A Massively Parallel Dynamic Programming for Approximate Rectangle Escape Problem

Abstract

Sublinear time complexity is required by the massively parallel computation (MPC) model. Breaking dynamic programs into a set of sparse dynamic programs that can be divided, solved, and merged in sublinear time. The rectangle escape problem (REP) is defined as follows: For nn axis-aligned rectangles inside an axis-aligned bounding box BB, extend each rectangle in only one of the four directions: up, down, left, or right until it reaches BB and the density kk is minimized, where kk is the maximum number of extensions of rectangles to the boundary that pass through a point inside bounding box BB. REP is NP-hard for k>1k>1. If the rectangles are points of a grid (or unit squares of a grid), the problem is called the square escape problem (SEP) and it is still NP-hard. We give a 22-approximation algorithm for SEP with k2k\geq2 with time complexity O(n3/2k2)O(n^{3/2}k^2). This improves the time complexity of existing algorithms which are at least quadratic. Also, the approximation ratio of our algorithm for k3k\geq 3 is 3/23/2 which is tight. We also give a 88-approximation algorithm for REP with time complexity O(nlogn+nk)O(n\log n+nk) and give a MPC version of this algorithm for k=O(1)k=O(1) which is the first parallel algorithm for this problem

    Similar works

    Full text

    thumbnail-image

    Available Versions