1,222 research outputs found

    Performance interface document for users of Tracking and Data Relay Satellite System (TDRSS) electromechanically steered antenna systems (EMSAS)

    Get PDF
    Satellites that use the NASA Tracking and Data Relay Satellite System (TDRSS) require antennas that are crucial for performing and achieving reliable TDRSS link performance at the desired data rate. Technical guidelines are presented to assist the prospective TDRSS medium-and high-data rate user in selecting and procuring a viable, steerable high-gain antenna system. Topics addressed include the antenna gain/transmitter power/data rate relationship; Earth power flux-density limitations; electromechanical requirements dictated by the small beam widths, desired angular coverage, and minimal torque disturbance to the spacecraft; weight and moment considerations; mechanical, electrical and thermal interfaces; design lifetime failure modes; and handling and storage. Proven designs are cited and space-qualified assemblies and components are identified

    NASA Tech Briefs Index, 1977, volume 2, numbers 1-4

    Get PDF
    Announcements of new technology derived from the research and development activities of NASA are presented. Abstracts, and indexes for subject, personal author, originating center, and Tech Brief number are presented for 1977

    SIRU development. Volume 1: System development

    Get PDF
    A complete description of the development and initial evaluation of the Strapdown Inertial Reference Unit (SIRU) system is reported. System development documents the system mechanization with the analytic formulation for fault detection and isolation processing structure; the hardware redundancy design and the individual modularity features; the computational structure and facilities; and the initial subsystem evaluation results

    Planning and Operation of DSTATCOM in Electrical Distribution Systems

    Get PDF
    In present day scenario, it is most essential to consider the maximum asset performance of the power distribution systems to reach the major goals to meet customer demands. To reach the goals, the planning optimization becomes crucial, aiming at the right level of reliability, maintaining the system at a low total cost while keeping good power quality. There are some problems encountered which are hindering the effective and efficient performance of the distribution systems to maintain power quality. These problems are higher power losses, poor voltage profile near to the end customers, harmonics in load currents, sags and swells in source voltage etc. All these problems may arise due to the presence of nonlinear loads, unpredictable loads, pulse loads, sensor and other energy loads, propulsion loads and DG connections etc. Hence, in order to improve the power quality of power distribution systems, it is required to set up some power quality mitigating devices, for example, distribution static synchronous compensator (DSTATCOM), dynamic voltage restorer (DVR), and unified power quality conditioner (UPQC) etc. The goal of this project work is to devise a planning of optimal allocation of DSTATCOM in distribution systems using optimization techniques so as to provide reactive power compensation and improve the power quality

    Index to 1984 NASA Tech Briefs, volume 9, numbers 1-4

    Get PDF
    Short announcements of new technology derived from the R&D activities of NASA are presented. These briefs emphasize information considered likely to be transferrable across industrial, regional, or disciplinary lines and are issued to encourage commercial application. This index for 1984 Tech B Briefs contains abstracts and four indexes: subject, personal author, originating center, and Tech Brief Number. The following areas are covered: electronic components and circuits, electronic systems, physical sciences, materials, life sciences, mechanics, machinery, fabrication technology, and mathematics and information sciences

    NSSDC Conference on Mass Storage Systems and Technologies for Space and Earth Science Applications, volume 1

    Get PDF
    Papers and viewgraphs from the conference are presented. This conference served as a broad forum for the discussion of a number of important issues in the field of mass storage systems. Topics include magnetic disk and tape technologies, optical disks and tape, software storage and file management systems, and experiences with the use of a large, distributed storage system. The technical presentations describe, among other things, integrated mass storage systems that are expected to be available commercially. Also included is a series of presentations from Federal Government organizations and research institutions covering their mass storage requirements for the 1990's

    Near-field baseband communication system for use in biomedical implants

    Get PDF
    This thesis introduces the reader to the near-field baseband pulse radio communication for biomedical implants. It details the design and implementation of the complete communication system with a particular emphasis on the antenna structure and waveform coding that is compatible with this particular technology. The wireless communication system has great employability in small pill-sized biomedical diagnostic devices offering the advantages of low power consumption and easy integration with SoC and lab-in-a-pill technologies. The greatest challenge was the choice of antenna that had to be made to effectively transmit the pulses. A systematic approach has been carried out in arriving at the most suitable antenna for efficient emanation of pulses and the fields around it are analysed electromagnetically using a commercially available software. A magnetic antenna can be used to transmit the information from inside a human body to the outside world. The performance of the above antenna was evaluated in a salt solution of different concentrations which is similar to a highly conductive lossy medium like a human body. Near-field baseband pulse transmission is a waveform transmission scheme wherein the pulse shape is crucial for decoding information at the receiver. This demands a new approach to the antenna design, both at the transmitter and the receiver. The antenna had to be analysed in the time-domain to know its effects on the pulse and an expression for the antenna bandwidth has been proposed in this thesis. The receiving antenna should be able to detect very short pulses and while doing so has to also maintain the pulse shape with minimal distortion. Different loading congurations were explored to determine the most feasible one for receiving very short pulses. Return-to-zero (RZ), Non-return-zero (NRZ) and Manchester coded pulse waveforms were tested for their compatibility and performance with the near-field baseband pulse radio communication. It was concluded that Manchester coded waveform are perfectly suited for this particular near-field communication technology. Pulse interval modulation was also investigated and the findings suggested that it was easier to implement and had a high throughput rate too. A simple receiver algorithm has been suggested and practically tested on a digital signal processor. There is further scope for research to develop complex signal processing algorithms at the receiver

    Wave-based sensor, actuator and optimizer

    Get PDF
    Programa doutoral em Sistemas Avançados de Engenharia para a Indústria (AESI)A presente tese explora a utilização de ondas para abordar dois desafios significativos na indústria automóvel. O primeiro desafio consiste no desenvolvimento de um sistema de cancelamento ativo de ruído (ANC) que possa reduzir os ruídos não estacionários no compartimento de passageiros de um veículo. O segundo desafio é criar uma metodologia de conceção ótima para sensores de posição indutivos capazes de medir deslocamentos lineares, rotacionais e angulares. Para abordar o primeiro desafio, foi desenvolvido de um sistema ANC onde wavelets foram combinadas com um banco de filtros adaptativos. O sistema foi implementado em uma FPGA, e testes demonstraram que o sistema pode reduzir o ruído não estacionário em um ambiente acústico aberto e não controlado em 9 dB. O segundo desafio foi abordado através de uma metodologia que combina um algoritmo genético com um método numérico rápido para otimizar um sensor de posição indutivo. O método numérico foi usado para simular o campo eletromagnético associado à geometria do sensor, permitindo a maximização da corrente induzida nas bobinas recetoras e a minimização da não-linearidade no sensor. A minimização da não-linearidade foi conseguida através do desenho (layout) das bobinas que compõem o sensor. Sendo este otimizado no espaço de Fourier através da adição de harmónicos apropriados na geometria. As melhores geometrias otimizadas apresentaram uma não-linearidade inferior a 0,01% e a 0,25% da escala total para os sensores de posição angular e linear, respetivamente, sem calibração por software. O sistema ANC proposto tem o potencial de melhorar o conforto dos ocupantes do veículo, reduzindo o ruído indesejado dentro do compartimento de passageiros. Isso poderia reduzir o uso de materiais de isolamento acústico no veículo, levando a um veículo mais leve e, em última análise, a uma redução no consumo de energia. A metodologia desenvolvida para sensores de posição indutivos contribui para o estado da arte de sensores de posição eficientes e económicos, o que é crucial para os requisitos complexos da indústria automóvel. Essas contribuições têm implicações para o desenho de sistemas automotivos, com requisitos de desempenho e considerações ambientais e económicas.This thesis explores the use of waves to tackle two major engineering challenges in the automotive industry. The first challenge is the development of an Active Noise Cancelling (ANC) system that can effectively reduce non-stationary noise inside a vehicle’s passenger compartment. The second challenge is the optimization of an inductive position sensor design methodology capable of measuring linear, rotational, and angular displacements. To address the first challenge, this work designs an ANC system that employs wavelets combined with a bank of adaptive filters. The system was implemented in an FPGA, and field tests demonstrate its ability to reduce non-stationary noise in an open and uncontrolled acoustic environment by 9 dB. The second challenge was tackled by proposing a new approach that combines a genetic algorithm with a fast and lightweight numerical method to optimize the geometry of an inductive position sensor. The numerical method is used to simulate the sensor’s electromagnetic field, allowing for the maximization of induced current on the receiver coils while minimizing the sensor’s non-linearity. The non-linearity minimization was achieved through its unique sensor’s coils design optimized in the Fourier space by adding the appropriate harmonics to the coils’ geometry. The best optimized geometries exhibited a non-linearity of less than 0.01% and 0.25% of the full scale for the angular and linear position sensors, respectively. Both results were achieved without the need for signal calibration or post-processing manipulation. The proposed ANC system has the potential to enhance the comfort of vehicle occupants by reducing unwanted noise inside the passenger compartment. Moreover, it has the potential to reduce the use of acoustic insulation materials in the vehicle, leading to a lighter vehicle and ultimately reducing energy consumption. The developed methodology for inductive position sensors represents a state-of-the-art contribution to efficient and cost-effective position sensor design, which is crucial for meeting the complex requirements of the automotive industry.I would like to thank the Fundação para a Ciência e Tecnologia (FCT) and Bosch Car Multimedia for funding my PhD (grant PD/BDE/142901/2018)

    INVESTIGATION INTO SUBMICRON TRACK POSITIONING AND FOLLOWING TECHNOLOGY FOR COMPUTER MAGNETIC DISKS

    Get PDF
    In the recent past some magnetic heads with submicron trackwidth have been developed in order to increase track density of computer magnetic disks, however a servo control system for a submicron trackwidth head has not been investigated. The main objectives of this work are to investigate and develop a new servo pattern recording model, a new position sensor, actuator, servo controller used for submicron track positioning and following on a computer hard disk with ultrahigh track density, to increase its capacity. In this position sensor study, new modes of reading and writing servo information for longitudinal and perpendicular magnetic recording have been developed. The read/write processes in the model have been studied including the recording trackwidth, the bit length, the length and shape of the transition, the relationship between the length of the MR head and the recording wavelength, and the SIN of readout. lt has also been investigated that the servo patterns are magnetized along the radial direction by a transverse writing head that is aligned at right angles with the normal data head and the servo signals are reproduced by a transverse MR head with its stripe and pole gap tangential to the circumferential direction. lt has been studied how the servo signal amplitude and linearity are affected by the length of the MR sensor and the distance between the shields of the head. Such things as the spacing and length of the servo-pattern elements have been optimised so as to achieve minimum jitter and maximum utilisation of the surface of the disk. The factors (i.e. the skew angle of the head) affecting the SIN of the position sensor have been analysed and demonstrated. As a further development, a buried servo method has been studied which uses a servo layer underneath the data layer, so that a continuous servo signal is obtained. A new piezo-electric bimorph actuator has been demonstrated. This can be used as a fine actuator in hard disk recording. The linearity and delay of its response are improved by designing a circuit and selecting a dimension of the bimorph element. A dual-stage actuator has been developed. A novel integrated fine actuator using a piezo-electric bimorph has also been designed. A new type of construction for a magnetic head and actuator has been studied. A servo controller for a dual-stage actuator has been developed. The wholly digital controller for positioning and following has been designed and its performances have been simulated by the MAL TAB computer program. A submicron servo track writer and a laser system measuring dynamic micro-movement of a magnetic head have been specially developed for this project. Finally, track positioning and following on 0.7 µm tracks with a 7% trackwidth rms runout has been demonstrated using the new servo method when the disk-was rotating at low speed. This is one of the best results in this field in the world
    corecore