ≤
√
n∆/S = n

S
√
λ.

This implies that ∆/m ≥
√
λ ≥ (200 lnn)16, which proves the first

claim. Due to the definition of τ ,

2
τ−1 ≤ (120α)τ−1 ≤ (∆/m)1/16.

This implies that

∆/(2τ−1m) ≥ (∆/m)15/16 ≥ (200 lnn)15

> 4 · 1015 · ln4 n = 4000µ−2R ln
2 n.
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We also observe that the probability of any set of vertices deleted

by the security check in Line 7 of ParallelAlg is low as long as the

maximum degree in the graph induced by the remaining vertices is

bounded.

Lemma 5.3. Consider a single iteration of the main while loop of
ParallelAlg and let∆ andV ′ be as in that iteration. If the maximum
degree in G[V ′] is bounded by 3

2
∆, then the probability of any subset

of vertices deleted in Line 7 is n−8.

Proof. Let m be as in the same iteration of the main loop of

ParallelAlg. Consider a single vertex v ∈ V ′. The expected num-

ber ofv’s neighbors assigned to the same subgraph is at most
3

2
∆/m.

Recall that due to Lemma 5.2,
∆
m ≥ 200 lnn. Since the assignment

of vertices to machines is fully independent, by Lemma 5.1 (i.e.,

the Chernoff bound), the probability that v has more than 2∆/m
neighbors is bounded by

2 exp

(
−
1

3

·

(
1

3

)
2

·
3

2

·
∆

m

)
≤ 2 exp

(
−

1

18

· 200 lnn

)
≤ n−10.

Therefore, by the union bound, with probability 1 − n−9, no vertex

has more than 2∆ neighbors in the same induced subgraph. As

|V ′ | ≤ n, the expected number of vertices in each setVi constructed
in the iteration of the main loop is at most n/m ≥ ∆/m ≥ 200 lnn.
What is the probability that |Vi | > 2n/m? By the independence of

vertex assignments and Lemma 5.1, the probability of such event is

at most

2 exp

(
−
1

3

·
n

m

)
≤ 2 exp

(
−
1

3

· 200 lnn

)
≤ n−10.

Again by the union bound, the event |Vi | ≤ 2n/m, for all i simulta-

neously, occurs with probability at least 1 − n−9. Combining both

bounds, with probability at least 1−2n−9 ≥ 1−n−8, all induced sub-
graphs have at most 2n/m vertices and the degree of every vertex

is bounded by 2∆/m. Hence the number of edges in one induced

subgraph is at most
1

2
· 2nm ·

2∆
m =

2n∆
m2

. By the definition ofm and

the setting of parameters in the algorithm,m ≥ 1

2

√
n∆
S , where S

is the parameter to ParallelAlg. This implies that the number of

edges is at most 2n∆/

(
1

2

√
n∆
S

)
2

= 8S in every induced subgraph

with probability 1−n−8, in which case no setVi is deleted in Line 7

of ParallelAlg. �

5.2 Matching Size Analysis
The parallel algorithm runs multiple iterations of LocalPhase on
each induced subgraph, without repartitioning. A single iteration on

all subgraphs corresponds to running EmulatePhase once. We now

show that inmost cases, the global algorithm simulates EmulatePhase
on a well behaved distribution with independently assigned ver-

tices and all vertices distributed nearly uniformly conditioned on

the configurations of the previously removed sets Ri , Hi , and Fi .
We also show that the maximum degree in the remaining graph is

likely to decrease gracefully during the process.

Lemma 5.4. With probability at least 1 − n−3:

• all parallel iterations of LocalPhase in ParallelAlg on each
induced subgraph correspond to running EmulatePhase on
independent and (200 lnn)−1-near uniform distributions of
assignments,
• the maximum degree of the graph induced by the remaining
vertices after the k-th simulation of EmulatePhase is 3

2
∆/2k .

Proof. We first consider a single iteration of the main loop

in ParallelAlg. Let ∆, τ , andm be set as in this iteration of the

loop. For j ∈ [τ ], let ∆j
def

= ∆/
(
2
j−1m

)
be the threshold passed to

LocalPhase for the j-th iteration of LocalPhase on each of the

induced subgraphs. The parallel algorithm assigns vertices to sub-

graphs and then iteratively runs LocalPhase on each of them. In

this analysis we ignore the exact assignment of vertices to sub-

graphs until they get removed as a member of one of sets Ri , Hi ,

or Fi . Instead we look at the conditional distribution on assign-

ments given the configurations of sets Ri , Hi , and Fi removed in

the previous iterations corresponding to EmulatePhase. We write

Dj , 1 ≤ j ≤ τ , to denote this distribution of assignments before the

execution of j-th iteration of LocalPhase on the induced subgraphs,
which corresponds to the j-th iteration of EmulatePhase for this
iteration of the main loop of ParallelAlg. Additionally, we write
Dτ+1 to denote the same distribution after the τ -th iteration, i.e.,

at the end of the execution of the parallel block in Lines 6–8 of

ParallelAlg. Due to Lemma 4.2, the distributions of assignments

are all independent. We define ϵj , j ∈ [τ + 1], to be the minimum

positive value such that Dj is ϵj -near uniform. Obviously, ϵ1 = 0,

since the first distribution corresponds to a perfectly uniform as-

signment. We want to apply Lemma 4.3 inductively to bound the

value of ϵj+1 as a function of ϵj with high probability. The lemma

lists two conditions: ϵj must be at most (200 lnn)−1 and the thresh-

old passed to EmulatePhase has to be at least 4000µ−2H ln
2 n. The

latter condition holds due to Lemma 5.2. Hence as long as ϵj is
sufficiently small, Lemma 4.3 implies that with probability at least

1 − n−4,

ϵj+1 ≤ 60α

((
∆

2
τ−1m

)−1/4
+ ϵj

)
≤ 60α

((
∆

m

)−15/64
+ ϵj

)
,

and no high degree vertex survives in the remaining graph. One

can easily show by induction that if this recursion is satisfied for

all 1 ≤ j ≤ τ , then ϵj ≤ (120α)
j−1 ·

(
∆
m

)−15/64
for all j ∈ [τ + 1]. In

particular, by the definition of τ and Lemma 5.2, for any j ∈ [τ ],

ϵj ≤ (120α)τ−1 ·

(
∆

m

)−15/64
≤

(
∆

m

)
1/16

·

(
∆

m

)−15/64
≤

(
∆

m

)−11/64
≤ (200 lnn)−1.

This implies that as long the unlikely events specified in Lemma 4.3

do not occur for any phase in any iteration of the main loop of

ParallelAlg, we obtain the desired properties: all intermediate

distributions of possible assignments are (200 lnn)−1-near uniform
and the maximum degree in the graph decreases at the expected

rate. It remains to bound the probability of those unlikely events

occurring for any phase. By the union bound, their total probability

is at most logn · n−4 ≤ n−3. �
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We now prove that the algorithm finds a large matching with

constant probability.

Theorem 5.5. LetMOPT be an arbitrary maximum matching in a
graphG . With Ω(1) probability, ParallelAlg constructs a matching
of size Ω(|MOPT |).

Proof. By combining Lemma 5.3 and Lemma 5.4, we learn that

with probability at least 1 − n · n−8 − n−3 ≥ 1 − 2n−3, we obtain a

few useful properties. First, all relevant distributions corresponding

to iterations of EmulatePhase are independent and (200 lnn)−1-
near uniform. Second, the maximum degree in the graph induced

by vertices still under consideration is bounded by
3

2
∆ before and

after every simulated execution of EmulatePhase, where ∆ is the

corresponding. As a result, no vertex is deleted in Lines 7 or 12 due

to the security checks.

We now use Lemma 4.1 to lower bound the expected size of the

matching created in every EmulatePhase simulation. Let τ⋆ be the

number of phases we simulate this way. We have τ⋆ ≤ logn. LetHj ,

Fj , andMj be random variables equal to the total size of sets Hi , Fi ,
andMi created in the j-th phase. If the corresponding distribution

in the j-th phase is near uniform and the maximum is bounded,

Lemma 4.1 yields

E
[
Hj + Fj

]
≤ n−9 + 1200 · E

[
Mj

]
,

i.e.,

E
[
Mj

]
≥

1

1200

(
E

[
Hj + Fj

]
− n−9

)
.

Overall, without the assumption that the conditions of Lemma 4.1

are always met, we obtain a lower bound∑
j ∈[τ⋆]

E
[
Mj

]
≥

∑
j ∈[τ⋆]

1

1200

(
E

[
Hj + Fj

]
− n−9

)
− 2n−3 ·

n

2

,

in which we consider the worst case scenario that we lose as much

as n/2 edges in the size of the constructed matching when the

unlikely negative events happen. ParallelAlg continues the con-

struction of a matching by directly simulating the global algorithm.

Let τ ′⋆ be the number of phases in that part of the algorithm. We

define H′j , F
′
j , and M

′
j , for j ∈ [τ

′
⋆], to be random variables equal to

the size of sets H , F , and M̃ in GlobalAlg in the j-th phase of the

simulation. By Lemma 3.3, we have∑
j ∈[τ ′⋆]

E
[
M′j

]
≥

∑
j ∈[τ ′⋆]

1

50

(
E

[
H′j + F

′
j

] )
.

By combining both bounds we obtain a lower bound on the size of

the constructed matching. Let

M⋆
def

=
∑

j ∈[τ⋆]

E
[
Mj

]
+

∑
j ∈[τ ′⋆]

E
[
M′j

]
be the expected matching size, and let

V⋆
def

=
∑

j ∈[τ⋆]

E
[
Hj + Fj

]
+

∑
j ∈[τ ′⋆]

E
[
H′j + F

′
j

]
.

We have

M⋆ ≥
1

1200

V⋆ −
1

n2
.

Consider a maximum matchingMOPT. At the end of the algorithm,

the graph is empty. The expected number of edges inMOPT incident

to a vertex in one of the reference sets is bounded by |MOPT | · 2µR ·

logn ≤ 10
−5 |MOPT |. The expected number of edges removed by the

security checks is bounded by
n
2
· n−3. Hence the expected number

of edges inMOPT deleted as incident to vertices that are heavy or are

friends is at least (1 − 10−5)|MOPT | − 1/(2n
2). Since we can assume

without the loss of generality that the graph is non-empty, it is

at least
1

2
|MOPT |. Hence V⋆ ≥ 1

2
|MOPT |, andM⋆ ≥

1

2400
|MOPT | −

1

n2
. For sufficiently large n (say, n ≥ 50), M⋆ ≥ Ω (|MOPT |) and

by an averaging argument, ParallelAlg has to output an O(1)-
multiplicative approximation to the maximum matching with Ω(1)
probability. For smaller n, it is not difficult to show that at least one

edge is output by the algorithm with constant probability as long

as it is not empty. �

Finally, we want to argue that the above procedure can be used

to compute 2 + ϵ approximation to maximum matching at the cost

of increasing the running time by a factor of log(1/ϵ). The idea is to;
execute algorithm ParallelAlg to compute constant approximate

matching; remove this matching from the graph; and repeat.

Corollary 5.6. LetMOPT be an arbitrary maximum matching in a
graph G . For any ϵ > 0, executing ParallelAlg on G and removing
a constructed matching repetitively, O(log(1/ϵ)) times, finds a mul-
tiplicative (2 + ϵ)-approximation to maximum matching, with Ω(1)
probability.

Proof. Assume that the ParallelAlg succeeds with probabil-

ity p and computes c-approximate matching. Observe that each

successful execution of ParallelAlg finds a matchingMc of size

at least
1

c |MOPT |. Removal ofMc from the graph decreases the size

of optimal matching by at least
1

c |MOPT | and at most by
2

c |MOPT |,

because each edge of Mc can be incident to at most two edges of

MOPT. Hence, when the size of the remaining matching drops to

at most ϵ |MOPT |, we have an 2 + ϵ-multiplicative approximation

to maximum matching constructed. The number t of successful
applications of ParallelAlg need to satisfy.

(
1 −

1

c

)t
≤ ϵ .

This gives t = O(log(1/ϵ)). In ⌈t/p⌉ = O(log(1/ϵ)) executions, we
have t successes with probability at least 1/2 by the properties of

the median of the binomial distribution. �
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