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ABSTRACT

This thesis introduces the reader to the near-field baseband pulse radio commu-

nication for biomedical implants. It details the design and implementation of

the complete communication system with a particular emphasis on the antenna

structure and waveform coding that is compatible with this particular technology.

The wireless communication system has great employability in small pill-sized

biomedical diagnostic devices offering the advantages of low power consumption

and easy integration with SoC and lab-in-a-pill technologies.

The greatest challenge was the choice of antenna that had to be made to

effectively transmit the pulses. A systematic approach has been carried out in

arriving at the most suitable antenna for efficient emanation of pulses and the

fields around it are analysed electromagnetically using a commercially available

software. A magnetic antenna can be used to transmit the information from inside

a human body to the outside world. The performance of the above antenna was

evaluated in a salt solution of different concentrations which is similar to a highly

conductive lossy medium like a human body.

Near-field baseband pulse transmission is a waveform transmission scheme

wherein the pulse shape is crucial for decoding information at the receiver. This

demands a new approach to the antenna design, both at the transmitter and the

receiver. The antenna had to be analysed in the time-domain to know its effects

on the pulse and an expression for the antenna bandwidth has been proposed

in this thesis. The receiving antenna should be able to detect very short pulses
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and while doing so has to also maintain the pulse shape with minimal distortion.

Different loading configurations were explored to determine the most feasible one

for receiving very short pulses.

Return-to-zero (RZ), Non-return-zero (NRZ) and manchester coded pulse

waveforms were tested for their compatibility and performance with the near-

field baseband pulse radio communication. It was concluded that manchester

coded waveform are perfectly suited for this particular near-field communication

technology. Pulse interval modulation was also investigated and the findings sug-

gested that it was easier to implement and had a high throughput rate too. A

simple receiver algorithm has been suggested and practically tested on a digital

signal processor. There is further scope for research to develop complex signal

processing algorithms at the receiver.
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Introduction 1.1 Introduction

1.1 Introduction

This chapter illustrates the motivation for the research in terms of its relevance

to a biomedical implant communication system. The aim and key objectives are

discussed and a summary of the thesis is given.

1.2 Motivation

Biomedical implants are instrumental in providing data that is otherwise diffi-

cult to obtain [14]. The subject can be allowed to remain in a relatively normal

physiological and psychological state by ensuring minimal interference to their

normal pattern of activities. A radio transmitter can be swallowed and the phys-

iological data can be transmitted wirelessly. An example will be a telemetry

sensor designed as a pill to monitor the gastrointestinal tract [15]. The microsys-

tem has three important blocks namely, sensors, signal conditioning circuitry and

the wireless telemetry platform. The sensors can sense a variety of physiological

variables like temperature, oxygen, pH, etc., The signal conditioning circuits has

sub-blocks like analog-to-digital converter (ADC), operational amplifiers, etc., to

prepare the signal for wireless transmission. In its infancy, biomedical implants

used a simple but effective circuit like a Hartley oscillator to send data over

an inductive link. Traditional forms of communication schemes like amplitude

modulation (AM) and frequency modulation (FM) have been extensively used

in recent times. In these modulation schemes, the physiological signal, obtained

by transducers, is amplified and processed to generate the modulation signals for

transmission. The receiver consists of an antenna tuned to select the transmitted

frequency and a demodulator to separate the signal from the carrier wave.

The physiological information is impressed upon a sinusoidal signal of high

frequency. This process is called modulation and the sinusoid is the carrier wave.

This is done for the efficient radiation of the information signal from an antenna.

The antenna has to be a certain fraction of the wavelength to radiate effectively.

In an amplitude-modulated system, the amplitude of the carrier wave is varied

with the information signal. In a frequency-modulated system, the frequency of

the carrier is varied with the modulating or information bearing signal. In mixed
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signal system designs, the information signal is encoded in the form of pulses. If

the amplitude of the pulses is used to represent the transmitted information, this

method is called pulse amplitude modulation (PAM). If the width of the pulse

is varied to represent the information, pulse width modulation (PWM) results.

In pulse position modulation (PPM), the timing of a very narrow pulse is varied

with respect to a reference pulse. All the above are digital modulation schemes

by which digital symbols are transformed into waveforms that take the form of

shaped pulses. These pulses undergo bandpass modulation like amplitude shift

keying (ASK), phase shift keying (PSK) and frequency shift keying (FSK). The

outcome is a sinusoid of very high frequency.

Implantable systems that utilize the architecture relevant to conventional com-

munication systems suffer from the problems of integration with system-on-chip

(SoC) technology, high power consumption and switching noise effects. From

an application perspective, SoC helps to include complete functionality within a

single chip. However as systems become more complex they are increasingly chal-

lenging to design. The driving force behind the SoC technology is the integration

of more transistors on a single chip, short lead time to market, high performance

and flexibility. The SoC has a few issues to be addressed that include power

consumption, memory latency and transistor variability [16]. Integration does

not only mean placing the analog and digital components spatially together on a

single chip. Analog and digital intellectual property blocks have to coexist with

effective test and verification strategies deployed to ensure the complete working

of the system according to the design specifiations. Therefore the reduction of

the complexity of any portion of the chip eg., communication circuits, reduces

the burden on the SoC design team.

In this work, it is attempted to develop a baseband communication system

that operates in the near-field of an antenna. The design is aimed at reducing

the power hungry blocks and communicate via digital pulses. The digital pulses

are emanated directly from an antenna thereby eliminating the need for modula-

tion. A thorough investigation is carried out in characterising such a pulse based

communication system, with an emphasis on the antenna design. Modulation is

generally carried out to produce an output signal that is at a higher frequency

than the input signal for transmission into space. The modulators generally con-
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sist of a DAC, an analog filter and analog mixer. Power consumption increases

with the signal bandwidth for a constant dynamic range. A FSK modulator used

as a part of the RF transmission circuit of an implantable system consumed 5 mW,

or 35 % of the total power budget for the chip to provide a data rate of 5 kbps

[15].

1.3 Aim and Objectives

The overall aim of this thesis is to develop a near-field baseband communication

system for biomedical implants. The design involves an unconventional approach

in which the traditional blocks of a communication system namely, oscillators,

mixers and power amplifiers, are discarded and instead the information bearing

pulses are directly emanated from an antenna.

The primary objective is to make an antenna choice that should be possible

to radiate pulses directly. Each pulse is made up of several harmonic frequency

components, thus the need for a wideband antenna to make this baseband com-

munication a viable solution. Antennas can be either electric or magnetic in

nature. The suitabiliy of these antenna types has to be determined and an ap-

propriate antenna, for use in near-field baseband pulse communication, has to be

selected.

The secondary objective is to analyse the antenna response to a pulse exci-

tation. A pulse invariably undergoes distortion at the terminals of an antenna.

A novel design methodology is thus required to describe the antenna parameters

that will help a wideband pulse transmission. A study of the time and frequency

domain responses of an antenna will form the basis of this research work that will

finally help achieve an intelligible pulse transmission scheme for use in ingestible

biomedical devices. Various pulse coding schemes will be studied to find their

applicability in the near-field baseband pulse transmission system.

The third objective will be to focus on the electromagnetic design of the an-

tenna and decide a suitable radiating structure that has the potential of being

able to be integrated with a system-on-chip (SOC) or lab-in-a-pill (LIAP) tech-

nology. The antenna has to be omnidirectional and also fulfill the criterion of

achieving communication over a reasonable range of operation.
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The fourth objective is to design a suitable pulse receiving antenna. The pulse

information is incorporated in its shape as well as its time of arrival. Therefore

the antenna has to be able to receive pulses with minimum distortion and aid

in the demodulation of received pulses. Different antenna loading configurations

will be studied to aid in the understanding of the effects of loading on a pulse in

the time domain. An optimal design principle for antennas intended for use in

pulse receiving communication schemes will be suggested.

The research aims to provide a very simple and attractive wireless communica-

tion scheme for use in biomedical implants. Using this technique the transmitter

can transmit the data without the need for a dedicated wireless transmitter. In

this new design the radio elements are reduced to three single passive elements:an

inductor, capacitor and resistor. The requirement for traditional components in-

cluding mixers, frequency synthesisers and power amplifiers is removed. The

novelty of the research work is in providing a methodology for selecting an ap-

propriate resistance and capacitance to make the most effective use of a given

implantable loop antenna. Note that the antenna is determined by the pill size

and shape. Usually solenoidal shape is preferred over printed loop antennas for

its better range of operation. The traditional method of achieving resonance with

an inductance and capacitance in the transmitter circuit to make communication

possible is not followed here but the digital data pulses are directly emanated by

a loop antenna. The values of the capacitance and resistance are optimised to

achieve a waveform transmission thereby eliminating the use of modulators and

mixers. This is the first detailed study of such a direct communication scheme

for biomedical implantable telemetry.

1.4 Thesis Outline

The remainder of this thesis is divided into seven chapters and a brief description

of the contents of each chapter is provided to help the reader in gaining an

understanding of the core of the substance included in every chapter.

Chapter 2 presents a review of the literature relevant to the development of

a near-field baseband communication system.

Chapter 3 discusses the design relevant to pulse based transmission systems,
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especially the type of antennas that will be suitable for transmitting pulses.

Chapter 4 provides a new design principle that makes loop antennas a per-

fect choice for system integration and attempts to characterise the bandwidths

required by such wideband magnetic antennas.

Chapter 5 discusses the electromagnetic design of loop antennas and suggests

an optimal radiating structure.

Chapter 6 describes different pulse coding schemes that are relevant to the

system proposed in this thesis. A hardware realisation of these schemes along

with the implementation of a filtering algorithm on a digital signal processor

(DSP) at the receiver is included in the discussion.

Chapter 7 describes how to receive the pulses transmitted by a loop antenna

with very little distortion thus maintaining the integrity of a pulse at the receiver.

Chapter 8 summarises the salient features of this research study and provides

some suggestions for future work.

1.5 Summary

In this chapter, the motivation for developing a communication system to find

use in implantable medical systems was presented. This included the description

of the research problem along with the advantages provided by such a system.

Besides, the aim and objectives of the research work were established and a sketch

of the thesis was given. The next chapter will review the literature pertinent to

the research work.
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2.1 Introduction

The previous chapter discussed the motivation for the research work, along with

aims and objectives. This chapter presents a review of communication schemes

developed for implantable systems. It begins with an introduction to pill shaped

microsystems and the ways in which the sensed information was sent to the out-

side world. The chapter then moves on to explain how micromachining technolo-

gies benefitted miniaturisation of traditional blocks such as oscillators, mixers,

etc., in a communication system and also use of digital modulation schemes to in-

crease data rates. The antenna design techniques for such implants employed by

designers and relevant literature discussing the performance of different antenna

types is revisited. A new wideband signalling technique called ultra wideband

radio is explained and its potential in future, to emerge as a form of implant

communication is explained with references to recent findings in the literature.

2.2 Implantable Microsystems

Biomedical Engineering has been around for centuries now with the first refer-

ence to Leonardo da Vinci (1415− 1519). He uniquely combined the mechanics

and anatomy of the flight of birds by drawing the pictures of the skeleton and

its musculature. Traditional disciplines such as biology and physics were much

relied on and utilised by biomedical engineering in its infancy. But it has now be-

come an unrelated and important discipline. A particular sub-field, implantable

biotelemetry systems has come forth and with elapse in time gained much mo-

mentum [17]. A plethora of biomedical implants has been proposed to improve

medical diagnosis and treatment, ever since the implantable pacemaker in the

1950’s.

Micromachining technologies and CMOS microelectronics have significantly

transformed the field of biomedical, microelectronic implants by providing an ex-

cellent platform for the development and implementation of new generations of

implantable devices [18]. Miniature size, low power consumption, high reliability,

low cost and superior functionality are the significant features of such implantable

systems. These implantable systems are used to address various medical prob-
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lems, for instance, chronic pain therapy [19], for neural prosthesis [20], for bladder

control [21] etc. Temperature, pH and blood glucose concentration, and various

other physiological parameters can be measured from within the human body.

The above implementations are marked by the ability of the implants to accept

commands from an external host system and/or transmit physiological data out-

wards, as measured from inside the body. Information exchange is often achieved

through a wireless interface between the transmission and reception antennas of

the systems involved. Sensors on the part of the implants acquire the physiolog-

ical data whereas intrusion to the human body is usually accomplished through

actuators.

2.2.1 Wireless Biotelemetry

Wireless Biotelemetry is defined as transmitting biological or physiological data

from a remote location to a location that has the capability of interpreting the

data and affect decision making. Biomedical telemetry is a special field of biomed-

ical instrumentation that often permits transmission of biological information

from an inaccessible location to a remote monitoring site. This plays a very

significant role to obtain a wide spectrum of environmental, physiological and

behavioural data [22]. Measurements and monitoring techniques can be applied

to human beings and animals with minimum hindrance. The transmitted data

can be reproduced. The state of being restrained in animals and human beings as

well as the stress of immobilisation can cause alterations of measured variables.

Accordingly, the advantage of biotelemetry is the measurement of physiologi-

cal variables in conscious, unrestrained environment. Wireless, inhibition-free,

simultaneous, long-term data gathering are the characteristics of biotelemetry

[23, 24, 25].

Any measurable quantity is flexible with biotelemetry. Measurements that

can be biotelemetered are determined in two categories:

• Bioelectrical variables such as ECG, EMG and EEG.

• Physiological variables that require transducers, such as blood pressure,

gastrointestinal pressure, blood flow and temperature. Suitable transducers
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can be employed for the measurement of a wide variety of physiological

variables [26].

Biotelemetry began as a laboratory inquisitiveness but evolved into a useful,

reliable tool for data acquisition. The pioneer in this field was Einthoven, who

in 1903 used telephone lines to transmit electrocardiograms from a hospital to

his laboratory. The telephone lines were just conductors to allow current to pass

through them and connect the immersion electrodes with a remote galvanome-

ter. In 1921, Winters eliminated the wires and transmitted heart sounds over

a marine radio link. Small transmitters were evolved which owed their devel-

opment to the electronic methods of making external transmitters. In the early

1950’s researchers considered the possibility of placing the physiological monitor-

ing transmitters within an animal. The problem was that the unavailability of

junction transistors. Thus passive methods were conceived in which there would

be neither active elements nor internal power sources. Bob V. Markevitch, an

undergraduate made passive circuits which was later studied by Franklin Battat.

The transmission of signals from within a subject evolved slowly. The inven-

tion of the transistor opened up new avenues. Endoradiosonde was one of the

earliest biotelemetry units developed by Mackay and Jacobson. Since the inven-

tion of integrated circuit technology in 1958, contributions of microelectronics to

biomedicine and health care have been enormous. Many advanced diagnostic,

therapeutic and rehabilitative devices and systems would not have been possible

without these contributions. Biotelemetry design revolves around the concepts

of miniature and micropower. Evolution of semiconductor and microcircuit tech-

nologies have been effective in the parallel improvements of these areas.

Since the development of implantable pacemakers in 1958 and 1959 by Wilson

Greatbatch and William M. Chardack, abundance of biomedical implants has

been proposed and designed to solve various medical problems to improve health

care. Some sort of communication scheme is always incorporated in the system

to allow the exchange of data between the implanted part and the external part.

A completely programmable implantable pain controller has been reported

by Mouine et.al [19]. A small patient unit and a desktop computer form the

external part. A microstimulator device is the implantable part. It is a passive

system wherein the power and data (stimulation commands) to the implant are
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transmitted wirelessly via the inductive link on a 20 MHz carrier. Amplitude

modulation and Manchester encoding is employed to serially transmit the data

which is picked up by the internal coil; an AC/DC converter is used as a rectifier

to power the implant and an AM demodulator to procure the command infor-

mation from the envelope. Enokawa et al. [27] have proposed an implantable,

passive telemetry system for sympathetic nerve activity and ECG measurement.

Communication between the implant and the external host is achieved hierar-

chically. The computer transmits commands to the backpack over an infrared

(IR) beam. The backpack processes the information and sends the commands

to the implant over an inductive link. The sinusoidal carrier is modulated by

on-off keying of the commands. The receiving end uses a full-wave rectifier and

a DC/DC converter which supplies power to the implant. The implant then ap-

plies 21 bit pulse train to a parallel resonant circuit which is recevived by the

tuned amplifier as amplitude variations on its carrier voltage. This technique

is referred to as impedance-reflection modulation. The tuned amplifier finally

delivers the data to the computer with an FM transmitter. A fully integrated,

monolithic, implantable device is proposed for multichannel neural stimulation

[28]. The implant receives data, power and clock signal over an inductive link. It

is uni-directional and the wireless communication scheme consists of pulse-width

encoded pulses at 8.3 kbits/sec, amplitude modulated on a 4 MHz carrier. Error

detection is carried out by the implanted chip and the stimulation is aborted if

any error is detected. An overview of these systems is necessary to identify the

communication schemes that have been in use over the years.

2.3 Endoradiosondes

Endoradiosondes (ERS) are small radio transmitters that are used for wireless

radio transmission from closed cavities or inaccessible places. Such transmitters

were developed to telemeter data where it is undesirable or impossible to con-

nect a sensing element to the recording element directly by tubes or wires. They

opened up new possibilites for in-vivo diagnostics and physiological studies, since

tubes and wires restricted the inaccessible regions. Tubes may cause physiolog-

ical reflexes which disturb the normal body functions under observation. Also,

12



Literature Review 2.3 Endoradiosondes

tubes may cause infection when passed through surgical openings. ERS has none

of the above disadvantages. Endoradiosondes are called by different names such

as “Radio pill” and “radio telemetering capsule”. Other synonyms include “bi-

ological transmitting transducer”, “biotel”, “echo capsule”, “internal bioteleme-

ter”, “subdermal transmitter”, “surgically implanted transmitter”, “telemeter

implant”, “tumnik” and “verschluckbaren Intestinalsender”(swallowable intesti-

nal transmitter) [29].

The pioneering work on endoradiosondes was by scientists at the Karolinska

Institute, Stockholm and Rockefeller Institute, New York. R. Stuart Mackay and

Bertil Jacobson devised a radio method to transmit some variables of interest

like temperature and pressure. After the emergence in late 1950’s, it’s popularity

declined until 20 years, when a radio pill was used to record the physiological

patterns inside the human bowel [30]. Several radio pills have been developed

since then. Integrated microcircuit technologies have made it possible to build

lightweight, low-power and low-cost medical diagnostic devices.

Small size camera and batteries are being used in implantable pills and fol-

lowing recent significant improvements in the technology. Visual sensor systems

require a high frequency link for better resolution and miniaturisation of the

implant. Table 2.1 summarises the recent telemetry systems developed for the

electronic pill technology.

Reference Frequency Data Rate Modulation Power
(Mackay, 1957) [31] 100 kHz – FM –
(Valdistri, 2004) [32] 433 MHz 13 kbps ASK –

(Johannessen, 2006) [33] 433 MHz 4 kbps OOK 15.5 mW
(Lei Wang, 2007) [34] 30-40 MHz 5 kbps – 5-6 mW
(Fouri K, 2008) [35] UHF 250 kbps – –

(Chen, 2009) [36] 433 MHz 267 kbps FSK 24 mW

Table 2.1: Recent prototype pill specifications.

The pill in [33] uses a simple OOK wireless system to transmit physiological

data-pH and temperature. Valdastri et al., developed a similar pill with a multi-

channel feature to transmit different physiological parameters of interest [32].

In [36], a wireless endoscope system employs a commercial RF transceiver at

433 MHz to achieve a data rate of 267 kbps. Complex compressing techniques
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are used by an ASIC to achieve higher transmission rate of images for low data

rate systems. K. Fouri et al., have developed a fluorescence-based electronic pill

system that uses UV light by illumination LEDs to get clear images [35]. This

device consumes power higher than the other available systems because of the

power hungry LEDs. From Table 2.1, it seems that the transmission frequency is

limited around UHF (0.3-3 GHz) frequencies and the data rate achieved at these

frequencies is small for visual sensors used with an electronic pill. Moreover,

it is desirable to achieve high data rates at lower frequencies to minimise the

absorption of electromagnetic waves at higher frequencies of operation.

2.3.1 Principle

The two main units of an endoradiosonde are:(1)The transmitter and (2)the re-

ceiver.

The wireless link between the two is established by electromagnetic fields.

An active telemetry system is one wherein the transmitter emits the fields that

is modulated by the variable under study. The energy required is supplied by

a power source within the transmitter. Alternatively, the transmitter can also

be powered from outside by means of a second electromagnetic field of different

frequency. In both the cases radio-frequency energy is generated in an oscillator

circuit. A passive endoradiosonde consists of a tuned circuit made up of reactive

elements. It doesn’t have it’s own power source. The energy is supplied from

an external source in the form of pulsed electromagnetic field of a frequency

close to that of the tuned circuit. The energy is absorbed by the tuned circuit

and re-emitted in a modulated form between pulses. These are sometimes called

“back-scatter” telemetry systems.

2.3.1.1 Transmitter

The main parts of an active ERS transmitter consist of a transducer, an oscillator

to generate the radio waves for communication, a transmitting antenna, a battery

source and various mechanical components such as capsule case and a protective

membrane. One or more of these components provide dual functions that lead to

the overall volume minimisation of the radio pill. For instance, the transistor can
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serve both as a transducer (temperature) and an active element in the oscillator

circuit. A coil can be an antenna and also a part of the tuned circuit in the radio

frequency oscillator.

Small size, long battery life, operational range, satisfactory stability and lin-

earity dictate the design of the transmitter. Stability against variations in tem-

perature and power supply is very difficult to achieve in a limited space and

seldom do the published technical descriptions of the radiosonde pills contain

data on stability and attainable accuracy.

2.3.2 Modulation

Modulation of the data to be telemetered is determined by the nature of the data

being telemetered. Physiological variables vary in the frequency range 100 cycles
second

to 1 cycle
day

. Amplitude modulation and frequency modulation are the most common

forms of communication schemes employed to transmit information. Amplitude

modulation has a disadvantage that any variation in the received signal strength

due to the movement of the transmitter or receiver and a decrease in battery volt-

age would result in erroneous results at the receiver. Pulse modulation schemes

can be used to overcome these drawbacks. Instead frequency modulation is often

easier to apply and hence has been the preference for ERS transmitter circuits.

2.3.3 Wavelength

The ERS operates from within a human body and hence present a totally differ-

ent scenario. The choice of operating frequency depends on several factors. A

certain percentage of radio waves passing through the tissues is absorbed and this

percentage increases with frequency. As a result electromagnetic waves in VHF

(Very high frequency) or UHF (Ultra high frequency) range are usually employed

to exchange information. At low frequencies the antenna tend to become incon-

veniently large. Another important factor to be taken into account is that there

should be minimum amount of interference from conventional transmitters.
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2.3.4 Transmitting Range

The extent to which a transmitter can convey information depends on several

factors.

1. The power delivered by the transmitter

2. The relative orientation of the transmitting and receiving antenna

3. Electrical interference

4. The signal to noise ratio of the receiver

The power transmitted by a transmitter falls rapidly with distance. The

outpower must be increased considerably for a range of several metres. Pulse

modulation can be effective in reducing the average energy consumption of the

transmitter.

2.3.5 Active and Passive Systems

The design for a passive system was first proposed by Marchal and Marchal in

1956 [37]. A quartz-tuned circuit was activated by an external pulsed electric

field at the same resonant frequency as the tuned circuit. Transmitter was on

when there was “ringing” in the quartz crystal and off when there was no ringing;

this is the way in which the transmitter sent information.

Haynes and Witchey developed a passive system that re-radiated absorbed

energy from a pulsed electromagnetic field whose frequency was close to the fre-

quency of a tuned circuit [38]. The resonance frequency was modulated by the

variable under study.

The disadvantage of a passive transmission is that the coupling between the

external and internal coils is highly dependent upon their mutual orientation.

2.4 Implanted Transmitters

An implantable biotelemetry unit is a device usually designed to sense physio-

logical event and transmit this information over few centimetres of tissue to an
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external receiver [39, 40]. In many cases, primarily in animal studies, a trans-

mitter is surgically placed within the body rather than through a normal body

opening. The primary concern is the battery life of the power source and the

stability of the transducer in its interaction with the biological system. An exper-

iment wherein the activity of four surgically implanted transmitters in a Rhesus

monkey has been reported [31]. The transmitters are each active simultaneously

on a different frequency. The number of transmitters utilised depends largely on

the demands of the experiment. When several variables can be sensed in one

region, it is convenient to employ a single transmitter to send several pieces of

information. A similar example is the study of peristalsis in cold-blooded animals

by a single transmitter of pressure and temperature, swallowed by the subject.

The transmitter was passed out of the subject in the usual way.

Medical applications require the use of microscale telemetry devices. Gastroin-

testinal diagnostics portray a strong event-related character [41]. Hence wireless

sensor systems have been incorporated in a capsule format which is noninvasive

and perform endoscopic functions within the Gastrointestinal (GI) tract. Mackay

was the first to demonstrate in 1961 [42].

The ingestible capsule moves from mouth to anus due to peristalsis force and

it is egested. Temperature, chemical concentrations and images can be captured

within the GI tract and the data relayed wirelessly to a body-worn device. Size,

cost, circuit complexity, power requirements, sensors, nature of data to be trans-

mitted and performance dictate the design of a biotelemeter. A block diagram of

a telemetry system is shown in Fig. 2.1 [1]. Various transducers pass the phys-

iological signals through a stage of amplification and processing circuits for the

generation of a subcarrier and modulation for transmission. The receiver con-

sists of a tuner to select transmitting frequency, a demodulator to separate the

signal from the carrier wave to obtain the desired information. It is either dis-

played or recorded. Information to be transmitted is imprinted upon the carrier

by a process known as modulation. The information bearing signal is called the

modulating signal. Amplitude-modulated (AM) and frequency-modulated (FM)

carriers have been used in biotelemetry systems. In an AM system, amplitude

of the carrier is caused to vary with the transmitted information and in a FM

system, frequency of the carrier is caused to vary with the modulating signal.
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Figure 2.1: Block Diagram of a Biotelemetry System [1].

In biotelemetry systems, physiological signals are sometimes used to modulate

a low frequency carrier, called a subcarrier. Radio frequency (RF) carrier of the

transmitter is then modulated by the subcarrier. The advantage of this type of

transmission is that various physiological signals can be transmitted simultane-

ously as each signal is impressed upon a subcarrier of a different frequency and

all of the subcarriers are combined to simultaneously modulate the RF carrier.

This process of transmitting many channels of data on a single RF carrier is

called frequency multiplexing. At the receiver, a RF carrier is first demodulated

to recover each of the separate subcarriers and then demodulated to retrieve

the original physiological signals [43]. Depending on the the modulation scheme

employed for the subcarrrier and the carrier, the system is designated either as

FM/AM or FM/FM. Most of the other approaches use a technique known as

pulse modulation, in which the transmission subcarrier is generated in a series of

short pulses. If the amplitude of the pulses is used to represent the transmitted

information, the method is called pulse amplitude modulation (PAM) . If the

width (duration) of the pulse is varied according to the information, then pulse

width modulation (PWM) or pulse duration modulation (PDM) results. Pulse

position modulation (PPM) refers to the variable timing of a pulse with respect to

a reference pulse. Pulse code modulation (PCM) and pulse interval modulation

(PIM) are the other denotions wherein information is represented by a sequence

of coded pulses in the former and by spacing between constant width pulses in
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the latter [44]. All these systems can be defined as PIM/FM, PWM/FM, and so

on. However, time multiplexing is used instead of frequency multiplexing. Each

of the physiological signal is sampled and used to control either amplitude, width

or position of one pulse, depending upon the type of pulse modulation. The FM

transmitted signal is received and tuned to the correct frequency. The subcarrier

is removed from the RF carrier and then demodulated to reproduce the original

data [45].

2.4.1 Wireless Transmission Schemes

In the early 1950s, methods used for the accurate measurement and recording

of pressure changes within the human gastrointestinal tract required the passage

of tubes through the mouth, nose, or anus, or through an artificial opening [46].

Scientists at the Rockefeller institute devised an instrument that could perform

non-invasively under approximately physiological conditions. The capsule called

the “ echo capsule”, was made of a rigid, plastic cylinder. It measured 3.0 cm in

length and 1.0 cm in diameter. The transducer was sensitive to the intraluminal

pressures and had a radio transmitter powered by a battery to transmit the

recorded information wirelessly. The battery had a life of upto 15 hours. The

information was frequency modulated by the transmitter and these signals were

accepted by the antenna of a frequency modulation reciever. The signal was

demodulated and the pressure variations were displayed on an oscilloscope.

During the same year, another group at the Karolinska Institue, Stockholm,

Sweden demonstrated that a capsule could measure and transmit both tempera-

ture and pressure simultaneously [47]. Using off-the-shelf components the capsule

was 2.8 cm long and 0.9 cm in diameter. The transmitter was simply a Hartley

oscillator and the emitter was grounded. The phase difference between the collec-

tor and base allowed the use of a single tapped coil. The base was connected to

the emitter through a capacitor which not only provides bias to the emitter from

a single battery, but also if its capacity is high, gives a blocking or quenching

action. The frequency of transmission carried the information regarding pressure

and the repitition rate of the radio frequency bursts transmitted temperature. A

standard radio receiver was tuned to retrieve the pressure information and the
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tone of its output signal indicated temperature.

Iowa transmitters were developed in 1961 by Essler and Folk [48]. It was typi-

cally an implantable, long life, short range radio telemetry device. The frequency

modulated transmitter operated between 200 kHz and 500 kHz. Each transmit-

ter consists of a two-stage transistor amplifier and a transistor oscillator which

utilizes a varicap for frequency modulation. The electrical impulses, about 1 mV,

was picked up from the heart beat by two electrodes on the transmitter. The

amplifier provided a gain of about 100. After amplification, this voltage is ap-

plied across the varicap which causes the frequency of the oscillator to vary, thus

providing modulation. The signal from the transmitter was picked up by a loop

antenna of several turns of wire encompassing the animal’s enclosure. The audio

receiver recorded the data onto a magnetic tape or provision was also made for

the demodulated data to be recorded onto a standard electrocardiograph (EKG)

. But these transmitters suffered from the problem of corrosion when implanted

inside animals. The moisture from the body of the animals made the transmitters

damp. This problem was overcome later by filling the transmitters with an epoxy

sealer, silicone rubber, or vaseline to eliminate all trapped air space [49].

All the designs discussed above used a single-stage, frequency modulated

transmitters. The emphasis was placed on small size and long battery life. At the

receiver, a beat-frequency oscillator was used to count the number of pulses sent

out by the transmitter. To improve the range of transmission a small steady oscil-

lator was placed near the receiver and tuned so that the signal combines with the

transmitter signal to give an audible tone, then the presence of the transmitter

signal is noticeable whenever it is on. The problem with such receivers is instabil-

ity due to either the radio frequency oscillator or beat-frequency oscillator drift.

FM systems were used for the study of the transient temperature and readings

were only taken at half hour intervals [50, 51]. This sometimes resulted in miss-

ing data at the extreme point which is undesirable. To overcome this problem,a

complex transmitter, though shorter in life, evolved. The frequency modulated

subcarrier/amplitude modulated carrier FM/AM telemetry system had a com-

plicated transmitter, but less complicated receiver [2]. A block diagram of the

system is shown in Fig. 2.2. The system used a separate transmitting unit placed

at different locations inside a single animal or in a number of different animals.
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Figure 2.2: FM/AM Telemetry System [2].

The receiver used was a simple AM receiver capable of receiving radio signals in

the 180-420 kHZ band. A scanner acted as a switch between different inputs.

Each input was sequentially sampled, digitized by the counter and printed in its

numerical value. To maintain an analogue record of the selected channels, a fre-

quency meter was used to convert the audio signal to a suitable voltage and then

amplified by a dc amplifier to gain sufficient power to drive a galvanometer-type

recorder. The sensing unit and transmitter consists of a phase-shift oscillator and

Colpitt’s oscillator respectively as shown in Fig. 2.3. Thermistors were a part

of the feedback network of a phase-shift oscillator and the angular frequency of

oscillation is given by

ω2 ≈ 1/(6R2 + 4RLR)C2 (2.1)

where R is the value of the thermistor and C is the capacitor of the feedback

network. For RL ≈ R the resonant frequency is

f ≈ 1/2π
√

10RC (2.2)

High-gain germanium transistors were used at a voltage of 3 V and the col-

21



Literature Review 2.4 Implanted Transmitters

100k 8.2k

2N813

680k

6.6k
33k

2.2k2.2k

10k 
 @ 
250C

10k 
 @ 
250C

2N2078

R1

.33
R3

R2

.01 .01 .01 .056

.005
L

C

.02

3.3

5.6

Figure 2.3: Transmitter and the Sensing Unit [2].

lector current was estimated to be 100 µA. The design method was effective in

minimising the receiving equipment, was geometrically small enough to be im-

planted and also had sufficient signal reception at a radial distance of 1.5 m. But

the operation life of the telemetry system was just over 60 days when compared

to other frequency modulated transmitters which had an operation life in excess

of 150 days.

EEGs and EKGs are low-frequency bioelectric signals. To make use of the

maximum available bandwidth of the magnetic tape recorders, a simple time-

division multiplexing system was suggested [52]. The system was simple, portable

and could be easily realised by commercially available instrumentaion. A novel

implantable transmitter that could be switched on and off to conserve the battery

life was suggested in 1966 [53]. The telemetry system used frequency modulation

with a carrier frequency of 100 MHz. The oscillator used was of Hartley type

with a variable capacitive reactance. A pulsating oscillator was used to start or

stop the implanted transmitter. The oscillator used a grid-circuit time constant

of 1.10 s and yielded a pulse rate of approximately one per second. Pulses were

180 s in duration with rise and fall times of less than 1 µs. The self-blocking

oscillations was a result of unusually long time constant in the biasing circuit.

Turn-on and turn-off range was reliable upto 25 cm.

Data multiplexing was regarded as the valuable concept that would enable

the transmission of biological information of various kinds from a few channels
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simultaneously. Fischler et.al [54] claimed that a CW FM/FM multiplex radio-

telemetry system was advantageous compared to time multiplexing systems. A

six channel FM/FM telemetry system capable of measuring two surface temper-

atures, an internal temperature, the respiration rate, and position and muscle

spasm of a paralysed patient was constructed as a transmission package measur-

ing 0.6 ×2.5×2.5 in [55]. The use of single tunnel diodes as voltage controlled

relaxation oscillators was unique to such systems. This reduced the overall size

and also power consumption. In the same year scientists at the University of

California reported the development of an FM/AM radiotelemetry system for

multichannel recording of biological data [56]. The difference of this system to

the one reported earlier was in the generation of subcarrier signals and the final

signal for transmission. The subcarriers were generated using twin-T oscillators

modualted in turn by the amplified data signals. The FM carriers were then

linearly summed upon a crystal controlled AM transmitter.

In the year 1968, Carl F. Andren et al. [3] published a paper that discussed

a scheme of high efficiency power and electronic data transfer through the skin

to power chronically implanted artificial organs. The electromagnetic energy was

transmitted through the skin by a device called the “skin tunnel transformer”.

This device was based on the principle that the windings of a transformer need not

be in contact with the transformer core but need only link the magnetic flux in the

core by the virtue of encompassing it. Fig. 2.4 shows the skin tunnel transformer

with the secondary coil completely buried under the skin. Using plastic surgical

techniques, a tunnel was created through the center of the buried coil so that

the core and the primary coil can be constructed around the secondary coil. The

primary coil is connected to a remote ac power source. The alternate configuration

provided improved transformer geometry but was less desirable surgically.

Fig. 2.5 shows the power and telemetry system. The incoming power signal is

frequency modulated by a subcarrier and for outgoing signals, a frequency which

is different from the power carrier is used. The advantages of such a system

are low impedance and low losses to maximise the signal-to-noise ratio. The

disadvantage was that it required a surgical change to change the normal body

geometry of the patient. Also, provision to send the data signal would make the

telemetry system bulky as separate coils were to be used for the transmission of
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Overall size and weight of the implantable telemetry systems was of prime

concern and this dictated the design strategies involved in such complicated sys-

tems. Use of single RF frequency for energy transfer and signal transmission

was suggested to reduce the volume of the implant unit and to simplify the total
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equipment [4]. The principle was based on time sharing multiplexing as shown

in Fig. 2.6. The system was used to send ECG signals from a Rhesus mon-

key strapped in a chair. The RF coupling coil was an eight inch diameter loop,

which encircled the chair and the monkey. The axes of the implant tank coil

and the coupling coil was maintained almost parallel at all times. The control

pulse generator modulated the burst of RF pulses generated by the RF oscillator.

The pulse train was amplified to the desired level and delivered to the coupling

coil to power the implant tank coil. The induced voltage and power is rectified

and stored in a capacitor to supply the dc power to the implant electronics. The

implant sends the physiological information during the OFF state of the RF oscil-

lator. The information is transmitted by very narrow RF pulses, which are pulse

modulated. The time delay between the trailing edge of the RF powering pulse

and the transmitted signal pulse carries the necessary information regarding the

amplitude of the ECG signals. The signal is received by the same RF powering

coil and is fed to the RF amplifier through an isolation network. The signal is

then demodulated and provided for a display unit. The most important section of

the implant unit was the oscillator which not only provided RF power detection

but also oscillation and transmission of the signal. The oscillator circuit used was

a Colpitt’s oscillator.

RF osc. RF amp.

RF amplifier 
and detector

Control pulse 
   generator

Demodulator

Received pulse

Sync pulse

Coil

Implant

ECG in

Figure 2.6: Block Diagram showing the use of a single RF frequency for energy
transfer and signal transmission [4].
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Bruce C. Towe [5] proposed a novel method to telemeter ECG waveforms

which had the advantages of greater range and low power consumption compared

to the telemetry system discussed earlier. The technique involved the transmis-

sion of bioelectric waveforms by encoding the information at a rate by which a

passive L-C circuit is shifted between two different resonant frequencies. When

such a pseudo frequency shift keying circuit is brought near a properly tuned base

unit, power from the base unit is alternately absorbed and not absorbed result-

ing in a small periodic voltage amplitude change in the base unit antenna loop.

The concept can be best understood by considering the system as a loosely cou-

pled resonant transformer where changes in the secondary loading are reflected

as a change in the current flow in the primary. When the secondary coil is reso-

nant with the primary, increased power transfer occurs from the primary to the

secondary through the effect of reflected impedance [57].

The reflected load resistance from the secondary to the primary of two loosely

coupled coils is given by

Re =
Rk2Q1Q2

R +Q2R2

R1 (2.3)

where Re is the reflected equivalent resistance, R1 and R2 are load resistances

of the primary and the secondary windings, Q1 and Q2 are the quality factors of

the primary and secondary L-C resonant windings, R is the a.c. equivalent coil

load resistance. The condition of loose coupling is satisfied for very small values

of k. k remains small for two coils separated by distances comparable to the

diameter of the larger coil. For a fixed value of Q1 and R associated with a base

unit, changing the value of Q2 in the remote unit by a change in the resonant

frequency will cause a change in Re at the base unit. This subsequently changes

the voltage at the primary. These changes are detected by a suitable circuitry.

Fig. 2.7 shows the remote unit to cause a periodic frequency keying of the res-

onant circuit. In the present unit, Q2 is periodically reduced from approximately

30 to 0 by shifting the L-C circuit to another resonant frequency by providing an

alternate path to an additional capacitance across the circuit. This shifting is ac-

complished by turning on an FET transistor. The frequency was set nominally to

1 KHz. The timer used allowed the frequency modulation of its nominal rate by

26



Literature Review 2.4 Implanted Transmitters

the external amplified bioelectric signals. The remote unit was resonated to 450

kHz by a small trimmer capacitor. The coil consisted of 30 turns and measured

4 cm in diameter. The base unit was simply a sinusoidal generator which could

be tuned to 450 kHz. The transmit loop antenna measured 70 cm in diameter

and had 12 turns. The system used to detect the reflected impedance signal was

a simple direct conversion receiver coupled to a one turn link winding over the

base unit loop antenna.
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Remote unit 
450 kHz tuned 
circuit antenna

L
C2C1

IC 7555
Astable 
timer
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1

1.2RC
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Figure 2.7: Circuit used to cause a periodic frequency keying of the remote unit
L-C circuit [5].

The drawback of this system was that it was fairly difficult to tune for sufficient

range. It also required the use of several items of test equipment to adequately

align and adjust the system. Also the transmit frequencies and subcarrier fre-

quencies must be adjusted to exactly match each other. The system was able

to recieve and demodulate the bioelectric signal waveforms received inside a vol-

ume defined by the size of the base unit loop antenna in the horizontal direction

with a vertical separation distnace of up to 1 m. The signal fell rapidly outside

the cylinder. For maximum range, the base unit and the remote unit had to

be maintained parallel and hence this system could pose some problems in cer-

tain direction independent applications. Use of orthonormal antennas might have

solved this problem [31].

Implantable biomedical devices underwent a great development due to ad-
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vances in micromachining technologies and Complementary Metal-Oxide Semi-

conductor (CMOS) microelectronic systems [18]. Miniature size, low power con-

sumption, high reliability, low cost and superior functionality are the signifi-

cant features of such implantable systems. Mixed signal design techniques were

explored and the transceiver system now could incorporate digital modulation

schemes of communication to exchange data.

A multichannel nueromuscular microstimulator was used for functional nuero-

muscular stimulation [6]. It could receive power and data through wireless RF

telemetry. The BiCMOS IC also incorporated voltage regulators, clock recovery,

data detection, output drivers and an active on-chip transmitter. It measured 1.4

mm×13.5 mm and dissipated only 40 mW of power. Fig. 2.8 shows the overall

system block diagram and on-chip transmitter circuit diagram. The most impor-

tant feature of this device was the on-chip transmitter that could be automatically

turned on and off.
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Figure 2.8: Overall system block diagram for the multichannel microstimulator
[6].

The transmitter, as shown in Fig. 2.9, consisted of a coil of inductance Lt for

RF telemetry, a capacitor Ct for tuning the LC resonance of the transmitter coil,

tuning capacitor Cset for frequency setting of the self oscillating NAND-inverter-

inverter loop, an NMOS drive transistor for driving the inductor and a transmit

signal to the NAND gate that turns the oscillator on and off. An electroplated

nickel coil with low losses for data transmission was fabricated. The coil was

20 µm thick and had 10 turns with average dimensions of 1.24 mm × 7.42 mm.
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The system was first of its kind to provide all the necessary functions needed for

future wireless instrumentation systems.

NAND NMOS

LtCt

Cset

Transmit

Vs4

Figure 2.9: On-chip transmitter circuit design [6].

A microcontroller based implantable system was developed to study the nerve

activity in small animals [27]. The microcontroller controlled a series of opera-

tions of the implantable telemeter. It adjusted the gain of the ECG and neural

signal amplifiers. The amplified signals were then applied to the analogue-digital

converter (ADC) . The 8 bit digitised serial data was then telemetered by a series

RLC circuit. The entire implantable system had minimal number of components

and the use of microcontroller offered flexibility. A computer was central to the

entire system which sent a power command and gain control codes of the ECG

and NS amplifiers in the implantable telemeter, to the backpack by an infrared

beam. The backpack had a power controller, an oscillator, a tuned amplifier and

a FM transmitter. The power was delivered to the implant externally by the

oscillator which generated 9 Vp−p sinusoidal wave at 200 kHz to drive a trans-

mitting primary spiral coil. The communication scheme used was on-off keying.

The FM transmitter then relayed the implant information back to the computer.

The system used off the shelf components. The implant could communicate over

a distance of 8 cm.

Miniature size passive implantable systems had a major drawback that the

antenna was inefficient in receiving the radiated power due to its limited physical

size. Hence the data acquisition and transmission system had to be optimised for
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low power consumption. Based on the principle of load-shift keying [58], Qiuting

Huang et al. at the Swiss Federal Institute of Technology published a paper that

discussed the design of a passive telemetry IC that could telemeter information

using PPM-AM signals and function at very low power without the use of an

internal battery [59]. The changes in the sensor resistance results in the ampli-

tude and phase change of the receiver current which can be detected by suitable

demodulator circuits. While doing so the transponder absorbs very little power

thus making the transmission possible that would otherwise be impossible with

the available power of few milliwatts. Clements et al. suggests a similar teleme-

try system using inductive power and data link for retinal prosthesis [60]. The

power was transferred using magnetic coupling and since only a small fraction

of the magnetic field in the primary coil coupled to the secondary coil, a class

E amplifier topology was made the choice to fit the design requirements of such

a weakly coupled system. The amplitude of the ac carrier is varied according

to the PWM waveform and the data signal is thus coupled to the implant coil.

The amplitude shift keying (ASK) demodulator recovers the digital waveform

from the envelope of the inductively coupled ASK waveform. The demodulator

detects amplitude shifts by comparing it to an averaged version. A bi-directional

and multi-channel wireless telemetry capsule that could transmit images from

inside the human body and receive a control signal from an external unit was

proposed in 2002 [61]. It measured 11 mm in diameter and used two 10 mm

diameter loop antennas, one to transmit the signals from inside the human body

at 315 MHz and the other to receive the external control signals at 433 MHz.

The data from the CMOS image sensor is AM modulated and mixed with a local

oscillator running at 315 MHz. It is then amplified and fed to the loop antenna.

Since 315 MHz is a commercial cable channel frequency, a television (TV) re-

ceiver can be tuned and the images can be seen on a TV. The loop antenna

receives tthe control signal at 415 MHz and a commercialized ASK/OOK (on-off

keying) superheterodyne receiver demodulates the data. The decoder then inter-

prets the serial information to control the ON/OFF of the CMOS image sensor.

The system was efficient because it saved the power by switching the camera off

during the dead-time. The drawback was that the data rate was only 100 bps.

No information regarding the range of transmission was presented in the paper.
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A microcontroller-based multichannel telemetry system was proposed that had

the advantages of programmability and versatility in order to fulfill different ap-

plication requirements [32]. The device could transmit information from three

sensors, selecting one channel at a time with a carrier frequency of 433.92 MHz.

The data was ASK modulated before being transmitted and each channel had a

data rate of 13 kb/s. Unlike other telemetry systems a helical antenna was used

instead of a loop antenna. It had a length of 17 mm and diameter of 5 mm. A

quarter wave-length whip antenna along with a commercial ASK signal receiver

was used for signal reception. The transmitter and its transmission capabilities

through biological tissues was tested in vitro. It was found that the range of

transmission was more than 5 m. A wireless sensor network could be easily built

by using different carrier frequencies for transmission of radio signals. This paper

demonstrated that microcontrollers provide flexibility and reprogrammability for

implantable systems. The IDEAS (Integrated Diagnostics for Environmental and

Analytical Systems) project developed a multisensor microsystem in the format

of a pill using system-on-a-chip and lab-on-a-chip technologies [15, 62]. The pill

had a range of sensors for measuring temperature, conductivity and pH along

with a chemical sensor to measure the dissolved oxygen content in the intestine.

An inductive link provided the communication between the transmitter and re-

ceiver. FSK (Frequency Shift Keying) was used to modulate the digital data and

the maximum data rate was 5 kbps. Recently an implantable system developed

on a ZigBee platform was proposed [63]. The system had the advantage of long

battery lifetime and also provided an opportunity to build a wireless network of

wearable sensors and implantable systems because of the ZigBee standard hard-

ware and software architectures. They claimed that reliable communication could

be achieved for a signal frequency of 2.4 GHz and also exposure levels to elec-

tromagnetic fields were within the reference level for general public exposure to

time-varying electric and magnetic fields, fixed at 10 W/m 2 [64]. Exposure to

electric and magnetic fields results in energy absorption and also temperature rise

in the body. This phenomenon is significant at frequencies above 100 kHz and

for high powers, and hence the distribution of heating within the body has to

be assessed by dosimetric measurement and calculation in order to ensure safety.

International Commission on Non-Ionizing Radiation Protection (ICNIRP) has
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provided the basic restrictions and the reference levels of exposure to time vary-

ing electric, magnetic and electromagnetic fields [65]. Public exposure limits are

specified for anyone who is exposed to radiation outside the work site (a site

where a person is employed) or visitors to the work site who are not at work.

Occupational exposure limits are specified to those who are exposed to electro-

magnetic field radiation during the course of their employment. People who are

exposed to such radiation are trained to be aware of the potential risk and take

necessary precautions. By contrast, the general public comprises individuals of

all ages and of varying health status, and may include particularly susceptible

groups or individuals. In many cases, the general public is not even aware of their

exposure to electromagnetic field radiation and therefore stringent exposure re-

strictions are generally considered for the public exposure limits. The restrictions

can be relaxed for particular individuals who are going to be diagnosed for criti-

cal ailments with an implantable pill by considering the benefits over the health

risks (due to radiation exposure) that the person might have to bear. Moreover

the exposure of the tissue or living cells to electric and magentic fields from the

implant will be only for a couple of days and the diagnostic results from the test

might be very crucial for the patients long term well-being.

2.5 Impulse radio

The modern era in impulse radio communication began with the work of time-

domain electromagnetics in the early 1960’s [66] and was led by Harmuth, Ross

and Robins at Sperry Rand Corporation[67, 68, 69]. It was first referred to as

baseband radio as the information was transmitted by a series of pulses. The

important distinguishing feature is that the instantaneous bandwidth of such

systems is many times greater than the minimum required to deliver a partic-

ular message. At the heart of the system is a pulse generator for generating

subnanosecond pulses. Silicon planar transistors in avalanche mode of operation

were used to generate pulses, with widths ranging between 0.3 ns and 120 ns [70].

Step recovery diodes were also used in pulse shaping [71]. These circuits suffered

from limitations for use in integrated configurations. Kim et al. [72] published a

paper on the integrated implementation of a Scholtz monocycle generator. It has
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several advantages including low cost and low power integration with other com-

ponents. A CMOS programmable pulse generator has been proposed by Marsden

et al. [73]. The pulse is generated by controlling the timing and sequence of tran-

sistor switching. The pulses generated have to be modified in accordance with the

message to be transmitted. Hence timing between successive pulses is varied to

convey digital information. The simplest is the amplitude modulation or on/off

keying (OOK). The more advantageous modulation techniques include pulse po-

sition modulation (PPM), biphase pulse polarity modulation (antipodal PAM)

and pulse width modulation (PWM).

A UWB system is similar to a spread spectrum system in transmitting the

information over a wide bandwidth. A spread spectrum accomplishes this task by

the means of a spreading signal, often called a code signal, which is independent of

the data. A UWB system refers to impulse based waveforms that follow different

modulation schemes such as PAM, PPM, etc., The transmitted signal consists

of a train of impulses carrying information in their position or amplitude. The

narrow pulses, in the order of a nanosecond, result in an electromagnetic radiation

of wider spectrum of several GHz and thus it is termed as an UWB transmission.

In a spread spectrum system, the input binary data is directly multiplied with

the pseudo-random sequence, which is independent of the binary data to produce

the baseband signal. This signal is modulated by a high frequency carrier wave

[74]. Fig. 2.10 shows a binary phase shift keying spread spectrum transmitter.

The spreading code is purely a pseudo random noise (PN) code that is easy

to generate, has randomness and long periods. Randomness properties include

balance, run and correlation as described for binary signals [43].

Good balance requires that in each period of the sequence, the number of

binary ones differs from the number of binary zeros by at most one digit. A

run is defined as a sequence of a single type of binary digit. The appearance of

the alternate digit in a sequence starts a new run. The length of the run is the

number of digits in the run. A spread spectrum system needs the same spreading

code that was used at the transmitter to correctly decode the sequence received

at the receiver. The spread spectrum system has good interference suppressing

capability and fine time resolution for determining the time-delay or range mea-

surement. A UWB system attains all the desirable features of a spread spectrum
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Figure 2.10: Spread spectrum transmitter.

system not by using a psuedo noise code to spread the information bandwidth

but employing very short pulses to represent the baseband data. Impulse UWB is

also carrier free transmission as the subnanosecond pulses are directly transmit-

ted by a wideband antenna. This greatly simplifies the transmitter architecture

of a UWB communication system and the pulse generator becomes the crucial

block for generating pulses suitable for transmission by a ultra wideband antenna.

Ultra wideband technology shows great promise for realising low-power and

high data rate link transceiver systems [75]. This has led to the development of

prototypes for use in implanted systems. The notable one is an impulse radio

system for cochlea implants [76]. A theoretical work on UWB for implanted sys-

tems has been published recently [77]. But much of UWB signalling capabilities

has yet to be exploited. Some of the challenges that has to be overcome include

[78]: synchronisation, antenna size and absorption by tissues at high frequencies.

Pulse shaping plays a major role in producing spectrally efficient [79, 80, 81,

82] and frequency tolerant communication systems. Hence the need for pulse

shaping circuits. This would unnecessarily increase the complexity and pose an

hindrance for use in implantable systems.

The UWB spectral mask is illustrated in Fig. 2.11. UWB antenna design has

been greatly helped by the allocation of 3.1-10.6 GHz spectrum for unlicensed use

by FCC. This has presented innumerable exciting opportunities and challenges

to market commercial UWB communication products. As it is evident a wide

bandwidth causes the systems to operate at low power and hence coexist with
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Figure 2.11: FCC spectral mask for indoor unlicensed UWB transmission.

traditional narrow band systems. The remarkable feature in designing UWB

antennas is maintaining a high radiation efficiency over a bandwidth of nearly

7.5 GHz. Besides achieving a wide impedance bandwidth, the communication

engineers have to stop thinking of an antenna performance in terms of frequency

domain characteristics and consider temporal characteristics in designing UWB

antennas. A Voltage Standing Wave Ratio (VSWR) of at most 2:1 is required

across the entire frequency band for an ideal UWB antenna to be efficient. As

the data may be contained in the shape or precise timing of a very short pulse, a

clean impulse response is considered a primary requirement. Hence, a linear phase

shift with constant magnitude over frequency guarantees proper pulse reception

without any distortion. Since the transmit power is low, a high radiation efficiency

is required.

2.6 Antennas

The propagated signal is received at the receiving antenna and the distance trans-

mitted is called the range of the system. The range of the system depends on

power and frequency of the transmitter, relative locations of transmitting and

receiving antennas and sensitivity of the receiver. At ranges of a few metres, the
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transmission can be thought of taking place rather in the fashion of the transfer

of energy from the primary windings of a transformer into the secondary winding.

For longer range transmissions, up to many kilometers, the more usual concepts

of radio transmission apply.

Short range physiological observations can become useless because of a weak

signal. The transmitter strength needs to be maximal and prevent the signal from

being lost in any background noise. Changes in orientation can also cause signal

loss which might otherwise be strong. Thus a signal from an ingested transmit-

ter can vanish as the capsule moves away along the turns of the gastrointestinal

tract. Omnidirectional systems hence become a necessity to make sure that signal

is present in atleast one of the directions. Usually more than one antenna is em-

ployed in an omnidirectional system. This type of antenna suitable for placement

under a cage [31]. Cyclic scanning of the output from the three coils or suitable

combination into a single signal will prevent the signal from being lost for any

orientation of the transmitter. Telemetry users should be aware of some useful

tips whilst using antennas. Some of these factors are as follows:

1. Keep clear of the antenna when taking a bearing.

2. Do not stand within 1/2 wavelength of the antenna elements.

3. Protect the antenna elements to prevent them from getting bent out of

shape.

4. Keep all metal objects from interfering with the antenna.

This will help to avoid confusion and success rate in tracking will be increased

[83].

2.6.1 Antenna Design

The design of antenna has come of age and a large number of texts are available to

discuss this engineering discipline [84, 85]. But one thing in common in all these

texts is that the antenna is placed in a non-conducting medium with a relative

permittivity of 1, or close to 1. In other words, the antenna is placed in air or vac-

uum. An antenna inside a human body presents a completely different situation.
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The antenna is surrounded by a lossy medium of high permittivity. The electrical

properties such as conductivity and permittivity are dependant on frequency [86].

Also, the antennas used are electrically small making them inefficient radiators.

Hence the use of finite difference time domain (FDTD) . This technique becomes

an efficient alternative to determine the radiation characteristics and would ul-

timately help in designing more efficient telemetry systems. The application of

FDTD analysis to implanted radiators in 418 MHz biotelemetry systems has been

dealt with [87]. The paper suggests that the radiation losses increase with an in-

crease in the operating frequency. This is due to the fact that human body is

60-70% water which absorbs electromagnetic waves strongly and the absorption

increases as the frequency increases. Hence the RF frequency should be low, in

the high frequency (HF) rather than very high frequency (VHF) or ultra high

frequency (UHF) to minimise the radiation losses. Also the energy efficiency and

battery life of the transmitter improves. But the design of an efficient radiator

at HF is difficult as the necessary size of an antenna is inversely proportional to

the frequency. The choice of frequency of operation has a direct relevance to the

compactness and efficiency of the biotelemetry system being developed.

Wang et al. [34] have discussed the performance of two wireless transmis-

sion schemes in situ, one in the 868 MHz ISM band and the other in a VHF

transmission band. The radiation characteristics of a loop antenna, operated in

the frequency range 300 kHz-30 MHz, was compared with a helical and patch

antenna, both operating in the 868 MHz ISM band. The loop antenna occupied

only 1//700th volume of the helical antenna and 1/1000th volume of the patch an-

tenna. FSK was preferred for communication over a single channel. The novelty

of the system was in exchanging information in the near-field region surround-

ing the loop antenna. The low-frequency transmission scheme also consumed

less power than its high-frequency counterparts. But it suffered from drawbacks

such as low data rate (5 kbps compared to 10 kbps for high-frequency antenna

configurations) and operating distance (<0.5 m). Nevertheless the paper claims

that near-field transmission schemes are best suited for wireless implants because

of high signal-to-noise ratio (SNR) and less interference to other narrow band

communication systems.
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2.7 Summary

In this chapter, a review of wireless technologies developed for integrated sensor

communication is presented. The features and shortcomings are carefully assessed

as a precursor to developing a novel near-field wireless communication system.

Literature on antennas for ingestible devices was revisited. Ultra wideband, a

promising wireless communication standard was reviewed to become known with

its notable characteristics. It delivers great promise as an emerging standard for

far-field wireless sensor communication systems. The next chapter will present a

novel near-field pulse radio communication system and its design strategies.
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3.1 Introduction

The previous chapter reviewed the literature relevant to communication systems

developed so far, for use in implants. This chapter presents a novel idea in design-

ing transmitters for wireless sensor systems. The underlying principle governing

the information exchange is mutual induction between two loosely coupled coils.

Transmitting coil resonance determines the operating conditions in conventional

short-range telemetry links. But the approach taken to convey information in

this particular system is unique in the sense that transmitting coil acts as a data

modulator. It does so by shaping the pulses.

3.2 Implantable Microsystem

A conceptual diagram of a generic biomedical device is shown in Fig. 3.1.
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Figure 3.1: Generic Biomedical Device- A Conceptual Diagram [7].

Sensors interface the biomedical environment with signal processing circuits.

The data conversion of biomedical signals becomes necessary to take advantage of

the sophisticated digital signal processing circuitry. This is achieved by an analog-

to-digital converter (ADC) with a certain amount of pre-processing to improve
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the system performance. ADC power consumption is considered to optimise

system bandwidth and dynamic range. The energy per conversion, an important

metric for ADCs, increases as the dynamic range and sampling rate requirements

increase. An empirical figure of merit (FOM) for ADCs normalizes their power

consumption to the Nyquist sampling rate (Fs) and the dynamic range, expressed

as 2ENOB (where ENOB is the effective number of bits at the output) [88]:

FOM =
P

2ENOBFs
(3.1)

An FOM as low as 4.4 fJ per conversion step has been reported [89]. Successive

approximation register and oversampling ADCs are considered to be the best

suitable candidates for most biomedical appications as they can achieve optimal

FOM [7].

3.3 Communication Transceivers

The communication subsystem makes sending and receiving of information to

and from biomedical devices possible. The information can be commands, such

as configuration instructions or data samples from a sensor. For pill like devices,

wireless communication is preferred as it is needed to traverse through the gut

region and send information from inaccessible regions inside the human body to

the outside world.

Communication between implants inside the human body and the outside

world is achieved by electromagnetic waves through air. Depending upon the fre-

quency of operation and the dimensions of the radiating element it is classified as

either near-field wireless transmission or far-field wireless transmission. Recently

a paper suggested using the human body as a transmission medium [90]. How-

ever the system uses electrodes attached to user’s skin to transmit information

through electrostatic coupling. This is of particular discomfort to patients and

the movements are severely restricted. Moreover information from inaccesible

places, like the gastrointestinal tract, cannot be obtained.
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3.3.1 Near-field electromagnetic wireless communication

The primary method of wireless communication is via electromagnetic waves in

air. At low frequency, near-field inductive coupling is predominant and is usually

bidirectional. For implanted systems, constrained in volume and energy, the

forward link consists of a high-powered transmitter that transmits both power

and data whereas a reverse link transmits only data. As discussed in Chapter 2,

a load configuration modulator can be used to convey information on the reverse

link. It is typically limited in range to a few centimetres.

The main drawback of such an inductively coupled communication system

(apart from low range) is low data rates. To support high data rates using

near-field communications, low quality factor antenna coils have been used [91].

Nevertheless high frequency, far-field wireless communication is preferred for uni-

directional data links.

3.3.2 Far-field electromagnetic wireless communication

For communication to be possible in a far-field, the frequencies of operation should

be at least hundreds of megahertz and above. The link only provides data between

an implant and a receiver outside the body. In other words the communication

is half-duplex. The range of operation is over few centimetres. New standards

have emerged to ensure coexistence and interoperability between devices. Some

of the key ones are MICS, WMTS, Bluetooth and Zigbee.

3.4 Baseband wireless communication

This chapter introduces and explains in-depth a novel idea of communication

suitable for miniature wireless devices such as diagnostic pills. The implant is

extremely restrained in size and volume that demands an efficient and simple

transmitter design. This poses innumerable challenges in antenna design as tra-

ditionally radiators ought to be a certain fraction of operational wavelength.

Therefore we confine the functionality of our system to near-field. In order to

make communication plausible, an efficient way of radiating fields has to be found.
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The wireless communication is possible only in the near-field as the desired

frequency of operation is low. Electromagnetic fields are strongly absorbed in-

side a human body and the absorption increases as the frequency increases [92].

Hence the range of frequencies usable is in HF rather than VHF or UHF re-

gion. Magnetic fields are offered a low reluctance path by biological tissues and

therefore the transmission losses can be kept to be a minimum [93]. The human

body is considered to be a non-magnetic material and there will be negligible

magnetic field losses [94]. This argument supports the use of magnetic antennas

in implants rather than electric antennas. Magnetic antennas are simply those

antennas whereby magnetic fields are predominantly caused by a circular loop

of current. The best example is a loop antenna. On the other hand electric

antennas are explained as radiators that have an electric field emanated by time

varying electric charges. Both types of antennas radiate electromagnetic waves

that are associated with electric and magnetic fields but it largely depends on the

sensitivity of any antenna to a particular field.

In traditional narrow-band communication system design techniques, the in-

formation signal to be transmitted is modulated by changing its amplitude, fre-

quency or phase. The modulating signal is normally a high frequency carrier wave

and the resulting signal after modulation is called a modulated signal. It is then

mixed with other high frequency carrier waves (depending upon the application)

before being amplified to a suitable power level by a power amplifier. The end

frequency nearly matches the antenna’s resonant frequency.

The approach taken in this research work is to minimise the number of blocks,

especially modulators, mixers and power amplifiers in the design. We propose

the idea of sending baseband or information bearing signal without modulation,

thereby reducing the number of blocks in the overall system. Digital communi-

cation has been the trend as it offers many advantages over its analogue counter-

part. The instantaneous bandwidth of the digital signal suggests that it might

propagate without a carrier. A block diagram of the proposed near-field wireless

communication system is shown in Fig. 3.2.

The implementation is much simpler than a conventional wireless commu-

nication system due to the omission of oscillator circuits and mixers, used for

up-conversion. The source generates the message in binary. The pulse shaping
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Figure 3.2: A Block Diagram of the Near-Field Communication System.

filter along with an antenna is instrumental and utmost importance is given in

designing it. In this design, an antenna acts as a radiator as well as a pulse

shaping filter. At the receiver a detector and decoder receives pulses without

distorting them. Finally, the data is stored on a computer.

3.5 Pulse Shaping Mechanism

Antenna can be regarded as filters that can be tuned to a particular resonant

frequency. In essence an antenna can be represented by a lumped-equivalent

circuit consisting of a capacitance in series with a small frequency dependent

resistance [95]. This has two distinct disadvantages: 1)the equivalent circuit

becomes grossly inaccurate at or near the resonant frequency of the antenna; and

2)the value of the resistance has to be varied for different frequencies. Subsequent

models developed then accounted for this by inserting an inductance into the

circuit. The radiation resistance is still dependent on the frequency of operation

even with the inductance placed in series [96, Chapter 2].

A filter’s frequency response will help determine the magnitude and phase

changes that occur with frequency. This information will suffice in determining
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the distortion suffered by a pulse. It is vital for communication to make sense

as the proposed transmission is a waveform transmission. A failure in controlled

distortion will result in making the entire transmission scheme worthless. The

feasibility of using antennas as pulse shaping filters is investigated in the following

sections. This ultimately will result in direct emanation of pulses from antennas

without modulation and make low-frequency near-field transmission a possibility

for implants.

In digital communication systems, there are various filters throughout the

system (reactive circuit elements such as inductors and capacitors)- in the trans-

mitter, receiver and the channel. At the transmitter, the information symbols,

characterised as impulses or voltage levels, modulate pulses which are then fil-

tered to comply with some band-width constraint [43]. In baseband systems the

pulses are distorted by distributed reactances associated with the cables and in

bandpass systems the channels are characterised by fading that results in sig-

nal distortion. A receiving filter called the equalizing filter can be configured to

compensate for the distortion caused by both the transmitter and channel. The

system transfer function can be represented as

H (f) = Ht (f)Hc (f)Hr (f) (3.2)

where Ht (f) is the response of the transmitting filter, Hc (f) the filtering

within the channel and Hr (f) the receiving/equalizing filter. Due to the ef-

fects of filtering the received pulses can overlap one another such that the tail

of one pulse can smear into adjacent symbol intervals thereby interfering with

the detection process. Such an interference is termed intersymbol interference

(ISI). To minimise the effects of filtering and channel-induced distortion, Hc (f)

is specified and the problem remains to determine Ht (f) and Hr (f) such that

the ISI is minimised at the output of Hr (f). Nyquist showed that if the system

transfer function H (f) is made rectangular its impulse response will be of the

form h(t) = sinc(t/T ) and then the pulses can be detected without ISI. In prac-

tical systems, the channel’s frequency transfer function Hc (f) and its impulse

response hc(t) (f) are not known with sufficient precision to allow a receiver to

yield zero ISI for all time. Therefore the transmit and receive filters are chosen
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to be matched so that

Hf = Ht(f)Hr(f) (3.3)

The receiver equalizer transfer function needed to compensate for channel dis-

tortion is simply the inverse of the channel transfer function. This equalisation

procedure is similar to specifying the antenna’s response to transmit the digital

data pulses directly from a suitable antenna without any modulation. The trans-

fer function that is often used to describe the system transfer function of a digital

communication system is a raised-cosine filter. Without the filtering effects of the

channel, the transmitting and the receiving filter will each have a transfer func-

tion that is the square root of the raised cosine. Whenever a separate equalising

filter is introduced to mitigate the effects of channel-induced ISI, the receiving

and equalising filters are configured to compensate for the distortion caused by

both the transmitter and the channel so as to yield an overall system transfer

function characterised by zero ISI. The equalizer transfer function needed to com-

pensate for channel distortion will be simply the inverse of the channel transfer

function. A training sequence that is often noise-like is chosen to estimate the

channel frequency response and in its simplest sense a single pulse is transmitted

over a system designated to have a raised-cosine transfer function and the chan-

nel induced ISI will result in a distorted received pulse. The distortion is viewed

as positive or negative echoes occuring both before and after the main lobe and

therefore an equaliser will generate a set of canceling echoes at predetermined

sampling times.

By using a matched filter at the receiver the reconstruction of the original

data pulse is not required for its optimal detection. A matched filter is designed

to provide maximum signal-to-noise power ratio at its output for a given symbol

transmitted waveform. A known signal s(t) plus additive white gaussian noise

n(t) can be considered to be the input to a linear, time-invariant receiving filter

and is sampled at regular intervals. At time t = T , the sampler output z(t)

consists of a signal component ai and a noise component no. The instantaneous

signal power to average noise power, (S/N)T , at time t = T , is
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The transfer function Ho(f) that maximises (3.4) has the impulse response

which is the mirror image of the message signal s(t) delayed by the symbol du-

ration T. The maximum signal-to-noise ratio is given by

max

(
S

N

)
T

=
2E

No

(3.5)

where the energy E of the input signal s(t) is

E =
w ∞
∞
|S(f)|2 df (3.6)

S(f) is the fourier transform of the input signal s(t). The maximum output

thus depends on the input signal energy and the power spectral density of the

noise and not on the particular shape of the waveform that is used.

3.5.1 Filter Response

This section attempts to investigate the two most basic forms of antennas namely:

1) Loop Antenna; and 2) Dipole Antenna. Input impedance is one of the most

important antenna parameters that ought to be considered for designing near-

field transmission antennas. It has already been mentioned that magnetic fields

are offered low reluctance path when antennas are used in ingestible devices. The

total power density surrounding an antenna is made up of reactive and radiated

power densities. This space is usually subdivided into three regions: a) reactive

near-field, b) radiating near-field (Fresnel) and c) far-field (Fraunhofer) regions

as shown in Fig. 3.3 [8].

The reactive near-field is defined as “that portion of the near-field region im-

mediately surrounding the antenna wherein the reactive field predominates”. For

most antennas, the outer boundary region of this region is commonly taken to

exist at a distance R < 0.62
√
D3/λ from the antenna surface where λ is the wave-

length and D is the largest dimension of the antenna. The radiating near-field

(Fresnel) region is defined as “that region of the antenna field between the reac-
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Figure 3.3: Antenna Field Regions [8].

tive near-field region and the far-field region wherein radiation fields predominate

and wherein the angular field distribution is dependent upon the distance from the

antenna”. This region does not exist if the maximum dimension of the antenna

is not large compared to the wavelength. The inner boundary is taken to be the

distance R ≥ 0.62
√
D3/λ and the outer boundary distance R < 2D2/λ. Far-field

region is defined as “that region of the field of an antenna where the angular field

distribution is essentially independent of the distance from the antenna”. The

far-field region is commonly taken to exist at distances greater than 2D2/λ for

antenna with a maximum overall dimension D.

To design a near-field transmission scheme, a particular parameter of interest

is the input impedance of an antenna. This is considered to be important be-

cause it is through the mechanism of radiation resistance (real part of the input

impedance) that power is transferred from guided wave to the free-space wave.

The other interesting aspect of this parameter is that the imaginary part is re-
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lated to reactive energy stored in antenna’s near-field. This gives us an insight

into the type of energy (electric or magnetic) that encompasses an antenna.

3.5.2 Input Impedance

The input impedance is defined as the impedance presented by an antenna at its

terminals or the ratio of the voltage to current at a pair of terminals or the ratio

of the appropriate components of the electric to magnetic fields at a point. An

antenna in transmitting mode can be represented as shown in Fig. 3.4.

Generator  
(Zg) 

Antenna  

a  

b  

Radiated wave  

Figure 3.4: Antenna in transmitting mode.

The antenna input terminals a−b can be considered to be the output nodes of a

Thevenin equivalent circuit. An impedance ZA representing antenna’s impedance

can be connected between terminals a− b. This can be defined by:

ZA = RA + jXA (3.7)

where

ZA = antenna impedance at terminals a− b
RA = antenna resistance at terminals a− b
XA = antenna reactance at terminals a− b
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A Thevenin equivalent circuit of an antenna is shown in Fig. 3.5.

Ig
Rg

Xg

b

a Rr

RL

XA
Vg

Figure 3.5: Thevenin equivalent circuit of an antenna.

It is assumed that a generator provides power to the antenna. Its internal

impedance is given by:

Zg = Rg + jXg (3.8)

where

Rg = resistance of generator impedance

Xg = reactance of generator impedance

In general the resistive part of ZA consists of two components; that is

RA = Rr +RL (3.9)

where

Rr = radiation resistance of the antenna

RL = loss resistance of the antenna

The current Ig developed within the loop is given by:

Ig =
Vg

(Rr +RL +Rg) + j(XA +Xg)
(3.10)

Its magnitude is given by

|Ig| =
|Vg|√

(Rr +RL +Rg)2 + (XA +Xg)2
(3.11)
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where Vg is the peak generator voltage. The power Pr delivered to the antenna

for radiation in the far-field is given by

Pr =
1

2
|Ig|2Rr =

|Vg|2

2

Rr√
(Rr +RL +Rg)2 + (XA +Xg)2

(3.12)

The power PL is dissipated as heat in RL and is given by

PL =
1

2
|Ig|2RL =

|Vg|2

2

RL√
(Rr +RL +Rg)2 + (XA +Xg)2

(3.13)

The remaining power is dissipated as heat on the internal resistance Rg of the

generator, and is given by

Pg =
1

2
|Ig|2Rg =

|Vg|2

2

Rg√
(Rr +RL +Rg)2 + (XA +Xg)2

(3.14)

It has been customary to match antenna’s impedance with the generator

impedance. This is called conjugate matching; and it occurs when

Rr +RL = Rg (3.15)

XA = −Xg (3.16)

Conjugate matching maximises the power delivered to an antenna. As a

result radiation resistance increases and it is mainly advantageous for far-field

communication systems wherein energy is radiated as plane waves. However

our system operates in the near-field and we want the energy to be stored in

fields (preferably magnetic) immediately surrounding an antenna. The other

condition as shown in (3.16) can be achieved by resonance. At resonance, there

is a continuous interchange of energy between electric and magnetic fields. This

condition might seem feasible for designing near-field communication systems

but resonance occurs at a particular frequency called the “resonant frequency”

and any attempt to radiate pulses by a resonant antenna will result in severe

distortion. This is what needs to be avoided as we intend to contain information

in the shape of a transmitted pulse. This is one of the salient features of the

system proposed in this thesis.
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3.5.3 Radiation Power Density

Electromagnetic waves carry information from one point to another through var-

ious media such as air, water, a wave guide, etc., Waves are thus associated with

energy and power. A quantity called the instantaneous Poynting vector describes

the power associated with an electromagnetic wave and is defined as

W = E×H (3.17)

where

W = instantaneous Poynting vector

E = instantaneous electric-field intensity

H = instantaneous magnetic-field intensity

The total power crossing a surface can be obtained by integrating the normal

component of the Poynting vector over the entire surface. In equation form

P =
{

S
W . ds =

{

S
W . n̂ da (3.18)

where

P = instantaneous total power

n̂ = unit vector normal to the surface

da = infinitesimal area of the closed surface

In order to calculate the instantaneous E and H when the fields vary harmon-

ically in time, the following relations can be used:

E(x, y, z; t) = Re[E(x, y, z)ejwt] (3.19)

H(x, y, z; t) = Re[H(x, y, z)ejwt] (3.20)

Using the definitions of (3.19) and (3.20) and the identityRe[Eejwt] = 1
2
[Eejwt+

E∗e−jwt], (3.17) can be written as

W = E×H =
1

2
Re[E ×H∗] +

1

2
Re[E ×He2jwt] (3.21)

The first term of (3.21) is not a function of time while the time variations of
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the second are twice the given frequency. The average Poynting vector or average

power density can be written as

Wav(x, y, z) = [W(x, y, z; t)]av =
1

2
Re[E ×H∗] (3.22)

The average (real) power density represents the power density associated

with far-field electromagnetic fields. The imaginary part represents the reac-

tive (stored) power density associated with the near-field electromagnetic fields.

It can be either positive or negative depending upon the antenna being electric or

magnetic in nature. This is the same quantity represented as XA in Thevenin’s

equivalent circuit, as shown in Fig. 3.5.

The above discussion helps in concluding that radiation power density pro-

vides a judgment as to whether an antenna stores electric or magnetic fields in

its near-field. Thevenin’s equivalent circuit converts the physical fundamental

parameters into their electrical equivalents. By combining these a design pro-

cedure is suggested that facilitates the designing of a near-field low frequency

communication system for ingestible devices.

3.6 Wave Propagation

The previous sections discussed the electric and magnetic forms of energy density

associated with fields surrounding an antenna. The electric and magnetic fields

undergo different levels of attenuation as they traverse through different media.

Therefore it becomes necessary to discuss the effects of the medium surrounding

an antenna.

The medium surrounding the antenna influences its performance. An im-

plantable antenna is encompassed by a human body. In a sense, the human body

can be regarded as a very large, lossy, non-magnetic substance which extends from

the absolute near-field to, at least in some directions, the far-field. Any material

can be characterised by its permittivity (ε), permeability (µ) and conductivity

(σ), which in general are complex and frequency dependent [9]. The permittivity

ε and the conductivity σ can be expressed by their real and imaginary parts as:
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ε = ε
′ − jε′′ (3.23)

σ = σ
′ − jσ′′ (3.24)

The complex permittivity εc of a medium is then defined as

εc = εe − j
σe
ω

(3.25)

Here the effective permittivity εe and effective conductivity σe are defined as

εe = ε
′ − σ

′′

ω
(3.26)

σe = σ
′
+ ωε

′′
(3.27)

The loss due to conductivity in the matter is expressed as a dissipation factor

or a loss tangent tan δ. They are defined as:

tan δ = −Im [εc]

Re [εc]
=

σe
ωεe

(3.28)

where Re[] and Im[] denote real and imaginary parts, respectively.

3.6.1 Tissue Properties

The relative permittivity εr and conductivity σe of different human tissues at

three different frequencies are given in Tabs. 3.1, 3.2 and 3.3 [97].

Tissue εr σe (S/m)
Muscle 170.73 0.61683

Fat 13.767 0.029152
Skin (dry) 361.66 0.19732
Skin (wet) 221.81 0.366

Table 3.1: Tissue Parameters at 10 MHz.

The tables suggest that the conductivity increases as the frequency increases.

This increases the loss tangent and hence as frequency increases the absorption
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Tissue εr σe (S/m)
Muscle 65.972 0.70759

Fat 6.0741 0.036295
Skin (dry) 72.929 0.49122
Skin (wet) 65.969 0.5232

Table 3.2: Tissue Parameters at 100 MHz.

Tissue εr σe (S/m)
Muscle 57.129 0.79631

Fat 5.5798 0.041119
Skin (dry) 46.787 0.68806
Skin (wet) 49.896 0.66894

Table 3.3: Tissue Parameters at 400 MHz.

Tissue εr σe (S/m)
Muscle 57.1 0.797

Fat 5.6 0.041
Skin (dry) 46.7 0.69
Skin (wet) 49.8 0.67

Table 3.4: Tissue Parameters at 403.5 MHz.

increases. Johansson carried out an one-dimensional FDTD simulation to study

the effect of a human body on an impinging plane wave [9]. The human body

is modelled as a block of muscle tissue with certain thickness and extending to

infinity in the other two dimensions. The other tissues are added as layers of

finite thickness to the existing layer of the muscle tissue. The simulation was

carried out for the MICS band frequency of 403.5 MHz and Tab. 3.4 gives the

corresponding tissue parameters. Fig. 3.6 shows the magnitude of the electric

and the magnetic fields varying with distance. The muscle tissue is assumed to

be at z = 1.0 m and the thickness of the slab was 144 mm [98]. It can be seen

that the magnetic field is strengthened at the surface between the body block and

the air which suggests that a magnetic antenna might be beneficial for implant

communication. Johansson et al. developed more complex models to study the

effect of the fat layer in between the skin and the muscle layer. Figs. 3.7 and

3.8 show the E and H plots for fat layers of thicknesses 0, 5, 10, 25 and 50 mm.
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Figure 3.6: The variations in RMS electric and magnetic fields when a plane wave
travelling in the positive z direction impinges upon a simple 1D phantom [9].

There was a dependence on the fat layer but the variations were not larger.
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Figure 3.7: Electrical field strength dependence on fat layer thickness [9].

57



System Design 3.7 Antenna

0.5 0.7 0.9 1.1 1.3
z, [m]

M
ag
ne
tic
 F
ie
ld
 R
el
at
iv
e 
In
ci
de
nc
e,
 [d
B
]

0

-10

-5

5

10

-15

-20

-25

-30

-35

-40

Figure 3.8: Electrical field strength dependence on fat layer thickness [9].

3.7 Antenna

The most common forms of antennas are dipoles and loop antennas; they are

the most versatile types for many applications. Desirable features for an implant

antenna include compact size and acceptable radiation efficiency, for the fields

pass through biological tissue. They have to be omnidirectional too. To investi-

gate the suitability of these antennas for use in near-field implant communication,

the radiated fields are analysed to determine whether power density is predomi-

nantly inductive or capacitive. It is also established if any of these antennas can

modulate the data pulses.

3.7.1 Dipole or Linear-wire Antenna

A dipole is simply a linear wire that is used to radiate fields into free space.

In order to use a dipole in implants, its length has to be in the order of a few

centimeters, for the pill that houses all the circuitry including antenna normally

measures 11 mm × 25 mm. The frequency should be low for absorption of

radiated fields by tissues [99]. Therefore a dipole’s length l is usually much

smaller than the wavelength λ. It can be considered as an infinitesimal dipole for

which the fields E and H are given by
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Er = η
I0l cos θ

2πr2

[
1 +

1

jkr

]
e−jkr (3.29)

Eθ = j η
kI0l sin θ

4πr

[
1 +

1

jkr
− 1

(kr)2

]
e−jkr (3.30)

Eφ = 0 (3.31)

Hr = Hθ = 0 (3.32)

Hφ = j
kI0l sin θ

4πr

[
1 +

1

jkr

]
e−jkr (3.33)

The power density of an antenna, as discussed in Section 3.5.3, can be com-

puted if E and H fields are known. Using (3.29)-(6.5), the complex Poynting

vector for a dipole antenna can be written as

W =
1

2
(E ×H∗) =

1

2
(ârEr + âθ Eθ)×

(
âφH

∗
φ

)
=

1

2

(
ârEθH

∗
φ − âθ ErH

∗
φ

)
(3.34)

The subscripts r, θ and φ represent resolved vector components of a spherical

coordinate system. The power density of a dipole antenna has radial Wr and

transverse Wθ components. They are given by

Wr =
η

8

∣∣∣∣I0lλ2

∣∣∣∣ sin2 θ

r2

[
1− j 1

(kr)3

]
(3.35)

Wθ = jη
k |I0l|2 cos θ sin θ

16π2r3

[
1 +

1

(kr)2

]
(3.36)

The complex power moving outward radially can be computed by integrating

(6.8)-(3.36) over a closed sphere of radius r. It can be written as

P =
{

S
W. ds =

w 2π

0

w π

0
(ârWr + âθWθ) . âr r

2sin θ dθ dφ (3.37)

which reduces to
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P =
w 2π

0

w π

0
Wr r

2 sin θ dθ dφ = η
π

3

∣∣∣∣I0lλ
∣∣∣∣2 [1− j 1

(kr)3

]
(3.38)

The transverse component Wθ of the power density does not contribute to

the integral. This is because of the way in which the power pattern is defined.

It is a measure, as a function of direction, of the average power density radiated

by an antenna in a direction normal to the infinitesimal area dA on the sphere

of radius r. However as Wθ moves in the transverse direction, it (3.38) does not

represent the total complex power radiated by the antenna. The second term of

(3.38) along with (3.36) should be used to determine the total reactive power of

the dipole antenna.

(3.38) can also be written as

P = Prad + j2ω
(
W̃m − W̃e

)
= η

π

3

∣∣∣∣I0lλ
∣∣∣∣2 [1− j 1

(kr)3

]
(3.39)

where

P=power in radial direction

Prad=time-average power radiated

W̃m=time-average magnetic energy density in radial direction

W̃e=time-average electric energy density in radial direction

2ω
(
W̃m − W̃e

)
=time-average imaginary (reactive) power in radial direction

From (3.39)

Prad = η
π

3

∣∣∣∣I0lλ
∣∣∣∣2 (3.40)

2ω
(
W̃m − W̃e

)
= − η π

3

∣∣∣∣I0lλ
∣∣∣∣2 1

(kr)3 (3.41)

(3.41) is of particular interest as it clearly shows that magnetic radial energy is

less than electric radial energy. Additionally for large values of kr (kr >> 1), the

reactive power abates and vanishes when kr →∞. For use in implants, antennas

are preferred to be magnetic rather than electric. It was previously reported

in Section. 3.3 that the human body can be used as a medium for electrostatic

coupling. This prompts for a need to verify if these antennas can shape the pulses
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and make communication possible.

3.7.2 Loop Antenna

A loop antenna is equivalent to an infinitesimal magnetic dipole whose axis is

perpendicular to the plane of the loop. The magnetic dipole is assumed to have

a length l and constant magnetic spatial current Im given by

Er = Eθ = Hφ = 0 (3.42)

Eφ = −j kIml sin θ
4πr

[1 +
1

jkr
]e−jkr (3.43)

Hr =
Iml cos θ

2πηr2
[1 +

1

jkr
]e−jkr (3.44)

Hθ = j
kIml sin θ

4πηr
[1 +

1

jkr
− 1

(kr)2
]e−jkr (3.45)

The term Iml is called the magnetic moment of the magnetic dipole. It is

equivalent to a small electric loop of radius a and constant electric current Io

provided that

Iml = jSωµI0 (3.46)

where

S=πa2=area of the loop.

As discussed in Section (3.7.1), for a dipole antenna the power in the near-field

region (kr << 1) is predominantly reactive and in the far-field real. The complex

power for a loop antenna is given by

W =
1

2
(E ×H∗) =

1

2
[(âφEφ)× (ârH

∗
r + âθH

∗
θ )] =

1

2
(−ârEφH

∗
θ + âθ EφH

∗
r )

(3.47)

The radial Wr and transverse Wθ components of complex power density are

given by
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Wr = η
(ka)4

32
|I0|2

sin2 θ

r2

[
1 + j

1

(kr)3

]
(3.48)

Wθ = η
(ka)2

16
|I0a|2

sin θ cos θ

r3

[
1

r

(
1− k

r

)
− j

(
k +

1

kr3

)]
(3.49)

By integrating (3.47) over a closed sphere of radius r, the power moving

outward radially is given by

P = η
( π

12

)
(ka)4 |I0|2

[
1 + j

1

(kr)3

]
(3.50)

From (3.50)

2ω
(
W̃m − W̃e

)
= η

( π
12

)
(ka)4 |I0|2

1

(kr)3 (3.51)

A comparison between (3.51) and (3.41) indicates that the reactive energy for

a dipole is negative whereas it is positive for a loop antenna. In other words for

a dipole the radial power density in the near-field is capacitive but inductive for

a loop antenna.

3.8 Lumped Element Equivalent Circuit-Dipole

Antenna

Chu [100] and Streable et al., [101] proposed two simple equivalent circuits to

represent short dipole antennas. These were, respectively

1. a three-element equivalent circuit from [100]

2. a four-element equivalent circuit from [101]

3.8.1 The Three-Element Equivalent Circuit

Chu’s equivalent circuit can be represented by three lumped elements as shown

in Fig. 3.9. The values of lumped elements depend on the physical dimensions
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C11

L11

R11

Figure 3.9: Three-element equivalent circuit of a dipole.

of a dipole and not on the frequency of operation. This aspect of frequency-

independent lumped elements is crucial for carrying out time-domain analysis, in

order to determine the pulse shape at the terminals of an antenna. The antenna

feed point impedance Za = Ra + jXa may be obtained by finding the equivalent

impedance of the network shown in Fig. 3.9. The value of C11 is determined from

the reactance of the antenna at a frequency (f) much lower than the resonant

frequency. While doing so L11 and R11 can be ignored and C11 is given by

C11 =
|Xa|
2πf

(3.52)

But the value of C11 is related to the dipole half-length (h) and radius (a) by

[102]

C11 =
27.82× 10−12

ln (2h/a)− 1.693
(3.53)

The inductance L11 and R11 can be evaluated at the resonant frequency (ωo)

at which the reactance of the antenna vanishes. The radiation resistance Rao is

related to all the lumped elements by the following relations:

L11 =
1

ω2
oC11

+ C11R
2
ao (3.54)

R11 =
L11

C11Rao

(3.55)

This circuit suffered from problems of predicting high radiation resistance

below resonance. Nevertheless the values of reactance were most accurate.
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3.8.2 The Four-Element Equivalent Circuit

Similar to the three-equivalent circuit the dipole is approximated by lumped

elements independent of frequency. The difference is an addition of a resistance

in series with the capacitance [101]. This is shown in Fig. 3.10.

C21 

L21 

R22

R21 

Figure 3.10: Four-element equivalent circuit of a dipole.

The values of R21, R22, C21 and L21 are given by:

R21 = 0.663 Ω (3.56)

R22 = 2200.6 Ω (3.57)

C21 =
0.002721

πc
F (3.58)

L21 =
434.55l

πc
H (3.59)

where

c=3× 108(m/s)

l=2h=total length of the dipole (m)

This equivalent circuit also has some disadvantages. It predicted input impedances

with large-errors especially when frequencies were below the resonant frequency

and the radiation resistance is less than approximately 2 Ω. This is an impedi-

ment when designing near-field pulse based communication systems because the
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radiation resistance is expected to be low, as much of the energy is stored in its

reactive fields.

Thus it was decided to use a modified version of the four-element lumped

equivalent circuit representing a dipole for carrying out a necessary time-domain

analysis. It also consisted of four elements and was of similar configuration to

the three-element equivalent circuit of Chu [95]. The values of the elements of

Fig. 3.11 are given by:

C31 =
12.0647h

log (2h/a)− 0.7245
pF (3.60)

C32 = 2h

{
0.89075

[log (2h/a)]0.8006 − 0.861
− 0.02541

}
pF (3.61)

L31 = 0.2h
{

[1.4813 log (2h/a)]1.012 − 0.6188
}
µH (3.62)

R31 = 0.41288 [log (2h/a)]2 + 7.40754 (2h/a)−0.02389 − 7.27408 kΩ (3.63)

C31

L31

R31

C32

Figure 3.11: New four-element equivalent circuit of a dipole.

These empirical equations consider the physical dimensions of the dipole, viz.,

half-length (h) and radius (a) which are expressed in meters. It is worth pointing

out the fact that unlike Chu’s equivalent circuit, the resonance frequency ωo does

not appear in the expressions. This suggests that a complete frequency response
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can be obtained by evaluating equations (3.60)-(3.63).

3.9 Results and Discussion

Owing to the requirement of compact size antennas in implantable devices, the

new four-element equivalent circuit of a dipole was investigated for half-lengths

h = [0.5 1 1.5] cm to know the nature of waveforms at the antenna terminals.

Dipoles of such lengths can be easily integrated in a pill-shaped ingestible device.

The values of C31, C32, L31 and R31 can be evaluated by solving (3.60)-(3.63).

The antenna impedance between the open terminals can be calculated by (3.64)

and (3.65):

1

Zeq
=

1

R31

+
1

jωL31

+ jωC32 (3.64)

Ztotal = Zeq −
j

ωC31

(3.65)

h [cm] C31[fF] C32[fF] L31[nH] R31[kΩ] Input Impedance [Ω]
0.5 83.192 18.104 1.548 0.433 0.87e−6 − j0.95e6

1.0 117.58 24.769 4.009 0.718 3.53e−6 − j0.68e6

1.5 150.54 31.447 6.815 0.921 7.96e−6 − j0.53e6

Table 3.5: Lumped Element Values.

The entries in the table were generated for a frequency f = 2 MHz and radius

a = 0.3455 mm. The input impedance suggests that the radiation resistance is

practically non-existent. However an interesting observation is that the reactance

of a dipole is negative for such small dimensions. In other words the energy

stored is mainly capacitive. Advanced Design System software (ADS) was used

to simulate the behaviour of a dipole antenna when excited by a pulse. A square

pulse of peak amplitude 1 V is applied across the terminals of the dipole through

a series resistance of 5 Ω. The values of all the lumped components that form the

new four-element equivalent circuit were taken from the entries in the first row of

Table 3.5. It was observed that dipole antenna behaved like a capacitor and the

entire voltage appeared across its terminals as shown in Fig. 3.12 (a). The voltage
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Figure 3.12: Simulated voltage waveforms:(a)Electric energy waveform; and
(b)Magnetic energy waveform
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that appears as magnetic energy in a dipole is shown in Fig. 3.12 (b). As expected

the amplitude levels are too low and hence the signal will be lost in background

noise. For increasing dipole half-length there is also a corresponding increase in

its inductance. This did not increase the amplitude levels significantly and the

waveform shape also remained the same. To couple the electric energy from one

dipole to another, one should opt for electrostatic coupling. This necessitates

for the dipole (once implanted) to be in contact with bodily fluids which is not

desirable. Thus use of dipoles in near-field communication implantable systems

was considered not to be a feasible option. In general it can be concluded that

the electric antennas are unsuitable for use in low frequency pulse radio near-field

implantable systems.

3.10 Summary

In this chapter, a novel design scheme for radiating pulses is presented. The

scheme called the near-field baseband communication, is attractive for implantable

systems owing to its low power requirements and reduced complexity. This chap-

ter carefully considers the antenna choices (electric or magnetic) to be made. It is

central for the communication system as antenna not only acts as a radiator, but

also, an encoder. The suitability of a dipole was studied and was found that it is

not an ideal candidate for near-field wireless systems. The next chapter discusses

the loop antennas and investigates different circuit topologies to make near-field

communication system viable.
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Loop Antenna Design for Pulse Radio 4.1 Introduction

4.1 Introduction

The previous chapter included a description of electric and magnetic antennas

and also explained the shortcomings of electric antennas for use in near-field low

frequency implantable systems. This chapter concentrates on establishing the use

of loop antennas as magnetic antennas to radiate low frequency pulses effectively.

A comprehensive theory has been developed for designing low frequency pulse

radio systems. The loop antenna is treated as a lumped equivalent circuit to

determine the distortion suffered by a pulse at the antenna terminals. This is

very important for an efficient detection of the pulse at the receiver. An expres-

sion for the fractional bandwidth of such low frequency pulse antennas has been

developed.

4.2 Coil Properties

A coil can be represented by lumped components as shown in Fig. 4.1.

L

Cp

RRad

RLoss

Figure 4.1: Equivalent Circuit of a Loop Antenna.

RRad the radiation resistance, RLoss the loss resistance, L the inductance and

CP the parasitic capacitance constitute the lumped equivalent circuit components

[103].
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4.2.1 External Inductance

The external inductance of an inductor depends upon its geometry and can be

readily calculated by various expressions. The most common geometries are long

solenoid, a toroid and a spiral shaped coil. The external inductance for coils,

whose height is large in comparison to the radius, is given by [104]:

Le =
µN2A

l
(4.1)

where

µ=permeability of the medium, Hm−1

N=number of turns on solenoid

A=cross-sectional area of solenoid, m2

l=length of solenoid, m

The external inductance of any coil whose height is small in comparison to its

radius is given by [105]:

Le = N2aµ

[
ln

(
8a

d
− 2

)]
(4.2)

where

N=number of turns

µ=permeability of the medium, , Hm−1

a=loop radius

d=wire radius

It is assumed that the loop radius a is much greater than the wire radius d.

4.2.2 Internal Impedance

An alternating current (AC) in a wire generates a magnetic field inside and around

it. The internal magnetic field penetrates the wire to a certain depth. Thus the

field decreases to 1/e of its initial value, while the field penetrates to a distance

δ. This is called the 1/e depth of penetration and the phenomenon is often called

skin effect. The depth of penetration is given by:
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δ =
1√
fπµσ

(4.3)

where

δ=1/e depth of penetration, m

f=frequency, Hz

σ=electrical conductivity of the medium, 0m−1

The above equation (4.3) indicates that the internal impedance is dependent

upon the frequency. For an electrically small single-turn loop antenna, the inter-

nal impedance is generally taken to be that of a straight conductor in length to

the circumference of the loop [106]. But in case of multiturn loops the current dis-

tribution is somewhat cumbersome to be predicted as the current re-distribution

can also be a result of the magnetic field generated currents in nearby turns. This

occurence is called the proximity effect. These effects are important to be con-

sidered for electrically small coils as the loss resistance tends to be much larger

than the radiation resistance [13]. Fig. 4.2 represents the internal impedance in

a single conductor and a system of two adjacent conductors.

do

s

(a) (b)

Figure 4.2: (a)Skin Effect in a Single Conductor; and (b)Proximity Effect and
Skin Effect in Adjacent Conductors.

4.2.2.1 Skin Effect

An increase in the internal impedance per unit length due to the skin effect is

given by [105]:

Zi = R + jωLi =
jRs√
2πd

[
Ber (q) + jBei (q)

Ber′ (q) + jBei′ (q)

]
(4.4)
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where

Rs =
1

σδ
=

√
πfµ

σ
(4.5)

q =

√
2d

σ
(4.6)

d=wire radius

The Ber and Bei functions and their derivatives Ber′ and Bei′ respectively

are defined as follows:

Ber (v) + jBei (v) = Jo

(
j−1/2v

)
(4.7)

Ber′ (v) + jBei′ (v) =
d

dv
(Ber (v) + jBei (v)) = j−1/2J ′o

(
j−1/2v

)
(4.8)

where

Jo=Bessel function of the first kind of order zero

Low and High frequency approximations are suggested for (4.4) that can be

useful in knowing the nature of internal impedances for variations in either fre-

quency f or loop radius a. It is given by:

Zi ≈
1

πd2

[
1 +

1

48

(
d

δ

)
2

]
+ j

ωµ

8π
Ω/m (4.9)

The high frequency expression is given by:

Zi ≈
(1 + j)

2πd
Rs Ω/m (4.10)

4.2.2.2 Proximity Effect

Proximity effect is important in loop antennas as it can affect the radiation effi-

ciency. The radiation and loss resistances determine the radiation efficiency. In

practice, multiturn loops are used to increase the radiation efficiency. However,

the current distribution in a multiturn loop is quite complex as a result of which

73



Loop Antenna Design for Pulse Radio 4.2 Coil Properties

great confidence has not yet been established in determining the radiation effi-

ciency of a small multiturn loop antenna analytically. Experimental techniques

such as the Wheeler method and Q method are used to measure radiation effi-

ciency [107].

G. S. Smith made a theoretical analysis to evaluate the proximity effect [108].

The total ohmic resistance for an N -turn circular-loop antenna with loop radius

a, wire radius b, and loop separation 2c is given by:

Rohmic =
Na

b
Rs

(
Rp

Ro

+ 1

)
(4.11)

where

Rs =
√

ωµo

2σ
=surface impedance of conductor

Rp=ohmic resistance per unit length due to proximity effect

Ro = NRs

2πb
=ohmic skin effect resistance per unit lenth

The normalised values of additional ohmic resistance per unit length due to

proximity effect Rp

Ro
are reproduced for reference in Table 4.1 [13]. It is evident

that for close spacing the additional resistance due to the proximity effect is twice

as large as that in the absence of the proximity effect. Smith claims that these

results are valid for almost all practical wire sizes used to make loop antennas as

long as the frequency of operation is above 1 MHz.

Most of the formulae presented so far require the loop antennas to be elec-

trically small. A coil is generally considered to be electrically small if the total

length of the conductor is less than a tenth of the wavelength [84]. The system

proposed in this thesis is operable in the near-field. The maximum theoretical

frequency for near-field transmission depends on the required range r given by

[109]:

r =
λ

2π
(4.12)

where

λ=wavelength

Since the desired operational range is to be within a metre (in the near-

field) or so, the maximum frequency permitted would be less than or equal to

48 MHz. Therefore the minimum wavelength will be equal to 6.25 m. As the
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Numbers of conductors
c/b 2 3 4 5 6 7 8
1 0.333

1.05 0.316 0.743 1.231
1.10 0.299 0.643 0.996 1.347 1.689 2.020 2.340
1.15 0.284 0.580 0.868 1.142 1.400 1.643 1.872
1.20 0.268 0.531 0.777 1.002 1.210 1.401 1.577
1.25 0.254 0.491 0.704 0.896 1.068 1.224 1.365
1.30 0.240 0.455 0.644 0.809 0.956 1.086 1.203

1.40 0.214 0.395 0.546 0.674 0.784 0.880 0.965
1.50 0.191 0.346 0.470 0.572 0.658 0.732 0.796
1.60 0.173 0.305 0.408 0.492 0.561 0.620 0.670
1.70 0.155 0.270 0.358 0.428 0.485 0.532 0.573
1.80 0.141 0.241 0.316 0.375 0.423 0.462 0.495
1.90 0.128 0.216 0.281 0.332 0.372 0.405 0.433
2.00 0.116 0.195 0.252 0.295 0.330 0.358 0.382

2.20 0.098 0.161 0.205 0.239 0.265 0.286 0.304
2.40 0.082 0.135 0.170 0.197 0.217 0.234 0.247
2.50 0.077 0.124 0.156 0.180 0.198 0.213 0.225
2.60 0.071 0.114 0.144 0.165 0.182 0.195 0.206
2.80 0.061 0.098 0.123 0.141 0.154 0.165 0.174
3.00 0.054 0.085 0.106 0.121 0.133 0.142 0.150
3.50 0.040 0.062 0.077 0.087 0.095 0.101 0.106
4.00 0.031 0.048 0.058 0.066 0.072 0.076 0.080

Table 4.1: Normalised additional ohmic resistance per unit length due to the
proximity effect Rp/Ro [13].

antenna should fit in a small pill, its dimensions will always satisfy the criteria

of electrically small antennas. The conclusion is that all the equations presented

so far can be used for near-field transmission system design. Another condition

that ought to be tested is that skin depth should be less than the wire radius for

the operational frequencies concerned. The field should not be able to penetrate

to the centre of the conductor and therefore the wire radius should be greater

than 4.6 skin depths. Table 4.2 is created which suggests minimum wire radius

for various frequencies concerned. While doing the computations, it was assumed
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Frequency 40 MHz 20 MHz 10 MHz 1 MHz
Wire Radius 0.048 mm 0.068 mm 0.096 mm 0.306 mm

Table 4.2: Minimum wire radius for Smith’s proximity effect analysis to be valid
for various near-field frequencies.

that wire was made of copper, which has a conductivity of σ = 5.7× 107 S/m at

25oC[8].

4.3 Simulation Results and Verification

All the effects discussed so far are simulated for near-field frequencies and the

variations observed over the specified range of near-field frequencies. This will

help in determining the value of the series resistance in the lumped equivalent

circuit. A frequency and time response will then be carried out in order to

determine the pulse response of the loop antenna.

4.3.1 External and Internal Inductance

The proximity effect does not give the internal inductance of multiturn loop coils.

It mainly affects the resistance of coils given by:

ac resistance

dc resistance
= HB + u

(
do
s

)2

G (4.13)

where

HB=resistance of isolated wire taking into account the skin effect

G=a proximity effect factor

u=a constant

do=wire diameter in cm

s=spacing between centres of adjacent turns

The internal inductance of a single coil is however given by the skin effect.

Fig. 4.3 shows that internal inductance is negligible in comparison to the external

inductance. Also, internal inductance decreases for increasing frequency.

Proximity effect quantifies an increase in the additional ohmic resistance and
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Figure 4.3: Variations of external and internal inductances of a single coil.

it is important to consider this. The resistance alters the shape of the pulse to

be transmitted. Hence the variation of ohmic resistance with frequency needs

to be determined. Smith’s effect on a loop antenna at near-field frequencies can

be beneficial for determining the effect of a loop’s resistance on the shape of a

pulse. The parameters that influence the total ohmic resistance are the ratio

between conductor spacing and wire radius, frequency, conductivity and number

of turns. Figs. 4.4, 4.5, 4.6 and 4.7 show the variation of total ohmc resistance

with frequency for various combinations of wire radius and loop radius. In all the

four cases, the resitance decreased with an increase in the spacing to wire radius

ratio. Hence Smith’s proximity effect is less pronounced in widely-spaced coils.
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Figure 4.4: Smith’s proximity effect theory for a four turn coil of radius 5 mm
with a wire radius of 0.355 mm.
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Figure 4.5: Smith’s proximity effect theory for an eight turn coil of radius 5 mm
with a wire radius of 0.355 mm.

As the wire radius increases, the resistance decreases, but the difference is small.

It can be seen clearly in Figs. 4.4 and 4.6. An increase in the number of turns

results in an increase in the total ohmic resistance. It was decided to use Smith’s

proximity effect results to predict the distortion suffered by a pulse.
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Figure 4.6: Smith’s proximity effect theory for a four turn coil of radius 10 mm
with a wire radius of 1 mm.
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Figure 4.7: Smith’s proximity effect theory for an eight turn coil of radius 10 mm
with a wire radius of 1 mm.

4.4 Pulse Shaping Filter

The pulse shaping filter plays a crucial role in the overall system design. The

design can be realised by considering the antenna as a filter whose parameters

can be defined by the help of all the equations presented in the above discus-
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sions. The pulse is distorted by an antenna, but in a controlled manner, and the

information is conveyed through mutual coupling. This principle is analogous to

ultra wideband radio or impulse radio. UWB systems are becoming attractive

at microwave frequencies [110, 111]. These systems comprise some type of fast

rise-time step or pulse generator [112, 113]. The shape of the pulse in an ideal

impulse radio is a Gaussian monocycle of nanosecond duration. Hence dedicated

pulse shapers are used to shape the incoming pulse. Data is then transmitted

using techniques such as PPM. The pulse shaping adds complexity to the system

that in the present case we would like to avoid. In contrast, the system presented

in this work, uses the antenna itself as a pulse shaper. It is made up of purely

passive elements thereby minimising power consumption. Another major differ-

ence is that the near-field baseband pulse radio system operates in the near-field,

coupling energy through the reactive fields, unlike an UWB system that operates

in the far-field by harnessing energy in the radiated fields. Owing to its simplicity,

the baseband pulse radio system becomes attractive and applies itself readily to

low frequency near-field communication systems.

4.4.1 Filter Design

ADS software was used to facilitate the design of the near-field baseband commu-

nication system. It was the first priority to determine whether a loop antenna can

effectively radiate pulses in a manner that can make the information intelligible.

With the antenna being predominantly magnetic, it has to also build inductive

reactive energy in the form of magnetic fields. These fields of energy can then be

coupled to an another receiving antenna, the design of which will be discussed in

a later chapter.

Loop antennas come in different shapes and sizes. There are several analytical

expressions to calculate their inductance. To understand the principle of design-

ing a loop antenna for the near-field communication systems, it was decided to

consider a solenoidal shaped antenna. Importantly, the solenoidal shaped antenna

when integrated inside the case of a pill, utilises the available volume efficiently.

This is necessary as the field produced by a magnetic dipole is proportional to the

area of the loop as shown by (3.46). However the principle can be easily extended
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to a loop antenna of any shape and size. The inductance of a solenoid is given

by:

L =
µoµrN

2A

l
(4.14)

where µo is the permeability of free space, µr is the relative permeability, N

is the number of turns, l is the length of the solenoidal coil and A is the area of

cross-section of the solenoid.

|IV | =
∣∣∣∣LI∆I

∆t

∣∣∣∣ (4.15)

The capacitance is very small and does not influence the antenna design.

However this statement is invalid for the design of a receiving antenna. Hence its

discussion is deferred until Chapter 7. The resistances in the equivalent circuit

of the loop antenna are small with values normally between 0.1 and 0.5 Ω. The

equivalent circuit shown in Fig. 4.1 is modified to have just an inductance and

a resistance. The solenoidal loop antenna was assumed to have 10 turns, a loop

radius of 5 mm and a total length of 25 mm. Using (4.14), the inductance was

found to be 0.394 µH.

The inductor was excited by a square pulse of amplitude 0.5 V. Figs. 4.8 and

4.9 show the input and output waveforms at the terminals of the equivalent circuit

representing the loop antenna respectively. This helps us to observe the effect in

the time domain and it can be seen that during the rising edge of the pulse, the

voltage across the inductor (or antenna terminals) is at its maximum. At this

instant the inductor appears as an open circuit. For a constant amplitude, the

voltage across the inductor should decay and reach zero amplitude. This decay

time depends upon the values of resistance and inductance, given by the time

constant τ as in τ = L
R

. It approximately takes 5 time constants for a pulse of

amplitude A to reach nearly zero. Since the resistance is very small, the decay

time is large and the voltage across the antenna never reaches zero. This severely

restricts the rate at which energy is taken away from the inductor, in other words,

the rate at which magnetic energy is building up in an inductor.

Analytically this can be explained with the help of (4.15). The magnetic field

is proportional to the current. If the decay time (∆t) is small, then all the energy
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in the magnetic field has to dissipate in a short time. The current thus flows

through the antenna for a very short time and a large magnetic field develops

around the antenna. This aids in the conversion of almost all the electric energy

available to magnetic energy. However the resistance has to be at an acceptable

value to minimise losses in heating. A few changes have to be incorporated

to achieve the desired result. This includes the addition of a resistance and

capacitance.

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

Time, [µs]

A
m

pl
itu

de
 [V

]

Figure 4.8: Input Square Pulse of Amplitude 0.5 V.

4.4.1.1 Filter Analysis

A novel procedure is suggested to design an antenna for near-field baseband pulse

transmission systems. It has been explained that a stand alone loop antenna

cannot operate efficiently. A design methodology is proposed here to enhance

the features of a loop antenna. The design can feature either as a series RLC

circuit or a parallel RLC circuit. The inductor “L” in both designs serves as a

loop antenna. Loop antennas are perfectly suitable for implantable applications

because of their omnidirectionality [114]. An analysis should be carried out in a

82



Loop Antenna Design for Pulse Radio 4.4 Pulse Shaping Filter

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

Time, [µs]

A
m

pl
itu

de
 [V

]

Decay

Figure 4.9: Output at the Antenna Terminals.

manner that helps determine the behaviour of a loop antenna circuit over a range

of frequencies and how this translates to variations in voltage over time axis. In

essence, an antenna can be regarded as a black box, which requires inductance,

capacitance and resistance as inputs to produce the temporal characteristics of

the loop antenna. The digital pulse is becoming shorter to increase the speed at

which a system can operate and therefore a loop antenna has to respond quickly

by building and decaying the magnetic energy during the rising and falling edges

of the digital pulse. This can be achieved by including an external resistance and

capacitance with the loop antenna and in order to determine the values of these

elements one has to determine the magnitude and phase characteristics of the

loop antenna together with the resistance and capacitance. The resistance and

capacitance can either be connected in series or in parallel with a loop antenna.

The series RLC and parallel RLC circuits are shown in Figs. 4.10 (a) and

4.10 (b). As shown previously, the winding resistance is usually small and hence

neglected. The transfer functions H(ω) of a series and parallel circuit are given

by 4.16 and 4.17 respectively.
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Figure 4.10: (a)Series RLC Circuit; and (b)Parallel RLC Circuit.

HS (ω) =
jω2LC

ωRC + j(ω2LC − 1)
(4.16)

HP (ω) =
jωL

(R− ω2RLC) + jωL
(4.17)

θS = 900 − tan−1

(
ω2LC − 1

ωRC

)
(4.18)

θP = 900 − tan−1

(
ωL

R− ω2RLC

)
(4.19)

ωo =
1√
LC

(4.20)

where

ωo is the resonance frequency.

A tank circuit can appear to be predominantly inductive, capacitive or resis-

tive depending upon the frequency ω of the input signal Vin. In the present case,
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the input to the antenna is a rectangular pulse. A pulse is made up of several

harmonics. These harmonic frequencies suffer varying levels of attenuation in

magnitude and phase, depending on the position of individual frequency compo-

nents above or below the resonant frequency (ωo). While designing the antenna,

this factor has to be taken into account and the antenna, which is a black box,

has to appear inductive to the harmonics. Hence the need to analyse the RLC

circuits with the help of phasor diagrams. These diagrams help to visualise the

resultant voltage Vr (or current Ir) as a vectorial sum of voltages (or currents)

across (flowing through) the resistance VR, inductance VL and capacitance VC .

Figs. 4.11 (a) and 4.11 (b) show the phasor diagrams for a series and parallel

RLC circuit respectively.

Figure 4.11: Phasor Diagrams:(a)Series RLC Circuit; and (b)Parallel RLC Cir-
cuit.

For a series circuit, when ω < ωo, VC > VL, resultant phase θr is negative

and the resultant voltage Vr lags the current. When ω = ωo, θr is zero and the

voltage Vr is in phase with the current. If ω > ωo, VL > VC , θr is positive and

the voltage Vr leads the current. Similar statements can be made for the parallel
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circuit with the voltage variable replaced by the current variable.

To design the filter, parameters like Q-factor, damping coefficient α and damp-

ing ratio ζ can be used. All the parameters are dependent upon each other. It

was decided to use ζ, as it can be expressed in terms of R, L and C, which are

the plug-ins for the black box. ζ is given by (4.21) and (4.22) for a series and

parallel RLC circuit respectively. The value of ζ can be less than, equal to or

greater than 1. Fig. 4.12 shows the amplitude and phase characteristics of the

series and parallel RLC circuits for various values of ζ and it can be seen that

the magnitude response becomes wider for increasing values of ζ in the case of a

series RLC circuit and narrower for a parallel RLC circuit. The effect of ζ on a

pulse has to be analysed in the time domain to determine the distortion suffered

by a pulse.

ζs =
R

2

√
C

L
(4.21)

ζp =
1

2R

√
L

C
(4.22)

The time domain response of a parallel RLC circuit was analysed for various

values of ζ as shown in Fig. 4.13. The input was a square pulse of amplitude 0.5

V.

The pulse was severly distorted in all the cases except Fig. 4.13 (d). In Figs.

4.13 (a) and 4.13 (b), the value of ζ is 0.05 but the time domain response of both of

them is different. These anomalies have to be addressed as the shape of the pulse

is crucial to make the communication scheme viable. An expression containing

the frequency and time domain information of the pulse and the tank circuit will

help in designing the loop antenna for use in pulse radio communication systems.

A discussion on the tank circuit’s bandwidth becomes ever more important and

a critical analysis has been carried out, the description of which is in Sec. 4.5.

As expected the time domain response of the loop antenna, with an external

resistance and capacitance, was found to be oscillatory as shown in Figs. 4.13

(a) and 4.13 (b). A small damping ratio makes the magnitude response sharply

peaked. It can be seen that the pulse spreads in the time domain due to “ringing”.

The amplitude of the pulse in the time domain is very small as the antenna is
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Figure 4.12: Amplitude and phase characteristics of (a)Series RLC and (b)Parallel
RLC circuits for varying values of ζ. |H| is the magnitude and ∠H is the phase of
the transfer function, with subscripts s and p denoting either a series or parallel
RLC circuit respectively.

highly selective. This is undesirable as the detection at the receiver would be a

difficult task. In Fig. 4.13 (c), it can be seen that the temporal response is still

oscillatory and the pulse has undergone less distortion when compared to cases

(a) and (b). The amplitude of the pulse is also larger. This can be attributed

to the fact that the frequency response of the loop antenna is not as sharply

peaked as those before and the antenna becomes less selective in the pass band.

On the other hand, a flat magnitude response curve implies that there will be no

ringing and pulses can be shaped perfectly. This is the case when ζ is above 1 as

shown in Fig. 4.13 (d). Therefore, the decision was made to design a tank circuit
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Figure 4.13: Time Domain Response of a Parallel RLC Circuit:(a)ζ=0.05;
(b)ζ=0.05; (c)ζ=0.2 and (d)ζ=18.5. In all the cases except (b), L=0.3 µH, R=10
Ω and in (b), L=20 nH. C was different in all cases.

(that included the loop antenna) with a smooth magnitude response and a phase

response which was almost linear.
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4.4.1.2 Pulse Characterisation

The transmitted pulse is characterised by its amplitude and width in the time

domain. An analytical treatment helps in determining these characteristics. A

knowledge of these parameters will help in designing an antenna that will meet the

specifications of a pulse transmitter. It can be seen from the previous section that

a transmitted pulse will be made shorter in width by the antenna. Characteristic

equations for series and parallel RLC circuits can be solved for a step response.

(4.23) gives the general form of the characteristic equation of a bandpass filter.

s2 + 2ζωos+ ω2
o = 0 (4.23)

Vls(t) =
VS

2ωo
√
ζ2 − 1

(s1e
s1t − s2e

s2t) (4.24)

Vlp(t) =
VSζ√
ζ2 − 1

(es1t − es2t) (4.25)

where

s1=−ζωo + ωo
√
ζ2 − 1 and s2=−ζωo − ωo

√
ζ2 − 1.

The step responses of series and parallel RLC circuits are given by (4.24) and

(4.25). s1 and s2 are the poles of the characteristic equation. They also form

the roots of the characteristic equation. A careful observation reveals that poles

determine the time it takes for a pulse to decay to approximately zero amplitude.

The filter is said to be in an “overdamped” state. Under this condition, the poles

are real. s1 will be less than s2 and the pulse amplitude Vs will decay to zero

amplitude in time, approximately equal to 5
(

1
s1

)
.

The design procedure can be summarised as below:

• R should be as small as possible.

• The circuit should be overdamped.

• The resonance frequency of the coil should be greater than the resonance

frequency of the circuit.
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4.5 Antenna Bandwidth

In this section, the theories of the filter design and antenna design are merged to

arrive at a relationship between pulse widths and antenna bandwidths in terms

of the frequency spectra. From Sec. 4.4, it can be deduced that the bandwidth

of the filter must be extremely wide and the loading factor ζ should be greater

than 1 to transmit the pulses efficiently. How wide should the bandwidth be,

can be answered by the help of the knowledge of a rectangular pulse in frequency

domain. A rectangular pulse has a width tp. It is assumed to be repetitive after

every T instants in time. The Fourier series representation of the rectangular

pulse is given by (4.26).

v(t) =
Atp
T

+
∞∑
n=1

(
2A

tp
T

)(
sinnπtp/T

nπtp/T

)
cos 2π (nfo) t (4.26)

In the limit as the period T increases to infinity without bound, the amplitude

spectra become indistinguishable from one another and the continuous curve can

be described by (4.27) which is nothing but the Fourier transform of v (t) to

the frequency domain as V (f). Fig. 4.14 shows the normalised energy spectral

density of the pulse in blue, bipolar pulse in red and the magnitude response of

the tank circuit in green.

The bipolar pulse had positive and negative amplitudes of A and width equal

to tp/2. In order to arrive at the expression for the bandwidth of the composite

system (loop antenna with an external resistance and capacitance) two terms of

the filter’s passband, namely fl and fh have to be determined. The antenna is

inductive at frequencies below the resonance frequency fo and capacitive above

fo. For frequencies above fo the antenna appears as a constant gain antenna and

therefore fh can be equated to fo.

V (f) = Atp
sin πtpf

πtpf
(4.27)

To begin with, the frequency f is normalised with the pulse width tp as ftp.

This will change fl and fh to fltp and fhtp respectively. As the antenna has to

radiate almost all the frequencies, fltp has to be as small as possible. It cannot

be zero as a voltage of zero frequency as the antenna acts as a short circuit. So
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it was decided to set fltp = 0.1. Any variation in fh affects fo (fh = fo) which

in turn changes ζ. In Sec. 4.4.1.2, it was reasoned that the antenna has to act

as an overdamped filter. Hence, changes in ζ have to be tracked. Before varying

fh, the damping ratio has to be set to a fixed value. This can be achieved by

maintaining a constant ratio of L/C. For a fixed value of ζ and fltp, the effects of

varying fhtp on antenna’s fractional bandwidth Bf , given by (4.28), is observed.

Bf = 2
fh − fl
fh + fl

(4.28)

The energy of the pulse spectrum is concentrated at lower frequencies and

when such a pulse below the resonant frequency fo of the antenna undergo atten-

uation due to capacitive mismatch and above fo generally act as constant gain

antennas. The region around the point of resonance is also of concern as this

might induce the “ringing” effect. In essence the resonance frequency splits the

spectrum into two parts. It was experimentally observed that for ζ equal to 2, 10

and 20, perfectly shaped pulses were possible only when fhtp was greater than or

equal to 5, 20 and 40 respectively. When these values were substituted in (4.28),
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Bf was nearly equal to 2. Hence, (4.29) gives the fractional bandwidth of the

proposed near-field pulse radio system. This analysis helps to design the loop

antenna for any pulse width. All that is required is to determine the values of L

and C of the loop antenna. Then it has to be made sure that fhtp is greater than

or equal to 2ζ.

Bf ≈ 2 (4.29)

The bipolar pulse spectrum has no dc component and thus the average losses

in the antenna are reduced. Moreoever one of the difficulties posed in radiating

low frequency is the antenna size. This is because the antenna must be at least a

substantial fraction in size of the wavelength of the frequency of electromagnetic

waves. Because of the huge size requirement of the antenna, radiation of dc

or near dc frequencies is not feasible for communication purposes. The bipolar

signals have a better signal-to-noise ratio and require low energy per bit to achieve

a good bit error probability rate than the unipolar signals.

4.6 Summary

In this chapter, the design of loop antennas for low frequency near-field pulse ra-

dio system is presented. The approach is new in the sense that the loop antenna

was not made to resonate at one particular frequency, but instead excited by a

pulse which is made up of several harmonics. A detailed analysis was carried out

to determine the lumped parameters of the loop antenna’s electrical equivalent

circuit. The skin effect and the proximity effect was considered in determing

the total ohmic resistance of a loop antenna. It was found that these effects

contributed insignificantly to a loop’s ohmic resistance. Certain changes were re-

quired to make the loop antenna more effective in radiating pulses. This included

an addition of a series resistance and a parallel capacitance. The main content

of this chapter is the estimation of the bandwidth required by loop antennas

that are ought to be used in low frequency pulse radio systems. The next chap-

ter discusses different encoding schemes that can be employed in this particular

communication scheme. A microcontroller produces the required pulses and a
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digital signal processor decodes the data at the receiver.
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5.1 Introduction

The previous chapter dealt with the loop antenna design for the near-field base-

band communication system. The approach taken to the design was to regard the

loop antenna as a filter that can be represented by a lumped equivalent circuit.

This was crucial as it aids in designing the system to meet the desired charac-

teristics in the time and frequency domain. A perfectly shaped pulse in the time

domain makes the communication system practically viable. This chapter dis-

cusses the electromagnetic design of the magnetic antennas that is central to the

near-field wireless communication scheme. Planar loop and solenoidal loop an-

tennas are investigated and an optimal shape among the two is suggested. Ansoft

HFSS, a finite element based modelling tool is used to simulate and analyse the

electromagnetic fields around these antennas.

5.2 Antenna

In Chapter 4, it was explained that the loop antenna can be treated as a lumped

equivalent circuit to determine the time and frequency domain responses. This

investigation is necessary to know the effects of the antenna on the pulse and engi-

neer the design of the loop antenna to enable the pulse transmission by encoding

information in its shape. A complementary information to this understanding

will be the radiation pattern of a loop antenna in the near-field. A radiation

pattern is defined as “a mathematical function or a graphical representation as

a function of space coordiantes. In most cases, the radiation pattern is deter-

mined in the far-field region and is represented as a function of the directional

coordinates” [8]. It was intended to choose the most suitable radiating structure

from various shapes and sizes of loop antennas possible. The structures that are

to be analysed are: (a) Printed loop antennas and (b) Solenoidal loop antennas.

The reasoning credited for choosing to analyse these shapes is the practicality

associated with these antenna shapes. The printed loop antennas can be easily

integrated with a system-on-chip (SOC) technology. A solenoidal loop antenna

can be easily wound in the form of a coil and encased within the pill shaped

object. HFSS aids in providing a solution to the complex electromagnetic fields
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surrounding the antenna. This will help in developing an understanding of how

the fields decay with distance.

The design of loop antennas for the near-field baseband pulse transmission is

not dissimilar to radio frequency identification (RFID) links. RFID is an identifi-

cation method based on the remote retrieval of information via radio waves from

miniature electronic circuits called RFID tags [115]. An RFID system has two

components: (a) A reader and (b) A tag. RFID tags fall into two main categories

depending upon their source of power [116]. RFID tags can be powered by their

own power source usually in the form of an on board battery. These are known as

active RFID tags. Active tags can operate over a larger read range (20-100 m) as

they can emit a strong signal. They operate at higher frequencies - 433 MHz, 2.45

GHz or 5.8 GHz depending upon the data rates and memory requirements [117].

Passive tags are often employed when the data rate is not critical and a smaller

range of operation is required. The magnetic field emanated by a reader is linked

to the tag antenna and thus communication is made possible. These tags offer

the advantages of low power, compactness and low cost. Impedance reflection

modulation is popular with such passive tag architectures. The near-field RFID

can be represented as a magnetic link between two weakly coupled resonant coils.

Resonance is very crucial for such devices and the power transfer is enhanced by

matching the resonant requency of the reader coil with the tag coil. The coils thus

have a high Q-factor. High-Q coils are very selective and have a sharp frequency

response. This is unattractive for pulse based near-field communication systems

as explained in Sec. 4.4.1. Nevertheless the value of inductance is very important

for the proposed design principle as it controls the decay rate of the transmitted

pulse.

The aim of this analysis is to determine the inductance value of the printed

planar square loop antenna and the solenoidal antenna. This is followed by the

observation of the near-field radiation pattern and the decay of the electromag-

netic fields with distance. The results are then compared with the experimental

observation and an appropriate structure among the two is suggested for use in

the near-field baseband wireless communication system.
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5.2.1 Printed Loop Antenna

The printed loop antenna is square in shape. A printed square loop antenna is

characterised by the number of turns in the loop and substrate properties such

as dielectric constant and thickness. The planar inductor can be directly printed

on the printed circuit board (PCB). The copper track can be considered as the

windings of the planar inductor.

Simple accurate expressions for the inductance of square, hexagonal, octagonal

and circular spiral inductors have been presented with reasonable accuracy [118].

These analytical expressions are used to compare the inductance value obtained

by simulations. Fig. 5.1 shows the layout of a simple square planar inductor.

dout
din

w

s

Figure 5.1: Square Planar Inductor.

It can be seen that the square inductor is completely specified by the number

of turns n, the turn width w, the turn spacing s. Arithmetic geometrical averages

like the average diameter davg and the fill ratio defined as ρ have to be computed.

These are given by (5.1) and (5.2) respectively.

davg = 0.5 (dout + din) (5.1)

where din=the inner diameter and dout=the outer diameter.
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ρ =
(dout − din)

(dout + din)
(5.2)

In the current scenario, it was decided to use the expression based on approxi-

mating the sides of the spirals by symmetrical current sheets of equivalent current

densities [118]. There are many expressions to choose from, like Wheeler’s ex-

pression [119] and optimal expressions using geometric programming [120]. This

particular expression was selected owing to its simplicity and accuracy. The re-

sulting expression is given by:

Lgmd =
µn2davgc1

2

(
ln (c2/ρ) + c3ρ+ c4ρ

2
)

(5.3)

where the coefficients ci are dependent upon the layout in question. In this

case it is a square for which the coefficients are given in Table 5.1. It has a

maximum error tolerance of 8% for s ≤ 3w.

Layout c1 c2 c3 c4
Square 1.27 2.07 0.18 0.13

Table 5.1: Coefficients for Current Sheet Expansion.

As shown in Fig. 5.2, a square planar inductor model was setup in HFSS.

The model had the following dimensions: dout = 9 mm, din = 0.45 mm, n = 6,

w = 0.5 mm and s = 0.25 mm. The substrate was made of duroid material, the

relative permittivity of which is 2.2, relative permeability is 1 and the dielectric

loss tangent is 0.0009. It had a thickness of 1 mm. Although FR4 substrate would

be sufficient the reason to choose the duroid substrate was its ready availability.

Generally FR4 substrates are used at frequencies less than 2 GHz while duroid

substrates are used for providing superior electrical characteristics at higher fre-

quencies. Lumped ports were defined to act as the sources of excitation. They

were defined as rectangles from the edge of the trace to the ground. The resis-

tance was set to 50 Ω. An air box of dimensions (9.55× 9.05× 5) mm was defined

as a radiation boundary. The electromagnetic fields were solved at 1 MHz.

Fig. 5.3 shows a plot of the inductance of the planar square loop antenna vs

frequency as simulated by HFSS. The variation of the inductance is very small

and lies between 0.1 µH and 0.11 µH. The value of the inductance was found to
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Figure 5.2: Printed Loop Antenna.

be 0.142 µH by using (5.3). There is a close agreement between the analytical

and the simulated values.

The antenna gain was simulated on a sphere of radius 20 cm defined around

the region of the antenna. Figs. 5.4(a) and 5.4(b) show a plot of the antenna

gain in the elevation and the azimuthal planes respectively. It can be seen that

the gain is constant around the antenna and confirms the omnidirectional pattern

associated with such loop antennas.

5.2.2 Solenoidal Loop Antenna

The solenoidal loop antenna is characterised by its number of turns N, pitch p and

the loop radius A. Its inductance is given by (5.4). Fig. 5.5 shows the simulation

model setup in HFSS. The solenoid had 9 turns, a pitch of 1 mm and a radius of

5 mm. The wire was made of copper that had a radius of 0.355 mm. A radiation

box measuring (75× 75× 75) mm is drawn around the solenoidal loop antenna.
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Figure 5.3: Inductance vs Frequency.
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Figure 5.4: Simulated Gain Patterns of the Planar Square Loop An-
tenna:(a)Elevation Plane (φ = 90o) and (b)Azimuthal Plane (θ = 90o).

Both the ends of the solenoid were extended uniformly to define a single lumped

port. The resistance was set to 50 Ω as similar to the lumped port resistance of

the planar square loop antenna. The electromagnetic field solution was obtained

at a solution frequency of 1 MHz.
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Figure 5.5: Solenoidal Loop Antenna.

Lsolenoid =
µoµrN

2A

l
(5.4)

Fig. 5.6 shows the variation of the inductance vs frequency for the solenoidal

loop antenna. The value ranges between 0.525 µH and 0.54 µH. Using (3.36), the

value of the inductance was found to be 0.605 µH.

A radiation sphere of radius 20cm was inscribed around the solenoidal loop

antenna and the gain plots of the solenoidal antenna were plotted in the elevation

and the azimuthal planes as shown in Figs. 5.7(a) and 5.7(b) respectively. The

gain patterns are omnidirectional but the magnitude is not constant in every

direction. A maximum change of 3-7 dB can be found in the gain patterns of

both the elevation and azimuthal plane patterns. The magnitude of the gain is

also larger than that of the printed planar square loop antenna.
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Figure 5.7: Simulated Gain Patterns of the Solenoidal Loop Antenna:(a)Elevation
Plane (φ = 90o) and (b)Azimuthal Plane (θ = 90o).

5.2.3 Result Interpretation

The square loop antenna and the solenoidal loop antenna are both omnidirectional

suggesting that they can be integrated with pill shaped implants. The location of
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the pill will be unknown inside a human body and therefore the omnidirectionality

of the implant antennas is one of the salient features that has to be fulfilled. The

near-field baseband pulse radio communication system works on the principle

of coupling of magnetic fields between the transmitting and receiving antennas.

The reactive fields decay rapily with distance as suggested by (3.41). Hence

it becomes necessary that the radiating structure occupies a maximum volume

within a confined space. It is clearly evident that the solenoidal loop antenna

occupies much larger volume than a printed square loop antenna. Therefore a

solenoidal loop antenna is magnetically larger than a planar square loop antenna.

This claim can be supported by observing the gain of these antennas over a

linear distance of 20 cm. Figs. 5.8(a) and 5.8(b) show the variation of gain

with distance along the y axis for planar square and solenoidal loop antennas

respectively. HFSS computes the field at a point and hence the distance has to

be normalised by the number of points For this particular case, the distance was

normalised to 1000 points.
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Figure 5.8: Gain vs Distance for Antennas:(a)Planar Square Loop and
(b)Solenoidal Loop.

It can be seen that in either case the gain decreases with distance. But a

careful observation reveals that the decay of a solenoidal loop antenna, as shown
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in 5.8(b), is somewhat slower than the decay of a planar square loop antenna,

as shown in 5.8(a). Hence the conclusion that a solenoidal loop antenna is a

better choice for use in near-field baseband communication systems. The field is

measured from the centre of the solenoidal loop antenna up to a distance of 20

cm. The glitch in Fig. 5.8 (b) occurs as this is the boundary where the coil is

positioned.

5.3 Experimental Results

Experimental data is presented to validate the claims made in the previous dis-

cussions. A copper wire of cross-sectional area 0.397 (µm)2 was wound in the

form of a solenoid. The radiation efficiency of a single turn loop antenna is small

and with the solenoidal shape, it has the advantage that the radiation resistance

is increased by a factor of N2. The radiation resistance of a coil of N turns is

equal to that of a single turn multiplied by N2. Table 5.2 lists the properties of

the loop antenna. A similar coil acts as a receiving antenna. A dual display LCR

meter, Megger B371, was used to measure the inductance of the coils. Air cored

coils were chosen over ferromagnetic cored coils, as the magnetic flux tends to

concentrate in a ferromagnetic object as shown in Fig. 5.9 [10].

No. of Turns 15
Wire radius 0.355 mm

Coil diameter 10 mm
Length 25 mm

Inductance 0.9uH

Table 5.2: Physical and Electrical characteristics of the loop antenna

The amplitude of the pulse was set to 3 V(p-p) and the width to 1 µs. The

peak value and average value of the current entering the composite load consisting

of an inductor and capacitor is experimentally determined to be 190 mA and

1.1 mA respectively. The energy per bit transmitted was calculated to be 6.6

nJ, which is smaller than the values of 1 µJ, 2.1 µJ and 2.2 µJ recorded for

wireless transmission schemes using carrier frequencies of 32 MHz, 868 MHz and

868 MHz respectively [34]. The frequency domain analysis is carried out on
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Figure 5.9: Magneto-concentration effect in a ferromagnetic bar. When a high
permeability bar is placed in a homogeneous magnetic field parallel with the plate,
the magnetic flux tends to concentrate in the bar [10].

the input signal of the bandpass filter and the transmitted signal. Figs. 5.10

and 5.11 show the magnitude spectrum of the input signal and the transmitted

signal. The bandpass filter alters the magnitude and phase of the input signal.

Changes mainly affect the lower end of the frequency spectrum of the input signal.

Therefore the asymptotically decaying nature of the transmitted pulse. It can also

be seen that the higher frequency components are not significantly attenuated as

the lower frequency components by the solenoidal shaped antenna.

The energy transfer takes place through mutual coupling of fields between

the transmitting coil and the receiving coil. Figs. 5.12(a) and 5.12(b) show the

measured variation of the signal power ratio at the receiver with distance for a

solenoidal coil of 15 turns and a square planar inductor of 6 turns respectively.

The receiving coil was the same in both cases. It shows that larger the area of

radiating element greater the range of the transmitter. The plots follow the same

trend as the results of the simulation presented in Sec. 5.2.3.

To verify the all-round hemispherical coverage of the transmitting antenna,

measurements were taken in the elevation and the azimuthal plane, from 0o to
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Figure 5.10: Measured time domain input signal and its spectrum in the frequency
domain. Hanning window with 200 MSa/s sample rate was used to capture the
input signal.

Figure 5.11: Measured time domain transmitted signal and its spectrum in the
frequency domain. Hanning window with 200 MSa/s sample rate was used to
capture the input signal.

180o, in steps of 30o and is shown in Fig. 5.13. In the elevation plane, φ was fixed

at 90o and θ was varied. The axes of the transmitting and receiving coils were

always maintained parallel to each other while inscribing a semi-circle around the

transmitting antenna. In the azimuthal plane, θ was fixed at 90o and φ was varied.
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Figure 5.12: Measured relative signal strength as a function of distance for an
(a) Air core solenoidal coil of 15 turns and (b) Square Planar Loop Antenna of 6
turns, with a receive antenna, which is a coil of 15 turns and radius 5 mm.

The receiving coil inscribed a semi-circle around the transmitting antenna with its

axis tangential to the semi-circle. The measurements were made at axial distances

of 5 cm and 10 cm in the elevation and azimuthal planes. The received signal was

amplified and then captured on an oscilloscope. These measurements imply that

the field is omnidirectional and depends upon the area of the transmitting coil.

The signal power received can be made stronger by either increasing the voltage

or the sensitivity of the receiver. These results help to conclude that solenoidal

shaped antennas are an excellent choice.
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Figure 5.13: Schematic illustrating the experimental setup of the transmitting
and receiving coil for measuring the received relative signal strength of the loop
antenna in the elevation and azimuth plane. (a)Measured relative signal strength
as a function of elevation angle θ and fixed azimuth angle φ. (b)Measured relative
signal strength as a function of azimuth angle φ and fixed elevation angle θ.
Measurements were taken at axial distances of 5 cm and 10 cm in both the cases.

5.4 Summary

This chapter discussed the antenna choices, namely planar loop and solenoidal

loop antennas, that are available for use in implantable biomedical systems.

HFSS, an electromagnetic field solver was used to analyse the electromagnetic

fields around the antenna. It is based on the finite element method wherein a

geometry is divided in several tetrahedra and the field is solved on its vertices.

The gain pattern of the antennas was verified for their omnidirectionality and was
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found that both the antennas are omnidirectional in nature. The solenoidal loop

antenna had a slightly non-uniform gain pattern but the gain was larger than

the gain of a planar square loop antenna. Experimental results also show that a

solenoidal loop antenna appears magnetically larger and hence find suitability for

use in the near-field baseband pulse radio communication presented in this work.

The next chapter discusses different encoding schemes that can be employed in

this particular communication scheme. A microcontroller produces the required

pulses and a digital signal processor decodes the data at the receiver.
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Pulse Radio Communication 6.1 Introduction

6.1 Introduction

The previous chapter discussed two types of magnetic antennas, namely solenoidal

and printed spiral antennass, that can be used in the near-field baseband pulse

radio communication. The antennas were analysed electromagnetically to deter-

mine the radiation patterns and also the variation of the gain with distance. It

was found that the solenoidal antenna is more suited for this particular applica-

tion. This chapter deals with the pulse encoding schemes that is possible with the

near-field baseband pulse radio communication. A conceivable implementation

of a receiver algorithm is also presented in this chapter.

6.2 Digital Communication

Digital baseband signals are obtained by quantising the PAM signals into a dig-

ital word and belong to a class called pulse code modulated signals. The signal

obtained from a sensor in an implantable device is sampled and quantised into a

k -bit word. For baseband transmission the codeword bits will have to be trans-

formed to pulse waveforms [43]. A digital word is impractical and has to be

physically represented to be able to transmit the information through a channel.

The way to achieve the above objective is to represent the digital word with elec-

trical pulses. A representation of a digital code word and its electrical equivalent

is shown in Fig. 6.1. Each codeword occupies a time slot and is a 4-bit represen-

tation of each quantised sample. In Fig. 6.1 (b), each binary one is represented

by a pulse and each binary zero is simply represented by the absence of a pulse.

The electrical pulses are rectangular/square in shape and can be easily generated

that can be ultimately used to transmit information. Digital words can also be

represented by transitions between two levels as shown in Fig. 6.1 (c). When

the waveform occupies the upper positive voltage level, it represents a binary one

and when it occupies the lower negative voltage level, it represents a binary zero.

The manner in which a digital word is represented leads to a form of modu-

lation known as the pulse-code modulation (PCM) and the resulting waveform is

known as a PCM waveform. An understanding of this representation is important

for an attempt to transmit the pulses directly from a magnetic loop antenna. The

111



Pulse Radio Communication 6.2 Digital Communication

1 0 1 0 1 0 0 0 0 1 1 0

T =Bit time slot

Codeword time slot

t0

t0

+ V

- V

(a)

(b)

(c)

Figure 6.1: Binary Digit Waveform Representation:(a)PCM Sequence; (b)Pulse
Representation of the PCM Word and (c)Pulse-Waveform.

folowing section will discuss the known PCM waveform types and then chooses

that are relevant to the near-field baseband pulse radio communication.

6.2.1 PCM Waveforms

The PCM waveforms can be broadly classified into four types. They are:

1. Nonreturn-to-zero (NRZ)

2. Return-to-zero (RZ)

3. Phase encoded

4. Multilevel binary

The representation of the waveforms hold key for their direct emanation from

the loop antenna. In a near-field baseband pulse radio communication the wave-

forms that are emanated should be compatible with the characteristics of the
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channel. The magnetic antennas behave as pulse shaping filters and any change

that affects the pulse should not make the entire communication scheme unwor-

thy. Hence a discussion of the different PCM codes available becomes necessary.

The NRZ is the most commonly used PCM waveform. NRZ-M (M for mark)

is widely used in digital logic circuits. A binary one, or mark, is represented by

a change in the voltage level and the zero, or space, is represented by no change

in level. This is also often referred to as differential encoding.

In RZ coding, a one is represented by the presence of a pulse and is usually

half-bit wide. A zero is represented by the absence of a pulse. The bi-phase coded

pulses, bi-φ-L (better known as Manchester coding) has its one represented by a

half-bit wide pulse positioned during th first half of the bit interval and a zero

being represented by a half-bit wide pulse positioned during the second half of

the bit interval. With this particular scheme, there is always the presence of a

pulse for either one or zero. The transition from low to high and high to low

determine whether the transmitted pulse was one or zero.

Many binary waveforms use three levels, instead of two to represent the binary

one and zero. Bipolar RZ and RZ-AMI belong to this group. In this particular

research work, as a microcontroller generates the required data, the pulses are

represented by two levels. Therefore, bipolar RZ and RZ-AMI signals are not

considered for direct transmission from the magnetic antenna.

Fig. 6.2 shows the binary representation of the data sequence 10110001 in

NRZ-M, RZ and Manchester format. A magnetic antenna should be able to

transmit this information intelligibly. As explained in Chapter 4, the pulses will

undergo distortion in a controlled manner.

Fig. 6.3 (a), (b) and (c) show the pulse shapes at the antenna terminals for

NRZ, RZ and Manchester encoded pulses respectively. It is obvious that RZ and

NRZ pulses suffer from the problems of synchronisation. The antenna retains

the rising and falling edges from these pulses. But no information regarding

the transmission of zero can be obtained at the receiver. On the other hand a

Manchester encoded information can be effectively radiated from the magnetic

antenna. A careful observation of the transmitted waveform reveals that once

the first trailing edge is detected, any negative going spike in an one-bit interval

confirms the presence of one and a positive going spike will detect the presence
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Figure 6.2: Binary Digit Waveform Representation of 10110001.

of zero in the bit pattern. Hence a sync or reference pulse can confirm the start

of transmission and the trailing edge of this pulse can be taken as a reference for

determining the other bit patterns.

The Manchester waveform suffers from certain disadvantages. It requires twice

the bandwidth required by RZ and NRZ waveforms. The microcontroller has to

generate pulse for every bit irrespective of it being one or zero. The advantage

that the Manchester coding offers with the ease of identification at the receiver

is valuable. This arises from the inherent synchronising or clocking feature of the

Manchester encoded waveform. A transition in the middle of every bit interval

whether it being a one or a zero provides the clocking signal. It can be concluded
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(a)

(b)

(c)

Figure 6.3: Binary Digit Waveform Representation of 10110001:(a)NRZ, (b)RZ
and (c)Manchester Code.
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that the Manchester coded pulses are best suited for transmission from a near-

field baseband pulse antenna. The microcontroller can also be used to generate

bipolar pulses to represent binary data “1” or “0”. The loop antenna can be

connected between two output pins namely, out1 and out2, of the microcontroller

and during the transmission of “1” the out1 is driven by a pulse and the out2 is

grounded. Similarly during the transmission of “0” the out2 is driven by a pulse

while out1 is grounded. The advantage of bipolar signalling is that there is no dc

component and therefore the average loss of the whole transmission scheme can

be reduced.

6.2.2 Pulse Interval Modulation

A near-field baseband pulse radio communication requires a fast, low power and

reliable wireless modulation scheme that can be implemented with a simple, min-

imum and low-cost hadware. Mingsong et al., have proposed a wireless modu-

lation scheme called the pulse interval modulation (PIM) for laser communica-

tion between two communication nodes [121]. The authors claim that the pulse

interval modulation effectively improves the recovery of pulses after demodula-

tion. This is because of the improved synchronisation capabilities. The method

also improves the coding efficiency and can be implemented using a microcon-

troller. The PIM is considered to be an improved version of PPM. A k -bit source

P = (P1, ...,Pk) ∈ {0, 1}k is modulated with a M-ary PPM, M = 2k. This yields

a pulse modulated signal A = (0, ......0, 1, 0, ....0) ∈ {0, 1}M which will contain a

one (or a pulse) in the position indicated by the binary representation of P. The

PIM is shown in Fig. 6.4.

A PPM signal has a duty cycle of 1/M. A frame in a PPM signal is divided

into M slots and each slot has a width of τ . The position of a pulse in a time slot

represents the corresponding symbol. The PIM involves coding the data sequence

such that a symbol is represented by the time interval between the present and the

previous pulse. The difference between a PPM and PIM coding is that the frame

width is not constant with the latter. It varies according to the data modulated.

The focus of this work is to encode a digital stream of information using pulse

interval modulation. A microcontroller is used to generate the pulse stream. The
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Figure 6.4: Pulse Interval Modulation.

flow chart shown in Fig. 6.5 describes the algortihm to generate the PIM pulse.

The PIM encodes symbols unlike RZ, NRZ and Manchester encoding schemes.

Therefore PIM increases the throughput rate of the near-field baseband wireless

communication system. Throughput rate is defined as the rate at which the data

can be transmitted between a transmitter and a receiver.

A sync pulse signals the start of the transmission. A PIC18F4550 microcon-

troller has been programmed to generate the PIM pulses. The program is written

in the assembly language. The digital data is stored in the memory registers of

the microcontroller. Each register is 8 bit wide and hence a symbol is made

up of 8 bits of information. The microcontroller calculates the symbol value of

the register and generates a pulse depending upon the delay associated with it.

The timing loop is also implemented in software and this allows us to control

the width of the pulse. This is essential as the pulse is going to be transmit-

ted directly from the magnetic antenna. The shorter the pulse the higher the

data rate and its decay is controlled by the lumped element values of the loop

antenna. The pic18F4450 microcontroller is acompanied by MPLAB integrated

development environment software that runs on a computer. It is useful for de-

veloping applications for Microchip microcontrollers and programming them too.

The main components that have been used to develop codes for this particular

project are:

• Project Manager
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Figure 6.5: Flow Chart for implementing Pulse Interval Modulation.

• Editor

• Assembler/Linker

• Debugger

The project manager provides coordination between the integrated develop-

ment environment (IDE) and the language tools. The editor is like any other text

editor and it also serves as a debugger window. The assembler assembles a single

file but can also be used with the linker to link separate source files, libraries

and recompiled objects. The linker places the compiled code into memory areas

of the target microcontroller. The debugger permits breakpoints, single stepping

and watch windows.

The microcontroller was programmed to send four bytes (32 bits) of infor-

mation. However it can be easily re-programmed to send any number of bytes.

The code was optimised for a desirable pulse width and time-interval between
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the pulses. A sync pulse was first generated that signals the start of the pulse

transmission. A delay in the sync pulse is attributed to the fact that the mi-

crocontroller has to load the data into the working registers before setting its

output digital port to transmit the pulse. The subsequent pulses occupy different

positions in time depending upon their symbol value. The width of the pulse is

4 cycles. An instruction cycle is completed in time t = 4/Fosc, where Fosc is the

frequency of the oscillator. It is 48 MHz for this particular case. Fig. 6.6 shows

four bytes of data, namely 0x03, 0x04, 0x05 and 0x06, encoded in the PIM for-

mat. The sync pulse is the reference from which the interval between the various

pulses is measured.

Figure 6.6: Pulse Interval Modulated Data Pattern: 0x03, 0x04, 0x05 and 0x06.

The ultimate motive of this research is to prove the practicality of being able to

transmit the digital pulses efficiently from a magnetic loop antenna. The electro-

magnetic design of a magnetic loop antenna and the way it would alter the pulse

shape was studied in detail to arrive at the conclusion that it is indeed possible to

achieve a simple yet effective transmission scheme for biomedical implants. The

receiving loop antenna should be able to receive very short transmitted pulses

and hence its study has to be carried out in a systematic manner. Chapter 7

details the design principles that help designing the receiving loop antennas for

the near-field baseband pulse radio communication. However the next section

attempts to consider the processing of the received signal by designing a digital

filter. It is primary in its approach and has a potential for a further research
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study.

6.3 Receiver Design

The pulse transmitted by the loop antenna is received by a similar loop antenna

at the receiver. An analogue comparator at the receiver will help in decoding the

data bit transmitted. The comparator requires two threshold values, VTH and

VTL, to maintain the output in a high or low state. When the input signal is

greater than VTH the output becomes high and when greater than VTL the ouput

becomes low. The amplitude of the received signal varies rapidly with distance

and therefore specifying a fixed threshold value is not convenient. Digital signal

processing will help to process the received signal and further signal processing can

be done on a personal computer to decode the original symbol waveform. This

necessitates the design of a digital filter that can be implemented on a digital

signal processor. The analogue input signal from the magnetic loop antenna, is

filtered before it is applied to the analogue-to-digital converter (ADC). An opamp

provides the appropriate gain and offset to match the signal to the input range of

the ADC. The output of the ADC is then processed digitally by an appropriate

digital signal processor (DSP). DSPs are processors that are optimised to perform

fast repetitive arithmetic, as required in digital filters or fast Fourier transforms

(FFT). Here digital filtering is accomplished by using TMS320F2812 DSP from

Texas instruments.

6.3.1 Digital Filter

Digital filters are neither new nor difficult. They are based on simple operations

of multiplication and addition. Various methods exist to design digital filters and

one common approach is to use the analogue filter approximation functions. The

features that make digital filter attractive are:

1. Digital filters can be implemented with a software running on a general

purpose computer. Hence easy to build and test the performance of the

filter.
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2. Digital filters are based solely on the arithmetic operations of addition and

multiplication. Therefore they do not change with time or temperature.

3. Easy to understand and modify.

Digital filters can be restricted to two major categories: Non-recursive and re-

cursive. A non-recursive filter generates its output by simply weighting the inputs

by constants and then summing the weighted inputs. The constants are called

the coefficients and they determine the filter. A design of a filter is synonymous

with the computation of the values of the coefficients. The non-recursive filter

can be described by the following equation:

yk = cmxk−m + cm−1xk−m+1 + ........+ c0xk + .........+ c−mxk+m (6.1)

yk =
∑

cixk−i (6.2)

where

i = −m,−m+ 1, .....,m− 1,m.

The above filter computes the output, yk, from the current input, xk, and

the m inputs that preceded xk, xk−1...xk−m, and the m inputs that follow xk,

xk+1...xk+m. The present output is thus a sum of the current input and its

m preceding and succeeding inputs. The inputs do not contribute equally to

the output as the contribution is controlled by the coefficient that acts as the

multiplier. If the coefficient is large the particular data element can dramatically

affect the output. If the coefficient is small the data element has a proportionally

small effect on the filter’s output.

A recursive filter is defined as a filter whose output is a function of both the

inputs and past outputs. It can be defined by (6.3).

yk =
∑

cixk−i +
∑

djyk−j (6.3)

where

i = −m,−m+ 1, .....,m− 1,m and j = 1, 2, ...n.
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The second sum in (6.3) is called the recursive portion of the filter. The re-

cursive coefficients are denoted as j and they are used to weigh the past outputs.

When all the coefficients are zero then this becomes a non-recursive filter. There-

fore non-recursive filter can be treated as a special case of a recursive filter. At

the start of the computation it is assumed that the outputs for negative indices

are zero before the input data starts affecting the output. That is, the inputs

and outputs are assumed to be zero for negative indices. The computation of the

outputs begin when the first nonzero input enters the nonrecursive portion of the

filter. After that the outputs are sequentially computed and used to calculate the

successive filter outputs.

6.3.2 Filter Design

A magnetic loop antenna is said to differentiate the pulse that is being transmitted

from it. Hence the pulse at the receiver needs to be integrated to recover the

original rectangular pulse. A perfect integrator can be represented by (6.4). The

frequency response of an integrator can thus be described by (6.5).

y(t) =
w t

−∞
x(τ)dτ (6.4)

Hintegrator(ω) =
1

jω
(6.5)

A differentiator produces an output that is the differential of its input as

shown in (6.6). The frequency response is given by (6.7).

y(t) =
dx(t)

dt
(6.6)

Hdiff (ω) = jω (6.7)

It can be seen from (6.5) and (6.7) that the frequency responses are reciprocal

of each other. In the s-domain jω can be replaced by s. This discussion helps

in making the conclusion that once a transfer function of an integrator is known,

the transfer function of the differentiator is just the inverse and vice-versa. The
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analogue transfer function of the transmitter in the s-domain, given by (4.17),

differentiates the pulse applied at its terminals. Hence a reciprocal of the above

transfer function will represent a filter that can integrate the pulse. The reciprocal

of (4.17) is given by (6.8).

R(s) =
s2 + s

(
1
RC

)
+
(

1
LC

)
s
(

1
RC

) (6.8)

An approximation of the above equation will lead to a digital filter. The ap-

proach taken in this work can be summarised as beginning the design with a good

analogue transfer function and then approximating it with a digital filter. The

bilinear transformation provides the user with a simple technique for approximat-

ing analogue filters with digital filters. The bilinear transform design technique

can be summarised as below:

1. An analogue transfer function that has the desired characteristics has to be

found first.

2. Sampling rate of the digital filter T, has to be selected.

3. The s in the analogue transfer function has to be substituted by (6.9).

4. Compute the z-transform by solving the transfer function after substitution.

5. Realise the digital filter from its z-transform ie., identify the coefficients

from the pole and zero locations.

s =
2

T

1− z−1

1 + z−1
(6.9)

The derivatives of the outputs are fed back to form the output and hence a

digital filter can be unstable. This must be avoided when using an analogue filter

as a basis for digital filters. An analogue filter is said to be stable if all bounded

inputs generate bounded outputs and unstable if any bounded input causes an

infinite output. This bounded-input, bounded-output is really restriction on the

filter’s impulse response and a filter is stable if and only if its impulse response

goes to zero with increasing time. If the impulse response increases with time

(known as “blowing up”) then the filter becomes unstable.
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A filter’s stability or the lack of it, can be determined by the filter’s pole

locations. A digital filter is stable if its pole lie inside the unit circle [122]. In other

words the magnitude of the pole must be less than or equal to 1. Matlabs FDA

tool can be used to design the desired digital filter. The analogue transfer function

was approximated to compute the z-transform representation of the digital filter.

The digital filter has two zeroes at z=-0.11 and z=-0.99, and two poles at z=1.

The analogue signal was sampled at 2 MHz and this was selected as the pulse had

a width of 1 µs. Fig. 6.7 shows the pole zero plot of the digital filter designed to

reconstruct the received pulse. The zeroes are marked by “O” and the poles are

marked by “X”.
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Figure 6.7: Pole Zero Plot of the Digital Filter used to reconstruct the transmitted
pulse.

Fig. 6.8 represent the magnitude and phase response of the digital filter that

is designed to reconstruct the very short transmitted pulse. The poles located on

the real-axis make the magnitude to be larger at low frequencies and the zeroes

in the left-half of the pole-zero plot are responsible for the stop band at higher

frequencies. The filter basically acts as a low-pass filter and the impulse and step

responses are shown in Figs. 6.9 and 6.10 respectively. The magnitude response is

very similar to the response of an integrator based on Simpson’s rule wherein the
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magnitude decreases for increasing frequencies. Thus this work aims to achieve

the filtering of the received waveform with a new approach to the filter design.

-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8

-60

-40

-20

0

20

M
ag

ni
tu

de
 (d

B
)

-2.9053

-1.8297

-0.7541

0.3215

1.3971

2.4727

Ph
as

e 
(r

ad
ia

ns
)

1

40

60

Normalised Frequency (xπ rad/sample)

Figure 6.8: Magnitude and phase response of the digital filter, with two poles at
1; zeroes at -0.11 and -0.99 .

The coefficients of the digital filter were determined with the help of the IIR

filter module of the Texas Instruments TMSF2812. A 2-bit Manchester code

waveform was emanated from the loop antenna. The pulse underwent distortion

and was received by a 10 turn solenoidal loop antenna. A sync pulse marks the

beginning of the transmission of bits [1 1]. It was digitised by a 12-bit ADC

which had a sampling frequency of 2 MHz. Fig. 6.11 shows the plot of the signal

before and after reconstruction by the digital filter for which the coefficients were

determined as explained in Sec. 6.3.1. It is worth noting that the filter has

considerably filtered the noise and the peaks are clearly visible. The flat portions

of the peak represent the integration of the received pulse by the digital filter.

A further processing of the filtered signal will help identifying the bits that are

being transmitted. The Manchester coded waveform carries the clock information

and this aids in identifying the bits transmitted. The advantage of the near-field
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Figure 6.9: Impulse response of the digital filter.
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Figure 6.11: (a)Waveform received by the loop antenna that acts as input to the
digital filter; and (b)Reconstructed waveform at the output of the digital filter.
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baseband communication is that it retains the rising and the trailing edges of each

pulse. The algorithm that has been developed looks for the sync pulse and sets a

counter on the negative peak of the sync pulse. The counter counts the number of

samples and checks for either a positive or negative peak, every one-bit interval.

If a negative peak is detected then the algorithm concludes that the transmitted

bit was a 1. If a positive peak is detected then the transmitted bit was 0. The

discussion presented in this section will help in concluding that receiver algorithms

can be developed for the efficient demodulation of the transmitted information.

The algorithm provided satisfactory results in the current experiment which had

a noise floor less than 40 mV (or an SNR of 25.46 dB). The performance of the

algorithm in highly noisy environments was not tested and therefore high degree

of confidence is not yet established in this regard. More robust filtering algorithms

like the matched filters and transversal equalisers may be required for efficient

decoding of the received pulses in more noisy environments [43]. All the codes

for this chapter can be found in Appendices A, B and C.

6.4 Summary

This chapter discussed the various digital pulse coding schemes that can be ap-

plied to the near-field baseband pulse radio communication. A microcontroller

was used to generate the pulse coded waveforms. Pulse interval modulation pro-

vides high throughput and can be easily implemented on a microcontroller. Dig-

ital filtering algorithms were developed for processing the received signal. It has

scope for further development and only preliminary results are presented. The

next chapter discusses the design of a loop antenna to receive very short pulses. It

analyses different antenna loading configurations and suggests a design strategy

that can be employed to receive the near-field baseband pulses.
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7.1 Introduction

The previous chapter discussed several coding schemes for use in a near-field

baseband communication system. A microcontroller was used to generate the

waveforms that represent a particular coding scheme. At the receiver, a filtering

algorithm was developed for the signal reconstruction and implemented on a

digital signal processor. In this chapter, a detail design procedure is laid out

for receiving wideband pulses emanated by a magnetic antenna. An analytical

treatment, accompanied by simulation and experimental results, is carried out.

7.2 Near-Field Magnetic Communication

Near-Field pulse radio communication for implants was earlier proposed in Chap-

ter 4. In this scheme, information encoded pulses were radiated directly from a

transmitting loop antenna without any use of traditional modulation schemes. It

was evident from the design technique that pulse shapes are instrumental in con-

veying the necessary information. An exemplary feature of sending pulses using

loop antennas at the transmitter is in contrast with the wireless power-delivery

systems and radio frequency identification devices (RFID’s), wherein a loop an-

tenna transmits signal on a single-frequency or over a very narrow frequency band

[123]. Simultaneous exchange of power and data occur on forward and reverse

links respectively. In scenarios where only data is transmitted, a loop antenna is

resonated with a suitable capacitance to convey information over a very narrow

bandwidth. UWB is a system that remotely bears a resemblance to the near-field

pulse radio system. UWB systems send and receive pulses, but in the far-field of

an antenna. Recently UWB has been gaining attention for unique system char-

acteristics of low-power, easy transmitter implementation, etc., as explained in

Chapter 2. The pulses are either Gaussian or Gaussian-like whose widths are in

the sub-nanosecond range [124]. As a result of very narrow pulse widths UWB

systems have a very wide operational bandwidth. Electric antennas like spiral or

patch antennas are used to radiate pulses in the far-field. UWB systems are also

faced with the challenge of maintaining the pulse shape at the receiving antenna.

Two approaches have been generally used to tackle such a problem. One approach

130



Antenna in Receiving Mode 7.3 Loop Antenna Equivalent Circuit

is to use large size antennas and the other being the use of broadband small size

antennas. However the latter suffers from the problem of poor sensitivity. It

has been suggested that a magnetic loop antenna is effective in receiving narrow

pulses with minimum possible distortion [125]. This suggestion might be valid for

near-field inductive communication systems also, as most of the energy is stored

in the magnetic fields surrounding a loop antenna. Hence, a loop antenna was

decided to be used for coupling the information carried by pulses.

The remainder of this chapter discusses a design topology to link the magnetic

fields around a loop antenna by using another loop antenna for a pulse-based

transmission scheme. The aim is to increase the sensitivity of the loop antenna

to receive the very short pulses with minimal distortion.

7.3 Loop Antenna Equivalent Circuit

A loop antenna is primarily inductive and can be modelled as a lumped network

as shown in Fig. 7.1 [84]. In Chapter 4, the discussion of a loop antenna as a

lumped equivalent circuit was made. The detailed analysis helped in concluding

that the antenna’s internal resistance and capacitance had very little effect on

the input pulse shape. This did not matter much as an additional resistance

and capacitance was necessary to be included in the lumped equivalent circuit

to achieve the desirable pulse shape. Therefore the parasitic capacitance of the

transmitting loop antenna was neglected. The stray capacitance of the receiving

antenna has to be included in the analysis to see its effect on the sensitivity of the

antenna. This capacitance along with any external capacitance might deteriorate

the signal received and therefore an examination of the loop antenna’s internal

capacitance has to be carried out. Thus unlike the design of a transmitting

antenna, the receiving antenna demands a different design approach.

The resistance R is a combination of the radiation resistance Rr and loss

resistance RL. Rr represents the power radiated and RL represents the dc and

ac losses in a loop antenna. The radiation resistance Rr is given by (7.1). It

is very small for both the transmitting and receiving antennas. The practical

approach employed to increase the radiation resistance considerably is to increase

the number of turns in the coil antenna. This increases the dc resistance and
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L C

R

Figure 7.1: Electrical Equivalent Circuit of a Loop Antenna.

therefore it is necessary to include its effects. Here we consider two loop antenna

designs: a spiral pancake coil and a solenoidal coil.

Rr = 20π2

(
C

λ

)4

N2 (7.1)

Firstly, the capacitance of both the spiral and solenoidal antenna will be de-

termined. Cp represents the distributed stray capacitances of a multiturn loop an-

tenna. Stray capacitances depend upon the type of loop antenna used. Hence dif-

ferent approaches to calculate stray capacitances of spiral and solenoidal shaped

loop antennas. The stray capacitance CAB for a solenoid can be calculated by

using (7.2), (7.3) and (7.4) [126], and the individual capacitance Ctt is given by

(7.5).

CAB (2) = Ctt +
Cts
2

(7.2)

CAB (3) =
Ctt
2

+
Cts
2

(7.3)

CAB (n) =
CAB (n− 2) .Ctt/2

CAB (n− 2) + Ctt/2
+
Cts
2

(7.4)

Ctt =
π2Dεo

ln
(
p/2r +

√
(p/2r)2 − 1

) (7.5)
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The overall stray capacitance CAB of an air-core solenoid is calculated differ-

ently depending on the number of turns being even or odd. For a coil with even

number of turns, two turns in the middle of the winding is considered. Fig. 7.2

shows the resulting capacitive network. It consists of the capacitance between

two turns in parallel with a series combination of the turn-to-shield capacitance.

The equivalent capacitance of the above network is given by (7.2). In case of coils

with odd number of turns, the three turns in the middle of the winding are con-

sidered with an equivalent capacitance given by (7.3). This argument is extended

for a coil having many turns by starting from two-turns (or three-turns) network

and systematically adding one more turn at each side of the network. Thus, for

a network with a larger number of turns (n > 3) the total stray capacitance is

given by (7.4). The turn-to-turn capacitance is given by (7.5).

C1

C2 C3

A B

Figure 7.2: π equivalent circuit of the distributed stray capacitance of the solenoid
air-core inductor.

For a spiral coil, the capacitance between two turns is modelled as closely

spaced parallel cylinders, where a is the radius of the inner copper conductor, D

corresponds to the total outer diameter, lt is the total length of each turn, with

bm being the average radius between two turns. Then the total capacitance is

equal to the series combination of such individual capacitances Cp given by (7.6)

[127].

Cp =
2πεlt

cosh−1
(
D2

2a2 − 1
) (7.6)
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7.3.1 Near-field Transmission Model

The wireless baseband system can be modelled as a near-field transmission system

similar to power-transfer RFID transmission systems [128, 129]. As the mutual

inductance of such a system is low, it represents a poorly coupled transmission

system [130]. Fig. 7.3 shows the near-field equivalent transmission model.

M
R
T

V
s

C
T

LT L
R

R
R

C
R

R
L

V
out

Figure 7.3: Near-Field Transmission Model.

Unlike using tuned resonant coils to maximise the current flow and increase

the power transfer, typical of RFID devices, the pulses are directly applied to

the carefully designed tank circuit. At the receiver, a loop antenna is used as

a receiving antenna. The induced emf is then amplified and decoded to obtain

the information transmitted. The emphasis is on the design of the receiving loop

antennas for such pulse-based near-field transmission systems. Therefore the sec-

ondary circuit of the near-field transmission model is investigated for changes in

the parameter values that constitute it. Minimising distortion of the received

pulses is crucial for detection. An expression for the output voltage at the sec-

ondary will help determine the variables that affect the pulse in the time domain.

The output voltage at the transmitter was derived analytically in Chapter 4 and

is given again by (7.7) for immediate reference. (7.8) gives the voltage induced

across the load impedance ZL. The parallel combination of RL and CR is repre-

sented by ZL. From (7.8), it can be seen that the received pulse is affected by

134



Antenna in Receiving Mode 7.3 Loop Antenna Equivalent Circuit

changes in the load impedance ZL. In other words, RL and CR play a vital role

in maintaining the integrity of the received pulse. It is assumed that the receiver

is placed at a distance greater than the loop dimensions to ensure to meet the

conditions of poor coupling.

VLP (t) =
VSζ√
ζ2 − 1

(es1t − es2t) (7.7)

where ζ is the damping ratio.

Vout =
VsM

LTZL − LRRT

(
e
−tRT

LT − e
−tZL

LR

)
(7.8)

The near-field transmission model can be considered as a transformer and its

voltage transfer function can be obtained. The field associated with a simple air

core transformer is shown in Fig. 7.4 [11]. The fields are highly concentrated

and linear within the winding as these fields are produced by summation of the

individual fields from each wire. Outside the winding the field is weak and di-

vergent. The stored energy density is high within the winding and considerable

energy is also stored in the weaker field outside the winding because the volume

extends to infinity. Following the changes to the equivalent reactance on the

primary (LT , CT ) and the secondary (LR, CR), the derivation is similar to the

voltage transfer function obtained for a linear transformer [131]. The radiation

resistance (RR) is small and hence neglected. Summing the voltages for closed

paths on both sides of the transformer gives us (7.9) and (7.10).(
RT +

jωLT
1− ω2LTCT

)
IT + jωMIR = VS (7.9)

jωMIT +

(
RL +

jωLR
1− ω2LRCR

)
IR = 0 (7.10)

The notations can be simplified by defining the self and mutual impedances.

The self-impedances of the primay and secondary sides are

Z11 = RT +
jωLT

1− ω2LTCT
(7.11)

and
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Field Lines

Figure 7.4: Air-Core Transformer [11].

Z22 =
jωLR

1− ω2LRCR
(7.12)

respectively, and the mutual impedances are

Z12 = Z21 = M (7.13)

The voltage transfer function in the frequency domain can thus be obtained

as:
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VS
Vout

=
Z21RL

Z11 (Z22 +RL)− Z12Z21

(7.14)

The above equation shows that the voltage at the secondary terminals can be

made larger or smaller than the voltage at the primary terminals. There is also

no dc path between the two antennas and therefore any attempt to transmit dc

will result in heating losses at the primary.

The mutual inductance between the two loop antennas depend upon their

geometry and separation distance [12]. Fig. 7.5 show two coils of radii a and A.

Their lengths x and l are taken as equal to the number of turns times the pitch

of the windings. Therefore the winding densities n1 and n2 are, respectively,

n1 = N1

x
and n2 = N2

l
.

ρ

u

x

d4 d1

l

d3

d2

A

a

Figure 7.5: Two coils of radii a and A separated by an axial distance of ρ. The
various distances that are calculated are also shown [12].

Let ρ =distance between the axes, and four distances dn between the ends of

the coil are calculated as below:

d1 = u−
(
x+ l

2

)
(7.15)

d2 = u+

(
l − x

2

)
(7.16)

d3 = u+

(
x− l

2

)
(7.17)
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d4 = u+

(
x+ l

2

)
(7.18)

in which u =axial distance between the centers of the coils. From these

distances, the four radii vectors rn =
√
ρ2 + d2

n and the four cosines µn = dn

rn
are

calculated. Finally the mutual inductance is given by

M = 0.001π2a2A2n1n2

[
X1

r1
− X2

r2
− X3

r3
+
X4

r4

]
µH (7.19)

in which

Xn =

[
1− 1

4
K1

A2

r2
n

P2 (µn) +
1

8
K2

A4

r4
n

P4 (µn)− 5

64
K3

A6

r6
n

P6 (µn) + ...

]
(7.20)

The constants K1, K2, K3 and K4 are functions of α2 = a2/A2 and may be

calculated from the formulas

K1 = 1 + α2 (7.21)

K2 = 1 + 3α2 + α4 (7.22)

K3 = 1 + 6α2 + 6α4 + α6 (7.23)

K4 = 1 + 10α2 + 20α4 + 10α6 + α8 (7.24)

The harmonics P2n(µn) may be interpolated from the auxiliary table and the

convergence of (7.20) is better the smaller the values of (A/rn)2 and each rn must

be greater than (A+a). Table 7.1 shows the magnitude of the mutual inductance

calculated for solenoidal loop antennas of equal lengths (x=l=1 cm) and equal

radii (a=A=0.5 cm) with varying ρ. As expected when the distance between the

axes increases the mutual inductance decreases.

The variation of the mutual inductance with varying axial distance between

the centers of the loop antennas (u) is calculated for a fixed ρ as shown in
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ρ (cm) Mutual Inductance (nH)
2 5.896
3 1.809
4 0.770
5 0.396

Table 7.1: Mutual inductance for two equal solenoidal loop antennas with in-
creasing distance between their axes.

Table 7.2. It can be seen that the mutual inductance is more sensitive to varia-

tions in ρ than u.

u (cm) Mutual Inductance (nH)
1 1.882
2 1.182
3 0.860

Table 7.2: Mutual inductance for two equal solenoidal loop antennas with in-
creasing distance between the centers of the antennas at a fixed distance between
them (ρ=2 cm).

7.3.2 System Design

The inductance, capacitance and resistance depend upon the shape and size of the

loop antenna. These parameters will affect the sensitivity of the loop antenna and

therefore the acceptable electrical values of the antennas have to be determined.

The solenoidal and spiral shaped antennas are considered for this particular anal-

ysis. A larger area of the receiving loop antenna will help in coupling maximum

field around it. This translates to bigger value of inductance in the secondary

circuit of the near-field transmission model. The inductance of the solenoidal

coil and the spiral pancake coil is given by (7.25) and (7.26) respectively. The

internal capacitance varies accordingly. Figs. 7.6 and 7.7 show the calculated

capacitance of an n turn solenoidal loop antenna and a spiral antenna. As the

number of turns increases the capacitance decreases and this effect is similar for

both antenna shapes. Figs. 7.8 and 7.9 show the calculated capacitance of a 10

turn solenoidal and spiral shaped antennas for varying radius. In general it can
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be deduced from the graphs that the capacitance of a spiral coil is larger than the

capacitance of a solenoidal coil. It can now be summarised that the loop antenna

can be made sensitive by either increasing the number of turns or its area. The

internal capacitance decreases as the number of turns increases and increases as

the radius of the loop antenna increases.
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Figure 7.6: Calculated Stray Capacitances of a Solenoidal Coil as a function of
the number of turns.
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Figure 7.7: Calculated Stray Capacitances of a Spiral Coil as a function of the
number of turns.
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Figure 7.8: Calculated Stray Capacitances of a 10-Turn Solenoidal Coil as a
function of the Coil Radius.
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Figure 7.9: Calculated Stray Capacitances of a 10-Turn Spiral Coil as a function
of the Average Coil Radius.

7.3.3 Simulation Parameters

ADS software is used to observe the changes in the pulse shape with the resistive

and capacitive loading. In the first instance it is assumed that no load is connected

to the secondary and hence RL neglected. The skin effect resistance and proximity

resistance are also neglected since they are usually small. The DC resistance is

given by (7.27). a is the wire radius, ρ is the resistivity and bi is the radius of the

ith ring. It follows from Biot-Savart’s law [132] that the induced voltage given by
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the rate of change of flux can be maximised by using a loop of larger area at the

receiver. To see the effect of increasing the loop area that in turn increases the

inductance, a simulation model is set up with parameters as shown in Table 7.3.

At the receiver, dc resistance is theoretically calculated to be between 0.1 Ω and

0.3 Ω.

Lsolenoid =
µoµrN

2A

l
(7.25)

Lspiral =
r2N2

8r + 11d
(7.26)

where

Lspiral=inductance (µH)

r=mean radius of the coil (inches)

N=number of turns

d=depth of the coil (outer radius-inner radius) (inches)

RDC =
2ρ

a2

N∑
i=1

bi (7.27)

Variables Values
LT 0.5µH
CT 1nF
RT 10Ω

Transmitted pulse width 140ns

Table 7.3: Simulation parameters.

As suggested by (7.8), the amplitude of the received signal is directly propor-

tional to the mutual inductance between the two coils used for communication.

The mutual inductance (M ) given by (7.28) was proposed by Nuemann which

gives the relation between flux linkages of two coils (φ12) and the current (i) flow-

ing in the transmitting coil. Faraday derived the relation between flux linkages

associated with any two coils. The flux linkage is directly proportional to the

current flowing in the transmitter coil and also the geometrical shape and size

of the transceiver coils. It is inversely proportional to the distance (r) between
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the two transceiver coils. By substituting (7.29) in (7.28), it can be seen that

the mutual inductance is only dependent on the geometry of the two coils and

distance between them. For simulations, it is assumed that the mutual induc-

tance is 25 nH. The larger the mutual inductance the greater the amplitude of

the received signal.

M =
φ12

i
(7.28)

φ12 =
µoi

4π

w

1

w

2

dl1.dl2
r

(7.29)

With the values of M and RR determined, the effects of inductance and stray

capacitance on the pulse shape can be modelled. The stray capacitance is gener-

ally small and therefore in simulations, it is varied between 0.01 pF and 0.2 pF .

Fig. 7.10 shows that the pulse shape changes significantly and the amplitude

decreases sharply for larger values of inductance.
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Figure 7.10: Simulation Results of an Inductor.

It can be deduced from the simulation results that the pulse shape is still

detectable for inductance values of nearly half of the transmitting loop antenna’s
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inductance. But in practice, this value of inductance of the receiving loop antenna

corresponds to a radiating element of size less than that of the transmitting loop

antenna. An unloaded antenna hence poses a limit on the size of the receiving

loop which is undesirable, as larger the area of the receiving loop antenna, the

stronger the magnetic field linked to it. Hence the volume occupied around the

transmitter has to be significantly larger. Ideally a receiving loop has to be as

large as possible. In the second set of simulations the effect of loading the receiving

loop antenna is investigated. The aim is to achieve a loop of larger area without

distorting the shape of the received pulse. The amplitude of the pulse should also

be large enough to have a better signal-to-noise ratio. The antenna terminated

by resistance and capacitance is examined by increasing the resistance to about

1 kΩ and the capacitance varied between 0.1 pF and 10 pF . It was observed

that the shape of the pulse was preserved for larger values of loop inductance

and increasing the capacitance had little or no effect on the shape of the pulse.

The amplitude variations were also less significant. This suggests that addition

of a large resistance (about 1 kΩ) significantly improves the sensitivity of a loop

antenna. But if the resistance is increased beyond 1 kΩ, then the pulse received

is considerably distorted, even with the slightest variations in capacitance or

inductance of the loop antenna. This condition can be envisaged when amplifiers

are used to amplify the pulse received at the receiver. Therefore in the third set of

simulations, the effect of terminating a loop antenna with high resistance in the

order of hundreds of kΩ is determined. The simulation was set up for a resistance

of 100 kΩ and a loop inductance of 1.5 µH. Fig. 7.11 shows the simulation results

for various capacitance values. The capacitance is a total combination of the stray

and input capacitances of the amplifier.

It is evident that as the capacitance increases the oscillations set in and the

shape of the pulse is severely distorted. The pulse retains its shape and also

has sharp peaks to enable efficient detection for capacitances between 1 pF and

10 pF . But for capacitances larger than 10 pF , the lower frequency components

are not attenuated considerably that leads to ringing.

The above discussion leads to the following conclusions:

1. The parasitic capacitance has no effect when the antenna is unloaded. The

inductance is crucial to the changes in the shape of the received pulse.
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Figure 7.11: Simulation Results of an Inductor with different loading configura-
tions.

2. Loading a loop antenna increases its sensitivity and pulses can be received

without much distortion.

3. A resistive loading of about a kΩ makes it possible to employ loops with

larger inductance to receive short duration pulses. The parasitic capacitance

has little or no effect on the pulse shape.

4. Parasitic capacitances influence the pulse shape when the resistive load is

of the order of hundreds of kΩ.
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7.4 Experimental Results

The transmitter consisted of a loop antenna that was wound in the form a

solenoid. It had 9 turns and a pitch of 1 mm. The wire was made of copper

and had a cross-sectional area of 0.397 µm2. To experimentally determine the

optimal shape for pulse reception, two coils were used. One in the shape of a

solenoid and the other in the shape of a spiral. The radius of the wire was same

as that of the wire used for the transmitting loop antenna. The solenoid coil had

10 turns, a pitch of 1 mm and a radius of 5 mm. While the spiral had 7 turns,

an inner radius of 1.5 and outer radius of 2 cm. A dual display LCR meter B371

was used to measure the inductance. It was found that the solenoid had an in-

ductance of 0.3 µH and the spiral’s inductance was 2 µH. The receiving antenna

was followed by an amplifier AD8011A. It had an input resistance of 450 kΩ and

a capacitance of 4 pF .

The pulse pattern to be transmitted is shown in Fig. 7.12. Each pulse has

a width of 0.5 µs. Fig. 7.13 shows the amplified waveform that is received by a

solenoidal loop antenna. The amplifier had a gain of 100.
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Figure 7.12: Transmitted information bits.

It can be seen that the pulse received has sharp rising and falling edges. This

can be detected and the pulse pattern can be efficiently decoded. The receiving

antenna had similar number of turns to the transmitting loop antenna indicating
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Figure 7.13: Captured waveform by a 10-turn solenoidal loop antenna at a dis-
tance of about 9 cm. The rising and falling edges are clearly visible that makes
identification of the bits transmitted.

that if the load resistance is very high then the pulse received can be easily

detected. However the range of operation was limited to 9 cm. Fig. 7.14 shows

the waveform received by a spiral antenna. A careful observation of the captured

waveform reveals that the trailing edges do not settle as fast as the edges of the

received waveform of a solenoidal antenna. The range is about 15 cm. As the

peaks are still visible, the symbol can be efficiently decoded.

A plot of signal-to-noise ratio (SNR) against distance for the two types of

antennas is shown in Fig. 7.15. The spiral loop has a better SNR than the

solenoidal loop antenna and has a better range.

The spiral loop antenna is much bigger than the solenoidal loop antenna

contributing to a larger inductance and capacitance. By subjecting the antenna

to a resistive loading a bigger loop antenna can thus be used with significant

improvement in its range of operation.

Linear circuit network theory helps us in understanding the behaviour of the

spiral and solenoidal loop antennas [131]. To receive a pulse of very short dura-

tion, a combination of the inductance, resistance and capacitance at the receiver

should be such that the damping ratio should be between 0 and 1. The damping

ratio is said to be underdamped and in this particular case it is the large load
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Figure 7.14: Captured waveform by a 7-turn spiral loop antenna at a distance of
about 15 cm. Although the rising and falling edges are clearly visible, the antenna
is liable to ringing taking more time for transients to attain a steady-state. The
bits can still be efficiently detected.
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Figure 7.15: SNR against distance for the solenoidal and spiral loop antenna.

resistance that makes the secondary circuit underdamped.
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7.4.1 Salt Water Experiment

An experiment was setup to observe the effects of the conducting medium on the

performance of the near-field baseband communication system. Human body is a

highly conducting lossy medium. A salt solution of different levels of concentra-

tion was used to mimic the lossy medium inside a human body. The transmitting

loop antenna was similar to the loop antenna as described in Sec. 7.4. It was

enclosed in a box that measured (10× 4× 7) cm. The box was sealed by silicone

rubber and made completely water-proof. The orientation of the transmitting

loop antenna was unknown as the box was opaque. The solubility of salt in water

is 36 g per 100 ml of water at room temperature [133]. A 2 litre saturated salt

solution was prepared by dissolving 720 g of salt in 2000 ml of water and the

concentration of the prepared solution was calculated to be 6.15 M. This 100%

saturated salt solution was diluted to 20%, 40%, 60% and 80% concentrations and

the conductivity of these different concentrations was measured by a conductivity

meter. Table 7.4 gives the measured conductivity. A physiological solution has a

concentration of 0.15 M which is less than the concentrations of the salt solution

prepared and therefore a transmitter that can operate effectively in the above

circumstances will perform well in normal physiological solutions too [134]. Note

that the conductivity in Table 7.4 is for DC measurements and hence the values

are lower than those shown for human tissue at higher frequencies in Tables 3.1,

3.2 and 3.3 [135].

Salt Solution Concentration Conductivity 0/m at DC
20% 0.08
40% 0.118
60% 0.14
80% 0.18
100% 0.22

Table 7.4: Various Concentrations of Salt Solution and its respective Conductiv-
ity.

The table suggests that the conductivity increases with the salt concentration.

The transmitting antenna enclosed in a box was immersed in a cylindrical con-

tainer containing the salt solution. The container had a diameter of 15 cm and a
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depth of 15.5 cm. It could hold upto 2 litres of solution. The receiving antenna

was similar to the spiral antenna that was discussed in Sec. 7.4. The receiver was

placed along the periphery of the container and moved both vertically and hor-

izontally in straight lines. This was repeated all round the container. Fig. 7.16

shows the kind of waveform received at every location around the periphery of

the cylindrical container.
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Figure 7.16: Captured waveform by a 7-turn spiral loop antenna at a distance of
about 15 cm. The rising and falling edges are clearly visible that makes identi-
fication of the bits transmitted. The transmitter was inside a beaker containing
salt solution.

There was hardly any noticeable change with either the pulse shape or the

amplitude for varying salt concentrations in the solution. The difference between

the waveforms received by the spiral antenna in air (shown in Fig. 7.14) and in

the solution is that in the latter there is too much noise present in the waveform.

Nevertheless the peaks were still clearly visible and hence waveforms could be de-

coded. The results presented in this section help in concluding that the near-field

baseband wireless communication scheme looks promising for use in biomedical

implantable systems.

150



Antenna in Receiving Mode 7.5 Summary

7.5 Summary

In this chapter, a detailed discussion of designing an antenna suitable for receiving

near-field baseband pulses is presented. The aim was to increase the sensitivity of

the loop antenna and this was achieved by subjecting the antenna to resistive and

capacitive loading. The near-field baseband communication system was tested for

operation in highly conducting salt solution and it emerged from the results that

this system has a huge potential for implementation in pill-shaped biomedical

devices. In the next and final chapter, a summary of the conclusions from the

research will be provided along with some suggestions for future work.
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8.1 Introduction

The previous chapter demonstrated the efficacy of employing near-field baseband

communication system for use in biomedical implants. It also laid out the design

principles for an antenna to receive pulses of very short duration. The shape

of the pulse is crucial for its detection and therefore a different approach to

the antenna design was necessary. The objective was achieved by resistive and

capacitive loading of the receiving antenna. This chapter provides a reasoning

for the research findings presented in this work and offers some useful suggestions

for future work.

8.2 Final Analysis

The present work concentrated on developing a novel near-field baseband com-

munication system for use in pill-shaped ingestible devices. The aim was to

achieve a reliable communication link between an implantable transmitter and

a receiver, external to the human body via magnetic fields. Miniaturisation of

the implantable antenna, minimising the number of blocks in the transmitter and

thereby reducing the power consumption were of particular importance. A final

investigation is now carried out to review some of the major contributions of this

research work.

8.2.1 Low-Frequency Magnetic Fields

As pointed out earlier, reducing the number of blocks in the transceiver was one

of the main objectives to be realised in this research. The approach taken to solve

this problem was to use low-frequency pulses for the exchange of data between

the transmitter and the receiver, whilst not using traditional modulation schemes

to imprint information upon a high frequency carrier. A pulse is characterised by

its amplitude, width and shape. It is also made up of several harmonic frequen-

cies. The solution intended is to use antennas as pulse shaping filters to directly

emanate the pulses and also maintain the integrity of a pulse.

A pulse has an infinite bandwidth and the antenna can only work efficiently
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within a certain range of the frequency spectrum. Therefore the bandwidth of op-

eration has to be determined in the frequency domain. The time domain response

of the antenna is critical too, as any changes to the pulse in the frequency domain

will severely affect the pulse in the time domain. The rising and falling edges of

the pulse will help decoding the symbol being transmitted. The transmission is

therefore a waveform transmission, wherein the antennas have to preserve the

shape of the pulse being transmitted.

Antennas come in basically two forms:(a) Electric and (b)Magnetic. The suit-

ability of either of the two antennas was investigated in Chapter 3. The electric

antenna was found to be capacitive and hence inconvenient for use to wirelessly

exchange information between the transmitter and receiver. The magnetic an-

tennas were found to be ideal for use in implants as they coupled information

through magnetic fields and also behaved as perfect pulse shaping filters to make

the near-field wideband baseband communication a possible option. Communi-

cation via magnetic fields is of great significance to human body communication

because of the fact that magnetic fields are less attenuated by biological tissues.

As the pulses were also of low frequency they will be effectively radiated by the

magnetic (loop) antennas through a highly conductive and lossy medium, like a

human body. The use of a magnetic antenna has disadvantages too. The cir-

cumstance at very low frequencies, referred to as quasi-stationary case, can be

represented by equations (8.1), (8.2) and (8.3).

Eφ =
Iml sin θ

4πr2
(8.1)

Hr =
Iml cos θ

2πηkr3
(8.2)

Hθ =
kIml sin θ

4πηkr3
(8.3)

The above equations give the magnitude of the fields surrounding a loop an-

tenna at low (or dc) frequencies. It can be seen that the magnetic fields decay

rapidly with distance. Since the fields vary as 1/r2 or 1/r3, they are effectively

confined to the vicinity of the loop antenna. Magnetic fields do not have sources
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or sinks and their magnitude is directly proportional to the current flowing in the

antenna element. The range of operation has been cause for major concern with

such low-frequency near-field baseband communication system. An appreciable

range of about 15-20 cm has been achieved with an application of 3 V at the

antenna terminals. This is negligible compared to the ranges achieved with the

ultra wide-band antennas that are of the size comparable with the ones used in

this work. It has to be borne in mind that the ultra wideband antennas have

been so far used in applications operating in free space.

8.2.2 Overdamped Circuit Configuration

The need to send pulses without any modulation demanded an entirely new ap-

proach to antenna design. The antenna was perceived to be a filter that could

be realised by a passive network of resistors, inductors and capacitors. The elec-

trical equivalence corresponds to the physical dimensions of the loop antenna.

In order to increase the rate at which the magnetic energy is building in a loop

antenna, additional resistance and capacitance is included in the circuit. The

passive network was analysed for variations in reactances with frequency and the

effect that it has on the pulse in the time domain. It was found in Chapter 4 that

the antenna must have a wide magnitude response and a linear phase response to

perfectly shape the pulse that is being radiated. The pulse was severely distorted

when the antenna was underdamped. The part of the frequency spectrum that

conforms to the inductive behaviour of the loop antenna has to be identified that

will facilitate the design of such antennas for the near-field baseband communi-

cation for implantable sensors. Parameters such as Q-factor, damping coefficient

α and damping ratio ζ characterise a passive network of elements. All these are

related with each other and therefore it was decided to work with ζ. Moreover

a circuit is termed underdamped, critically damped or overdamped depending

upon the value of ζ being less than 1, 1 or greater than 1 respectively. In this

particular case the circuit has to be overdamped suggesting the value of ζ to be

always greater than 1. A relation between the pulse and the antenna spectra was

derived in terms of the resonant frequency of the antenna, pulse width and the

damping ratio ζ. This is given by (8.4).
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fotp ≥ 2ζ (8.4)

One of the main criteria to be satisfied in customising the antenna to behave

as a wide-band magnetic antenna is to make the antenna overdamped. This will

require an addition of a resistance to the antenna’s lumped equivalent circuit

which contributes to the losses due to heating. The loop antenna has certain

inductance associated with it and more the inductance stronger is the magnetic

field associated with it. The width of the transmitted pulse is proportional to the

loop antenna’s inductance and hence short pulses having widths in nanosecond

range are difficult to be radiated with controlled distortion. This is because

the pulse takes more time to decay and therefore slows the rate at which the

magnetic energy builds up in the loop antenna. A possible solution is to increase

the resistance but then the losses due to resistive heating will increase too. The

capacitance although decreases the decay rate of the pulse by about 30% and

thereby increases the rate at which the transmitter can operate, it nevertheless

is an additional component in the communication block. The size of the loop

antennas considered for usage in implants have considerable magnetic energy and

will complement the near-field baseband pulse radio communication making it a

viable candidate for use in biomedical ingestible devices. The design process for

the pulse radio communication can be summarised as below:

1. The size of the implant is constrained in size and hence a suitable solenoidal

shaped antenna must be selected for use in such implants. This involves

determining the number of turns, radius of the loop antenna and its length.

2. The capacitance and the external resistance must be selected such that ζ

must be greater than or equal to 1 and the selected value for the resistance

must be as low as possible.

3. With the width of the data pulse known, it must be ensured that (8.4) is

satisfied.

156



Conclusion 8.2 Final Analysis

8.2.3 Magnetic Antenna

A loop antenna is regarded as the best choice for application in near-field pulse

radio communication. It comes in varying shapes and sizes. The electromagnetic

design aspects of such an antenna were discussed in Chapter 5. HFSS, a commer-

ical software package was employed to know the nature of the fields surrounding

the magnetic antenna. The antenna was found to be omnidirectional which is a

very desirable feature for implantable antennas. Two variants, namely solenoidal

loop antenna and printed square loop antenna, were analysed for their perfor-

mance as magnetic antennas. Both the antennas were omnidirectional but it was

found that the solenoidal antenna had a greater range of operation. The gain

of the solenoidal loop antenna was larger than a printed loop antenna. It was

evident that the radiating structure had to occupy considerable volume to be able

to couple magnetic fields with a similar receiving loop antenna. The solenoidal

loop antenna appears as a much larger magnetic structure than a printed loop

antenna. The disadvantage of such a voluminous antenna is that it poses a max-

imum restraint on the size of a pill-shaped ingestible device. It can be asserted

that near-field magnetic antennas have to be of a considerable size to achieve

an appreciable range between the transmitting and receiving loop antennas. A

reliable communication link can be achieved.

The magnetic antenna makes the near-field baseband pulse radio communi-

cation a simple and attractive option for biomedical implants. The key to its

success is the location of the transmitter and the receiver in the near-field where

the magnetic fields are predominant and are offered a low reluctance path in a

highly conductive medium like the human body. This was experimetally verified

by placing the transmitter in salt solution of different concentrations and observ-

ing the coupled information at the receiver. It was found that information was

effectively received at the receiving antenna. The conductivity of the solution

had little or no effect on the signal strength. A magnetic antenna suffers from a

major drawback and that is its operation is confined to the reactive and radiat-

ing near-field region surrounding it. An electric antenna on the other hand when

made to resonate at high frequencies can offer us several advantages in terms of

a reduction in its size and an increase in the operational range. However the
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transmitter has to operate at very high frequencies and will increase the absorp-

tion of the radiated fields by the tissues in the human body. The operation of a

near-field baseband magnetic antenna is only possible at low frequencies and any

attempt to improve its range has to compromise with an increase in its size too.

8.2.4 Coding Schemes-Amplitude Modulation

Pulses representing a digital information are central to the near-field baseband

communication system. The coding schemes readily available to represent the

pulses are: (a)Return-to-zero (RZ), (b)Non-return-to-zero (NRZ), (c)Manchester

Encoding. The NRZ coding scheme is not suitable for this particular communi-

cation scheme as the pulse undergoes “no transition” for similar bits. Manchester

Encoding requires the data generator to produce the high and low states for ev-

ery bit in the symbol and this helps in detecting the individual pulses at the

receiver effectively. The only possible concern is the data rate which is limited

by the bandwidth of the Manchester encoded pulses. Pulse-position modulation

is suggested to be the most proficient scheme for use in near-field baseband pulse

radio communication. Eight bits of information is encoded in a single pulse and

its position in time determines its symbolic value. It is highy band-width effi-

cient and can be readily integrated with implantable CMOS technology for the

development of very small ingestible devices.

All the pulse modulation schemes are just an improvement over the band-

width requirement for transmitting pulses from the loop antenna directly, without

a need for oscillators and mixers. In a nutshell, the near-field baseband pulse

communication is similar to the amplitude modulation. This statement holds

true as it is evident that the rising and falling edges are key to the presence

of a pulse. This also has to be a salient feature of the received pulses as any

failure in detecting these peaks will result in the entire communication become

worthless. The main disadvantage of a communication scheme which is similar to

amplitude modulation is that it is sensitive to noise signals and has a low range of

operation. This is coupled with the fact that the baseband pulse communication

makes use of low frequency magnetic fields between two loop antennas, one at

the transmitter and the other at the receiver. The receiving antenna has to be
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very sensitive to receive these very short pulses without distortion. Hence the

design of a near-field receiving antenna poses a major challenge and a slightly

new approach is employed in this work for attaining the best possible results.

8.2.5 Receiving Antenna Design

Different loading configurations of the receiving antenna were explored as the

pulses to be received were very short and have to be minimally distorted for any

detection to be made at the receiver. The shape of the pulse being received was

important for the detection of the symbol being transmitted. The rising and

falling edges of the pulse help in detecting a particular bit and any change in

the shape of the received pulse will severely hamper the decoding mechanism.

Hence a careful study of the changes to the pulse shape with the geometry of

the receiving antenna was imperative. The two geometrical shapes that were

analysed include a spiral and solenoidal antenna. The resistance, inductance

and capacitance of the antenna influence the pulse shape at the receiver. It was

important to consider the effect of each of these parameters in order to propose

a solution that will help achieve the objective of receiving very short baseband

pulses with minimal distortion.

The study reveals that an unloaded loop antenna has very little resistance and

the capacitance has no influence on the shape of the pulse received. Any change in

the inductance will result in drastic changes to the received pulse and the pulse

becomes unindentifiable as the inductance increases. In other words a smaller

receiving antenna should be used to fulfil the above criteria. This is a hindrance

as a smaller magnetic antenna will couple with only few magnetic lines of force

and therefore results in smaller amplitude of the pulse. The range of operation

is also less. It was found that resistive loading of the loop antenna increases

its sensitivity to receive the pulses with minimal distortion. Large spiral loops

could also be employed that was not possible with the unloaded loop antenna

configuration. When the resistive loading was of the order of a kΩ the parasitic

capacitance had no effect on the pulse shape. Any increase in the resistance

(hundreds of kΩ) will be characterised by changes in the pulse shape for small

variations in the capacitance.
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8.3 Future Work

The focus of this research work was to see the feasibility of using low frequency

near-field baseband pulses for communication in implantable biomedical systems.

A novel idea of transmitting information encoded pulses directly by a suitable

magnetic antenna was demonstrated. As a consequence of the efforts of this

work several key areas of additional research have been identified that could help

further develop and improve the technology.

8.3.1 Pulse Shape Analysis

The pulse shape that was used in this piece of work is rectangular. Several pulse

shapes are found in literature, some of which are spectrally inefficient [79, 81] and

others are frequency tolerant [136]. A discussion on pulse shapes holds key for

implementation of UWB antennas in biomedical implants. UWB devices have

rarely been used for wireless sensor communication within the human body. It

is one of the recent technologies that has a huge potential for making big in the

field of biomedical communication engineering.

The choice of a pulse shape for UWB implementation dictates the hardware

power consumption and complexity. David D. Wentzloff has suggested three

metrics to compare the performance of various pulse shapes to determine rela-

tive performances in terms of bit error rate (BER) [124]. They are:(a)Spectral

efficiency, (b)Out-of-band emissions and (c)time-bandwidth product.

The spectral efficiency of a pulse determines the loss registered by the unoc-

cupied -10 dB bandwidth in the channel spectrum of the receiver. A receiver is

assigned an average power limit and a -10 dB channel bandwidth. This is because

a system performance depends upon the received signal energy and not on the

shape of the pulse. The spectral efficiency is given by:

ηch =
Ech

PEIRPBW−10dB

(8.5)

where Ech is the pulse energy within the -10 dB channel bandwidth, PEIRP

is the maximum average power spectral density in W/MHz and BW−10dB is the

-10 dB bandwidth in MHz. The spectral efficiency qualifies how well a pulse
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spectrum utilises the available bandwidth.

The out-of-band emissions determine the ratio of a pulse’s energy outside the

-10 dB channel to the energy within the -10 dB channel. It is given by:

ηout =
(Etot − Ech)

Ech
(8.6)

The time-bandwidth product quantifies the localisation of a pulse in both time

and frequency domains. The lower this number, the more localised a pulse is in

both time and frequency. The time-bandwidth product is given by:

Btw = D.d (8.7)

where

D2 =
1

2πE

w ∞
−∞

ω2 |F (ω)|2 dω (8.8)

and

d2 =
1

E

w ∞
−∞

t2 |f (t)|2 dt. (8.9)

F (ω) is the Fourier transform of the pulse and f (t) is the representation of

the pulse in the time domain [137]. E is the energy of the pulse and is given by:

E =
w ∞
−∞
|f (t)|2 dt =

1

2π

w ∞
−∞
|F (ω)|2 dω. (8.10)

A comparison of four different pulse shapes based on the performance metrics

is given in Table 8.1. The sinc pulse has the highest spectral efficiency but

requires the a complex transmitter to generate which is certainly not desirable

for biomedical implants.

Pulse Shape Spectral Efficiency Out-of-Band Emissions Time-BW Product
Sinc 100% 0% ∞

Square 60% 12.8% ∞
2nd order filtered 59.2% 2.8% 0.55

Gaussian 56.5% 3.3% 0.50

Table 8.1: Pulse Shape Metrics.
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The square pulse is the simplest to generate and it was used in this present

work. The width of the pulse was in microseconds and not in the nanoseconds

range. However it is clear from the table that the square pulse results in the

highest out-of-band emissions. The adjacent channel interference is high for a

square pulse. The Gaussian pulse has the lowest time-bandwidth product and

hence it is more localised in both time and frequency. The more interesting aspect

is that with the filtering of a square pulse, the 2nd order filtered pulse will perform

similar to a Gaussian pulse.

8.3.2 UWB Antennas

UWB antennas can be used to emanate nanosecond RF pulses effectively. An

UWB antenna has to opearate over a bandwidth of 7.5 GHz and while doing so

must also ensure that the pulse is not distorted to a great degree. The UWB

antennas are omnidirectional thus delivering the freedom in the location of a

transmitter and receiver. The losses have to be minimised to increase the radia-

tion efficiency. This certainly improves the operational range and encourage the

use of UWB antennas in biomedical ingestible devices. Several physically com-

pact and low profile antennas can be explored [138]. These antennas can then

be tested for in-situ operation and their performances can be compared with the

low frequency near-field baseband pulse radio communication.

8.4 Summary

This research has suggested a novel method of communication that involves the

use of information encoded pulses in the near-field region of an antenna. The

technique is very simple that makes it attractive for integration with lab-in-a-

pill technology. An ingenious way of designing and characterising the magnetic

antennas has been suggested. This is applicable for the near-field baseband pulse

radio communication which has a great potential for achieving communication

between a biomedical implant and an external receiver.
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The following program finds the negative and poistive peaks of the received

pulse:

%Leading edge detection for the receiver

%i=index for the memory location

%a=value to be stored used for comparing to arrive at a threshold value

%f=flag to synchronise

%n=counter and used to determine the bit or half-bit period

%t=temporary threshold value to be compared

%q=array for storing the answer

%input=500kHz and hence 1 bit period=1us, which is equivalent to 140 sam-

ples

%decision to be made for an interval of 2-bit period after synchronisation(1-bit

period)

clear

fid=fopen(‘output.dat’);

data=fgetl(fid);

b=fscanf(fid,’%f’);

figure(1)

plot(b);

n=0; %initial value of counter

f=0; %initial value of flag

s=1; %index for accessing the memory location

p=0;

for i=1:2

q(i)=0;

end

q=q’;

for i=1:6

a=b(i);

end

i=7;

while (f==0)

t=a-b(i);
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n=n+1;

i=i+1;

if t≤-2 %check for positive peak

n=0;

end

if t≥=2 %check for negative peak

if n≥140

q(s)=1;

s=s+1;

n=0; %counter reset

f=1; %flag set to come out of the loop

end

end

end

while (p< 1)

t=a-b(i);

n=n+1; %increment the counter

i=i+1;

if t≤-2 %check for positive peak and also for the bit interval

if n≥280 %check if the counter is greater than the 2-bit period, if yes

perform the following

q(s)=0;

s=s+1;

n=0;

p=p+1;

end

end

if t≥2 %check for the negative peak and also for the bit interval

if n≥280 %check if the counter is greater than the 2-bit period, if yes

perform the following

q(s)=1;

s=s+1;

n=0;
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p=p+1;

end

end

end

%Generation of the data bits corresponding to the decoded signal waveform

c=1; %pointer to the decoded data array q

s=s-1; %decrement the pointer to q to the exact number of data elements

r=1;

while (s 6=0)

if q(c)==1

for i=1:140

f(r)=1;

r=r+1;

end

for i=141:280

f(r)=0;

r=r+1;

end

c=c+1;

s=s-1;

end

if q(c)==0

for i=1:140

f(r)=0;

r=r+1;

end

for i=141:280;

f(r)=1;

r=r+1;

end

c=c+1;

s=s-1;

end
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c=c-1

end

f=f’;

figure(2)

plot(f)
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The following program computes the pulse interval modulated data bit pat-

tern:

include p18F4550.inc

define polynomlow b’00000101’ ; Low byte of polynomial

define polynomhigh b’10000000’ ; High byte of polynomial

define polynomlength 0x10 ; 16-bit polynomial length

define datalength 0x04 ; Data length in bytes

udata 0x80

counter1 res 1 ;slot counter (numbered from 1 to 256)

counter3 res 1

org 0x0000

goto begin

org 0x5000

;this block loads 3 bytes of data in successive memory locations

begin LFSR 0, 3ABh

movlw 0x03

movwf POSTINC0

movlw 0x04

movwf POSTINC0

movlw 0x05

movwf POSTINC0

movlw 0x06

movwf POSTINC0

movwf counter1

movlw 0x04

movwf counter3

LFSR 0, 3ABH

;this block clears port D and sets the location 0 to be the output

Main clrf PORTD

clrf LATD

movlw 0x00

movwf TRISD

bcf STATUS,C
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bsf PORTD,0

nop

nop

nop

bcf PORTD,0

start movf POSTINC0,w

movwf counter1

movlw 0x00

xorwf counter1,w

bz ton0

routine movlw 0x01

xorwf counter1,w

bz ton

decf counter1

goto routine

ton0 bsf PORTD,0

nop

nop

nop

bcf PORTD,0

goto poston

ton bsf PORTD,0

nop

nop

nop

bcf PORTD,0

poston decf counter3

bnz start

end

170



Appendix B

This code generates the Manchester coded waveforms of the input data pat-

tern:

include p18F4550.inc

define polynomlow b’00000101’ ; Low byte of polynomial

define polynomhigh b’10000000’ ; High byte of polynomial

define polynomlength 0x10 ; 16-bit polynomial length

define datalength 0x04 ; Data length in bytes

udata 0x80

high res 1 ; shift register 1

low res 1 ;shift register 2

bits res 1 ; number of data bits

databytes res 1 ; number of bytes of data

temp res 1 ; temporary register

COUNT res 1

MANCHESTER res 1

TIME res 1

org 0x0000

goto begin

org 0x5000

begin movlw 0x6000 ; set pointer to begin of data block

movwf FSR0

movlw 0xAA

movwf INDF0

incf FSR0,f

movlw 0x10

movwf INDF0

incf FSR0,f

movlw 0x02

movwf INDF0

movlw 0x6000 ; set pointer to first data location

movwf FSR0 ; initialize FSR register

;Manchester Code

Main incf FSR0,f
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movf high,w

movwf INDF0

incf FSR0,f

movf low,w

Start clrf WREG ;clear W register

movwf PORTC ;clear PORTC

movwf TRISC ;config PORTC as outputs

movlw 0x04

movwf TIME

movlw 0x6000

movwf FSR0

movf INDF0,w

movwf MANCHESTER

Init movlw 0x07

movwf COUNT

Sub rlcf MANCHESTER

bc Led1

bcf PORTC,0

goto Delay1

s1 bsf PORTC,0

goto Delay2

s2 decf COUNT

bz terminal

goto Sub

Led1 bsf PORTC,0

goto Delay1

bcf PORTC,0

goto Delay2

decf COUNT

bz Start

goto Sub

Delay1 Nop

Nop

172



Appendix B

Nop

Nop

Nop

Nop

goto s1

Delay2 Nop

goto s2

terminal incf FSR0,f

movf INDF0,w

decf TIME

bz stop

goto Init

stop goto stop

end
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*********************************************************************/

include ”Device.h”

include ”filter.h”

include ”iir.h”

/*********************************************************************

* Function: main() *

* Description: main routine for the IIR16 application. *

* DSP: TMS320F2812 *

* Include files: none *

* Function Prototype: void main(void) *

* Useage: main(); *

* Input Parameters: none *

* Return Value: none *

* Notes: none *

*********************************************************************/

void main(void)

/*** Initialization ***/

InitSysCtrl(); // Initialize the CPU (FILE: SysCtrl.c)

InitGpio(); // Initialize the shared GPIO pins (FILE: Gpio.c)

InitPieVectTable(); // Initialize the PIE Vectors (FILE: PieVect.c)

InitPieCtrl(); // Enable the PIE (FILE: PieCtrl.c)

InitEv(); // Initialize the Event Managers (FILE: Ev.c)

InitAdc(); // Initialize the ADC (FILE: Adc.c)

/*** Get the IIR16 loop going ***/

InitGptimer2(sampleperiod); // Initialize timer2 (FILE: IIR16.c)

/*** Enable global interrupts and the realtime debugger interrupt ***/

asm(” PUSH IER”); // copy the IER to the DBGIER

asm(” POP DBGIER”);

asm(” CLRC INTM, DBGM”); // enable global and debugger realtime inter-

rupts

/*** Main loop ***/

while(1) // endless loop, wait for interrupt

asm(” NOP”);
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// end main()

/*** end of file *****************************************************/

This routine computes the digital filter output from the ADC input samples:

include ”Device.h”

include ”filter.h”

include ”iir.h”

/* Create an Instance of IIR5BIQD16 module and place the object in ”iirfilt”

section */

pragma DATASECTION(iir, ”iirfilt”);

IIR5BIQ16 iir=IIR5BIQ16DEFAULTS;

/* =============================================================================

Modify the delay buffer size to comensurate with the no of biquads in the

filter

Size of the Delay buffer=2*nbiq

==============================================================================*/

/* Define the Delay buffer for the cascaded 1 biquad IIR filter and place it in

”iirfilt” section */

pragma DATASECTION(dbuffer,”iirfilt”);

int dbuffer[2*IIR16LPFNBIQ];

/* =============================================================================

Modify the array size and symbolic constant to suit your filter requiremnt.

Size of the coefficient array=5*nbiq

==============================================================================*/

/* Define the Delay buffer for the cascaded 1 biquad IIR filter and place it in

”iirfilt” section */

const int coeff[5*IIR16LPFNBIQ]=IIR16LPFCOEFF;

/* Filter Input and Output Variables */

int xn,yn;

void IIRFILTER()

/* IIR Filter Initialisation */

iir.dbufferptr=dbuffer;

iir.coeffptr=(int *)coeff;

iir.qfmat=IIR16LPFQFMAT;
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iir.nbiq=IIR16LPFNBIQ;

iir.isf=IIR16LPFISF;

iir.init(&iir);

/* End: IIRFILTER() */

/*—————————————————————————

Nothing running in the background at present

—————————————————————————-*/

void interrupt isr()

xn=AdcRegs.ADCRESULT0 ¿¿ 1; // read ADC result, I1Q15

iir.input=xn;

iir.calc(&iir);

yn=iir.output;

void InitGptimer2(Uint16 period)

EvaRegs.T2CON.all = 0x0000; //disable timer

EvaRegs.T2CNT = 0x0000; //clear timer counter

EvaRegs.T2PR = period; //set timer period

EvaRegs.T2CMPR = 0x0006; //set compare for ADC trigger

EvaRegs.GPTCONA.all = (EvaRegs.GPTCONA.all — 0x0620) & 0x0FF3;

/* x = don’t change

bit 15 0: reserved

bit 14 0: T2STAT, read-only

bit 13 0: T1STAT, read-only

bit 12 0: T2CTRIPE, 0=disable timer2 compare trip

bit 11 x: T1CTRIPE, 0=disable timer1 compare trip

bit 10-9 11: T2TOADC, 11 = timer2 compare flag starts ADC

bit 8-7 xx: T1TOADC

bit 6 x: TCOMPOE, 0 = Hi-z all timer compare outputs

bit 5 1: T2COMPOE, 0 = timer2 compare HI-z’d

bit 4 x: T1COMPOE, 0 = timer1 compare HI-z’d

bit 3-2 00: T2PIN, 00 = forced low

bit 1-0 xx: T1PIN

*/

EvaRegs.T2CON.all = 0xD782; //enable timer
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/* bit 15-14 11: 11=do not stop on emulator suspend

bit 13 0: reserved

bit 12-11 10: 10 = continuous-up count mode

bit 10-8 000: 000 = x/1 prescaler

bit 7 1: T2SWT1, 1 = use GPTimer1 TENABLE bit

bit 6 0: TENABLE, 1 = enable timer

bit 5-4 00: 00 = HSPCLK is clock source

bit 3-2 00: 00 = reload compare reg on underflow

bit 1 1: 0 = enable timer compare

bit 0 0: SELT1PR, 0 = use own period register /

//end InitGptimer2()
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