4,473 research outputs found

    IMAGE PROCESSING, SEGMENTATION AND MACHINE LEARNING MODELS TO CLASSIFY AND DELINEATE TUMOR VOLUMES TO SUPPORT MEDICAL DECISION

    Get PDF
    Techniques for processing and analysing images and medical data have become the main’s translational applications and researches in clinical and pre-clinical environments. The advantages of these techniques are the improvement of diagnosis accuracy and the assessment of treatment response by means of quantitative biomarkers in an efficient way. In the era of the personalized medicine, an early and efficacy prediction of therapy response in patients is still a critical issue. In radiation therapy planning, Magnetic Resonance Imaging (MRI) provides high quality detailed images and excellent soft-tissue contrast, while Computerized Tomography (CT) images provides attenuation maps and very good hard-tissue contrast. In this context, Positron Emission Tomography (PET) is a non-invasive imaging technique which has the advantage, over morphological imaging techniques, of providing functional information about the patient’s disease. In the last few years, several criteria to assess therapy response in oncological patients have been proposed, ranging from anatomical to functional assessments. Changes in tumour size are not necessarily correlated with changes in tumour viability and outcome. In addition, morphological changes resulting from therapy occur slower than functional changes. Inclusion of PET images in radiotherapy protocols is desirable because it is predictive of treatment response and provides crucial information to accurately target the oncological lesion and to escalate the radiation dose without increasing normal tissue injury. For this reason, PET may be used for improving the Planning Treatment Volume (PTV). Nevertheless, due to the nature of PET images (low spatial resolution, high noise and weak boundary), metabolic image processing is a critical task. The aim of this Ph.D thesis is to develope smart methodologies applied to the medical imaging field to analyse different kind of problematic related to medical images and data analysis, working closely to radiologist physicians. Various issues in clinical environment have been addressed and a certain amount of improvements has been produced in various fields, such as organs and tissues segmentation and classification to delineate tumors volume using meshing learning techniques to support medical decision. In particular, the following topics have been object of this study: • Technique for Crohn’s Disease Classification using Kernel Support Vector Machine Based; • Automatic Multi-Seed Detection For MR Breast Image Segmentation; • Tissue Classification in PET Oncological Studies; • KSVM-Based System for the Definition, Validation and Identification of the Incisinal Hernia Reccurence Risk Factors; • A smart and operator independent system to delineate tumours in Positron Emission Tomography scans; 3 • Active Contour Algorithm with Discriminant Analysis for Delineating Tumors in Positron Emission Tomography; • K-Nearest Neighbor driving Active Contours to Delineate Biological Tumor Volumes; • Tissue Classification to Support Local Active Delineation of Brain Tumors; • A fully automatic system of Positron Emission Tomography Study segmentation. This work has been developed in collaboration with the medical staff and colleagues at the: • Dipartimento di Biopatologia e Biotecnologie Mediche e Forensi (DIBIMED), University of Palermo • Cannizzaro Hospital of Catania • Istituto di Bioimmagini e Fisiologia Molecolare (IBFM) Centro Nazionale delle Ricerche (CNR) of Cefalù • School of Electrical and Computer Engineering at Georgia Institute of Technology The proposed contributions have produced scientific publications in indexed computer science and medical journals and conferences. They are very useful in terms of PET and MRI image segmentation and may be used daily as a Medical Decision Support Systems to enhance the current methodology performed by healthcare operators in radiotherapy treatments. The future developments of this research concern the integration of data acquired by image analysis with the managing and processing of big data coming from a wide kind of heterogeneous sources

    Artificial Intelligence Techniques for Cancer Detection and Classification: Review Study

    Get PDF
    Cancer is the general name for a group of more than 100 diseases. Although cancer includes different types of diseases, they all start because abnormal cells grow out of control. Without treatment, cancer can cause serious health problems and even loss of life. Early detection of cancer may reduce mortality and morbidity. This paper presents a review of the detection methods for lung, breast, and brain cancers. These methods used for diagnosis include artificial intelligence techniques, such as support vector machine neural network, artificial neural network, fuzzy logic, and adaptive neuro-fuzzy inference system, with medical imaging like X-ray, ultrasound, magnetic resonance imaging, and computed tomography scan images. Imaging techniques are the most important approach for precise diagnosis of human cancer. We investigated all these techniques to identify a method that can provide superior accuracy and determine the best medical images for use in each type of cancer

    Brain tumor classification in magnetic resonance imaging images using convolutional neural network

    Get PDF
    Deep learning (DL) is a subfield of artificial intelligence (AI) used in several sectors, such as cybersecurity, finance, marketing, automated vehicles, and medicine. Due to the advancement of computer performance, DL has become very successful. In recent years, it has processed large amounts of data, and achieved good results, especially in image analysis such as segmentation and classification. Manual evaluation of tumors, based on medical images, requires expensive human labor and can easily lead to misdiagnosis of tumors. Researchers are interested in using DL algorithms for automatic tumor diagnosis. convolutional neural network (CNN) is one such algorithm. It is suitable for medical image classification tasks. In this paper, we will focus on the development of four sequential CNN models to classify brain tumors in magnetic resonance imaging (MRI) images. We followed two steps, the first being data preprocessing and the second being automatic classification of preprocessed images using CNN. The experiments were conducted on a dataset of 3,000 MRI images, divided into two classes: tumor and normal. We obtained a good accuracy of 98,27%, which outperforms other existing models

    Machine Learning Algorithm for Early Detection and Analysis of Brain Tumors Using MRI Images

    Get PDF
    Among the human body's organs, the brain is the most delicate and specialized. It is proven that after the heart stops then also brain death occurs within 3 to 5 minutes of death or within 3 to 5 minutes of loss of oxygen supply. A brain tumor is a life-threatening disease that can be detected at any age from an infant to an old person. Though a lot of people did research in the detection and analysis of a tumor, but then also detecting tumors at the early phase is still a much more arduous field in the biomedical study. This paper focuses on the comparative study of various existing algorithms in this field. This paper addresses the challenges and some issues in MRI brain tumor detection which are also addressed in this research

    Review on the methods of automatic liver segmentation from abdominal images

    Get PDF
    Automatic liver segmentation from abdominal images is challenging on the aspects of segmentation accuracy, automation and robustness. There exist many methods of liver segmentation and ways of categorisingthem. In this paper, we present a new way of summarizing the latest achievements in automatic liver segmentation.We categorise a segmentation method according to the image feature it works on, therefore better summarising the performance of each category and leading to finding an optimal solution for a particular segmentation task. All the methods of liver segmentation are categorized into three main classes including gray level based method, structure based method and texture based method. In each class, the latest advance is reviewed with summary comments on the advantages and drawbacks of each discussed approach. Performance comparisons among the classes are given along with the remarks on the problems existed and possible solutions. In conclusion, we point out that liver segmentation is still an open issue and the tendency is that multiple methods will be employed to-gether to achieve better segmentation performance

    Brain Tumor Prediction using Adaptive Connected Component based GLCM and SVM Method

    Get PDF
    A crucial stage in the diagnosis of brain disorders using magnetic resonance images is feature extraction. The feature extraction procedure is used to reduce the amount of the picture data by removing the necessary information from the segmented image. The segmentation strategy and features that are extracted have an impact on the classification algorithm's dependability. With the aid of a Support Vector Machine, texture features are retrieved in this study using a Grey Level Co-occurrence Matrix, while form features are extracted using connected areas. Images of benign tumours, malignant tumours, and a normal brain all exhibit distinctive features. The classification of MR images can benefit from this change in feature values. A SVM classifier will receive the features that were thusly obtained for training and testing and further able to classify the abnormalities in brain images

    Neuroendoscopy Adapter Module Development for Better Brain Tumor Image Visualization

    Get PDF
    The issue of brain magnetic resonance image exploration together with classification receives a significant awareness in recent years. Indeed, various computer-aided-diagnosis solutions were suggested to support radiologist in decision-making. In this circumstance, adequate image classification is extremely required as it is the most common critical brain tumors which often develop from subdural hematoma cells, which might be common type in adults. In healthcare milieu, brain MRIs are intended for identification of tumor. In this regard, various computerized diagnosis systems were suggested to help medical professionals in clinical decision-making. As per recent problems, Neuroendoscopy is the gold standard intended for discovering brain tumors; nevertheless, typical Neuroendoscopy can certainly overlook ripped growths. Neuroendoscopy is a minimally-invasive surgical procedure in which the neurosurgeon removes the tumor through small holes in the skull or through the mouth or nose. Neuroendoscopy enables neurosurgeons to access areas of the brain that cannot be reached with traditional surgery to remove the tumor without cutting or harming other parts of the skull. We focused on finding out whether or not visual images of tumor ripped lesions ended up being much better by auto fluorescence image resolution as well as narrow-band image resolution graphic evaluation jointly with the latest neuroendoscopy technique. Also, within the last several years, pathology labs began to proceed in the direction of an entirely digital workflow, using the electronic slides currently being the key element of this technique. Besides lots of benefits regarding storage as well as exploring capabilities with the image information, among the benefits of electronic slides is that they can help the application of image analysis approaches which seek to develop quantitative attributes to assist pathologists in their work. However, systems also have some difficulties in execution and handling. Hence, such conventional method needs automation. We developed and employed to look for the targeted importance along with uncovering the best-focused graphic position by way of aliasing search method incorporated with new Neuroendoscopy Adapter Module (NAM) technique

    Deep learning analysis of the myocardium in coronary CT angiography for identification of patients with functionally significant coronary artery stenosis

    Full text link
    In patients with coronary artery stenoses of intermediate severity, the functional significance needs to be determined. Fractional flow reserve (FFR) measurement, performed during invasive coronary angiography (ICA), is most often used in clinical practice. To reduce the number of ICA procedures, we present a method for automatic identification of patients with functionally significant coronary artery stenoses, employing deep learning analysis of the left ventricle (LV) myocardium in rest coronary CT angiography (CCTA). The study includes consecutively acquired CCTA scans of 166 patients with FFR measurements. To identify patients with a functionally significant coronary artery stenosis, analysis is performed in several stages. First, the LV myocardium is segmented using a multiscale convolutional neural network (CNN). To characterize the segmented LV myocardium, it is subsequently encoded using unsupervised convolutional autoencoder (CAE). Thereafter, patients are classified according to the presence of functionally significant stenosis using an SVM classifier based on the extracted and clustered encodings. Quantitative evaluation of LV myocardium segmentation in 20 images resulted in an average Dice coefficient of 0.91 and an average mean absolute distance between the segmented and reference LV boundaries of 0.7 mm. Classification of patients was evaluated in the remaining 126 CCTA scans in 50 10-fold cross-validation experiments and resulted in an area under the receiver operating characteristic curve of 0.74 +- 0.02. At sensitivity levels 0.60, 0.70 and 0.80, the corresponding specificity was 0.77, 0.71 and 0.59, respectively. The results demonstrate that automatic analysis of the LV myocardium in a single CCTA scan acquired at rest, without assessment of the anatomy of the coronary arteries, can be used to identify patients with functionally significant coronary artery stenosis.Comment: This paper was submitted in April 2017 and accepted in November 2017 for publication in Medical Image Analysis. Please cite as: Zreik et al., Medical Image Analysis, 2018, vol. 44, pp. 72-8
    • …
    corecore