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R-746
SIRU DEVELOPMENT FINAL REPORT
ABSTRACT

This report presents a complete description of the development and initial
evaluation of the Strapdown Inertial Reference Unit {SIRU) system sponsored by the
NASA Johnson Space Center under Contraci N AS2-8242,

The SIRU configuration is a modular inertial subsystem with hardware and
software features that achieve fault tolerant operational capabilities. The SIRU
redundant hardware design is formulated about a six gyro and six accelerometer
instrument module package. The modules are mounted in this package so that their
measurement input axes form a unique symmetrical pattern that corresponds to
the array of perpendiculars to the faces of a regular dodecahedron. This six axes
array provides redundant independent sensing and the symmetry enables the
formulation of an optimal software redundant data processing structure with self-
contained fault detection and isolation (FDI} capabilities.

This report consists of four volumes,

Volume I, System Development, documents the system mechanization with the
analytic forrmulation of the FDI and processing structure; the hardware redundancy
design and the individual medularity features; the computational structure and
facilities; and the initial subsystem evaluation results.

Volumell, Gyro Module, is devoted specifically tothe Gyro Module, the inertial
instrument and its digital strapdown torgque-to-balance loop, the mechanical, thermal,
and electronic design and function, test procedures and test equipment and

performance resulis and analysis.

Volume [II, Software, documents the basic SIRU software coding system used
in the DDP-516 computer, The documentation covers the instrument compensation
software, reorganizational and FDI processing, and the inertial attitude and velocity

algorithm routines as well as servicing, input/output, etc. software,
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Volume IV, Accelerometer Module, is devoted specifically tothe Accelerometer
Module, the inertial instrument and its digital strapdown torque-to-balance loop,
the mechanical, thermal and electronic design and function and performance results

and analysis, as it differs from the Gyro Module,

In addition to this report, SIRU Utilization Report R-747, has been issued
documenting analyses, software and evaluation activities in the application of advanced

statistical FDI algorithms, calibration and alignment technigues to the SIRU system.

April 1973
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1.0 Intrgduciig.n

This SIRU Development Final Report is the first of two SIRU system final
reports. The second, SIRU Utilization Report R-747, is summarized briefly in this

introductory section,

The SIRU Development Final Report providesanoverview of the SIRU project,
including historical background, design concept, hardware mechanization, software,
test equipment, reliability and initial test results., In general, it deseribes the
activitiesand achievements accomplished during the pericd from May, 1968 through
November, 1971, At that time a complete operational system had been functional
for five months and both hardware and software had been debugged and consistent
systemoperation demonstrated. Thereport is presented in four volumesas follows:

Volume I - System Development

Volume II - Gyro Modules

Volume III ~ Software Documentation

Volume IV - Accelerometer Module (CONFIDENTIAL)

Volume I contains a complete description of the SIRU system concentrating
on the system hardware but covering in adequate detail system mechanization,
computational software and facilities, test facilities, test results and a reliability
appraisal., Program milestones and conclusions and recommendations are also

included.

Volume II presents in greater detail the design, operation and test results
applicable io the gyro modules and Volume IV provides the same information
applicable to the accelerometer modules., Volume III provides a documentation of
the base-line system software including assembly listings and flowcharts,

The SIRU Utilization Report presents the results of the additional analysis,
software development and testing activities provided for under Amendment 75 to
the basic SIRU contract. The report is presented in three volumes as follows:

Volume I - Theory, Development and Test Evaluations
Volume II - Software Documentation

Vaolume III - System L.og



Volunie I contains a complete description of the theory, analysis, implementation

and test results for each of the tasks, namely:

1. Statistical Failure Detection Iseolation Classificalion and BRecompen-
sation (FDICR)

Error Source Propagation Characteristics

System Single Position Self-Calibration

SIRU Self-Alignment (Gyro Compassing)}

[ S SR )

Local Level Navigator Performance Demonstrations

Volume II provides documentation for the additional or modified software
including assembly listings and flowcharts. Volume III contains a log of significant
system events from the beginning of the system testing program,

1.1 Background

A major requirement for guidance, navigation, and contral systems designed
for future spacecraft and aircraft applications is high reliability. As a means for
fulfilling this requirement, attention in recent system studies has been focused on
the use of redundancy concepis with fault tolerant features to achieve an order of

mragnitude or better improvement in reliability.

In the Apollo spacecraft, each "primary' system was complemented by a
"backup" system which had limited mission-mode capabilities. For future space
missions this concept, predicated on a fail-safe return to earth, will not suffice; it
fails to provide the necessary reliability and operational capabilities for extended
missions., In commercial and military aircraft, duplex or triplex redundancy in
guidance, navigation, and control sysiems has become commonplace. In these
applications failure isolation decisions and system reconfiguration selection are
for the most part assigned to the human operator. Advanced guidance and navigation
systems to meet improved air traffic control requirements undoubtedly will
incorporate automatic failure detection and adaptation-—especially in critical

guidance phases,

Obtaining an optimum redundant guidance and navigation system can be
approached in several ways. A basic decision, however, will involve the geometric
arrangement of the inertial sensors. The éhoice is between instrument redundancy
along common orthogonal axes and a non-orthogonal array of instruments; in either
case the objective is to provide a comprehensive array of measurement data.l In
both approaches the mechanization should be free from single point failure



possibilities, and provide a self-contained failure detlection, isclation and processing
reorganization capability, The operation of the failure detection and isclation
technique must achieve time critical system reliability by eliminating faulty data
from instruments or their electronics before the faulty measurements data affects
successful mission performance, and the remaining data and processing structiure,

after reorganization, must have satisfactory mission performance capabilities.

1.2  Histeorical Background

On May 7, 1968 the Charles Stark Draper Laborator‘y* at the Massachusetts
Institute of Technology submiited a Technical Proposal, in response to NASA RFP
#BG 731-47~8-533P, o the Manned Spacecraft Center of the National Aeronautics
and Space Administration for the design, analysis and development of a redundant
Strapdown Inertial Reference Unit (SIRU), This unit was intended to replace
corresponding assemblies in the Primary Guidance Navigation and Control System
(PGNC) which the laboratory had designed and developed for the Apollo program.

This contractual activity marked the culmination of a researchand development
effortto determine and define the fundamental aspects of redundant strapdown inertial
guidance, navigation and control systems. The redundancy concept was based on a
dodecahedron configuration for the inertial instruments that had been proposed and
delineated inan MIT masters thesis published in 1967.** During the next two years
under NASA sponsorship (contract NAS 9-6823) a base of supporiing strapdown
technology was créated including an inertial grade high torque gyroscope, improved
torque-to-balance servo techniques and higher order computational algorithms.

As stated in the May 1968 Technical Proposal, the purpose of the SIRU effort
was "to design, assemble, and test aninertial reference unit suited to the operational
reliability requirements of long-term manned space flights. Redundant, structure
mounted inertial components (strapdown) should be used to provide high reliability

and freedom from operational constraints (e.g., gimbal lock)".

The SIRU was to be configured to interface with the spacecraft planned for
the Apollo Application Program (since modified and renamed Skylab), Specifically,

*
The former Instrumentation Laboratory of the Department of Aeronautics and
Astronautics at M.I,T,

ok
"A Non-Orthogonal Gyro Configuration'", Jerold P. Gilmore, T-472,

Instrumentation Laboratory, MIT, January, 1367,



the SIRU would replace the Apollo PGNC system Inertial Measurement Unit, the
Coupling Display Unit, and the inertial section of the Power and Servo Assembly,
The new assemblies would interface with the Apollo Guidance Computer and then
the spacecrafi to achieve fully redundant guidance, navigation, and control.

Work under Ceontract NAS 9-8242 commenced June 27, 1968, The Statement
of Work specified that the contract's purpose was to develop and deliver one SIRU,
whose production version would "'meet the reliability requirement for long-term
manned space flights.” The reliability requirement was defined as "the capability
to performa 120-day missionwith a.299 mission success probability and a one-half
hour reentry phase at the end of 120 days with a .9999 mission success probability."

The SIRU was to consist of an Inertial Component Sensor Assembly with the
associated elecironics and power supplies necessary to meet the interface
requirements. A Digital Computational Assembly package to verify the operational
capability of the modified Guidance, Navigation and Control system was also
prescribed, As a design goal, the complete package (including associated hardware
and harnesses) was to weigh less than 80 lbs with a power requirement of less than
250 watts,

1.3  Development Summary,

The SIRU system consists of a Redundant Instrument Package (RIP) and an
Electronics Assembly (EA), The geometric redundancy concept is mechanized in
the Redundant Instrument Package, which contains six single degree-of-freedom
gyroscope modules and six linear accelerometer modules. Geometric redundancy
igachieved by using a non-orthogonal mounting configurationin which the instrument
input axes (IAs) are oriented to correspond to the array of normals to the faces of
a dodecahedron, Fig. 1.3.1. This arrangement yields a uniqlie symmetry in which

all instrument input axes are at a spherical angle (63.40} from each other.

In the particular implementation used, pairs of gyro or accelerometer axes
lieinthe orthogonal planes of a reference triad and are displaced about the principle
triad axes by an angle, This symmetry yields optimal redundant reorganizational
data processing with minimum error propagation, Moreover, by means of instrument
output comparisons, self-contained failure isolation of up to two out of six of both
instrument types is achieved and a third failure of each may be detected, With the
ald of additional diagnostics, the processing structure still allows continued operation
after three failures on both of the six gyro and six accelerometer measurement

axes,
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Fig., 1.3.1 Instrument Input Axes Orientation Relative to
The Instrument Frame Triad and the Dodecahedron

The RIP is an assembly of gyro and accelerometer modules in which each
moduleisa prealigned and normalized assembly. The modules are interchangeable
and include the instrument and its pulse torque-to-balance conirol electironics,
temperature controller, etc. The gyro module is scaled to be compatible witha 1
rad/sec input and the acceierometer module is compatible with an Apollo 19 g's
capability. Redundant concepts arealsoapplied inthe supporting EA {power supplies,
clock and scalers, etc,). The levels of redundancy used in the EA are based upon
the relative reliability of functional circuits and circuit isolation concepts. For
example, to maintain the inherent reliability of the instrument configuration such
features astriple clock voting, dual scaler channelsand six functional power supplies

are employed.



With respect to reliability, insight into the relative merit of different sensor
geometric configurations is provided by a normalized reliability comparision. The
variation of probability of mission success with normalized time for several sensor
arrangements is illustrated in Fig. 1.3.2. Time (t) ig normalized by the mean-
time-~between—failures (MTBF) of a sensor axis, i.e., the instrument and its
functionalized electronics. In the illustration, all system sensor axes are assumed
1o havethe same MTBF. Forreference, areliability curveis shown for a conventional
orthogonal triad package of three sensor axes. The other curves correspond to
systems with self-contained failure isclation features, i.e., three triads (where
mission success is attained by majority agreement); a single triad with three
instruments on each axis (with majority agreement per axis); and the dodecahedron
array (which allows the failure of any two axes). Note that a marked reliability
advantage for the SIRU configuration is clearly observable. Further, if external
failureisolationis assumed so that operation continues until all three triad systems
fail or a fourth SIRU axis fails, SIRU reliability is 0.999 compared to 0.98 for a
normalized time (t/T) of 0.1. It is important to note that redundancy alone does
not supply a complete solution to the problem of system rjéliability. Each element
in the system must be selected and conservatively applied in a manner that is
consistent with the environment and the mission duration; there is no substitute for
quality engineering. Similarly, an element's statistical MTBF of one million hours
does not preclude its failure, on a random or defect basis. Thus, the system must

be configured to avoid total failure resulting from the failure of a single element.

PROBABILITY

1.0 [
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T=TIME
D_.98 = —
n | i
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054 L '
0 0.1 0.2

NORMALIZED TIME {7/T)

Fig. 1.3.2 Mission Success Probability



A Digital Computational Assembly (DCA) design was formulated concurrently
with the development of the inertial sensor and electronics packages, A representative
engineering design was developed to fulfill the processing and strapdown algorithm
system requirements and a breadboard unit built, The DCA design concept was
based on a general purpose computer with duplex processors, memories and /0
sequencers. It was configured to achieve the system high reliability requirements
and it incorporated multiple error checking, single instruction restart capabilities,
micro-programmed sequence generation, and the use of a serial time multiplexed
input/output. The fabricationof a prototype DCA was not undertaken in this program
due to cost considerations, A report describing the work performed and results
achieved under the DCA task has been published as MIT Engineering Report E-2580,
December, 1970.

A general purpose computation and control facility was developed and expanded
to support systemn RIP and EA testing, data reduction and analysis as well as
operational software development and evaluation. This facility was also used for
the devilopment and coding of DCA software, It was developed arcund a general
purpose commercial mini-computer, the Honeywell DDP-516, which is sofiware
compatible with the Honeywell 601 airborne computer, The DDP-516 is a
representative siate-ol-the-art general purpose machine, employing a 16-bit word
with a memory cycle time of 0.36 microseconds, a high-speed arithmetic package
and 16,384 words of core memory. The peripherals used include: two disc drives;
a teletype unit, a CRT display; a high-speed paper tape reader and an incremental

magnetic tape unit.

Ground support equipment (GSE} consisting of a GSE console with power
supplies and monitoring and control capabilities, an Interconnect Box and Table
Junction Box for iable interconnections across the test table slip rings, a RIP {est
box and an auxiliary monitor console for signal monitoring and test table control
functions were assembled and combined with the other system hardware.

The computer was interfaced with the SIRU outputs and the test table encoder
and is operated with the system on-line and in real-time. The following specific
software has been developed and debugged and are routinely operating with the SIRU

system.
1. Interface software to operate in real~time with the SIRU outputs and to
display and record the desired computaticnal algorithm outipuis,
2. Strapdown attitude and velocity algorithms compatible with general

purpose computer structure and speed,



3, Static and dynamic instrument error model {e.g., BD, ADIA, etc., SF
and OA coupling, etc.) compensation routines that are also compatible
with failure conditions, (e.g., gyro compensation independent of accéler.-
ometer failure status, etc.). ,

4, An adaptive instrument data processing structure using 1east-squares
triad body rate and accelerometer estimation with restructuring based
oninstrument failure statusi.e., by reducing the number of dodecahedron
measurement axes that are processed (six, five, four or three axes) to
reflact the current failure status, A least-squares triad solution is
thereby obtained that uses only those measurement axes that are
performing to an acceptable standard,

5. A failure detection and isolation (FDI) structure based onthe total squared'
error {TSE) raiio test and parity equations to provide sequential FDI of
any two gyro or accelerometer 'soft* performance failures{equivalent
to approximately ten times the nominal uncertainties). Isplation
ambiguities are limited to two certain simultaneous failures of the same
measurement type that have equivalent failure levels in one FDI test
period. FDI is effected prior to every algorithm interaction cycle.
Thus if a hard failure (catastrophic in nature, e.g., full on output) or a
soft failure (error characteristics several orders of magnitude above
the FDI threshold levels) occurs, it is possible o detect and isolate it
prior to a single iteration period (10 ms at 100/sec) with no error
propagation in the attitude or velocity algorithm outputs. In both cases
soft and hard failure detection of a third failure is achieved.

6. System static and dynamic instrument calibration programs that acquire
and process raw data in the calibration test sequence and generate
printouts in engineering units as well as calibration loads in machine
language for the real-time compensation routines, .

7. Programs to provide algorithm output recording and test programs for
performance and simulation testing. '

8. A disc operated systerm with assembler, compiler, and program editor
providing self-contained development and debugging of operational and
test software suitable for the DCA as well as for the DDP-516.

9. Programs for fine grained analysis of performance test results on the
IBM 360,

A soft failure is performance degradation rEQqumg measurement comparisons to
detect, A hard failure is defined as one which is generally catastrophic in nature,
probably could be detected and isolated by Hardware Self Test (BITE) techniques,
and tends to be gross in nature.



In summary, the SIRU program accomplished the following major achievements.,

1, Implemenied in hardware a redundant strapdown inertial system based
on the dodecahedron symmetry, incorporating effective ¥DI and efficient
automatic redundancy management,

2, Designed, fabricated and assembled a modularized, redundant instrument
package consisting of six normalized gyro and accelerometer modules
supported by an EA possessing interchangeable functional modularity
consisting of six axes power supplies, dual power bus and triple clock
redundancy fo eliminate single point failure sources. Feasibility of
interchangeable modularity was successfully demonstrated,

3. Developed and demonstrated software to provide redundancy management
and strapdown processing including automatic fault detection and
isolation, static and dynamic instrument compensation, attitude and
velocity algorithms, self alignment and calibration and real-time data
acquisition and analysis,

4, Demonstrated a full-up and continuously operating system reliability
record covering a period in excess of 20,000 hours since July, 1970,

9. Demonstrated over this period operational capabilities and performance
consistent withand exceeding the requirements for the ''fail operational/
fail safe' concepts now specified for the Space Shuttle even though its
intended application was for the earlier Apollo Applications (Skylab)

mission.
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2.0 System Mechanization

This section describes in detail the mechanization of the strapdown redundant.
system including normal processing and failure detection and isolation (FDI)
techniques. GSoftware requirements including compensation programs are defined.
Analyses of error propagation and resulting performance forecasts are presented.
The first half of the section deals with all these elements as they apply to the geometric
redundancy and the second half shows the extension of the concept to the electrenics
design.

2.1 Computational Functional Flow

2.1.1 Redundant Instrument Processing_

The measurement data, derived from the gyros and accelerometers whose
input axes are colinear with the dodecahedron vectors A through F in Fig, 1.3.1 in
Chapter 1, musi be relatedto areferencetriad, XYZ. For agyroset, the orientation
yields a relationship between the angular rate inputg (W} about the triad axes and the

gyro measurements (m) that may be expressed in matrix form in terms of the geometry

as:
m = Hb (2.1}
where
T _ .
mT =fm m m. m.,m m
- [ a hTcd e f]
s -8 ¢ c 0 o
HT =l o 0 8 -3 C c

@1/2

Hy

c = cos(s 10 0,851

n

5 + ﬁ)l/?

) 0.526

g = gin (

These relationships reflect the dodecahedron configuration shown in Fig. 1.3.1. -
In the specific mechanization adopted for SIRU the Y axis is reversed compared to-l
the dodecahedron which introduces sign chanpes in the equations. For the SIRU
configuration the corresponding matrix HT is given by:
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A1l the following equations in this volume are representative of this specific
SIRU configuration. As seen from the equation, each instrument provides a measure
of redundant data, e.g., instruments A, B, C, and D sense a component of input
along the X triad axis. By algebraic solution of the equations, equivalent triad axis
rate or acceleration solutions can be obtained from any three gyros or accelerometers,
Subsequent discﬁssion. ilNustrates that it is possible to isolate up to two failures of
either type instrument and to- detect a third failure through self-contained instru-
ment output comparisons, .
The processing structure used to obtain equivalent triad solutions from the
dodecahedron array corresponds to a weighted least-squares solution form:
be@ly 'm ey T, (2.2)
where b is defined as the "best" triad solution estimate and gt corresponds to a
diagonal 6x6 matrix whose terms represent the individual instrument variances.
This solution provides a best estimate where both the geometric properties of the
configuration and the individual instrument performance statistics are considered.
For the dodecahedron array the computational implementation allows the selection
of the appropriate triad soluiion in aceordance with the operational status of the
instruments in that ¢ can be modified to reflect either degraded or failed instrument
performance. However, for efficient computational usage and time-critical decision

and error propagation minimization, only a"'go-no go'" criterionhas been implemented

(2 study to determine the feasibility of generating continuously a weighted least- '

squares estimate in an adaptive fashion has been conducted). Thus, processing
reorganization is achieved by replacement of df—l by a status matrix,», in which
all diagonal elements are unity when all instruments perform satisfactorily*. By
setting the appropriate elements to zero when failures are detected, a least-squares
triad solution can be defined for any combination of instruments (i.e., 5, 4, and 3

gyroor accelerometer combinations). (The actual processing matrices appropriate

%

An additional contract task documented in Report R-747 covered the implementation
of a statistical approach which, when combined with the current A implementation,
provides higher resolution FDI using a recursive statistical algorithm which also
classifies the fault (mean or variance change) and if the fault corresponds to a
stable mean performance change, recompensates it.
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for each combination of gyros or accelerometers are presented in Appendix A). In
the computer mechanization, this approach is implemented by storage of common
parametric elements that may be assembled to form the appropriate least- squares
solution based on the status of the instruments,A\. This structure is regenerati{re
in that, if instrument "healing” iz observed in the failure isolation process, the
instrument may be reinstated. Thus, the failure isolation criteria enables adaptive

data processing.

Ag noted previously; the self-contained FDI to be discussed in subsequent
paragraphs illustrates that the dodecahedron symmetry enablesisolation (determina-
tion of the faulty measurement axes, )L‘i, %})} and thereby automatic processing
reconfiguration for up to iwo of either type of instrument axes failures through
self-contained output comparisons. In addition, dependent upon the order and
magnitude of failures in a sequence of failures, self-contained isolation of a third
failure is also achieved. Under all circumstances self-contained detection of a
third failure of the same type measurement axis is provided. External monitors
may also be used to provide additional A status data to allow continued operation
after as many as three gyro or accelerometer axes failures.

The advantage of the dodecahedron self-detection and isolation capabilities is
clearly illustrated when one considers that a system employing duplex instrument
redundancy on orthogonal axes experiences total failure with two gyro or two
accelerometer failures on the same axis, and self-contained igolation of performance
degradation between two instruments on the same axis is not possible. Even with
three independent {riads,only one fault can be isolated when axis~by-axis voting is
precluded {as when the triad orientations are not precisely aligned with respect to
each other or if a fault occurs in a triad system that causes multiple failures in
that subsystem). Using triple component orthogonal redundancy in a single system
with failure isolation by instrument "voting" between the three instrument signals
on the same axis provides limited capability. A second failure on the same axis
cannot be isolated. The SIRU skewed configuration yields the most efficient redundant
use of six single-degree-of-freedom measurement axes for fajlure isclation and

reliability improvement,

In principle, any six-instrument, skewed configuration possesses similar
redundant measurement and failure isolation capabilities, The advantage of the
dodecahedron array results from its unique symmetry, whereby the six measurement
axes are spherically distributed with equal angles between all axes. This feature
minimizes geometric error amplification, simplifies failure isolation and oplimizes
the response characteristics to provide equalized performance at all attitudes.

13



Independent studies by Weinstein*, have demonstrated that equivalent perform-
ance is not attainable with triads that are rotated with respect to each other to

obtain a six axes measurement array.

The relative performance of the SIRU configuration under various failure
conditions may be identified clearly by comparing the SIRU reference triad solution
statistics ‘to the corresponding statistics for an operational three axis system. In
each case, all instrument axes are assumed to have identical and independent
measurement error characteristics. The statistical performance characteristics
of the failure-free, three axis system are defined as having a standard measurement
deviation of o along any axis and atotal three- dimensional rss measurement deviation -
of (32,
statistics of its triad solution provide an axis standard measurement deviation of

0.707r and an rss system deviation of (1.5)1/2'0. Similarly, deviations for the SIRU

In comparison, when all gix axes of SIRU are operational, the error

triad solutions for the various five, four, and three insirument combinations may
also be compared ito the basic triad's statistics. These combinations represent
SIRU performance, with failed instruments detected and isolated, i.e., the failed

axes no longer being used in the triad solution processing.

In general, the error propagation of a non-orthogonal array with instruments
deletedis suchthatits triad solution performance statistics reflect both the reduction
in measurement data and the deterioration in geometry. Thus, dependent. on the
geometric positions of the deleted (failed) axes, the solution tends to have a maxXimum
standard deviation along a specific axis (worst-case) and certain failure combinations
have more pronounced rss error amplification than others. However, as illustratred
in Table 2.1.1., SIRU error propagation is bounded and performance is not significantly

affected by processing with reduced instruments.
Table 2, 1.1

SIRU Performance with Instrument Faiiures

Yersug
An Operational Triad System

Standard Deviation Ratio of Deviation

Instrument (Worst-Case Axis (SIRU Soclution to

Failures Solution} a 3-axis System)
None 0,707 0. 707
1 (6 Combinations) - 0. 9270 0.8186
2 {15 Combinations) 1. 349¢ 1, 000
34A (10 Combinations) . 1. 3490 1.176
3B (10 Combinations) 2, 8900 1,902

"Weinstein, Warren D., Optimum Skew Angle Between Redundant Inertial Systems,
Grumman Aerospace Corporation, Bethpage, ... ., N. Y.
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The first column of Table 2.1.1 corresponds to the SIRU processing status,
i.e., operation with all instruments, down to combinations of failures on three
instrument axes, For each of these states, the table shows the SIRU worst-case
single axis triad solution standard deviation and the ratio of the SIRU solution rss
deviation to an equivalent triad system rss deviation. Note that SIRU performance
with one failure is statistically better than an unfailed triad system and for all
two-failure and ten three-failure combinations performance is essentially identical
to an unfailed triad. For the remaining worst three-failure combinations, the
maximum single axis solution standard deviation in comparison to a good triad axis
standard deviation degrades by a factor of three while the corresponding total rss

performance degrades by only a factor of two.

2.1.2 Failure Isolation

The self-contained failureisolation algorithm is based upon a simple compar-
ison of measurement outputs. Theunique symmetrical properties of the array allow
one to implement two different but correlated FDI algorithms. One algorithm is
based on the development of a series of ""parity equations" and the other on a set of
equations derived from the conical representation of the dodecahedron. Both
algorithms are directly related; for example, the conical equation representation
for the fwo-failure case is identical to the parity equations. The parity equations
consist of a series of 15 equations, each equation representing a comparison of
four measurements, All the equations will have a zero output (¢) if all instruments
are operating properly. The derivations of these equations are presented in MIT/IL
Report T-472, A Non-Orthogonal Gyro Configuration by J, Gilmore, January, 1867,
Table 2.1.2 lists the 15 equations. Each m term in the equations corresponds to an
accumulated # count or velocity over some comparison interval. If, however, an
instrument along A has malfunctioned, Eqs. 2.1 through 2.10 will show a non-zero
total, while Egs. 2.11 through 2.15 equate to zero, thereby isolating the failure. If
a second instrument failure occurs, inspection of the remaining equations (2.11
through 2.15) allows another level of failure isolation, If a third failure occurs and

none of the equations show a zero total, the failure is detected but not isolated.

The conical technigque was originally synthesized in the computational software,
but parity equations were subsequently used for the third-fail detect function and in
the statistical FDI algorithms described in the SIRU Utilization Report Volume II,
R-747. The conical technique is displayed in Fig. 2.1.1. Note that each of the five
vectors (B, C, D, E, I) is symmetrically displaced in a conical array about the
central vector A. This relationship is identical for all orientations becatise of the
symmetry of the dodecahedron array.
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Fig. 2.1.1 Conical Representation of Dodecahedron Normals

Table 2.1.2 SIRU Parity Equations

No. Instruments
1 ABCD (ma- mb]c+ (mc+ myls = L€l
2 ABCE {mb -mc - (m, + m }s'= €]
3 ABCF -lm_+ m e+ (my + m,) & = 14
4 ABDE ~lm + mgl e+ (my + m)e = 1€l
5 ABD¥ (my - mg)c - {m_+ mg} s = €
8 ABEF {m_+ mp) e - (m + my)s = Id
7 ACDE (md-me]c+(ma~mc)s=|fl
8 ACDF (m_ - mgec+im, - my s = e
9 ACEF tm_ -mget{m -m]is= l€]
10 ADEF (m, - m)et (my - mp s =l
11 BCDE (m +me)c-(mb+md}s=[€|
12 BCDF -my + m et (mh;r m e = E|
13 BCEF (m, - m)c - (m_ +m)s =l
14 BDEF [mb - mf) c - (rnd + me}s =Kl
15 CDEF {m, -mpe+lm -mhs =€l
Note: m_ = measurement of axis A accelerometer or gyro s = sin (0)
c = cos {a) € = Threshold Level
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Using spherical representation one can directly derive the relationship between
each vector and the central vector A:
' m, = m, Cos 2o
: 2.3
my = m, cos 2a

where:

cos 2a = .2

When all six instruments are assumed to be operating, six equations, Eq. 2.4, are
obtained by considering eachvector A, B..., F and the corresponding conical array
of the other five veciors that surround it:

ﬁa =lm, — M(mb—mc-—md'F m,_ + mf)]
Iclb=:mb—uﬁ)._2_(ma+mc+md+me+mf):!
ﬁc= :mc-»\f_(')_.—z_(—ma+mb+md—me+mf)] .{2'4)
ﬁd = :md_m{-ma+mb+mc+me'—mf):|
ﬁe = :me_' m(ma+mb—mc+md_mf)]
}?If =[mf—m(ma+mb+ mc—wrnd—me)]

For each case the individual equations, Eq. 2.3 above, are then combined, For
A
example ﬁa in Eq. 2.4, corresponding to the A vector, ig derived by determining A

from Eq. 2.3.
“m m, - m, - my-m, - me 1 _ (2. 5)
A= 5 cos 2o " B cos 2a Vo2

where A iz the estimate of what m, should read based on my, M, ..., m. The

estimated error Ea in what A is reading may be derived by simply:

£ =m -A . (2.6)

For the situation where a failure is already known {second "fail search') ihe
procedureis identical except the known "bad" measurement is not included; scaling
may be adjusted accordingly and only five equations used. For processing ease, if
A were known to have failed, m, would be substituted for A in each of the original
six equations, Eq. 2.4. Mathematically these same relationships may be obtained
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by using the best-estimate solution for b in Eq. 2.2, Forexample, the best-estimate

of what the instrument measurements should be:

& = oh ' (2,7

b

AT _ [~ A A
m- = [ma m ...mf]

A
A comparison of the actual measurement {m) with the estimated measurement (m)

yields an estimate of the measurement error for all six instruments (EO}.
A A
E,~m-m (2.8)

where:

0 _[ a By Be Fg Fe f]
The estimated error in the measurement of the six axes is given by the same
equations as those listed in Eq. 2.4, except that they are multiplied by 1/2.

The measurement error variance (TSEO) of the six instruments is:

TSEO - ﬁoT EED - ﬁaz * ﬁ7:32 * Ec * Ecl2 * ﬁe f (2.9

If no instrument errors exist, both equations reduce to zero. If an instrument
failure occurs, the error propagates through Egs. 2.8 and 2.9. It is dominant in
the faulty instruments' error estimate but is also reflected at reduced magnitude
in the other instrument error estimates. If one knew which instrument was at fault
and adapted the processing structure, the corresponding five-instrument variance
(TSE ) with the faulty instrument omitted would then equal zero, It can be shown

3
that the relationship between TSEJ. , the faulty insirument error Ej’ and the TSE o

is:

TSE, = TSE, - 2(ﬁj>2 (2.10)

Thus (from Eq. 2.10}), if a failure exists, the failed instrument's squared error
(Ejz) corresponds to 50% of the total six-instrument variance (TSEO).

1f a prior failure has been detected and isolated, a new equation set must be
used to enable a second failure detection and isolation capability. This set must
omit the data from the already known bad axis. The new set is obtained by using
the same equations for E, through Ef (Egq. 2.8 as detailed in Eq. 2.4) but replacing
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the known failed instrument measurement by the calculated estimate for that axis
using information derived from the remaining five units. For example, if A had
failed previously, m,_ would be replaced by an estimate of A given by the remaining
five instruments. A (Eq. 2.5) and the error equations become:

B, = LA-A-o

uy = 3 472 G my ]

ﬁac = —12-:0 '\f——(*A+mb+md-m +mf)] (21
ﬁad = -%_ —m‘(-A+md+m + m +mf)] |

fuo - e T3 R my g

ﬁ'af = —é— —M(A+mb+mc—m —-m)

The corresponding measurement error variance is:

TSE. = & + B 22,82, 52 (2.12)
a a d

The general formulation for the new equation set Ejk‘ derived with the previously

failed instrument (j) not used, corresponds to:

2

[a3
TSE, = TSE. - 2. . 2.13
i 5 (E]k) (2.13)

jk
The '}'\jk is a unity matrix except that the )\jk term equals 0.

The corresponding variance TSEJ. is

e
13

where:

A F A T -1 . T

m., = Hb,andb, = (H A_H) " H A, m

=i =i "] et S = ik

If no second failure er»ci.s;‘ua_,TS]E:j reduces to zero, i.e., no errors, If a second
jk* Eqg.
2.13 and TSE., Theerroris dominantin E,]l but is also reflected atreduced magnitude

failure, 1, occurs, an error propagates in the instrument error estimate E.
in the other instrument estimates. If the originally failed instrument, j, and the

new failed instrument, 1, are deleted from the processing, a corresponding four-in-
strument variance TSEjk would be computed and would reduce to zero. It can be
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shown that the relationship between TSEjk’ the faulty instrument error Ejl and TSEj
is:

AT
jk

TSE, = & £, | (2. 14)

ik

Thus, from Eq. 2.14, the second failed instrument's squared error Ej?l
corresponds to 40% of the 5 instrument variance TSE] The computer's failure
isolation algorithm implements these concepts in the followmg manner, First, all
six individual errors are computed and Eq. 2.9 is used to calculate TSE The
total squared error is compared to an allowable threshold, which may be varled as
a function of the migsion requirement and the dynamic environment. If the system
is operating within the acceptable TSEO criteria, no further activity is reguired
until the next failure isolation iteration. If the TSE threshold is exceeded, the
ratio of each individual instrument error, Eq. 2.4,1is squared and taken with respect
to the TSE o If, for example, Ez is a significant percentage of TSE exceeding a
selected rnagmtude the failure of instrument A is indicated.

The presence of a second failure is detected when the TSEJ threshold is
exceeded, This failure is isolated by taking the ratio of E g to TSE and if EJI exceeds
a selected magnitude, the failure is isolated to the 1 mstrument

While the theoretical maximum squared error (E.)2 for the first failure
corresponds to 50% of TSE, Eq. 2.10, and {Ejzk) for the second failure corresponds
to 40% of TSE., Eq. 2.14, practical considerations require that an isclation ratio
threshold be chosen which is lower than these theoretical values. The isolation
ratio threshold is defined as R equals E ITSE for the first failure, and for the
second failure, Rl equals EJ /TSEJ Since the use of quantized data and the acceptable
noise and residuals associated with the inctrument population increase all the E
terms and the TSE, use of the theoretical values would result in undetected failures,

The use of too low a value would result in falze alarms,

A plot is shown in Fig. 2.1.2A which provides an indication of the safe region
for quantifying the detection and isolation thresholds.

This plot shows the largest magnitude ratio, R for an 1nstrument E which
has not failed (Curve 1) and the corresponding smallest ratio R, for an mstrument
E_} which has failed (Curve 2). These ratios are plotted for a normalized signal to
noise expression N thatisthe ratio of the instrument axis accumulated output (signal)
to the maximum noise magnitude (quantization, uncompensated residuals, etc.) that

may be expected in that output. Thus N is the ratio of a failure measurement error
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to the background noise or error residuals of good instruments. In these plots the
magnitude of the noise is a maximum ( # ) but its signs (+ or -) are considered 1o
be equally probable. The curves in the figure result from averaging all of the
worst-case noise values assuming + and - o be equally probable,

0-5"////////////x/
/. Region of Possgible Missed Failures

. A
/ , :Curve 2: R0 for Ej failed

6.4
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Region Controlled by Instrument Noise

Curve 1: Ro for ﬁn unfailed

AN \q\\\\
* ARLCEERREREREANNY

Ratio of Signal to Noise

Fig. 2.1.2A TB8E vs Signal-to~Noise Ratio Operating Range-First Fail

Viewing Fig. 2.1.2A, note that if the Ro ratio for failure isolation were selected
below Curve 1, false alarms would routinely occur, (i.e. an unfailed instrument
could wvield a En/TSEO greater than the selected RO). ‘Similarly, if the Ro ratioc
were selected above Curve 2, missed alarms would occur, i.e. a failed instrument
could not yield EJ.!TSE0 greater than the selected RO, Thus, to assure reliable
failure isolation a Ro should be selected in the region between the two curves,
Note that the crossover point of the two curves occurs at 1,

As expected, in the region to the left of this crossover no decisions can be

made since the sighal and the worst-case noise are equal. As noted previocusly,
the FDI cycle is initiated when the TSE threshold is exceeded, providing identification
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that a failure exists. The discussiocn on the curves thus far has reflected on those

regions of RO selection that yield reliable failure isolation.

Combined FDI operation is a function of the selection of both of these
thresholds. The TSE threshold is selected on the basis of the anticipated signal to
noige (S/N) ratio. The TSE flags the presence of a failure when it is large enough
to assure that noise can not cause an erroneous isolation decision. For the first
fail search, the TSE must correspondat aminimum to a S/N ratic of 1. Conservatively,
since crossover at a higher S/N ratio is possible, a larger S/N criteria should be
used. Forexample,if all the outputs have a maximum noise component, the specific
worst-case sign polarity (probability of 0.03), and an accumulation in which polarity -
occurred atevery iteration throughout the I'DI period (probability approaching zero),
the crossover in Fig. 2.1.2A would move {o approximately a S/N of 5.5. Similarly
the lower Curve 1, would move up and become asymptiotic to a ratio of 0.2, In
practice, to provide adequate detection reliability margin,a TSE threshold criteria

2 error or greater is used. (The factor of 2 is

of approxgimately 2 » 6A92 or 2 x BAP
derived from Eq. 2.10, where TSE = 2E2). 1In 2 static environment, with gyro drift
residuals bounded within D.lOo}hr, a b6 min accumulator used withthe TSE = 2 x §{A8) 2
threshold would correspond to approximately 0.15°/hr degradation detection where
A6 = BB éf\ec. To accomodate for dynamics, an effective A8 of approximately 20

§et has typically been used.

The combined first fail FDI uses a TSE criteria that reflects an S/N ratio
greater than 6 and a failure isolation ratio, R, greater than 0.35. Empirically,
laboratory iesting has demonstrated that a ratio as high as 0.44 provides highly
sensitive and reliable FDI performance,

Asecondsetof curves, seeFig. 2.1.2B, applicable to the second FDIis developed
using the same approach. Note that the crossover point of the two curves in Fig,
2,.1.2B alsooccurs at 1. This second fail search FDI curve also reflects a worst-case
noise situation and illustrates a somewhat reduced safe R; selection region (area
between Curve 1 and 2) since the lower Curve 1 is asymptotic to 0.15 vs 0.1 on
Fig. 2.1.2A. Similarly the true fail ratio asymptote (Curve 2) has reduced from
0.5 to 0.4. For the absolute worst-case condition (the sign of all noise terms having
a specific pelarity distribution),the crossover for this second fail case moves to a
S/N ratio of approximately 9 and the Curve 1 asymptote is 0.3, These factors
illustrate that second fail detection and isolation threshold selection does not have
as much margin as the first fail FDI, This finding is intuitively obvious since
there are fewer comparative measurements. Conversely, if one wishes the same

secand fail DI reliability, some degradation in fault isoclation resolution capability
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TSE Ratio

will occur. For example, FDI reliability equivalent to the previously discussed

illustration of a 0.1°/hr fail degradation isolation would correspond to a 0.15°/hr

(TSEjk = 2x 9492 capability in the second fail search.
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In testing, a second fail isolation ratio of 0.38 has beenused with good resolution
and high reliability. A 20 de¢ effective A8 has been used in the TSE;, criterion to
allow for dynamic environment noise. Detailed analyses that provide definitive

assessment of the FDI reliahility are presentedin the SIRU Utilization Report, R-747.
Redundancy Management
The software redundancy management system implements the FDI concepts

and equations discussed above in the following manner. Prior to each attitude and
velocity algorithm iteration, the failure detection and isclation algorithme operate
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on measurements accumulated at the system iteration rate (100 iterations/sec and
50 iterations/sec have been mechanized in the SIRU seoftware). Thus the FDI
algorithms cperate to detect and isclate a failure prior to each system iteration.
If a failure is detected,the least-squares matrix processing, Eq. 2.2, is modified
to reflect the failure and only the current good data is processed through to the
attitude and velocity algorithms. Thus, no known bad dataisused. The FDI algorithm
uses individual accumulators for each instrument's measurement data, The accumu-
lators are incremented at each iteration by the new data safnple. Thus, at each
iteration, the accumulator represents the sum of past and new data. The extent of
storage, i.e., past data accumulation, is selected on the basis of the desired FDI
resolution(e.g., for the gyros, an equivalent drift). Periodically, all the accumulators
are simultaneously purged of an equal time interval of their oldest data. The finest
detection and isolation resolution is therefore obtained at the I'DI test just prior to
a purging (the maximum interval storage capability). The minimum resoclution is
obtained at the FDI test of the accumulator data remaining just after a purging. In
test demonstrations a six minute accumulator, purged of old data every two minutes,
has beenused. These time parameters are selectable based onthe desired resoclution.

The tradeoff considerations are discussed later in this report.

After a first failure is detected and isolated, a search is made for a second
failure. The data used in this search does not include the measurement data in the
accumulator corresponding to the axis that was identified as failed in the prior
first fail search. However, the prior failure is continuously examined (its accumulator
continues to be incremented) by returning to the original first fail search equation.
This operation allows recertification (use again in forward processing) should the
failure heal (e.g. the failure may have been due to a transient condition). Thus the
first fail search is continuously repeated. Similar provisionis made for recertifying
a second failure. After a second failure has been isolated, the appropriate parity

equation is also examined for a third failure detection.

The ranking of failures for the purpose of failure management is as follows.
If there are two failures, that failure which exceeds the isolation threshold ratio,
computed using data from zll six instruments, is ranked first ;'md is considered {o
be the worst failure. The other instrument failure is ranked second. If there is a
third failure, the second ranked failure and the third failure are included in the
isolation ratio computation using data from five instruments ( the first ranked failure
is excluded). The instrument exceeding the isolation threshold ratiois ranked second,
If it is the same instrument that was previously ranked second, the failure detection
alarm is continued and the third failure cannol be isolated by software alone. On
the other hand, if the third failure- exceeds the second fail isolation threshold ratio
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(in thé 5 instrument test), it is ranked second and taken off-line, The previcusly
second ranked instrument is now ranked third and remains off-line, In this case a
third failure has been successfully self-isolated.  This capability was successfully
demonstrated toward the end of the SIRU Utilization program by an example in which
thethird failure was approximately 10 times greater than the original second failure.

An illustration of the error detection process is shown in Fig. 2.1.3 using
data from an actual test on the SIRU system. This figure shows a plot of the E32
magnitude output (in pulses squared) for all instrument axes as a function of test
time. The detection TSE threshold used in this test sequence corresponded to
2 x 12262 pulses where A6 was 5, 5sec (an E, errorof 686 Sec). The failure isolation
ratio used was 0.44. A simulated failure was introduced in the A axis gyro (bias
miscompensated by 25 meru after 120 seconds of normal system operation). Note
that the Ei error magnitude increases until the failure detectionthresholdis exceeded,
150 seconds after the failure was introduced. At that point the failure is isolated
to the A gyro. After isclation, the A gyro data is no longer processed, and the
error propagation in the estimate of B through F instrument errors is reduced
. Significantly. The resultant system attitude error during this time interval, Fig.
2.1.4, shows the gyro drift rate error propagating as an attitude error until detection
and isolation occur. The total error accumulation caused by thiz A gyro failure is
less than 15 $et in both the X and Z axes. Note that the failure detection is
time-dependent since it is based on the magnitude of accumulated E2 pulses, but
the attitude error is bounded within 28 £ed (for the particular magnitude of TSEq4
used in this test demonstration) for an isolated failure regardless of the magnitude
of the instrument drift rate error,

It should be noted that the propagation of an error into the system attitude
output, as shown in Fig. 2.1.4, occurs because the processing of data continues
until sufficient error develops to enable a failure detection and isolation decision.
In other words, a finite time is required to accumulate sufficient data to enable &
FDI decision. During this time (until the TSE criteria is exceeded) the error
propagates through the least-squares processing to the attitude algorithm. The
bounded maximum errorfor the first FDI corresponds to the instrument angle error
E, times one half the cosine of the dodecahedron half angle, 0,425 (see Appendix
A).  This reduction in the error propagation magnitude is attributable to the
least-squares processing, six instruments being weighted geometrically, thereby
reducing the effect of a single instrument's measurement error. Generally,this
attitude error propagation has negligible influence on a mission since the basic
drift detection resolution must be compatible with acceptable performance over an

entire mission phase. Thus, if 0.37% hr drift uncertainty performance is the limit
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for acceptable drift performance during a mission phase,the influence of a 15 Qz
error associated with the FDI of a U.BBOIhr drift error is negligible, Clearly, the
relative performance resolution capabilities are therefore the principle interest.
The resolution, given a specific TSE criteria, is a function of the system noise, the
calibration residuals, and the FDI accumulator storage time, The tradeoffs involved
in the choice of these parameters are discussed in the next section, It should be
noted, however, that dependent on the computational complex supporting the instru-
ment hardware configuration, processing schemes can be implemented that would
not yield a resultant attitude error when a performance degradation failure above
the FDI thresholds occurs. For example, in a three computer complex all data
from the six measurement axes could be used in all computers for FDI, but only
-selected sets of four axes of data would be processed in each computer through the
least-squares mairix. Thus, an attitude error due io the time the failure took to
be detected and isolated would appear in only those computers that were using in
its four axes processing the specific instrument that had failed. At leastone computer
for a single failure case would not reflect an attitude or velocity error due to this
failure and all computers, since they were using all axes in their FDI processing,
would know which axes had failed. Thereforegeach computer would know the relative
status-of- its data, The velocity and attitude status of the affected computers could
be reinitialized, and the processing equation sets reorganized to agsure that a second

failure could be tolerated in the same manner by at least one unaffected computer.

FDI Threshold Tradeoff Congiderations

In the present implementation, the gyro failure isolation criteria achieves
detection and isolation in 35 seconds for a performance deterioration equivalent to
a 100 .meruchange in bias. Proportionately longer times are required for detection
of smaller performance changes., With the current 6 minute accumulator and a 4
cm/sec pulse weight, accelerometer bias chariges equivalent to a 0.1 cm/sec2 can
also be detected and isolated. Equivalent detection and isolation is achieved for
instrument scale factor (S¥F) and alignment degradation. '

Because of the nature of the nominal uncertainties associated with SF and
alignment in strapdown error propagation, special FDI considerations are required

for operationin the laboratory where continuous test revolutions are often imposed.

Scale factor or alignment degradation corresponds to a change from the

calibrated A& or AV pulse weight or an angular change in an instrument's input
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axis orientations from its previous calibrated orientation. Errors due to these
types of degradation do not propagate, however, until rotation (for the gyro) or a
specific foree (for the accelerometer) is sensed. Thus, a SF or alignment change
in combination with, for example, a slew (constant rate) input results in an angle
error. This angle represents an equivalent drift magnitude during the slew period.
Of significance in a mission, however, is the attitude error resulting from a SF or
alignment change and its effect on guidance and navigation. The attitude.or velocity
error for the ternary loops used in SIRU is proportional tothe total attitude maneuver
or velocity change. In a static environment with only earth rate and gravity inputs,
the error associated with a 1000 ppm SF shift in a single gyro (sensing the major
portion of earthrate) corresponds to 0.015%/hr drift. This type of error propagation
is within the calibration uncertainties of drift ferms. Representative SF calibration
uncertainties consistent with current moderate performance technological
capabilities is on the order of 100 ppm and in the SIRU configuration 20 ppm
performance has been achieved. For many applications an uncertainty on the order
of 200-300 ppm at the start of the mission and over the entire maneuver profile
may prove satisfactory. IForexample, from the Space Shuttle trajectory once arcund
abort studies error coefficients, presented in Appendix A of the SIRU Utilization
Report, R-T747, a 200 ppm gyro SF errar in the worst axis would correspond to
approximately a 4.4 nautical mile cross track error at the 100,000 foot entry altitude.
Clearly, in a static prelaunch environment large SF deviations can exist, while due
to the nature of their propagation characteristics in this environment, the cor-
responding attitude error would be perfectly acceptable. Similarly, since the TSE
type DI uses individual axis body frame attitude error estirnate accurnulations
over a finite period, relatively large gyro SF and alignment errors would not cause
the failure threshold levels to be exceeded. For example, with an E2 = 37 gaz 2
criteria { 61’.‘.02 where A¢ = 5.5 @) and a six minute accumulation ]and, if all the
earth rate is about the specific gyro, a failure would be identified only if the SF
has degraded by at least 6,800 ppm (corresponding to approximately 0.1%/hr drift).
Operation in such an environment with this type of degradationis perfectly acceptable.
On the other hand, if one were to apply an input to a system rate test of 5%/ sec, a
SF degradation of only 5.7 ppm could cause the FDI thresholds to be exceeded in
only six minutes. Even if E:‘l2 = 132 ded 2 was used in the FDI l'ogic, the failure
threshold would be exceeded for a SF degradation of only 20 ppm. In both cases SF
uncertainties of this magnitude are perfectly acceptable while the FDI indications
would be anuisance. Clearly, the FDI goal is to detect and isolate a SF degradation
level in SIRU in excess of 100 ppm. Thus to circumvent nuisance problems and

achieve a detection capability consistent with a realistic SF and alignment degradation
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FDI gbal, an algorithm was implemented that increased the TSE limit on the basis
of the dynamic input environment. The technique used was to open the threshold on
the TSE based upon the magnitude of a triad solution body angle accumulation.
That is, the TSE is increased by an amount proportional to the magnitude of the G'X,
By’ g, body angle traversed in the sarme six minute FDI accumulation period. For
simplicity, however, rather than generating a vector magnitude, the TSE increment
(ATSE in §E\c2) was made proportional 1o the sum of the magnitude of the individual
triad body axis accumulations, e.g.: the ATSE is synchronized with the FDI

accumulators and it updates the TSE limits prior to each FDI test,

The scaler K, during the test program, was set so that the TSE was increased
by 44 @: 2 for every 1/8 radianaccumulated. This scaling is equivalent to opening
the TSE to allow for a SF degradation of approximately 150 ppm (i.e. if rotation
was essentially about the degraded axis)under a constant slew test. The considerations
applicable to alignment shifts are essentizlly identical and the scaling corresponds
to ap}ﬁroximately a 30 §ed alignment shift detection capability,

The isolation resolution performance capability of the SIRU system TSE
technique as a function of the FDI accumulator storage time for different effective
quantization (A6) levels is illustrated in Fig. 2.1.5. Quantization levels of 44 s’e_?:,
20 £ec and 6 Sed are shown in the figure. The limiting conditionis for 6 de¢ resolution
corresponding approximately to the present SIRU gyro interpolator guantization.
Note in the figure that when the storage time exceeds 600 seconds, all of the curves
flatten out and there is little to be gained by longer accumulator storage time.
During the test program, storage times used varied between 3 and 6 minutes. In
the six minute accumulation, for convenience, the old data was purgedevery 2 minutes,
{One minute purge cycles were implemented with the 3 minute accumulation). The
six minute accumulation represented the maximum accumulation storage time and
therefore the highest resolution ¥DI. The 4 minute value remaining immediately
after the oldest two minute portion of data had been purged represented the lowest
resolution FDI for the six minute accumulation, These values (360 and 240 seconds
respectively) occur at the knee of the 6 fec quantization curve and for this value of
quantization the accumulator storage times are therefore optimum. The theoretical
performance isolation resolution corresponding to these storage times is on the
order of 0.1%/hr. This 0.1%hr value corresponds to using six times the 5.5 Lot
guantization noise for Ej in the TSE threshold and a 6 minute accumulator storage

time.
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In the SIRU hardware testing, use of a TSE based on the 6 ged quantization
has resulied in occasional 'false alarms", i.e., failure indication of a specific
instrument on a transient basis where no failure has actually occurred. This
phencormenon was traced to the occurrance of a spurious burst of 2-3 pulses which
resulied innonet integrated angle but did, in the presence of other residuals, cause
the TSE {o be exceeded during an ¥FDI accumulation c¢ycle time. Thus, on a {ransient
basis, an instrument was taken out of the data processing structure until the
accumulator purged the transient data burst and requalified the instrument (approx.
120-180 sec later). The noise effect, although random and infrequent, was traced
to the long cable run, (approx 50') and the table slip ring interface between the
gyro module outputs and the computer. An effective quantization corresponding to
the Aé = 20 sf?c curveinFig. 2.1.5 was used initially to allow for this noise phenomena,
equivalent to operating with a TSE of approximately 2 x 24&.62 with A& equal to 5.5
Led. Subsequent dynamic testing illustrated that an equivalent noise in a two minute
accurnulation period on the order of 18 sfe?ﬁ could be induced by 1 Hz,l/‘zoprp

2 . . . .-
TSE criteria was retained as a nominal

oscillations. Therefore the 2 x 132 £ag
threshold, The accumulator structure was not optimized to correspond to a more
sensitive drift resolution (from Fig. 2.1.5 ten minutes would be more optimal) since

the software was sufficient to demonsirate the FDI mechanization and the new

30



statistical 'DI did not require this type of accumulation approach. During static
tests, however, finer resolution capabilities were demonstrated, e.g., Fig. 2.1.3
illustrates a 2 x 66 é?cz TSE criteria corresponding to an effective A8 quantization
of 11 £ed. A 0.1%/hr FDI with a six minute accumulator was demonstrated in static
tests when driff residual uncertainties were bounded within approximately 0.01 5°/nr.

Figure 2,1.6 shows the error propagation in attitude (§ed) as a function of the TSE
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detection threshold (in g—e\c)z. As discussed previously, an attitude erroris propagated
until the failure is detected and isolated. This curve shows the linear relationship
of the maximum system attitude error (resulting from the least-squares processing).
The maximum error reflected in a single triad reference axis corresponds to 0.425
and 0.62 of the instrument error (Ej) that is accumulated prior to exceeding the
TSE threshold and to isolation of a first and second fail respectively ( Appendix A).
As the effective quantizationnoiseis lowered, the system attitude error propagation
is also lowered since the detection threshold can be lowered, With 6 Sec quantization,
the attitude erroris less than 20 £ed. When the effective noise is 20 §ed the system
attitude error propagation is about 50 Set. A quantization of 44 £e¢, used prior to .
the incorporation of the torque loop interpolator, results in an error propagation of
112 feC. The second failure condition reflects a somewhat higher magnitude of
attitude error propagation since, after the first failure, the least-squares processing
uses the remaining five axes of data. Thus, when andther failure occurs, the smoothing
effect degrades. As noted previously, if a redundant computer implementation was
used, simple logical utilizationof different sets of measurement axes data in different
computers for the algorithm processing would assure that at least one computer

would be identified as retaining a non-degraded system output.

Table 2,1.3 Demonstrated Redundancy Capabilities

Fault Detection and Isolation

No IM"alse Alarms

Filter 3 Min 6 Min
Soft Failure: 0,75% hr 0.375%/hr
(Drift Change) 0.2 cm/sec2 —

100 ppm SF as low as 0,05 rad/sec input

Quantization Limit: (Random False Alarms on Noise Burst)
A9 = G gco 0.18% hr 0,09%/hr
2

Av

4 cm/sgec 0.13 em/sec 0.065 r.-m)'s—:.ec2

Demonstrated Resultg—Hard or Soft Failure:

No False Alarms Random Falge Alarm

System Attitude Error ~60 ded 16 Sec
Velocity Error ~15 cm/sec

Table 2.1.3 summarizes the significant performance values for the SIRU TSE
detection and isolation methods for both gyros and accelerometers. For gyros, the
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drift énd bias levels have been reliably detected and isolated. They correspond to
the resolution associated with the full six minute accumulator storage time. If
cccasional random false alarms are allowed, the defection and isolation thresholds
can also be lowered. FPor accelerometers, the static FDI operation is essentially
limited by the pulse guantization used. SIRU was scaled for the Apollo mission to
preserve a 19 g capability, resulting in a AV gquantization of 4 c¢cm/sec. Dynamic
errors introduced when large angular rate inputs are applied are the primary cause

for random accelerometer false alarms.

The FDI technique described in this text has been limited io the TSE and
parity equation approach. In late 1971 concepts for improving FDI resolution by -
specifying the coverage (reliability) and classifying the nature of the performance
degradation {random or stable bias, etc.) with a subsequent recalibration were
conceived. These techniques were based on a statistical FDI algorithm. During
the late 1871-72 period the statistical technique was developed and matured.
Significant performance resolution improvement with reduced data storage was
achieved. For example, ¥DI resclutions equivalent to 1.5 times the population's
standard deviation was demonstrated. Recalibration with high accuracy was also
demonstrated. The statistical technique is described in the SIRU Utilization Report,
R-747,

2.1.3 General System Software Description

A general purpose computer (Honeywell DDP-516) is used to verify the
redundant SIRU system software design by providing an instrument calibration and
real-time system evaluation capability. The DDP-516 is a 16-bit machine with
memory cycletime of 0.86 microsecond, a high-speed arithmetic package and 16,384
words of core memory. Peripherals used include: two disc drives, each capable
of storing 34 million words; ateletype unit; a CRT character display and a high-speed
paper tape reader. The DDP-516 has been interfaced with the test table encoder
as well as the SIRU instrument module outputs and thereby provides a capability

for real-time system evaluation.

The basic SIRU software flow is shown in Fig. 2.1.7. A detailed software
coding listing and description is presented in Volume III of this report. As shown
in Tig. 2.1.7, the individual gyro and accelerometer outputs (Afs and AVse) are
compensated to provide corrected body rotation and body velocity. This information
ig subjected to the FDI test prior to each algorithm iteration and failed axes data

arenot utilized by the matrix processor (reorganization). As previously discussed,
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provision for recertification (reapplication of "healed' instruments) is an automatic
feature of the TSE FDI. Recalibration (recompensation of stable performance
changes), however, is incorporated as part of the statistical FDI technique and is
covered in the SIRU Utilization report. The accelerometer and gyro failure status
is also available for display. The corrected body incremental motion change as
released for updating is utilized in the matrix processor in which the least-squares
solution to transform the corrected individual instrument Afs and AVs inte a X, Y,
and Z body frame is performed. The outputs of the matrix proceésors are used in
attitude and velocity algorithms to update aquaternicn transformation into the inertial
frame. The transformationis accomplisheld using a third-order Taylor series which
achieves high performance at low iteration rates. An analysis of the use of the
third-order quaternion is presented in both the SPOT Final Report, R-743, and
Control, Guidance and Navigation for Advanced Manned Missions, Volume IV, Inertial

Subsysiems, R-600 and is not repeated here.

As noted, the first step in the processing structure relates to compensation
of known instrument calibration parameters and dynamic error sources. The gyro
and accelerometer compensation algorithms accumulate pulses from the torquing
electironics and corrects them for the various error sources intrinsic to each
instrument. The result of the compensation yields corrected rotational and velocity
increments in the body frame. The gyro compensation algorithm corrects for the
gyro scale factor, the drift components (acceleration sensitive and non-sensitive)
major compliance, misalignment angles and OA coupling. The accelerometer
compensation algorithm corrects for scale factor, null bias, misalignment angles
and centripetal accelerationnormalization. A detailed discussion of the compensation

techniques is presented in Appendix B.

Shown in Fig. 2.1.7 are the compensation algorithms and their integration
with the other algorithms used in the SIRU system. The pulse torque increments
are accumulated for a period of time determined by the iteration cycle (e.g., 10 ms
for 100 iterations per second). The gyro and accelerometer iteration cycles are of
equal length, but are staggered such that the accelerometer-derived velocity data
is available half way through the gyro cycle (and vice versa). This implementation

increases the efficiency of data processing and algorithm performance.

The accumulated input of raw torque pulses is sequentially corrected for each
parameter by incrementally modifying the count by an amount that is dependent
upon the magnitude of the error parameter. After all parameters have been
compensated, iwo state vectors are derived which represent the bedy rotation and

velocity inerements in the dodecahedron reference frame,
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This incremental datais processed by the FDI algorithm to indicate instrument
failures and by an adaptive matrix processor to transpose the incremental data
from the dodecahedron frame of referenceto atriad frame of reference., Transforma-
tion from the dodecahedron to the iriad reference frame is accomplished with a
least-squares estimator operating on the six axes of body data. If an instrument
failure occurs, the matrix processor rejects that instrument's output and accurately
compiles the triad data from the remaining instruments' data. Thus, redundant

performance is exhibited in the triad data.

The triad data is used {o furnish eétimates of the envircnment when required
to compensate the appropriate parameters (as examples, acceleration sensitive gyro
drift, misalignment angles and OA coupling). Because the triad data is immune to
instrument failures, the compensation scheme is also immune to instrument failure.
Thus the inherent redundancy features are maintained by the use of the triad data
for compensation. Yor examnple, since the A-gyro's ADIA term (as determined in
static test) is corrected for g level by using a triad solution derived acceleration
resolved back into the A-gyro IA axis, the loss of the A-accelerometer does not
degrade the compensation of the A-gyro.

The computer memory and percent of machine time requiredto accomplish the
dataprocessing described above is summarized inTables 2,1.4A, 2,1,4R8, 2.1.4C,

Table 2.1.4A shows the memory requirement for all of the routines applicable
to the operating SIRU system, and Table 2.1.4B shows the percentage of computer
time required at selected iteration rates. The system was initially put into operation
ai an iteration rate of 100 updates/second and is presently operating at 50 updates/
second. 20 updates/second has been proposed as an accepiable iteration rate for

several representative applications of the SIRU system.

Table 2,1.4C shows the memory presently required for servicing and overhead
routines implemented to aid in the checkout and development of the SIRU system.

These elements would net exist in a functional installation.

The basic SIRU memory requirement {4280 words) can be correlated to the
load map shown in Volume III by adding to it the overhead of 1858 words and the
blank 243 words of memory between the Digistore output routine and the centripetal

acceleration, ng, compensalion to total 6392 words (14370 ociald.

Summary descriptions of the SIRU routines are containedin Chapter 4 of Volume
I and full descriptions, plus load map and listings, are contained in Volume 1II.
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Table 2.1.4A Basic SIRU Software

Operation - ' Memory Words
Gyro Compensation . 514
Accelerometer Compensgation 378
Gyro Matrix Processor 124
Accelerometer Matrix Processor . 8B
Failure Detection and Iselation

and Matrix Generator . 1706
Attitude Transformation Algorithm 278
Quaternion Unifier : 1786
Velocity Transformation Algorithm 378
Base Sector™ 512
Read Routines 138
Total Memory 4290

" The base sector is used to store static coefficient compensation, misalignment
compensation, error accumulators, delta theta and delta V registers, quaternion,
fail status and other often used items.

Table 2,.1,4B % Machine Time—Basic SIRU

Update Rate % Machine Time
20/sec 16.86
50/sec 42

100/sec 83

Table 2.1,4C Laboratory Overhead Software

Operation Memory Words
Earth Rate Compensation 70
Machine Control Executive 230

Output Routines

Magnetic Tape 101
CRT Display 468 1559
Teletype . 91
Output Handler 899

1859
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2.2 Electronics

2.2.1 Redundant Mechanization

The previous discussions have described SIRU's redundant data processing
and failure isolation concepts. In this section, the manner in which these concepts
are extended to the electronics is reviewed. Discussion of the electronic design

features of these circuits is presented in Chapter 3.

Redundant techniques are employed in the electronic mechanization to provide
circuit functions that are free from single-point failure mechanisms. Figure 2.2.1

illustrates the basic features of the mechanization. Functional axes have been defined
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Fig. 2.2.1 Block Diagram of SIRU System

that correspond to each dodecahedron measurement axis. Each axis consisis of a
gyro and an accelerometer module supported by common power supplies, These
power sources include: a 2 phase 800 Hz gyro wheel power supply; a 9600 Hz supply
for suspension and signal generator excitation and a dec axis supply. The dec axis
supply provides the modules' torque elecironics with the required logic (5v} and
amplifier (+10v) voltage levels and a separate floating excitation {15v) for each
precision voltage reference (PVR). This per-axis implementation enables the
isolation of any failure to a specific instrument axis or, at most, to a functional

axis . The functional axis concept was implemented for ac and fleating dc power
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The timing control pulses for the torque electronics and synchronization
functions for the various power supplies are redundantly implemented. The oscillators
are mechanizedin atriple-redundant configuration with output frequency comparisons

by individual failure detectors,

Dual redundancy is employed in the scaler implementation, and high/low
frequency detectors test both the 115.2 kpps and 200 pps outputs. The control pulses
to the torquing electronics are alsc tested for their presence and proper seguence.
The sgelection logic gaies only one scaler at a time to the system functional axes
and power supplies, but both scalers are continuously operated and monitored by
their detectors. The scaler output lines are separately buffered to assure fail-safe
operation. In both the scaler and oscillator implementation, provisions for test
sequencing of all the combinations are included.

It isimportant tonote that with respect to the de power supply and the scaler,
the electronic system configuration was mechanized to provide only fail-safe isolation
characteristics because the relative reliability of the particular functional elements
was used to determine the redundancy level to be implemented. For example, the
estimated failure rate of a 40v power supply is less than 10 failures per million
hours whereas a gyro module failure rate estimate might range between 100 and
200 failures per million hours, determined principally by the inertial instrument
and the torque electronics. Thus, dual redundancy is sufficient for the de power
supply; it does not compromise the end-to-end system reliability index and still
provides fail-safe operation. Similar considerations were applicable to the dual
implementation of scalers. Inclusion of a third scaler and dc power supply would

represent a relatively simple design modification.

2.2.2 Module Electronics

Each gyroand accelerometer module includes its own temperature controller,
preamplifier, torque control loop,etc. Scale factor stability and linearity perform-
ance on the order of 3 and 20 ppm respectively has been achieved with the present

instrument control loop within a 1 rad/sec design range.
A functional block diagram of the gyro module is shown in Fig. 2.2.2. Note

that an Interpolator/Compensator is included in the ternary torque-to-balance loop

function.
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supplies because a dual- fedundant implementation would have necessitated a complex
and possibly unreliable system of independent failure detection monitors and switching
networks. Each gyro and accelerometer module includes its own temperature
controller, ternary torque-to-balance control loop and other specizlized instrument

electronics.

The mechanization allows for the incremental A6 and AV outputs of each
instrument module to be stored redundantly in an interface multiplexer. The
- multiplexer would then transmit data and receive control and sampling messages
from the computer assembly on dual buses., A serial data iransmission format
would be used. The multiplexer included provisions for digitized analog data
(voltages, etc.) for automatic monitoring to enable more extensive fault localization,
e.g. to replaceable modules. The multiplexer was designed but not incorperated in
the SIRU system due to program funding limitations,

Redundant dc power distribution to the functional axes is achieved by the use
of dual de power supplies. These supplies are designed so that each can independently
support the total load of all functional axes. They are isolated from each other by
diode networks to provide fail-safe operation. Provisions were made to allow for
the addition of another dc power axis if further contingency planning was desired,
i.e., Fail Operational/Fail Safe.

Discussion of the designimplementation of the dual 40v supply which provides
power for the gyro torquing current, provides insight into the special design
considerations that are required to avoid a system failure due to a single-point
failure mechanism, First and most obvious, the diode interconnection is provided
on a per-axis basis to assure the availability of 40v power to the gyro modules if
either of the two supplies fails due to a low output level or to an internal short
circuit ahead of the diode. Similarly, to protect against a gyro module short circuit,
fusing is incorporated on a per-axis basis. This feature assures that the 40v
distribution tc all other gyromodules (a solid-state fuse design has been formulated)
is not influenced by a loading fault., Another more subtle reliability design
requirement, fail-safe voltage regulation feedback, has been incorporated to insure
that the 40v input to the gyro module torque loops remains within regulation limits.
If the 40v were to go above the regulation limit, performance degradation could
occur on all axes. Therefore, each 40v module has dual-redundant feedback loops
that regulate and limit its maximum output voltage. The dual feedback loops operate
to insure that if one loop fails the remaining loop will prevent the module voltage
from exceeding the regulation limit. Other design features allow 100% continuous
overload without affecting regulation of the module output.
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» Fig.2.2.2 A Functional Block Diagram of the Gyro Module

In standard ternary loop operation, the gyro signal generator {SG) output is
sampled and, when the SG signal reaches a given threshold, the control logic applies
a torque current pulse to the gyro torque generator to return the gyro float to its
null position. Timing pulses to the logic control the current pulse width,

precision current amplitude control is effected by a current feedback loop that

and

operates on the basis of a comparison between the PVR and a current sampling
resistor,

The Interpolator/Compensator provides a.dual function. As a compensator
it substantially eliminates the effect of the dynamiec characteristics of the gyro float
and linearizes the gyro torque loop output response to the applied input rates.
Without this compensation, lagging gyro float response to a tofque pulse can result
in muitiple pulsing. In the uncompensated ternary pulse torgque-to-balance control
loop at an interrogation rate of 4800 pps and with a float inertia to output axis

damping ratio (I/C) of 330 microseconds, multiple pulsing does occur. In the
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accelerometer loop, with the 16 PIP Mod B I/C ratio so much smaller than for the
gyro, compensation for float dynamics was not considered necessary, As an
interpolator, at each interrogation period the unit samples and holds the analog,
compensated SG signal, performs an A/D conversion, shifts in parallel the digital
data pulsesintoaserial register and finally sends them to the computer accompanied
by an end-of-data pulse. The digital dataisquantized suchthat each pulseis equivalent
to approximately 5.5 arc seconds or 1 /8 of the 44 arc second torque pulse. Explanation
of the operation of the Interpolator/Coempensator is provided in further detail in
Chapter 3.

The torquer compensation module includes RC networks that tune the torquer
so that it is a résistive load for the current switch and provides a trim resistor
for the "dummy' TG load. In the ternary torque loop when torque is not required,
the current is applied to a "dummy' load which is also a heater (equal in resistance
to the torquer) located on the gyro TG alignment end mount. The purpose of this
module is to minimize transients in the current control loop. The switching of the
current to the "dummy” load minimizes these transients in two ways. When no
torque is required to be applied to the gyro the same current level is fed through
the "dummy'"'; thus the de amplifier sees essentially a constant voltage, regardless
of the torquing staie. In addition using this “dummy' as a heater on the TG end
mount tends to maintain a relatively constant thermal input to the gyro, reducing
loop transients and thermal gradients as well. The 8v power supply is also located
within the module to minimize lead capacitance which affects switching time in the

current switch.

A dec temperature control loop is used in the gyro and accelerometer module,
It is novel in that the control power includes the output transistor's dissipation.
The applied power, therefore, is a linear function of control current and a more
efficient power mechanization results. This efficiency is achieved by mounting the
output power transistor on the instrument alignment mounts (where the heater is
also located) permitting the transistor dissipation power to serve also as control

power.

The accelerometer module electronic configuration is similar to the gyro
module, except that the Interpolator/Compensator functionis not incorporated, The
SIRU torque loop scaling characteristics are listed in Table 2.2.1. The features of
the electronics design are described in further detail in Chapter 3.
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A)

B)

Table 2,2,1 SIRU Instrument Torque Loop Characteristics

Gyro Torque Loop

Type:

Dynamic Range:
Torque Loop Quantization:
Interpolator Quantization:

Torquer Power:

Accelerometer Torque Loop

Type:

Dynamic Range:
Torgue Loop Quantization:
Torquer Power:
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44 Sed/pulse
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Torque-to-Balance
19 g

4 cm/gec per pulse
0.78 watt—19.5 g
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3.0 System Hardware

3.1 [Electronics Assembly and

Redundant Instrument Package

The configuration that has been developed for the SIRU system embodies its
reliability featuresin a modular implementation for improved maintainability. The
system is configured as two separaie assemblies; the Redundarnit Instrument Package
(RIP} and the Electronics Assembly (EA).

The RIP consists of a mounting and alignment structure, commonly referred
to as the r-frame, upon which the six gyro and six accelerometer modules mount.

The assembled instrument package is shown in Fig. 3.1.1.

Each module consists of a prealigned gyrooraccelerometer that is normalized
and packaged with its calibrated electronics in a sealed unit. The instrument's
input axis (IA) is offset at an angle,a (31.7%), with respect io its module base.
Thus, when the modules are mated to the m-frame's precision mounting surfaces,
which lie in orthogonal planes, the instrument's IAs are aligned to the desired
dodecahedron symmetry. This mounting configuration allows all units to be prealigned
in exactly the same manner, and all modules of each iype are replaceable and
interchangeable. Offsets from module instrument alignment to system alignment
measurements after mounting on the r-frame have averaged less than 10 §ec.
Maintenance is further enhanced by the 7-frame configuration that allows direct
access to every instrument from the front of the package.

One interesting aspeet of this mechanical configuration is that all instrument
output axes {CAs) are colinear with the reference orthogonal triad. This circumstance
permits compensation for errors introduced by dynamic inputs about the QA using
calculations developed from the triad solutions without additional geormetric

resolution,

The accelerometer module has been designed about the MIT developed size
16 Permanent Magnet (PM) Pulsed Integrating Pendulum (PIP), a single degree-of-
freedom specific-force receiver operaied in atorque-to-balance mode, Itis primarily
distinguished {rom its predecessor, the Apollo PIP, by a permanent magnet torquer
and a solid float.

The gyro module has been designed about the size 18 Inertial Reference
Integrating Gyroscope (18 IRIG) Mod B, a single degree-of-freedom gyroscope

45



9%

Fig.
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developed by MIT/DL specifically for strapdown application. Its PM torquer is
scaled for torque-to-balance operation with input rates up to one rad/sec, and the
OA suspension capability is sized to limit radial side loading at this rate to anegligible
value. It contains a gas bearing wheel package, with a greater than 5 rad/sec slew
and a multiple stop-start capability. A -final report covering the design and
development of this instrument has been publishedas MIT Draper Laboratory Report
R-664 dated June 1970,

The packaging system developed by the U.S. Naval Avionics Facility,
Indianapolis (NAFI) was used in the design of the EA as shown in Fig, 3.1.2. This
approach was selected because, among other features, it permitted the definition of
the rm-frame structural design independently of the status of the electronic module
designs and packaging. The EA design was configured so that functional redundant

elements are completely separate mechanicallyand electrically. Thus, an oscillator

module or portions of a scaler, etc., may be removed without disabling the system.

Fig. 3.1.2 SIRU Electronics Assembly.

47



3.1.1 Weight, Volume, and Power

The weight, volume and power requirements of the RIP and the EA are shown
in Table 3.1.1. Project funding-did not permit the development of microminiature
electronics and the interface requirements limited possible size reductions. A
production design without these restrictions would result in significant weight, volume
and power reductions, A further breakdown of the components of the RIP is shown
in Table 3.1,2. ‘ ‘

Table 3.1.1 SIRU Weight, Power, and Volume

Assembly | W?llt%ht V?ilr?ﬁle P\’:;ngte;
Redundant Instrument Package (RIP 682, 94 1753.84 182.4
Electronics Assembly (EA) 33.50 1155.00 124.0
RIP—EA Harness 6.25 - -

Totals 102,17 2908, 84 306. 4

Table 3.1.2 Redundant Instrument Package

Assembly Qty Dimensions Weight Power
(in) {1b) {watts}
Gyro Module ] 5 1/4x4 3/8x4 4, 35 23.0
Accelerometer Module 6 4 1/4=3 7/8x3 9/16 2.64 7.4
7-Frame 1 20 1/ 4x15 1/16x5 3/4 21.00 —

The SIRU configuration satisfies manned spacecraft design considerations
(vacuum, thermal by conduction, etc,) and can be compared with the Apollo Inertial
Subsystem (ISS) which has similar packaging density. The total Apollo equivalent
ISS weight, volume and power is 93 lbs, 2654 in3 and 216 watts, respectively. To
achieve the same relative reliability as SIRU, such as would be required for the
space shuttle, three io four such systems would be required.

As a development model constrained by the time line, fiscal and interface
factors specified in the authorizing contract, the present RIP does not represent an
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ultimate design miniaturization, although it is a realizable competitive equipment
configuration (the use of hybrid medium scale integrated electronic packaging
techniques, for example, could reduce the system weight by over 50%). It serves
to demonsirate the redundancy, the failure detection and iselation capability and
the performance level to be expected from this type of equipment using a high
reliability, low risk packaging technique.

3.2 Redundant Insirument Package

3.2.1 Inertial Component Mounting Concept

The formulation of a mounting concept for the inertial components (ICs) in
the SIRU systemn was finalized after examination of all design objectives and
constraints, The basic considerations were mounting frame complexity, instrument
environmental sensitivities, module normalization requirements and
interchangeability goals, Eachof these basic considerations included supplementary
elements that had to be considered with respect to each other without violating the
objectives of in-flight maintainability and of form factor compatibility with the Apollo
Command Module Lower Equipment Bay.*

Figure 3.2.1 shows one possible conceptual approach., This mechanization
alignsthe gyros such thatall spinaxes (SAs) arenormal to the Z axis. Theresulting
advantiage lies inthe elimination of one of the g-sensitive drift terms during thrusting
along the Z axis, The majordrawback to this configuration is the degree of complexity
required in the mounting frame., Figure 3.2.2 presenis the concept that was
implemented, The simple box shaped schematic reflects the ability to position the
instruments inthree orthogonal planes while maintaining eachinstrument's [A aligned
normal to the face of a regular dodecahedron,

Using the '"box" approach, several choices were available for the arrangement
which provides the dodecahedron angle. Figure 3,2.3 illustrates two methods. In
the first, the IA is aligned normal to its mounting base and the angle is machined
into the mounting structure. In the second, which was the method selected, the

dodecahedron angle is achieved at the module level. Tigure 3.2.4 shows the IA

*The contract required mechanical and electirical interface compatibility with the
Apollo GN&C equipment (see Chapter 1, Introduction).
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Fig, 3.2.1 Alternative Layout Gyro Spin Axes Normal to Z Axis

' :

Fig. 3.2.2 Implemented Layout IAs Normal to Dodecahedron Faces
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alignment of the accelerometers and Fig, 3.2.5 illustrates the fixturing and test
method utilized toachieve the proper IA alignment for the gyros. The arrangement
finally chosen represented a modification of the "box'' approach which placed all
the instrument modules on the front face with the coldplate heat exchanger mounting
from the rear, The resulting structure is referred to as the r-frame.

SURFACE B

ALIGNMENT ADJUSTMERT @
SiRU GYRO MODULE

TABLE ROTARY K
AXIS
Q4
ALIGNMENT

_—~—— ALIGNMENT SCREW
__———BASE PLATE
ALIGNMENT
INTERFACE PIN

Blelm

Fig. 3.2.5 Alignment Adjustment SIRU Gyro Module

The selection of this configuration resulted in the simplest design of the
mounting structure with no sacrifice in interchangeability and performance,

Experience has shown that replacement of a module inthe system can be accomplished
in less than ten minutes with a minimum possibility of damage and with an alignment

repeatability better than 20 sec.
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3.2.2 Mechanical Design of SIRU Redundant Instrument
Package

The SIRU RIFP assembly layout is shown in Fig, 3.2.6 with its wiring harness
removed. Thisassembly consists of a 7-frame, six gyromodules, six acceleromster
modules, and a coldplate with overall dimensions of 19-7/8 inches by 15-1/16 inches
by 5-3/4 inches and a weight of 70 lbs. with its harness,

Fig. 3.2.6 SIRU RIP

The design objeciives shown in Table 3.2,1 determined the RIP configuration,
It was originally intended to be mounted within the Apollo Command Module Lower
Equipment Bay with the coldplate connected to the spacecraft coolant lines. The
RIP was to be removable without breaking these coolant lines, The frame was
made as symmetrical as possible to obtain the structural rigidity and mounting
stability necessary to maintain the alignment accuracies requifed for a strapdown
system in a flight environment. This symmetry also contributed to good thermal
design, providing minimum thermal gradients from component to component, A
three-ball kinematic mounting arrangement was used to mount the RIP to the
navigation base or to the test base. The parts used in this mounting arrangement
are identical to the Apollo Optics Assembly mounting hardware. The ICs were
prealigned and modularized for interchangeability. The framedesign was constrained

to be as simple as possible for ease of fabrication., Structural dimensioning and
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design tolerances necessary to meet the mechanical requirements shown in Table
3.2.2 were implemented. Figure 3,2.7 shows the r-frame consisting of a 6061
aluminum dip-brazed structure with inserts for mounting the instrument modules.
The ICs are mounted on four mutually perpendicular planes (the Y axis plane is
split in two to keep the design compact and symmetrical), An optical cube mounted
on the under side of the Z axis plane is visible through 2 hole in the plane and from
the X and Y directions. A flat mirror is also mounted on each of the IC mounting
planes. Thesemirrors were used for alignment and positioning cheéks during tests.
Different insert maiterials are used for mounting the gyros than are used for the
accelerometersbecause of thedifference in power dissipations; the gyro pads require
a larger thermal resistance because of higher dissipation. Both materials had to
behardenable and suitable for lapping to meet thetolerance requirem ents, Carpenter
455 stainless steel for the accelerometers and beryllium copper #25 for the gyros

are the materials employed.

Table 3,2.1 SIRU Design Objectives -

L STRUCTURAL RIGIDITY AND STABILITY

2. THERMAL BALANCE AND GRADIENTS

3. PREALIGNED ANb INTERCHANGEABLE 1/C MODULES

4,  FIT APOLLO LEB WITH S/C HEAT EXCHANGER

5. TOLERANCED TO MEET DESIGN OBJEETIVE ACCURACIES

6. PRODUCIBILITY

Table 3,2,2. Mechanical Desgign Requirements.

RIP AXES TO OPTICS LOS 20 secs
P| FRAME TO NAV BASE 5 secs

PADS AND PINS, X TO Y TO Z TO OPTICAL CUBE 5 séts

THERMAL GRADIENTS 5 s&cs
STRUCTURAL LOADING AND STABILITY 10 secs
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Fig. 3.2,7 SIRU 7 Frame

Figure 3.2.8 shows a cross section through an IC mounting pad including the
tungsten carbide alignment pins which maintainalignment about the axis perpendicular
to the mounting plane, Typical tolerances required to meet the mechanical design
requirements of Table 3.2.2 are: {latness-—50 microinches; perpendicularity and

paralielism — 100 microinches; and finish—4 to 8 microinches,

System tests were performed to determine r-frame distortion under extreme
thermal gradients.

The testing was accomplished by mounting "dummy" thermal gyro and ac-

celerometer modules on the 7-frame and running the following sequence of tests,

- Power to modules on right half of structure
Power to modules on left half of structure
Power to all modules

B W N

No power

The results showninTable 3.2.3 proved the 7-frame to be relatively insensitive

to even large thermal gradients,
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N U v frame

Tungsten Carbide Pins )

Fig. 3.2,8 IC Mounting Pads

Table 3.2.3 p=Frame Thermal Test Results

TEST CONDITION MISALIGNMENT
ARC SEC
MODULES COOQLANT
GYRO MODULE: 21 WATTS EXCITED FLOW X —X Y Y
ACC MODULE: 7 WATTS F
ACCS: A, B, F QFF ~10.2 + 7.1
l.] GYROS:C, D, F oN o7 18
Ca Da Cg Dg ACCS: C, D, E QRF- +11.2 - 110
‘ il X
| [ GYROS:A, B, € on - 106 - a5
ACCS: C, D, OFF - 5.6 + 40
Fa ac Aa FJ {1.{ GYROS: C, D
) T ON — 4.7 + 14.4
B F : ALL
A % A -G VA ON + 1.4 — 62
GYROS: ALL
vV — ON + 1.4 + 0.5
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3.2.3 Modulgrized Assemblies

The function of the gyro module is to sense the component of rotation being
applied along its IA and deliver as its output a sequénce of weiphted pulses which
defines the magnitude and sign of the rotation. Theaction is accomplished by closing
a ternary loop around the gyro by means of precision current pulses to the gyro
torgquer, The general specification requirements for the gyro module including scale
factor and drift parameters, input and output power and signal characteristics and

tolerances, thermal limitationsand other system features are provided in Appendix
C.

Modularized IC assemblies were incorporated in the SIRU system to meet
the requirement for in-flight maintenance. The modules are configured mechanically,
thermally, and electrically to make replacement as simple and straightforward as
poseible. To accomplish a removal it is only necessary to loosen three screws
conveniently located on the module, disengage a single multi-pole connector and
lift the module from the 7-frame. Replacement reverses the procedure, This
capability for simple in-flight replacement depends on the prealigned, normalized
condition of eachmodule, the accuracy of the remount alignment provision, the rugged
construction of the assembly, theaccuracyand stability of the prealignment operation
and the self-calibration features of the SIRU,

The following is a technical description of the gyro module, Substantially the
same description, accompanied by test results, performance analysis and
éomparisons, including a description of the gyro module test eguipment and
procedures, is presented in Volume II of this report. The accelerometer module
concept is very similar; a 16 PM PIFP Accelerometer (PIPA) is substituted for the
18 IRIG Mod B gyroscope. The accelerometer is also used in a Navy project and
the material describing the accelerometer module performance is presented in
Volume IV (classified CONFIDENTIAL),

The functional block diagram of the gyro module is shown in Fig. 3,2.3. The
gyro module consists of the following components:

Gyro - 18 IRIG Mod B

Gyro Pulse Torque Electronies (PTE)
Interpolator/Cempensator

8§ Volt Power Supply

Torquer Tuning Network

Bandpass Preamplifier

. Temperature Controller

[ - T L N . N ]

Normalization Assembly
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Fig. 3.2.9 A Functional Block Diagram of the Gyro Module



A description of the functionand principal features of each component follows,
Additional information may be found in Veolume II,

1, Gyro - 18 IRIG Mod B

General Description

The 18 IRIG Mod B isanadvanced design, gas bearing instrument specifically
designed by the Draper Laboratory for the strapdown application. Fig. 3.2.10 is a
cutaway view of the 18 IRIG Mod B 420 series gyroscope showing the various
components, The wheel, made from a fine-grained, hot pressed, alumina ceramic,
rotates at 24,000 rpm on a spool type gas bearing generating an angular momentum
of 150,000 gm-cmgl'sec. The ceramic encapsulated motor sfator enhances float

mass stability, and reduces the possibility of condensed contaminants on the bearing
surfaces, '

Fig. 3.2.10 18 IRIG Mod B~
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The float, which houses the wheel and stator, is fabricated from a highppscision-
elastic-limit beryllium which combines low density with excellent stability. It is
surrounded by and floated in a high density, controlled viscosity, chemically inert
dielectric fluid maintained at a precisely controlled temperature, The fluid isolates
the fleoat from environmentél inputs and provides the damping which is an essential
characteristic of the single degree-of-freedom (SDF) integrating gyroscope. The
float inertias and compliances about the SA é.re matched tothose of the IA tominimize

dynamic errors from these sources. .

The permanent magnet torquer (PMT)} is capable of developing 150,000 dyne-cm
of torque, sufficient to balance an input rate of one rad/sec. Tapered electromagnetic
suspensions provide radial and axial stiffness capable of restraining the float at
the rated input angular velocity.- The angular position of the float from its null
location is measured by a multiple E type signal generator (SG), SG sensitivity
when excited by an 8v, 9600 Hz source is 20 mv/milliradian,

The instrument is hermetically sealed within a Mumetal shroud to augment
magnetic iselation, aid heat fransfer control and protect the gyro from wnauthorized
adjustment, Temperature control and monitoring are provided by four nickel wire
wound sensors controlling heaters which are located on the gyro end mounts, The
complete instrument measures approximately 2 inchesin diameter and 3 7/8 inches
long, Weight is 1,15 pounds. A summary of the characteristics of the 18 IRIG Mod
B gyro is presented in Table 3, 2, 4,

Pulse Torque-to-Balance Operation

The gyro in the SIRU system operates in a closed loop where the torques on
the float are restrained by torques developed by the torque generator (TG), See
Fig. 3.2.11.

An angular rate imposed about the IA of the gyro produces a torque about its
OA and causes the float to rotate from the SG null position., The direction and
magnitude of the float rotationare detected by the SG, and when the SG output voltage
reaches a given threshold level, a discriminator providss a positive or negative
set signal, depending on the polarity of the SG output voltage. These set signals
are interrogated at a given frequency to switch a current pulse'of fixed amplitude
and duration to the TG winding. In the control loop mechanization, a principle error
source is inaccuracy in the torque pulse area. For example, a torque pulse of 100
ma amplitude and 200 microseconds width exhibiting a variation from nominal
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Table 3.2.4 18 IRIG Gyroscope Characteristics

Single Degree of Freedom Floated Gyroscope

Weight: 1,15 Ibs (523 gms)
Size: 2 inch {5.08 cm) Diam. 3.86 inch (9.8 cm) Long

@ Whesl: -
Self acting spool type gas bearing (Aluminum oxide)
Angular Momentum - 150, 000 gm-’cmzl sec {24000 RPM)

Maximum Capabilities -.5 Rad/-sec about 1A
‘ >50¢'s  60-400Hz

' Synchronous Motor - 4 pole 2¢ 28v  800Mz
2.6 watts/ ¢ running

Drift Sensitivity - 0.004°/ Hr per Volt

® TORQUER:

Permanent Magnet - 8 poles, AlnicoV  IX, ring poles
1 Rad / sec at 3 watts

@ COIL HOLDER - 8 coiis on Beryllium Oxide holder

@ SF SENSITIVITIES TO FLOAT MOTION:

Radial -  50ppm for 0.4 x 10'3'|'nches,
Equiv. to 1.0 Rad / sec about QA

Axial - 50ppm for 0. 25 ><_1(J'3 inches,
Equiv. to 10g accel or 20 F off flotation

Rotational - 50ppm mill i Rad
i.e. 3ppm for

Thermal - lopmeOF '

@ STABLE MAGNET CHARACTERISTICS

Decay  60ppm per decade
{magnetized after assembly}

@ 1OW DRIFT SENSITIVITY- For Torgue Power Cycling
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Table 3.2.4 IRIG Gyroscope Characteristics (Cont)

@ Thermal:
° Flotatmn Temperature - 1329‘F

o Drift Sensitivity - <.03  Hr peroF_

o Storage  20°F - 180°F nominal

® Miscellaneous'
e Gyro Elastic Restraint <0.1 dyn cm per mr
@ Float & Housing - Berylliuﬁ
" e Fluid - Brominated fluorocarbon

e Magnetic - vacuum shroud

@ Suspension:
e 8 Pole - Flectromagnetic Tapered Suspansion

Prevents radial side-loading <1 Rad/ sec - OA

Prevents axial loading <20y 2F :
Reaction lorgue sensitivity < 0,015 Hr - 1% Excitation

e Excitation - 8V - 9600Hz  0.83 watts

& Signal Generator:
e Microsyn - 12 Pole E Tybe'
o Sensilivity - 4.4mvi mr {1A) A8~0.9mv
e Noise - pickup 800Hz < 160 microvolts
modulated * 1.6KHz < 10 mtcroV

oExcita\'lon - BV - 9600Hz Tma
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Fig. 3.2.11 Block Diagram-18 IRIG Closed Loop

10

of 10-4 ma in amplitude or 2x10° sec in width will cause an error in scale factor

of one ppm,

Gyroand accelerometer module specificaiions and input/output characteristics
are provided in Appendix C. The gyro module electrical schematic is Dwg. No,
2304040 and the corresponding schematic for the éccelerometer module is Dwg.
No. 2640424,

2. Gyro Pulse Torque Electronics

The function of the gyro PTE is to receive the output from the gyro 5G, evaluate
the threshold level in the torque control logicand, if ordered, supply current pulses
to the gyro TG as required to reduce the SG signal below the threshold. The width
of the current pulseis controlled by timing pulses transmitted by the torque control
logicand the amplitude of the current pulse is maintained by a feedback loop involving

the comparison of a precision voltage reference {(PVR) and a current sampling
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resistor, The current pulse is transmitted to the gyro TG through a current switch
which is set by the torque control logic to provide the appropriate polarity. The
operation of the PTE is described in detail below.

The output signal from the gyroscope is first amplified by a bandpass
preamplifier, fed into the ac amplifier (x10) in the PTE and then to a comparator
or ithresheld device (essentially a strobed Schmitt trigger). '

As shown in the Timing Diagrams, Figs. 3,2.12 and 3.2.13, and the logic
diagram, Fig. 3.2.14, the comparator is strobed by the leading edge of the 4800 pps
interrogate pulse (INT) which coincides with the peak of the 8600 Hz signal at the
comparator. A phase shift adjustment is made in each module to the S5G signal in
the bandpass amplifier to insure this relationship. If, (referring to Fig, 3.2.14) at
the instant of strobe (INT), the peak level of the amplified SG voltage exceeds the
positive threshold level (equivalent to 44 Eet input) and is in phase with the INT
pulse, a positive level detect signal is generated which sets the positive level detect
flip~flop (+LDFF) toits positive state. The output of the +LDFF then sets the torque
motor set flip-flop (TMSFTF), (Fig. 3.2.15), to its negative state (§2,4=-; 53,5=+).
The positive output of the TMSFF turns on Q3 and Q% which sets up the current

switch for a negative torque current command.

The output of the +LDFF is also summed with the reset and INT pulses in the
positive A# AND gate to generate a A9 pulse upon receipt of the reset pulse. This
A@ pulse goes to the computer.

The output of the +LDFF also goes to the torque switch AND gate where it is
summed with the INT and the switch pulses, When the switch pulse occurs, a torque
switch pulse is generated which sets the torque switch reset flip-flop (TSRFF} to
its switch state so that its output turns on Q6 and turns off Q7. This sets up the
current switch to send current to the torquer winding instead of to the "dummy"

itorquer,.

After 195.33 microseconds, the INT pulse (4 microsecohds wide) starts,
followed 2 microseconds later by the reset pulse (0.4 microseconds wide), These
pulses are summed in the torque reset AND gate which sends a pulse to the TSRFF
switching it back to its reset state so that Q6 turns off and Q7 switches on, returning
the current flow to the "dummy" torquer load.

A similaF sequence occurs when the negative threshold level is exceeded except
that a positive torque current and a negative AP are generated.
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Fig. 3.2.15 PTE "‘H'' Switch.

The torque delivered to the gyro is a function of the duration and amplitude
of the torque curreni pulse., The pulse width and gyro torgquer sengitivity define
the pulse scale factor (SF) quantization (44 s22). The pulse duration is determined
by the time between the reset and switch pulses and is 13.02.8 microseconds + 5
ppm, A stability of 1 ppm over a period of 24 hours is characteristic of the SIRU
performance. Theamplitudeis maintained by the Torque Current Loop, Fig, 3.2.18,
This contrel loop compares the voltage drop across a precision (standards quality)
resistor with the PVR. The difference voltage is amplified by the high gain de
amplifier and fed back to Q1 which controls the torque current supply to maintain a
constant current amplitude,
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Fig. 3.2.168 Torque Current Loop

The stability and absolute magnitude of the torque current are, therefore,
established by the PVR, the current sampling resistor {(scale factor) and the high
gain dc amplifier. For a given PVR and dc amplifier, the absolute magnitude of
the current is determined by the SP resistor which is selected to match the measured
gyro SF within 200 ppm. The SIRU loop has demonstrated a long term amplitude
stability of 10 ppm,

The mode of operation for the accelerometer loop is intrinsically identical,
Minor parameter differences result from the relative torquer requirements and
normalization practices at the instrument level, The general characteristics of
the accelerometer and its module are shown in Table 3.2.5. ’

The timing inputs to the torque control logic are reshaped by means of pulse
receivers, one for theinterrogate and one for the switch pulse train. The calibration
stability of the module is largely dependent on the rise time characteristics of the
pulsetrains. Lownoise performance is achieved using a single diode level "standoff"
coupled to a fast rise, two stage pulse amplifier. Output A8 lines are transmitted
to the computer through line drivers to compensate for possible variation in
transmission line length, performance characteristics and pickup. The line drivers
consist of blocking oscillators designed to ﬁrovide ground decoupling and a high
level of cable drive power, ‘
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Table 3,2.5 SIRU Module/PIPA Characteristics

PIPA Module

1. Dimengions 4.3 i, x'3. % iA.%% 3.6 in,
2. Volume 58. 4 in, 3 '
3, Weight 1170 gm
4., Power 9 watts
PIPA
1. Physical Description
a} Length 2.1 in,
b} Diameter 1. 8 in,
¢) Weight 354 gm
2. Configuration
' a) Signal Generator Type Microsyn
b} Torque Generator Type Permanent Magnet
¢) Pendulum Support Floated and Magnetic Suspension
3. Pendulosity 1 gmcem
4. Damping Coefficient 120, 000 dyne-cm/rad/sec
5. Operating Temperature 130°F
6. Torgue Parameters
a) Mode Pulsed—Ternary
b)Y Nominal Scale Factor 4 cm/sec/pulse
¢) Interrogation Rate 4800 vps
d} Maximum Torque '
Rebalance Capability 12.0 g
7. Power
a) Signal Generator 0. 04 watts
b) Torque Generator 0.75 watis
¢) Magnetic Suspension 0.6 watts
3. Iﬁerpolator/Compensator

The Interpolator/Compensator (schematic Dwg. No, 2304154) provides a dual
function. As a compensator it substantially eliminates the effect of the dynamic
characteristics of the gyro float and linearizes the gyro torque leoop pulse ouiput
response to the applied input rates, Without this compensation, lagging gyro float

response to a torque pulse can result in multiple pulsing, In the uncompensated
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SIRU pulse torque-to-balance control loop at an interrogation rate of 4800 pps and
with a ratio of float inertia to OA damping of 330 microseconds,multiple pulses do
occur, In the accelerometer the ratic is much smaller and compensation for float

dynamics was not considered necessary.

' The float response to a single torque pulse provides insight into this effect of
lagged response on closed loop operation, Less than one fifth of the total float
motion response to a single, fixed magnitude torquing pulse, 195 microseconds in
duration, occurs in the first sampling period (at the 4800 pps interrogation rate).
Thus, if the angular rate about the gyro IA is in excess of 15% of the full-on torque
loop capability, the torque loop will always pulse again because only 15% of the
commanded return travel has occurred hefore the next interrogation, Over a total
indicated angle the pulse bursting results in an instantaneous reading error and the
base A# resolution is not realized. A compensation technique to eliminate this
problem is shown in Fig. 3.2,17. Analog voltages, zE Comp, are developed by
generating a 206.3 microsecond pulse from a flip-flop circuit which is set and reset
by the A6 and interrogate pulses, respectively. This pulse, which is approximately
the same length as the torque command (195.3 microseconds) is integrated by an
RC network to generate a voltage of the proper phase and magnitude so that when
summed with the gyro SG signal, the combined signal compensates for the gyro
float time constant and eliminates the multiple pulsing.
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TG PT.E. THEESHOLD
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/\/\ L
UNCOMPENSATED ———-50 fo 24 Dagh FULSES
| SAMPLE A~Dr
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Fig. 3.2.17 Interpolator Block Diagram
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The effectiveness of this technique is illustrated in Table 3.2.6. This table
presents the distribution of the pulse torque. patterns for the compensated and
uncompensated loop of a SIRU gyro module when operated at 1/4 of maximum rate
(.25 rad/sec) and at an interrogation frequency of 4800 pps. The first column
represents the number of times that a particular mode occurred; the second and
third columns are the number of ON pulses and OFF pulses for that particular
mode,

Table 3.2. 6 SIRU Gyro Module Moding Patterns at 4800 Hz
Input Rate: 0, 25 rad/sec

Number of Torquer
Occurrances On Off
Without
Compensation
1678 2 6
205 2 7
382 3 8
4095 3 9
With
Compensation
1132 1
4095 1
1937 1

The data shows a predominant 3 to 1 ratio of OFF to ON pulses and that the
uncompensated data has characteristically a burst of 3 ON pulses followed by 9
OFT pulses compared to 1 ON and 3 QFF for the compensated data. The spread of
pulse patterns is atiributable to noise and variations in table rate. This dataillustrates

that compensating the system has removed the spurious output generated by the
limit ecycle.

Asaninterpolator, once each interrogation period, the unit samples and holds
the analog compensated, SG signal, performs an A/D conversion, parallel shifts
the digital data pulsesintoa serial register and finally sends the data, accompanied
by an end-of-data pulse, to the computer. The data is quantized such that each
data pulse is approximately 5.5 ded or 1/8th of a 24 4ot 2o pulse,

The timing of the datapulses and the end of data pulse are shown in Fig. 3. 2. 18,
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Fig. 3.2.18 SIRU Gyro Module Electrical Interface
Qutput Signal Requirements

4. 8 Volt Power Supply

The 8v power supply is a dual dc source with identical floated and isolated
outputs. One +8v output provides excitation to the polarity determining logic of the
H switch (see Fig. 3.2.15) and the other +8v output excites the torque-torque reset
logic of the H switch.

The 8v power supply was located within the module to minimize line capacitance
that affects torquing performance, In addition, to further reduce capacitance to
ground and minimize switching transients, the input transformer in the supply is
designed for minimum interwinding capacitance. .

The 9600 Hz excitationis used for the 8v power supply because of its availability
inthemodule, simplifying the module wiring interface, Becauseof the good regulation
of the 9600 Hz supply and the relatively high frequency, the size of the transformer

and the filter components in the supply can be small. The schematic Dwg, No. is
2304009,
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5. Torquer Tuning Network

This section contains two series RC networks which are connected in parallel
with the gyro TG coil (see Fig. 3.2.19), The networks' function is to tune the coil
50 that minimum SF deviation with rate is achieved. The unit also contains a trim
resistor which is in series with the "dummy" torquer mounted on the gyro. The
trim resistor is used to adjust the "dummy' torquer resistance to the actual dc
resistance of the torquer. This "dummy" torquer is a non-inductive heater whose
resistance is approximately equal to the actual torquer dc resistance. The heater
is located on the gyro end mount in the module at the torquer end of the gyro.
Whenno torquer current isneeded, the "dummy" is energized by the PTE torque-no
torque logic {Fig. 3.2.15). This transfer provides a constant loa#l to the current
source. It also provides a thermal input to the gyro equivalent to that seen by the
gyro when torquing is commanded. This action minimizes thermal transients in
the gyro by delivering constant power to the gyro regardless of the terguing

requirements,

GYRO PTE

RC NETWORK
r“—“‘———‘"———i—:
R
: 1 $ gi oIt
! ‘

Lovwro
T DUMMY

TORQUER

SF

Fig, 3.2.19 Gyro Module RC Network
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6. Bandpass Preamplifier

This amplifier provides the necessary gain to raise the level of the gyro 585G
error signal to be compatible with the PTE input circuit. It also provides bandpass
filtering to minimize the unwanted 800 Hz pickup induced by the gyro wheel
excitation. An adjustment is provided in the unit to correct the phasing of the 5G
signal so that it matches the timing of the interrogate pulse (see Fig. 3.2.13). The
schematic Dwg. No. is 2304030,

T, Temperature Contreoller

The function of thisunit is to minimize femperature sensitive gyro drift terms
by maintaining the gyro temperature constant within + 0.1°F overa range of ambient
temperatures, wheel power variations, and other thermal disturbances., The
controller contains fwo legs of a dc resistance bridge; the other two legs being
temperature sensitive resistors located in the gyro. The bridge is balanced at the
operating temperature (132°F) of the gyvro, Any deviation from this temperature
unbalances the bridge and generates an error voltage, This error is then amplified
by a low level, high gain,dc, integrated circuit operational amplifier. Thisamplifier
contains an integrated circuit temperature control loop which keeps the dec amplifier
circuit at constant temperature in order to minimize dec drift due to temperature
variations within the amplifiecr. This amplifier then drives another amplifier which
drives power output transistors which, in turn, deliver power to a heater located
on the gyro (See Fig, 3.2.20}). The power transisicrs are assembled into the gyro
end mounts so that the power dissipated in the power transistor is transferred to
the gyro. BSince the controller is essentially a series dc¢ proportional regulator,
the sum of the power dissipated in the transistor and the power dissipated in the
gyro heatersis linearly proportional tothe gyro heater current. This mechanization
is in contrast to the usual situation where the power transistor dissipation is not
part of the control heat (not located at the gyro) so that gyro thermal control is
only by heater power which is proportional to the square of the heater current.
This linear operation simplifies the dynamic compensation of the control loop and
provides for maximum thermal efficiency of the controller output circuitry. Dynamic
loop compensation is achieved by the use of a series of RC networks connected
between the emitter of the TG end mount power transistor and the input to the high
gain amplifier. The time constant and gain of the RC network are chosen so as to
stabilize the control loop which would otherwise be unstable due to the high loop
gainand thethermal lags betweenthe heater and sensor. The network alsoopiimizes
ihetransient response to thermal disturbances. Theschematic Dwg. No.is 2304058,
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Fig. 3.2.20 Gyro Temperature Controller Schematic
B, Normalization Assembly

All of the components necessary to normalize the various gyro parameters
are located in this assembly, These parameters are the gyro temperature sensor
resistance, the SG phase shift, the suspension "Q", the suspension stiffness and the
3G quadrature, Inaddition, the iwo resistors used for suspension current monitoring
are located in this module, The required values of the components located in this
module are determined during the appropriate phases of gyro and gyro module
testing. The schematic drawing number is 2304093,

The location of the above components in an assembled module is shown in
Fig. 3.2,21. Themoduleisconstructed in sections to simplify assembly, maintenance
and repair, These subassemblies are shown in Fig. 3,2.22, This figure also shows

a fully assembled module (lower left) and a covered module {upper center),
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3.3 Electronic Assembly

The EA contains all of the system electronics circuitry not included in the
gyro and acceleromeier modules, The electronic elements can be classified as
either axis-dedicated elements or general electronic function elements (see Fig.
2.2.1).

The axis-dedicated elements consist of one each (six total) axis dc power
supply, 9600 Hz ac suspension and SG excitation supply, two phase B00 Hz ac gyro
wheel supply and fuse and diode module., The other electronic functions are
appropriately redundant; 40v bv, -20v supplies (2 total) and the scalers (clock
countdown chains for timing pulses, etc., 2 total) areimplementied ina dual redundant
fashion, The oscillators are triple redundant {3 total).

All elements except the dual dc power supplies are individual plug-in NAFI
modules arranged for easy access and convenient identification. IC test point
connectors, axial data connectors and input power connectors are also accessible
from the top of the assembly. During laboratory testing an extruded aluminum,
finned plate, heat exchanger assembly was used for the EA instead of a coldplate,

(The exchanger is removed for access to the NAFI modules and the connectors).

3.3.1 Axis-Dedicated Electronic Functions

Electronic functions that are axis-dedicated are grouped by axis in the EA
iray. Each function is repeated six times, once for each instrument axis, except
asnoted. Asshownin Fig, 3.3.1, these functionsare theac power supplies consisting
of a two-phase 800 Hz wheel supply for each gyro, and a 9600 Hz suspension supply
for each gyro and each accelerometer, the fuse and dicde modules, and the axis
supporting de supplies. The failure of any one of these functions affects only the
axis to which it is dedicated (see Table 3.3.1 for specifications and sources),

1) AC Power Supplies

The waveform produced by the ac power supplies is a synthesized
sinewave, formed by first generating a stepped series of outputs (see Figs,
3.3.2, 3.3.3 and 3.3.4). This stepped output utilizes the transistors in the
output stage of the supply in a switching mode rather than in a linear mode
with a corresponding reduction in the power dissipated in the transistor.
This technique achieves an efficiency greater than 70%.
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Table 3.3.1 Axis Supply Specifications

800 Hz TWO PHASE  OQutput: Two Phase 800 Hz stepped sinewave 28 V
WHEEL SUPPLY RMS 2.6 W each phase
Regulation: 5%
Supply Type: Sinewave synthesized from square-wave
9600 HZ POWER Output (9600 Hz P. S.) 9600 Hz, 4 V RMS L6 W
SUPPLY 9600 Hz, 8V RMS 2.5 W
Requiation: 1%
Harmonic Content: 2% Max,
Supply Type: Sinewave synthesized from sguare-waves
DC AXIS SUPPLY Outputs: Two 15 = 0,008 Vdc at 11,0 ma {for PVR
excitation in one gyro module and one
PIP module)

+10 + 0.8 vdc at 50 ma
-10 £ 0.8 vdc at 50 ma
+5,2 £0.3Vdc at 0.7 A

Ripple: (Switching Spikes) 0.6 Vp-p (15 V) (switching spikes)
0.5 Vpp {0 Y. ~-10V)

0.4 Vpp 5.2 V)
Noise: 0.003 vp-p (15 V)
2&vde
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t{aia|{4]|5h gL Sw 3
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L= < | Sy —#—
» Suy
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Fig. 3.3.2 800 Hz Gyro Wheel Supply
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By generating a 5 step waveform, the third and fifth harmonics are .
eliminated. In the 8600 Hz supply, this waveform is passed through an LC
filter to reduce the harmonic content to less than 2% (see Fig. 3.3.4). In the

. 800 Hz supply, the inductive gyro wheel load is tuned by a capacitor in the

gyro module reducing the harmonic content to less than 20%. While the 2600
Hz supply contains an active regulator to obtain 1% regulation, the 800 H=z
supply relies on the repgulation of the 28 vde input which provides a regulation
of 5%.

The 9600 Hz supply is redundantly clockedfrom the scaler at 115.2 kpps
and synchronously locked by redundant 9. 6 kpps lines {from the secaler to hold
the main 9600 Hz waveform in phase with the interrogate and switch pulse

trains,

Fuse and Diode Modules

The purpose of the fuse and diode moduleis to insure fail-safe operation
of the gyro Interpolator/Compensator from the dual redundant -20 vdc power
supplies and the gyro pulse torque electronics from the dual redundant +40
vde supplies (see Fig. 3.3.5). It also insures fail-safe isolation of the gyro
temperature controller from the accelerometer temperature controller
operating from a common +28 vdc unregulated supply, and fail-zafe izolation
of the gyro Interpolator/Compensator from the accelerometer pulse torque
electronics operating from a common +28 vdec regulated source. One fuse

and diode module is provided for each functional axis.

Fail-safe operation of the redundant dc suppliesis provided by the action
of the blocking diodes (CR1, CR2, CR3, and CR4) which prevent one supply
from forcing current in a reverse direction into the other supply in the event
of a low voltage failure, In case of a high voltage failure, the fuses {(F1, F2,
F3, and F4)} protect {he loads, while blocking diodes again prevent the other
supply from reversing the current until the fuse blows and removes the failed
supply from the circuit. In the event of an overload type failure, the fuses
protect the individual supplies. '

Fail-safe isolation of the gyro and accelerometer loads operating from
a common or redundant supply is mprovided by -fuses (F5, F6, F7, and F8§).
In the event of an overload failure, the blowing of one of these fuses removes
the circuit it feeds from the supply, permitting continuing operation of the
other circuit. The diodes are not needed in this circuit since there is no
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failure mechanism which would cause reverse current to flow into the supply.
They are incorporated, however, into the circuit along with other fuses and
diedes (not shown) to permit operation from dual +28 vde supplies (if

incorporated) in a manner similar to the -20 vdc and +40 vdc supplies,

-20v DC -20v DC -40vDC -40v DC - 28v DC Unreg, - 28v DC reg.

3)

A B A B
LCRI lCRZ ‘LCRB §CR4 CR5 R CR7 CR8
F5 Fé F7 F8
!
Fi ?FZ F3 F4
p
GYRO PIPA  GYRO PIPA
Temp. Temp. Interpolator/ Pulse Torque
Cont. Cont. Compensator Electronics
GYRO GYRO
Interpolator/ Compensator Pulse Torgue
Electronics

Fig. 3.3.5 Fuse and Diocde Module

An advanced, semiconductor, self-resetting fuse was studied for use in
this module instead of the fusible metal type fuse currently employed, but
limited funding did not permit its further development and incorporaticn into
SIRU. Although there was initial concern that fuse life itself might represent
a reliability problem, no fusing failures have occurred in almost three years

of continuous testing, except for two operator-induced failures.

Axis de Supplies

See Fig, 3,3.6 and Table 3.3.2 for the schematic and output characteristics
of the axis de¢ supplies,
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Fig. 3.3.6 Block Diagram-~DC Axis Supply

Table 3.3.2 Measured Parameters-=DC Axis Supply

I. OUTPUT VARIATIONS

A. 15 Vdc Qutputs

1. load Regulation - *3 mv for *10% Load Variation
2. Ripple - 0.1 Vpp

3. Line Regulation *1 mv for *5% B + Variation

4, Temperature Coefficient - -100 ppm/CO

B. +10 and -10 Vdc Outputs

1, load Regulation - £0,1 V for £10% Load Variation
2. Ripple - 0.5 Vp-p
3. Temperature Coefficient - -200 ppm/C°

C. +5,2 Vdc Output

l. load Regulation - 0.1 V for *10% Load Variation
2. Ripple - 0.07 Vp-p
3. Temperature Coefficient - -300 ppm/C°

I, EFFICIENCY - >65%
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The accelerometer and gyro associated with each axis share an axis dc
supply. The supply provides +10v, -10v and 5.2v as well as two independent
15+ outputs to provide an independent excitation for the PVR in each module,
The +10v supplies excite operational amplifiers in the ingtrument modules
while the 5.2v excite the logic elements in these modules,

3.3.2. General Electironic Functions

All of the non-axis-dedicated electronic functions are located in the EA; two
are tri-redundant, the oscillators and the Hi/Lo detectors: and two are dual-
redundant, the 40/20/5 vde regulated supplies and the scalers, (It should be noted
that the regulated 28 vdc supplies, while not considered to be a portion of the SIRU
system, are required to be dual redundant in order to preserve the fault-tolerant
character of the system), The EA provides for connection to the redundant 28 vde
system input with suitable fusing and steering dicdes in the fuse and diode modules

and in other 28 vde-dependent functions.

n Clock QOscillators

Figure 3.3.7 shows the block diagram of the clock oscillator and scaler as an
array of coordinated functions, The oscillator is a proprietary design developed
by Bulova. Essentially it is a 3.6864 mega Hz crystal oscillator stable to 0.5 PpmMm
under all the environmental conditions anticipated for the SIRU systerm.

The tri-redundancy requirement for the clock results from the following
considerations. The system calibration is dependent upon the accuracy and stability
of the clock. Crystal clocks are susceptible to failure by excessive drift; and two
clocks do not provide a voting capability for failure identification. Therefore, a
three-clock redundancy is required io achieve the one failure fault tolerance for a
drift isolation using voting, Inaddition, Hi/Lo frequency detectorsineach oscillator

circuitare provided toisolate large changes for a second failure detection capability.

2} Hi/Lio Detector

The output of each oscillator must be monitored and tested continuously and
the detector operation must be confirmed to preserve the integrity of the system
performance.
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Fig. 3.3.7 SIRU Clock/Scaler

Oscillators may fail or appear to fail under four poessible conditions:

D
2)
3
4)

Frequency too high

Frequency too low or non-existent

Differential frequency increasing

Monitor failure

The Hi/Lo detectors provide tri-redundant monitoring of the condition of the
individual oscillator outputs.

Figure 3.3.8 shows the functional diagram of the Hi/Fail test circuit. This

"fail high'" mode arises from two possible sources, The first results from an alternate

design of the oscillator preferred by some manufacturers. In this alternate design

the crystals are cut to operateat twice the Bulova frequency and circuitryis provided
to divide down to the required value. The SIRU system is designed to accept this
alternate design and the Hi/Fail test monitors the possible failure of the flip~flop
used to halve the crystal frequency. The Bulova oscillators currently used in SIR1J
are not susceptible to this particular failure mode.
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Fig. 3.3.8 Typical Hi Fail Test

The other failure mode monitored by the Hi/Fail test is a condition of a
significantly higher frequencyoutput from the oscillator due to failures of the tuned
circuit components in the oscillator circuit control loop. As identified in Fig. 3.3.8
input Ais the clock input pulse train. These pulsesareused to trigger a monostable,
retriggerable multivibrator. The output pulse width (B) is determined by the RC
circuit, The output B is combined with input A in a NON gate. From the waveform
diagram it can be seen that neither A nor B go to zero at the same time if the
clock frequency is normal. Thus the inputs to the NON gate are not at zero at the
same time and the output of the gate is zero. If, however, the clock frequency
becomes significantly higher (¥ 50%) thanthe multivibrator frequency (as determined
by the RC network) the inputs will be at zero at the same time and produce an
output at Catthe clock frequency. Thisoutput is a Hi/ Fail indication and is transmitted
to the failure logic,

The L.o/Iail circuit, Fig, 3.3.9, works in a manner similar to the Hi/Fail
circuit. In this case the multivibrator frequency is set at a frequency lower than
the clock frequency by an RC network. The clock pulses, occurring at a rate faster
thanthe 9601 frequency, keep the gate triggeredON producing a steady state logical
"1" at the output. If the clock frequency drops below the multivibrator frequency
the output returns to logical "0" at the end of its pulse width before being triggered .
to logical "1" by the clock. The resulting train of pulses at the clock frequency is
iransmitted to the failure logic.
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Figure 3.3.10 shows the functional diagram for the differential test. This
"differential" mode applies to excessive drift in the oscillator. As shown in the
circuit diagrama D flip-flop samples the output of one oscillator while being strobed
by the squared output of another oscillator (clock B). In other words, clock A sets

"1" while clock B resets it to "'0". If the two clocks are at the same

the output to a
frequency, these twe events will occur simultanecusly and there will be no change
in the output. If they are at different frequencies an output will be produced at the
difference frequency. A hysieresis circuit is also included, the function of which
is to minimize the noise output of the differential circuit. The difference frequency
goes to a modified Hi/Fail test circuit with capabilities as previously described,
The remaining circuits are similarly tested in pairs. Differences between any
channels exceeding 4 ppm results in "majority vote' logic action to isolate and
"Jockout" the highest difference channel. While the differential circuit could be
used to detect Hi/Lo failures directly, the reaction time is so relatively slow
(milliseconds) that the alternate circuits {(nanosecond reaction time) are preferred
for these tests,
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Fig. 3.3.10 Typical Differential Test

The Hi/Lo monitors are configured to be self-testing for power and logic
failures within the module, Failures not associated with frequency tests result in
automatic channel transfer. Channel transfers may also be commanded externally

by the ground support equipment {GSE) or the computer,

Inthe previcusdiscussion of the Hi/Lo detectors, the use of the term "transfer”
implies that the oscillator channel being tested iz the channel in control. The
probability of failure on the channel in control is only one in three. Therefore, in
two cases out of three the failed channel will not induce a transfer and the only

notice of failure will be to the fail status line to the computer,

Any failure will always produce the "lockout' signal. "Lockout", however, is
not of a latched or permanent type, A failed channel is still tested and if the failure
clears, the channel isagainready foruse. Transient failures which- are self-clearing
result in only temporary disablement.
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3) 40/20/5 dc Supplies

These supplies are provided as dual redundant non-axis-dedicated functions
located in the EA., Each supply is capable of supporting the entire SIRU system
demand for 40 wde, +5 vde and =20 vdc power. The 40 vdc provides power to the H
switches of the module PTEs, The -20v provides power for the gyro module
Interpolator/Compensator. The 5v power is used for the logic excitations of the
EA functions such as the scaler, and the logic elements of the 800 and 3600 Hz
supplies, Table 3,3.3 details the summary specification and Fig. 3.3.11 shows the
circuit block diagram. A dual feedback circuit in each supply prevents high voltage
runaway. This protection assures that if a feedback line failed open, the other line
would hold the supply voltage to prevent anincreasetoa Hif Fail limit. Anexcessively
high voltage at the gyro module PTE 40 vdc H switch circuits could exceed the
regulationlimits of the PTE dc current control loop causing performance degradation.

The dual feedback provision prevents this possible failure mode.

A coupling scheme is provided with the dual supplies so that balanced loading
of both supplies exists when no failures are present, This balanced loading results
in better regulation of the 5 vde logic supply. This improved regulation is due to
the fact that the +5v logic supply does not have an independent regulator but depends
on the regulation of the 40v dc supply. The dicde coupling arrangement, shown in
Fig, 3.3.12, connects three axes to s-upply No. 1 through a single diode drop and the
remaining three axes to supply No, 1 through {wo series diode drops. Conversely,
the three axes connected to supply No. 1 through the single diode drop are connected
to supply No. 2 through two series dicde drops, and the re-maining three axes are
connected to supply No. 2 through a single diode drop. This load steering scheme
applies only to the 40 vdec lines which carry the principle system loads, Each 40
vde supply has the capability of supplying double the system load; thus in normal
balanced operation with beoth supplies functioning, each is operating at 25% of full
load capacity.

4) Scaler

Scalers are provided as a dual redundant non-axis-dedicated function located
on the EA. The scaler block diagram is shown in Fig. 3,3.13 and the clock/scaler
redundancy block- diagram is shown in Fig, 3.3.14. The principle functions of the

scaler circuit consist of the following:

1, Generation of necessary synchronizing signals for all electronic functions
2, Self test of scaler circuits and outputs
3. Transfer to backup scaler upon failure
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Fig. 3.3.11 Block Diagram=-40/5 vdc Supply

Table 3.3.3 Measured Parameters=40/5 vdc Supply

. OUTPUT VARIATIONS
A. 40 vdc Qutput

1. Load Regulation - 0,05 V for £10% Load Variation
2. Ripple - 0.5 Vp-p

3. Line Regulation - *0.02 V for +20% B+ Variation
4. Temperature Coefficient - +250 ppm/CO

B. -20 Vdc Output

1. Lload Regulation - £0.05 V for £10f% Load Variation
2. Ripple - 0.1 Vp-p

3. Line Regulation - £0.01 V for *20% B+ Variation
4, Temperature Coefficient - +250 ppm/CO
5

L

2.

C. 5 vdc Qutput

Load Regulation - £0.05 V for £10% [oad Variation
Ripple - 0.3 Vp-p
3. Line Regulation - 0,003 V for *20% B+ Variation
4. Temperature Coefficient - +500 ppm/CO

Il. EFFICIENCY - >70%

g0



- » Axis é 28 v gc
] Axis v ac
401 5/ -20 Axis E 40 v dc
Supply
#1
F o i
4015/ 20 |———pir ¥
S T .
Supply —pie—F—F Axis B
o - Axis D
»o— Axis F

Fig. 3.3.12 Diode Load Steering Scheme
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The following descriptions are presented for each of the functions identified
above,

1. Generation of Signals

a) Module PTE timing signals—interrogate and switch pulses, 4.8 kpps.

b) EA suspension and SG 9600 Hz supplies——a 115,2 kpps pulse train and
a 9.6 kpps synchronizing signal provide clocking for the 9600 Hz
suspension power supplies, The 9.6 kpps signal synchronizes the 9600
Hz "zero+'" crossover for suspension lock control,

c) EA dc axis and 40/5v dc power supplies—A 38.4 kpps signal clocks
and synchronizes all the dc power supplies.

d) EA 800 Hz wheel supplies—A 9.6 kpps synchronization signal for
waveform generation and a 200 pps synchronization pulse signal is
provided for the 800 Hz supplies.

e) Other timing functions——The 9.6 kpps signal also servesasa clean pulse

for testing the interrogate and switch pulse train within the scaler.
The 200 pps signal also is available to the computer as a timing signal,

All of the output signals are steered from the scaler to the using circuit by
pulse drivers which are integral parts of the scaler. The pulse driver configuration
is shown in Fig. 3.3.15. PBach signal originates at an SN 5401 gate driving dual
transformer coupled lines resulting in redundantly bussed Si.gnéls {signals on either
Bus A or Bus B). Either scaler may drive these buses since they are diode isolated
and when connected in parallel will generate logic "OR'".

[ D

Fig, 3.3.15 Typical Sync Driver
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The SN 5401 gate output also drives a switch transistor the collector of which
feeds serially to enable the succeeding flip-flop in the divide down chain of a
conventional synchronous counter, This arrangement permits a failure of the SN
5401 gate to cause failureof the succeeding scaler sections, This failure is detecied
by a simple end-of-counter failure detection circuit which will be described later.
No further tesi circuits are required for this sequence of signals, The synchronizing

pulses derived by these technigues are approximately 400 nanoseconds wide,

2. Self-Test of Scaler

Each scaler has a main scaler that divides down to 200 pps. In the main
scaler, the 38, 4 kpps, 9.6 kpps and 200 pps output signals are derived by conventional
countdown techniques driven as described above, The lowesi frequency, 200 pps,
is fed to a Hi/Lo retriggerable one shot circuit similar to that described for the
Hi/Lo monitor. A failure in an internal gate or flip flop of a synchronous scaler
will resuli in locking the Enable of a next succeeding state change to either logical
one (1} or zero (0} For the first state (1) the result will be an increase in the
lowest frequency equal to 2N where 1 <« N < M and M is the highest number of
flip-flops sharing cne clock frequency. The Hi/Fail test circuit will reveal this
condition effectively. For the second staie (0) the lowest scaler frequency becomes
zero which is detected in the Lo/ Tail circuit previously described. Thus, the operation
of the main scaler is tested by applying the 200 pps signal to one Hi/Fail and one
Lo/ Fail circuit.

The 115.2 kpps signal is derived from a subscaler linked synchroncusly with
the main scaler. Self-test is by means of a separate Hi/Lo test section, The
outputs of these test sections are logically "OR'" connected to one "FAIL'" gate for
the scaler,

The fault tolerance capabilities and test provisions for the two line drivers
which pass signals from the scaler to six separate interrogate and the six sepatrate
switch pulse line drivers are shown schematically in Fig, 3. 3.18. The drivers are
designed 1o operate four interrogate and switch pulse lines with up to two lines
"dead" shorted without serious degradation. A failure in any one line (due to a
transformer or other failure) will fail that axis of the SIRU system. Failure of a
driver transistor or other component will be detected by the test feedback line and
cause transfer of control to the back up scaler, The test feedback circuit is shown
in Fig, 3.3.17. The test feedbacks from both the interrogate and switch driver are
fed to a sequence detector circuit, If the proper sequence of interrogate leading
edge, switch pulse #1, interrogate lagging edge, switch pulse #2 and the 9.6 kpps
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synchronizing pulseisnot present or fails to occur, the 4800 Hz output to a Lo/ Fail
test circuit will become quiescent, actuate an "OR" to the scaler "FAIL" gate, and

transfer control to the "backup" scaler,

3. Transfer to "Backup' Scaler

A simplified form of the scaler transfer circuit is shown in Fig. 3.3.18, The
circuit is a SR f{lip-flop shared between scalers. When the system is activated
initially, if there are FAIL inputs (no scaler fails) into both 5401s, the choice of
scalers (output of 5401s) is random and an INHIBIT command is sent to one scaler
and not to the other. If a FAIL signal appears at the input to the 5401 which is not
issuing an INHIBIT command, it will change its state to INHIBIT, and cause the
other 5401 toreverseits state. This action locks out the failed scaler and activates
the functioning scaler. The 5 vde power on separately fused lines is cross strapped

to effect transfer in the event. of power failure, External commands or override
options are also possible.

TNHIBT ~ SCALER #1 -——

FA)L
sC1
S5Ci-5vde
-————————
s5cz2
A
sSCce- 5v DC
FAIL —
SCR
INWIRAT — SCALVE 2 4._.-._-

Fig, 3,3.18 Typical Transfer Circuit

4. 3.6864 mega Hz Optional Clock Drivers

Originally intended as clock lines to a dedicated computer, simplex "OR" gate
outputs are power amplified to drive a redundant "Coax A" and "Coax B" bus. The

design and test provisions are the same as for the drivers previously described,



Power Requirement Summary

Table 3.3.4 presentsa Power/Efficiency Summary for the EA, The total load

identified under the heading "Power Out' includes all channel (wheels, PTE, etc.)

power,

The variable power for the temperature controllers is excluded, but under

normal control conditions a total of 6 watts is required for the gyro temperature

control power and a total of 3 watts is required for the accelerometer temperature

control power.

Power Power Dissipation
Circuit In out

9600 Hz 28 volt ~ 9w
Microsyn 5volt ~ L15W 4.2W 5. 9HW
800 Hz 28 volt ~ 7TW 1. 8w
Wheel
DC Axis 28 voit ~ 12.3W 5.2W 4, 3W
Supply
40/5 Volt 28 volt ~ 112W 78.5W  33.5W
Supply
Oscillators 28 volt ~ 0, 18W - 0, 18w
Clock
Scaler #1 41 5. 7W
Scaler #2 50 #2 3.8W
Hillo #1  ~" 141 0.95W - 12. 18W
Hi/lo #2 #2 0.98W
Hillo #3 [ #3 0.75W

3.4 SIRU Thermal Design

Table 3.3.4. Power Dissipation in Electronic Assembly.

Total

per Circuit Dissipation Efficiency Modules

3.4.1 Introduction

35, 1W
10, 8w

25. 8W

40w

0. 54w

12, 18W

1%
5%

65%

70%

4 each
24 total

6 each
36 total

2 each
12 total

1 each
2 total

1 each
3 total

21 total

Temperature control of the SIRU system,to reduce the effect of the temperature

sensitivity of the inertial sensors and some of the electronics modules, was
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accomplished by separately controlling the temperature of each gyro and ac-
celerometer module and maintaining the mounting base structure (7-frame) nearly
isothermal (coarse éontrol) by means of a liquid-to-air heat exchanger cooling loop.
The EA is forced-air cooled in laboratory operations; in a spacecraft installation,a
coldplate would be mounted on the top or bottom of the EA. EA cooling provisions
assure that the junction temperature of the silicon devices are nominally held well
below the limits required for reliable operation (Figs, 3.4.1 and 3.4.2).

COOLANT
'OUTLET

i 3 WAY
OiﬁfA,%PM ;El?g: VALVE S

et )
i LIQUID TO AIR
HEAT EXCHANGER
ACCUMULATOR -

COOLANT
RETURN

FROM w FRAME

Fig. 3.4.1 BSIRU Liquid-to-Air Heat Exchanger Flov Diagram

3.4.2 System Description

The SIRU system had to be designed to operate on spacecraft coclant lines
and be removable without breaking these coolant lines, as well as to operate ina
system test laboratory environment at minimum cost. These conditions required

several compromises in the thermal design.
The approach taken was to design the RIP and the EA as flyable equipment

and the heat exchanger (HX) for the RIP and cooling mechanism for the EA as rotary
table mounted laboratory apparatus. For operation in the test laboratory in a 75°
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F environment, the liquid cdoling HX package, Fig. 3.4.3, was designed to maintain
the RIP rn-frame at a slight temperature rise above ambient, thus avoiding the need
forarefrigerationunit on the rotary table. The liquid~to-air HX package is mounted
on the test table, making liquid slip rings unnecessary.

Each inertial sensor module has its individual temperature controller, and
the mounting provisions for eachmodule provide both alignment and thermal path
contrel (thermal resistance). Controlling the heat flow by means of high thermal
resistance minimizes thermal coupling between the inertial sensor modules and
reduces the control power requirement., Coarge temperature control of some of
the inertial sensor, module mounted, electronics circuits is achieved as a by-product
of the inertial sensor temperature control by means of module thermal resistance
design, Maximum thermal resistance to ambient as required in a spacecraft
environment would be achieved by an insulating cover (thermal shroud) for the RIP,

The mounting pad materials for the gyre and accelerometer modules were
selected to make the thermal impedances between modules and 7-frame compatible;
i.e.both gyroandaccelerometer modules operate at the same percentage of maximum
control power of their individual temperature controller circuit. The EA is
forced-air coocled to meet laboratory test needs. For spacecraft use it could be
connected tothe 1iquid cooling leop or mounted on a heat-sinked structure, depending

on the allowable spacecraft temperature range.

Mechanically the thermal design can be considered as consisting of four

different contreol areas, namely: RIP, EA, gyro module and accelerometer module.

3.4.3 System Thermal Design Concept

Individual temperature control for each IC is not only consistent with the
redundant implementation but allows for unsymmetrical thermal changes. Examples
of these unsymmetrical changes are position sensitivity, module mounting thermal
resistance variations, single component wheel power variation and random inputs

such asg torque commands.

In order to provide maximum isolation of the controlled element, the heaters
are located at the IC mounting surfaces within the modules, The liquid cooling
loop to the RIP coldplate develops a reascnably constant thermal sink. The RIP
coldplate mounts to the back of the RIP w-frame in the central well area. Hold
down screws accessible from the front of the RIP allow attachment of the coldplate
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fromthe front. A gasket spacer between the coldplate and the RIP allows adjustment

of the thermal resistance between the 7-frame and coldplate.

Use of a coolant loop provides the capability to repulate the amount of heat
which is transferrved from the r-frame io the coldplate (Fig. 3.2.7). Coolant
temperature and flow rate may beadjusted to hold the z-frame at anearly isothermal
temperature, suitably lower than the inertial sensor contrel point. Such adjustment
of the thermal resistance from the 7-frame to the heat-sink can be accomplished
to compensaie for environmental conditions or system operating mode. Thus, in
the standby mode, a high thermal resistance would minimize the power required to
keep the m-frame at temperature. In the operate mode a lower thermal resistance
would keep the instruments within the allowable coniroller termperature, This
regulation capability was not instrumented in the SIRU system for laboratory
operation,

!

The design of the coolant loop for laboratory operation of the system was
based on operationat 70 + 5% Fambient temperature toavoid the use of arefrigeration
unit. Design goals were achieved by reaching a compromise in coolant flow rate

and coldplate gasket width and material as discussed below.

A low coolant flow rate reduces r-frame to module temperature differences
(gradients) for the gyro modules (which need more critical temperature control) at
the expense of higher temperature gradients for the accelerometer modules. To
maintain the same coldplate transfer, a low flow rate also requires a lower coolant
inlet temperature, Narrower gasket width resulis in lower 7-frame temperature
differences for beth type of modules, but also at the expense of lower coolant inlet
temperature requirements. A pasket made of aluminum has a lower thermal
resistance than one of titanium, offering the possibility of a higher coolant inlet
temperature, These variables were optimjzed inthe SIRU system by a small increase
in the coolant flow rate, utilizing a gasket of 0.5 inch wide aluminum and accepting

a slight increase in the 7-~frame temperature gradients,

A forced-air cooled 7-frame had been considered, but it required too much

space and blower power, and temperature control sensitivity was unsatisfactory.

For spacecraft operation, with a 45° F coolant supply, as specified in Apollo,
an adaptive regenerative HX could be used for s-frame temperature control. The
lower coolant temperature supply would, otherwise, dictate even higher inertial sensor

thermal isolation to avoid excessive control power. Optimum thermal performance
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would be attained by using a regenerative HX and a thermal control by-pass valve
operating asa function of gyromodule temperature control power. The regenerative
HX would interface with the spacecraft environmental centrol system with hot and
cold liquid mixing occurring at the 7-frame coldplate inlet, Other methods for

contrelling the coolant loop in the spacecraft environment are also feasible,

To attain the fine temperature conirol needed for both the gyros and ac-
celerometers, proportional conirol leoops are used. The control circuit is novel in
that the control power is a linear function of control current. The control power in
de control loops typically corresponds to I2 R. In the SIRU system linear control
is achieved by mounting the output power transistors directly on the IC mounting
block along with the control heaters, The control power then becomes a function of
both the applied heater power and the power dissipated in the transistor. Since the
major portion of the contreoller power is dissipated in the transistor the resuliing

control is both linear and efficient,

A ternary torque loop is used to drive the inertial instruments. In the zero
torque mode, the torquing currentis directed toa "dummy" heater, equal in resistance
to the torquer, located at the TG end of the instrument. This arrangement results
in a constant power input to the TG end of the instrument, thereby, reducing thermal
gradients on the a-frame, Each gyro or accelerometer module is thermally and

mechanically interchangeable,

The use of thermoelectric elements instead of heaters was considered with
the objective of reducing control power. The concept was net implemented in the
SIRU develepment model io avoid the impact of new technology for a non-essential
purpose. Thermoelecirics should be reconsidered in future designs., Since
thermoelectrics are bi-polar heat pump devices, the contrel point can be set at
zero control power. For a heater system, zero conirol power means the system

has just lost control,

3.4.4 Thermal Design of the Accelerometer Module

The thermal design of the accelerometer module was based on a multinodal
thermal network, Fig. 3.4.4, and thermal model test analysis, The test results
indicated what changes should be made to the first-cut design. Thermal resistance
between control heater and mounting block was too high, while the thermal resistance
between accelerometer and block was too low for good control action and minimal
temperature variation at the block (seé Fig, 3.2.4). One of the effects of these
combinations was that the temperature variation at the PTE module mounted to the
side of the block was unacceptable.
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Fig. 3.4.4 SIRU PIP Module Thermal Model Network.

Recommendations resulting from these tests and incorporated into the final
design were:

a) To decrease the control heater-to-block thermal resistance by changing
the ring material from stainless steel to aluminum

b} Toincreasethe accelerometer-to-block thermal resistance by increasing
the clearance between the accelerometer body and block cavity _

c) Toincrease the block-to-base thermal resistance by the use of Micalex
washers instead of titanium under the mounting screws

d) To use an aluminum accelerometer mounting hlock
A nodal network representation of the accelerometer module thermal model

as shown in Fig. 3.4.4 identifies the resistance values in units of °F/watt, The

numbers indicated by arrows are heat input values in watts. The ambient node can
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vary from 60°F to 110°F. Total dissipationis 5.7 watts excluding the control power
of 2.9 watts, The resistancevalueof 40.0°F /watt from cover to ambientisa predicted
value based on the assumption that a thermal jacket having 0.5 inch thick insulation
will be provided for the RIP in the spacecraft. If this jacket is not present, this

resistance value could be as low as about 8.0°F / watt.

The tested prototypeaccelerometer module can be represented in its simplest
form by a nodal network of three equivalent resistors. Equivalent resistance for a
5.6 watt dissipation from control point to #-frame equals 9 F/watt {including
1.2°7/watt through greased pads}). Equivalent resistance for 2.9 watt maximum
control power from conirel point to 7-frame equals 13.00 F{watt. Equivalent
resistance from contirol point toambient equals 12.0° F/watt without T-frame cover

and 40.0°F/watt with 1/2 inch insulated m-irame cover.

Final thermal performance data shows that with bare modules {no insulated
r-frame cover) in a laboratory ambient of 75°F, the accelerometer modules will
stay within temperature control range (0-100% control power) over a r-frame
temperature range of approximately 92°F to 125°F. In a spacecraft ambient of 60°
F to 110°F, the accelerometer module will maintain temperature control over a
r-frame temperature range from 77°F to 103°F if a 1/2 inch insulated 7-frame
cover is used (see Fig. 3.4.5). Temperature senhsitive electronic modules in the
accelerometer module, such as the PTE, will experience temperature excursions
whichare approximately 50% of the 7-frame temperature excursions (see Fig, 3.4.6).
The detailed description of the accelerometer temperature control circuit is
presented in Volume IV,

A separate GSE heater and sensor assembly is mounied on the accelerometer
alignment block. This heater and temperature sensor are used for GSE temperature
control of the accelerometer moduleat 125°F, whenthe SIRU system isin the standby
mode. A fourth accelerometer body wrap-around sensor is used in conjunction
with the GSE to monitor accelerometer temperature at all times, Table 3.4.1, isa

summary of the accelerometer temperature control circuit parameters.

3.4.5 Thermal Design of the Gyro Module

The final gyro module thermal design was based on a multi-nodal thermal
network, Fig. 3.4.7, and medel test analysis,
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Table 3.4.,1 PIPA Module Temperature Control Parameters

Voliage: 28 vdc unregulated
Heater Power: 2.9 watts max @ 21, 5 vdc
Power Transistor: 2N3752
Control Heater Resistance: 159 ohms
GSE Heater Resistance: 44 ohmse
Control Sensor Resistance: 510 ohms @ 130°F
Monitor Sensor Resistance: 498, 5 ohms @ 130°F
GSE Sensor Resistance: 510 ohms @ 130°F
Sensors Temp. Coeflficient: +0, 00226 ohms/ohms/°F
PIPA Nominal Temperature: 130 + 1. 6°F
PIPA Temp. Control Accuracy: +0.1°%F

9.40

3.30

Control Heat

{SG Control Heat

P (TG )
3307 07 Ambient
\ )
e
( 32.00
8. 10 1.32
\"cr AN Cover

Bracket

PI-FRAME

Fig. 3.4.7 SIRU Gyro Module Thermal Model Network
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Results of these thermal test evaluations produced the following conclusions:

1). A variable-gap thermal interface material of high thermal conductance
was needed between the gyro alignment plate and the module base plate
to lower the thermal resistance.

2} The module could be successfully matched thermally to the ac-
celerometer module on the r~frame by cheoice of suitable pad material
in combination with the required thermal interface material (see Fig.
3.2.7).

3) The control heater power had tobe increased to obtaina wider temperature

control range,

The conirol heater power was increased by interchanging‘ the 80 ohm GSE
heaters with the 140 ohm centrol heaters, Thus, power was increased from 6.6
watts to 10,5 watts,

Tests were conducted to find a suitable thermal interface material (TIM) for
module matching, The material chosen was a design by North American Aviation
used on the Apolle program. This material consists of a copper foil helix wrapped
around a one-eighth inch diameter silastic tubing, The copper helix provides the
heat conduction path and the silastic tubing develops the necessary mechanical
support. Thermal conductance can be varied to a small degree by the amount of
compression applied and by maintaining the interface surface either dry or greased
(see Fig. 3.4.8). The combination of this material anr:l. beryllium copper m-frame
pad material accomplished the thermal matching.

SILASTIC TUBING

Fig. 3.4.8 Illustration of North American TIM.
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The nodal network representation of the gyro module thermal model shown in
Fig. 3.4.7 identifies the resistance values inunits of°F/watt. The numbers indicated
by arvows are the heat input values in watts. The ambient node can vary from
60°F to 110°F. Total dissipation is 17.5 watts excluding the control power of 10.5
watts. The resistance value of 32.0°F/watt from cover to ambient is a predicted
value based on the assumption that a jacket having 0.5 inch thick insulation covers
all modules on the n-frame. If this jacket is not present, this resistance value
could be as low as about 7.0°F /watt,

The tested protoype gyro module can be represented in its simplest form by
a nodal network of three equivalent resistors. Equivalent resistance for 17.5 watts
dissipation (excluding control power) from control point 7-frame is 2.6°F/watt
(including 0,3°F/watt through greased pads). Equivalent resistance for 10.5 watts
maximum control power, control point to 7-frame equals 3.4°F/watt. Equivalent
resistance, control point to ambientis 4°F [watt without 7-frame cover and 20°F /watt

with 1/2 ineh insulated 7-frame cover.

Final thermal performance data shows that with bare modules (no insulated
7-frame cover) in a laboratory ambient of 75°F, the gyro modules will stay within
temperature control range (0-100% control power) over a r-frame temperature range
of approximately 88°F to 127°F, In a spacecraft ambient of 60°F to 113°F, the
gyro modules will maintain temperature control over a r-frame temperature range
of 63°F to QTOF, if a 1/2 inch thick insulated 7-frame cover is used, Temperature
sensitive electronics modules on the gyro module, such as the PTE, will experience
temperature excursions which are 38% of 7-frame temperature excursions (gee Fig.
3.4.9),

The detailed description of the gyro temperature control circuit is presented

in Volurmme I, Gyro Medule,

3.4.6_Thermal Design of the 7-Frame

Like the accelerometer and gyro modules, the final thermal design of the
7-frame, Fig, 3.4 4, evolved from preliminary multinodal thermal network analysis
by a computer program and thermal model tests. The test results indicated the
following conclusions and recommendations;

a) A 4% temperature variation between mounting pads on the m-frame could

be expected at low control ﬁower for both gyro and accelerometer
modules,
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b) Rearrangement of modules by moving the gyro modules to colder locations
and the accelerometer modules to hotter locations would reduce the
temperature variations ocecurring in these modules, -

c) Reducing the coldplate contactareatoabout 1 inch width in the U -shaped
heat exchanger patternunder the center part of the7-frame was neces sary
to minimize 7-frame temperature variatioﬁs.

d) Use of a gasket of titanium alloy, with greased interfaces, between the
coldplate and the 7-frame would provide the necessary thermal adjustment
to permit use of a colder liquid coolant supply. )

e) Thermal coupling between modules and 7-frame could be adjusted by
choice of pad material to provide a thermal match between the gyro
and accelerometer modules. The pad materials must provide a hard
surface to avoid wear and scratches which would affect alignment,

f) No changes in the basic 7-frame structure were required.

g) For operation in 60°-110°F ambient, as required for flight, the module
side of the 7-frame would require a cover with 0,5 inch thick conventional
foam insulation. '

h) Relocating the coolant inlet to the left side of 7-frame would reduce

temperature differences at the gyro modules.

A sketch displaying temperature distribution at each inertial sensor module
loeation on the 7-frame is shown in Fig, 3.4.10, The average 7-frame temperature
varies from 93.0°F to 99.4°F at the module locations, Maximum temperature
difference at the gyro module locations is 4.8°F, and at accelerometer module
locations is 5.0°F. These results were obtained with a 74.4°F inlet coolant
temperature and a flow rate of 0.20 gallions per minute {(gpm).

7-frame temperature differences for accelerometer and gyro modules as a
function of coolant flow rate and gasket width are shown in Fig. 3.4.11. The graph
indicates that coolant flow rate and coldplate titanium gasket width are parameters
which must be traded off. Reduced flow rate decreases w=-frame temperature
differences for themore critical gyro modules, but at the expense of higher 7-frame
teraperature differences for the accelerometer modules and a lower inlet coolant
temperature, Reducing thetitanium gasket width decreases temperature differences
for both type modules, but at the expense of a lower inlet coolant temperature.

For laboratory opefations, ambient temperature is controlled at 75+5°F,
Operation inAthis environment was achieved without refrigération, using a liquid—to—air
HX pumping unit (Fig, 3.4.3), by increasing the flow rate to 0.25 gpm and replacing
the 1.0 inch titanium gasket material with 0.5 inch aluminum.
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The curves of Fig. 3.4.5 show the 7-frame temperature range allowable to
maintain thermal control over an ambient temperature range of 60°F to 110°F_
Optimized parametric requirements for this figure are coolant temperature of GOOF,
coolant flow rateof 0,2 t00.3 gpm, aninsulated r-frame coverand a 1.0 inch titanium
gasket between the coldplate and the 7-frame, Under these conditions, a maximum
temperature variation of 9°F at the base of the modules on the 7-frame can be
expected. Thisvariationis composed of 5°F for 7-frame location, 2°F for mounting
interface resistance variation and 2°F for liquid coolant supply temperature and
flow rate changes. The 7-frame and ambient temperature limits are established

as follows,

Minimum Temperature Limit

1. Conditions
Minimum 7-frame temperature at module 78°F

Minimum ambient temperature 60°F

2. Limiting Factor

Accelerometer module control power full on

3. Penalty
If either r-frame or ambient temperature is reduced, the affected
accelerometer module's thermal demand will exceed its coniroller

capability and the module temperature will drop,

Maximum Temperature Limit

1, Conditions
Maximum 7-frame temperature at module 97°F

Maximum ambient temperature 110°F

2. Limiting Factors
Gyro module control power full off

3. Penalty
If either 7-frame or ambient temperature is increased, the affected gyro
module's thermal demand drops to zero and the module temperature

will increase,
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For applications requiring operation over a wider range of ambient

temperatures, modification of the insulating spacer size and material, 7-frame

insulation, and implementation of a regunlated coolant loop are required.

3.4.7 Thermal Deéign Features of the

Liquid-To~Air Heat Exchanger

The SIRU liguid-to-air HX, Fig. 3.4.3, is a closed, pressurized system (5

psig) that supplies a fixed rate of coolant flow to the 7-frame in any orientation. It

is mounted on the rotary table in order to avoid liquid rotary joints,

The system consists of the following:

a)
b)

c)
d)

e)

a pump for coolant circulation

a manually operated three-way valve for coolant flow direction {coolant
outlet temperature setting)

a reservoir and expansion bellows (accumulator)

a flow meter for flow rate adjustment

a heat-sink consisting of a forced-air to liquid HX

The flow diagram of the coolant loop is shown in Fig. 3.4.1, The specifications

for the unit are as follows:

1Y)

2)
3)
1)
5)

Cooling Capacity: 200 watts at 70°F ambient, 0,46 gpm coolant flow
and 75°F coolant outlet temperature (HX capacity of 22 watts/oF)
Coolant Flow: Adjustable from 0 to 0,46 gpm

Coolant: Inhibited Ethylene Glycol/ Water mixture

Coolant Temperature: Adjustable, 75°F min. in 70°F ambient

Power: 115v, 60 cycles, 1 phase, 0.92 amps

The HX would not be used in the flight configuration of SIRU.

3.4.8 Thermal Design Features of the Electironic Assembly

The EA cooling system was designed for the laboratory environment only.

Prime considerations were: simplicity of design, minimal effort, no active

temperature control, avoidance of liquid coolant and easy dissassembly.
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The final design, Fig. 3.4.2, consisis of two separately removable, modular
forced-air HXs mounted over the NAFI modules and a finned, natural convection
heat-sink under the 40/5v power supplies. FEach of the two identical, forced-air
HX cools tworows of NAFI modules. Ambient cooling air (13 cfm) is drawn through
the extruded aluminum finned plate and cover by a muffin fan operating on 115 vac,
60 cycle power. The HX surfaces are machined and greased for improved thermal

conductance.

Since the EA is air cooled from the module side, removal of the NAFI modules
requires the prior removal of the heat exchanger above that row of modules. The
40/5v power supplies, on the other hand, can be removed unimpeded from the module

side,

At the 70°F room temperature, the maximum NAFI module frame temperature
is 93°F. Under these conditions the semiconductor junction temperatures inside
the modules remain below the 105°C reliability limit imposed on high reliability
equipment in the Apolle program. The power supplies, however, operate slightly
above {120°C) these established limits, Thermal resistance between NAFI modules
and the structure is kept low hy use of special clips (Bircher}), Modutes which
dissipate the most heat are provided with more clips per module. Thermal analysis
shows that temperature gradients along any row of NAFI modules is less than 2°F,
Total power disgipated in the EA is 124 watts, 40 watts of which is at the 40/5v
power supplies, Table 3.3.4 shows the distribution of power dissipation in the EA.

3.5 Po cumentation

The essential documentation of the RIP is contained in Fig, 3.5.1 which provides
a simplified family tree showing the principal assembly and schematic drawings.
Table 3.5.1 shows an index of the drawings identified with each of the electronic
modules incorporated in the SIRU EA,

A review of the electrical and hardware items currently incorporated in SIRU
shows that of approximately 350 items identified inthe documentation by commercial
designation, 250 are already gualified under military specifications or could readily
be qualified by IDEP, previous military application or authenticated test data. Of
the remainder, 50 items of miscellaneous hardware require some degree of effort
to identify completely. It is estimated that one half of these (25 items) will turn
out to be military specificaiion equivalents, The remainder, approximately 75 items,
require some degree of qualification action in order to meet a strict requirement
for gualified parts selection,
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Table 3.5.1 Electronic Asgsembly Documentation Index

-

MODULE TITLE . ASSEMBLY NO. SCHEM.
DC AXIS SUPPLY 2304016 2304005
DC AXIS SUPPLY DRIVER 2304011 2304006
"FUSE & DIODE _ 2304039 2304034
LOGIC TRANSFER HI/LO MONITOR 2304051 2304031
INTERROGATOR & SW LINE DRIVER 2304070 2304066
EXTERNAL CLOCK DR 2304074 2304071
5 ynC PULSE DR 2304079 2304067
4015V DC SUPPLY 2304086 2304033
TIMING & FUSE MOD 2304091 2304082
800 Hz WHEEL SUPPLY PWR AMP SECT I 2304097 2304098
9600 HZ SUSPENSION SUPPLY SECT 11 2304105 2304095
800 HZ WHEEL SUPPLY PWR AMP SECT 1/VI]| 2304108 et
9600 HZ SUSPENSION SUPPLY SECT 1V 2304112 2304096
9600 HZ SUSPENSION SUPPLY SECT 111 2304114 2304113
SCALER 1 2304236 2304204
SCALER 2 2304237 2304205
SCALER 3 2304238 2304206
SCALER 4 2304239 2304207
SCALER 5 | 2304240 2304208
900 HZ SECT I, 800 HZ SECT It 2304241 2304153
800 HZ SECT IV 2304242 2304150
800 HZ WHEEL SUPPLY PWR SECT V 2304255 2304106
CLOCK OSCILLATOR 2304308 —
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4.0 Computation Facility and S5IRU Software

The SIRU systemn was designed with an integral, dedicated computer in mind,
The computer and its peripheral equipment were sized to support development and
checkout including test software, and to carry out the full regime SIRU operational
software. This chapter discusses the computational facility dedicated io the SIRU
system, the test and operational software and the data handling and analysis pregrams

written for this system,

4.1 _SIRU Computation Facility

A computer facility was assembled to support, initially, the developmrent,
checkout and testing of the SIRU system including the development of SIRU soltware
and software for the originally planned DCA, This same facility later supported
the operational system. Major components of the lacility are listed in Table 4.1.1.

The general purpose computer iz a commercial DDP-516 manufactured by
Honeywell, It is a 16-bit machine with a memaory cycle time of £.96 microsecond
and includes the high-speed arithmetic package as well as 16,384 words of core
memory. The Honeywell DDP-516 is compatible with current state-of-the-art
airborne flight computers and as such serves as an excellent design demonstration
and sofiware verification vehicle. The computer has hardware interrupt and its
structure incorporates direct, indirect and indexed addressing, The DDP-518 is
relatively fast, its add time is 1,92 microseconds and the high-speed arithmetic
package features a single precision multiply (5.82 microseconds) and divide (10.5
microseconds maximum) and double precision add and subtract (2,88 microseconds),
The computer is compatible with the real-time processing requirements of the SIRU
systemn running at a 100 update/second rate. In addition, the availability of a
sophisticated disc operating system (DOS) developed for this particular computer
by NASA/ERC enables operation with a large, moving head disc storage unit with
backup capability. This combination of memory and versatile interactive capability

preovided a viable software development facility,

A detailed description of the computer peripherals listed in Table 4.1.1 as

part of the Computation Facility is presented as follows.

119



Table 4.1.1
Major Components of the SIRU Computation Facility

Equipment Name Identification
Computer Honeywell DDP-516
Disc Drives CDC 9433

Teletype ' ASR-35

CRT Display Sanders 720

Magnetic Tape /O Digistore W1-001
Paper Tape [/O Remex

Dedicated Data Link to IBM 360/75 Bell 201A Data Phone
Test Table Interface Wayne George Fncoder

With theavailability of DOS, a standard Honeywell disc control unit was added
to the DDP-516. Two CDC 9433 drives are used, each capable of storing ahout 34
million words of data on line, The discs were used for the storage of: operational
software programs, system calibration and data reduction programs and system
test data for subsequent processing and error analysis. Programs were developed
to "pack-up" a disc by copying it on the second drive. Thus, a file copy of the

current programs and data was aiways available.

User orienied input/output (I/O) capability is available either through the
ABR-35 teletype unit or the Sanders 720 CRT. The CRT was procured to facilitate
soltware development and for use as a real-time display. In all of the operational
software described below in Section 4.2 (and in greater detail in Volume ID), provision

is made for real-time display of the system status.

Other I/0 devices comprise a high speed Remex optical paper tape reader, a
Digistore magnetic tape deck and a dedicated data phone link to MIT/CSDL's IBM
360/75 computer. A paper tape punch is available on the teletype, and all other
forms of outpui (card decks, magnetic tapes, disc packs, etc.) are available at the
IBM 380/75 through the data phone link, Initially, SIRU was dependent upon Digistore
tape to transfer data to the IBM 360/75 complex, but the data phone link was
incorporated midway through the program,

A final interface links the computer to the SIRU system and its test table.
This interface contains an up-down counter for each inertial component, two
interrogate pulse countersand a test table rotaryaxis readout, Theup-down counters
service the A9 and AV outputs of the inertial components (IC). The gyro float angle
interpolators are read separately,
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An interface was planned for mating the SIRU system with the dual redundant

Digital Computation Assembly (DCA). However, the DCA and its associated

multiplexer were not implemented in hardware during this program period,

Figure 4.1.1 shows the computation facility as set up in the laboratory, Figure
4.1.2 is a block diagram of the operation, and Figure 4.1.3 shows additional detail
of a typical AV or A8 counter channel.

|

s

i

Fig. 4.1.1 SIRU Computation Facility
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4.2 SIRU Software Overview

A regime of modular, interacting programs was developed which funections,
in general, to calibrate the sysiem, verify its performance, provide failure detection

and isolation (FDI) and develop navigation functions.

Using these programs the DDP-516 computation facility is used to perform
the following specific tasks:

1. Direct and performautomatically (with the exceptionof table orientation
positioning since digital table servo positioning was not available) the
multiple position calibration iest operation on the SIRU system during
which a complete IC parameter determination is obtained, printed and
stored. A single position sequence is designed to operate overnight
and unsupervised,

2. Direct and perform real-time system testing during which the computer
implements all the operational software for the following system tests:
aj Pre-launch calibration sequence

b} Pre-launch alignment (gyrocompassing) sequence
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c) IC on-line compensation (static and dynamic)
d) Redundant six axes body measurements data to least-squares
computational triad frame and implementation of adaption matrix

for isolated faults

e) FDI equation computations to provide Fail Operational, [ail
Operational, Fail Safe (FO, FQO, FS) capability
f) Implementation of strapdown attitude and velocity algorithms

supporting the navigation functions
3. Developand checkout all of the software requirements for the previcusty
described operations including data storage and transfer for subsequent

analysis using Draper Laboratory's IBM 360/75 computation facility.

4.2 SIRU Software Description

The following description of the operational softwareisan abbreviated version
of the detailed description provided in Volume 1II. Previous chaptersin this volume
have described the analytical theory and implementation of the software. The
following material summarizes the software description contained in Volume IIL
All the operational software for the SIRU test system was developed on the DDP-516
computer facility, while complementary data analysis, data plotting and simulation

programs were prepared for the IBM 360/75.

This development included the hardware checkout software, the system
calibration and calculation programs, software development tools e.g., text editor
and CRT display drivers, and an assembler for the DCA. A DCA self-test program
was developed using the text editor and the DCA assembler,

4,31 Static Calibration Tests

SIRU performance is evaluated by comparison of system data with external
references, The comparison is accomplished through the use of two parallel sets
of computer programs, the SIRU DDP-516 software and an array of analysis,
simulation and comparison programs available on MIT/CSDi.'s IBM 360/75. A
dedicated link between the two computers facilitates the almost immediate evaluation
of the SIRU real-time performance. The mote important programs for each computer
are explained in this section.

The simplest operating mode of the SIRU system is ''static calibration'' testing.

Given the deterministic models of the ICs, it has been shown that a six position

test (see Table 4.3.1) yields data necessary and sufficient to isolate and compute
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the static error parameters listed in Table 4.3.2. A DDP-516 program, STLOOP,
used in each position, serves to collect instrument output in the form of elapsed
time and torque pulse count for each of the twelve instruments. This data set is
indexed serially by test positionand date, and stored on the disc. In the calibration
sequence, STLOOP is run in each of the six positions, Fig. 4.3.1 illustrates the
engineering display. Table 4.3.2 lists the terms and engineering units shown in the

figure, .
Table 4. 3.1 Static Testing Equations
. - ) (NGij +) (1 + DSFi+) - (NGij -} (1 + DSFi -}
Wij = INTRATE SFnom TGI] (rad/sec)
where
Wij = total drift of the ith gyro in the jth calibrate position (i = A through F,
3 = 1 through 6)
DSFik = sgcale factor deviation from nominal of the ith gyro, where k denotes
the + or - scale factor (ppm)
TGij = number of timing pulses for the ith gyro in the jth calibrate position
INTRATE = loop interrogate rate used for timing (4 800 pulses/sec)
SF, om = 97134 9714 515 rad/torque pulse = 0.213623 mrad/torque pulse
NGij = number of positive (+) or negative {-) Af pulses accumulated for the
ith gyro in the jth calibrate position
ADIA = {(WAB - WAD) cose GA - (“;Al - WA2) sine GA | WIEV
ADSA = {WA1-WAZ2)} cosae GA +2 {WAE - WASB) sina GA
ADOA = .“g’A"‘ —NAD 4 gsarwIEY
2 WAj + 2WIEH (cos@ GA + sina GA + GSA™)
- =1
BDA = 3
{WAS + WAS 5 WAL = WA2) | WIEH (GSA* - cosa GA)
A2DA = ¢+ -
' Sin (2a + 2C0A%)
where

aGA = a + GOA*

125



Fig., 4.3.1 CRT Keyboard Display Equipment
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EQUIVALENT INPUT (MERT)

Two other programs are used to access this data and reduce it to modeled
parameters (in engineering units), GYRCAL searches the filed data to retrieve the
latest STLOOP data set for each of the six positions,* extracts the gyro information,
and calculates the drift pzirsuneter's.Ml A similar program, PIPCAL reduces
accelerometer data to extract 3y, SF errorand twomisalignments for each functional
axis, The resulis from GYRCAL and PIPCAL are filed on the disc for later use in

the real-time compensation load.

STLOOF may be iterated to collect a continual record of system static
performance in one position. In this case, the 11 minute test is used to collect 50
to 300 data sets which are identical in form to those discussed above. As before,
they are filed serially for later analysis. At the command of the test technician,
the data is iransferred to the IBM 360/75. Several versionsof a MAC 360 program,
ICSASTAB, areresident there, These programs process the raw data into engineering
units, subject it to statistical analysis and produce printed and plotted records of
the performance stability of the twelve inertial components. This procedure is
routinely followed and a substaniial body of data is available to confirm system
performance levels. Figure 4.3.2, for instance, graphically displays the stability
of one gyro over a weekend run. The mean output represents a component of earth
rate plusthe gyrodrift; the standard deviation of the data indicates the corresponding

performance,
1 4 il —t= “t
GYRO F ‘
-284 4 MEAN = -0788, 346 MERU(4, 33°/HR) T
SIGMA = 0,124 MERU(, 00186°/HR)

DATE: 08 JA 70; POS: 1

-288 4WWMWWWMWWM~MWW

-292 ¢ ’ 3

50 100 150 ; 200 : 260

vl b,
T Y

+
—+
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+
+
g

Fig., 4.3.2 SIRU Gyro Stability

L

* , ‘
The user may, alternatively, specify earlier data sets by serial number.

ok
Gyromisalignment and ST calibrationrequiresadynamic test, which is described

later,
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Gyroscale factor (SF) error and misalignments can be determined only through

dynamic tests as described below.

4.3.2 Dynamic Calibration Tests

Certain gyro parameters (SF error, misalignments about Spin Axis (SA) and
QOutput Axis (OA), anisoinertia) are determined from dynamic calibration tests (test
program JIMK}. Data is taken in three test positions, with the table rotated in both
positiveand negative directions. IFive rotation rates are used in each sense chosen
g0 that:

. = sing w,
cosa wL ‘Sl D+ 1

Using thisrule, the test conditions for all instruments reflect the same rate inputs,
Upon completion of dala collection (3 positions, 2 senses, and 5 rates yielding

30 data sets),a DDP-516 program, DYNCAL, retrieves data from the disc, calculates
the gyro error parameters (Table 4.3.3), and displays and stores these values.

Table 4.3,3 Rale Testing Eguations

General format of the 4-simullaneous equations required

GQi* + BPi + C SFGi- = D

E GOt + FPri + G SFGi- =

1 GOix + J Pi + KSFGi+ = L
M GOix + N Pi + PS¥FGi+ = Q@
where GOP* = output axis misalignment (Radians)

N BT WY
anisoinertia g (sect)

Pi =
P - Radians
BEGit gyro scale factors ( Pulse )

4.3.3 Real-Time Operational Software and Verification

The real-time operating sofiware for the SIRU system comprises a complex
of interacting routines coded in machine language. It is shown schematically in
Fig. 4.3.3, SIRU Data Processing, and is described in detail in Volume III. This
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The routines themselves are also discussed.

section bridges the gap between the schematic and the machine language routines.

CORRECTED COMPUTATIONAL
GYRO MODULES GYRO COMPENSATION  BODY MOTION MATRIX PROCESSOR  TRIAD SOLUTION
. i
Ao aBa o5, ADIA ADSA DD aBA; ATTITUDE
(e Y TR A AD3A, 88, o " ALGORITHM
CTr a8C———m =A5F vy Yig Javc W agh K ag Al . 03,
T ANISOELASTIC a8, o —
[ ot agE e ANISTINERTIA a6E, TRIAD LEAST SQUARE
' ESTIMATE- BODY FRAME
F "o DA COUPLING a0F,
i e ’ gy
£ Mgyt T git)
£ E |y, eof| 20 ADAPTIVE GUIDANCE
SR MATRIX ' AND
5 [€216,6L » o2 B Jiies | WAVIGATION
el il T3 GENERATOR EQUATIONS
B G IR
FALLURE 1SOLATION
ATt ava AV A VRIAD LEAST SOUARE av
— ESTIMATE- BODY FRAME TRANSFORM
8 avB-—— Ay AV avx
ORI M i vy ave LT oV W@
_— » LM TH A,
BT AV spssoierTiA AV v
Ert avE-— AVE
F 8t aVF——-n AVFg
ACCEL. MODULES  ACCEL COMPENSATION  CORRECTED MATRIX PROCESSOR  COMPLTATICNAL
BOOY VELOCITY

TRIAD VELOC|TY

. Fig. 4,3.3 SIRU Data Processing

The computational requirements of a strapdown system are as follows:

(1)

(2)
(3)

(4)

(5)

(6)

Correct the raw gyro and accelerometer pulse counts by compensation
routines to accommodate for the calibrated bias terms, misalignments,
etc, i

Derive the computational triad solution for body rotation and velocity
increments through the matrix processors

Effect the failure detection and isolation equations, yielding current
system failure status

Adapt separate gyro and accelerometer matrix processors to reflect
current failure status (AG - gyro axis failures and AA ~ accelerometer
axis failures) '
Trangform the body axis triad angular sclution (f_\ex, Aey, Aez) toa
body frame with respect to inertial reference attitude indication,
guaternion (q) four parameter representation

Transform the body triad velocity solution (AVK, AV, AVZ) toan inertial

b
velocity in the inertial frame
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Other software subsequently added during the SIRU Utilization program and

documented in R-747 included:

(1} Single position calibration
(2) Gyrocompassing routine
(3) Siatistical FDI sofiware with on-line recalibration

(4) Local vertical navigator

Although these operations were identified in Chapter 2, it must be recognized
that the actual computation process is a complex procedure. The algorithms are

divided inio two sets, an accelerometer data processor and a gyro data processor,

The system accumulates AV and Af pulses from the torque- to-balance
instrument loops after initialization, With the system operating at 100 iterations
per second the accelerometer and gyro pulse counters are processed every 10
milliseconds (ms), Their processing, however, is interleaved so that the 10 ms of
AV accumulation processing precedes the 10 ms of A6 accumulation processing hy
59 ms. The velocity and atiitude algorithms are staggered in the same manner.
This staggering is achieved immediately upon initialization by using the first 5 ms
of A6 data after initialization in the first attitude algorithm iterations prior to a

full 10 ms velocity update.

The tasks accomplished during the accelerometer and gyro updates are listed
here. To process the accelerometer outputs we require the system to perform the

following tasks:

Al} Read the status of the six counters

A2)  Compensate the output for average SF, bias and misalignments of each
accelerometer's input axis about its output and penduluous reference
axes

A3) Compensate the output for errors due to Rw’ and Rwas a function of
the accelerometer's position relative to the angular input

A4)  Accumulate the corrected output for the purpose of FDI

AB)  Perform FDI resulting in a current failure status

A6}  Check the parity equations for third fail

AT) Createa least~squaresmatrix (as a function of fail status) to transform
the six compensated AVs inio the XYZ body frame

AB) Do the 6 x 3 matrix multiplication

A8)  Unitize the attitude quaternion prior to velocity algorithm proceséing
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Al1G) Do the velocity algorithm i,e., use the current attitude quaternion to
generate the velocity transformation matrix and transform the
incremental body velocity into the inertial frame

All) Accumulate AV inertial for output processing

_To processthe gyrooutputs we presently require the system to perform the following
tasks: '

G1} Read the table encoder, and the six gyros and interpolator accumulators

G2) Compensate the output for #SF, Null Bias Drift (NBD), Acceleration
Dependent Input Axis drift (ADIA), Acceleration Dependent Output Axis
drift (ADOA), Acceleration Dependent Spin Refarence Axisdrift (ADSRA), '
anisocelasticity, misalignments, anisoinertia, Spin Reference Axis ‘(SRA)
cross-coupling and OA coupling

G3) Accumulate the corrected output for FDI

G4) Perform the FDI processing resulting in a current failure status

G5)  Check the parity equation for third fail

G6) Create the least-squares matrix (as a function of failure status) to
transform the six compensated Afs into the XYZ body frame

G7) Do the 6x3 matrix multiplication

G8) Compensate for earth rate

G9) TUpdate the attitude guaternion

In the time remaining, the system status is documented either on the teletype,
the CRT displayoronanincremental magnetic tape for further analysis (Fig. 4.3.4).
The information outputted includes the attitude quaternion, AVI accumulated over
some interval, a squared error monitor and fail status for gyros and accelerometers,

the test-table angle encoder output and time since initialization.

Coding of these operations is divided among thirty subroutines and a main
program which sequences and controls communication between them, A brief
descriptionof the software at this level appears in Appendix D.. Volume III presents
a detailed description, including listings and load maps,

Each of these routines was subjected to extensive test verification and
integrated system testing. For example end-to-end tests (12 to 60 hour duration)
in a local vertical navigational mode have been repeatedly performed, In this test,
the system software maintains an inertial reference by means of a quaternion, Ug:
which represents and quantifies the rotation from the inertial to the current body
frame. A third order quaternioun update algorithm is employed. The incremental
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AVB is transformed into the inertial frame, and used to updaie inertial velocity

and position estimates,

QUAT 0. 995949 D. 000016 0.00006% - 0.0D0035
DELVRF - 979.654062 8.601562 - B.453125
ERRORS &\ 0.5 1.8¢ A
B\ 0.0 1.8% B PIPA
Gvka c 0.0 0.0l ¢ SQUARED
SQUARNED )
o [0.06 3.51 D ERROR
ERROR
0.3 0.39 E
¥/ 014 0. 56 F
0,87 B 26 {Total Syuared Error)
GYRO FAIL {iirst & Fail} {Znd Fail) (3rd Fail)
PIPA FAIL {Firat & Fail} {Znd Fail) {3rd Fail}
TIME 180.00 (sec)

TABLE ANGLE 0.761531  |que

Wote: {(Identification in parenthesis nat ghawn an CIT)

Fig. 4.3.4 CRT System Status Display

The test resulisare typically evaluated using a series of evaluation programs
resident in the IBM 360/75 computation facility.

Test data stored on the tape or disc and transferred to the IBM 360/75 for
evaluation comprise real-time afititude, inertial velocity and inertial position
estimates from SIRU sofiware,and a record of iable rotation over the test interval.
Initial attitude, velocily and position are given. The record of table motion is
processed by a third order quaternion update algorithm to yield a theoretical ov
"perfect" system attitude. This algorithm matches that of the SIRU software, but
its input is free of gyro quantization and drift errors. The "perfect' attitude is
used to process the specific force input due to gravity for 'perfect” navigation.
Comparison is made with the system's real-time record, both at the attitude and
navigation {velocity and position) levels, As with the static tests discussed
previously, the MAC language program includes a variety of options for reporting
and plotting indices of performance. Thus this program provides a flexible tool
for theanalysis of SIRU system performance froma variety of tests, Static, constant
slew and ascillatory tests have been processed, and show good agreement between

measured (SIRU) and computed ("perfect") performance.
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5.0 SIRU Reliability Appraisal

5.1 Observed Operational Reliability

Table 5.1.1 presents a summary of the SIRU system hardware reliability over
the period beginning 27 January, 1970 and ending 18 November, 1971, During this
period, the SIRU system was operated for 14,600 hours with a total of 71,000 gyro
No
There were two gyro failures (January, 1871 and

module operating hours and 88,000 accelerometer module operating hours,
simultaneous failures occurred.
March, 1971) and one gyro module PTE failure (April, 1971). One of the gyrofailures
was a gas bearing wheel non-start after 2811 wheel hours of operation and 1745
wheel start/stop cycles. The other gyro evidenced intermittent float hangups after
5017 wheel hours of operation and 1914 wheel start/stop cycles. The PTE failure
was due to a marginal solder joint {that degraded with time) at one of the scale
factor {SF) resistor terminals. As a workmanship failure, it does not reflect on
the PTE reliability as determined by the reliability of the PTE electronic components.
It does, however, reflect a potential hazard thatisnot easily screened and represents

a continuing reliability hazard to the systiem population,

Table 5.1.1 SIRU System Hardware Reliability

Datafrom1/27/70t011/19/71 Component Failures OperatingHours SystemFailures
3 14,600 0
No, of MTBF Operating Hours
Failures | Measured | 90% Conf {"Actual"| Req'd"
Gyro 2 35, 500 13,400 | 71,000 185, 000
PTE 1 159, 0040 40,700 159, 000 [620, 000
Accelerometer 0 88, 000 38, 300 88,000 [202, 000

‘Operating Hours required to demonstrate measured MTBF with 90% confidence

Table 5.1.2 is a tabulation of estimates of failure rates for SIRU hardware
components. The failure rates for the electronics were estimated using a component
parts count of each circuit with electronic compoenent failure rates based upon Apolle

experience. The conservative failure rate of 75 x 10_6 failures/hr shown in the
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gyro reliability range (Table 5.1.2) reflects the 13,400 hour MTBF value (at the
a0% confidence level) from Table 5.1.1. The measured MTBF of 35,500 hours for
the gyros (Table 5.1.1) was used to determine the lower failure rate value of 28 x
10"6 for the gyroshownin Table 5.1.2. (This estimate is also conservative because
in this gyro population the wheel start problem was a known design deficiency that
was subsequently resolved by a bearing material change). The failure rates shown
for the accelerometer modules are conservative and were obtained by assuming
that one failure did occur in the 88,000 hours of operation even though there were
actually no failures during this period. The lower accelerometer failure rate given
in Table 5.1.2 (11.4 x 10_6), corresponds to an assumed one failure in 88,000 hours,
The pessimistic accelerometer failure rate (26 x 10‘6) corresponds to the 80%
confidence MTBF of 38,300 hours shown in Table 5.1.1.

Table 5,1,2 SIRU Failure Rate Estimates

Failure Rate,A

Gyro Module: {Failures per Hour)
Gyro 28-100 x 10™°
Gyro PTE, Interpclator & 8v Supply 15 x 10—6
Temperature Control 3 x 10_6
Wheel Supply : 11 x 10-6

Net Gyro Module Each Axis = A, 57-120 x 1070

Accelerometer Module:

PIP 11.4-50 x 1078
PIP PTE 8v Supply 12 x 1078
Temperature Control 3 x 1078

Net PIF Module Each Axis = X, 26.4-65 % 1070

Electronics Assembly (6 Axes Support):

9600 Hz Supply 10 x 1078
DC Axis Supply . 1z x1078
Truse/Diode Module 1% 10_6
Net Electronics Assembly = X, 23 x 107°
Flectronics Assemhbly (Dual or Triple Redundant):
40/5 vde Supply = A, 12 % 1076
28 vde Pre-Regulated = A, 12 % 1078
Multiplexer = hg ' ' 10 x 1078
Clock = A, 1 x 1078
Scaler = Ay 10 x 1078
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5.2 | Theoretical Reliability Calculations

Various SIRU reliability curves (reliability vs. mission time) are presented
in Figs. 5.2.1 through 5.2.4 using the SIRU reliability criteria given in Table 5.1.3
for defining hard and soft failures and the failure rates listed in Table 5.1.2. Included
for reference on each plot is the corresponding reliability of a triad system having
non-redundant components with the same failure rates as the SIRU components.
Fig. 5.2.1 presents SIRU reliability for the soft failure configuration using the 90%
confidence failure rates for gyros and accelerometers. Fig. 5.2.2 presents SIRU
reliability for the hard failure configuration using the 80% confidence failure rates
for gyros and accelerometers, Figures 5.2.3 and 5.2.4 repeat the two previous
figures using the failure rates experienced during the test programs for gyros and

accelerometers.
These analyses are based on the following two assumptions:

1, The FDI coverage, defined as the probability that a failure, having
3
occurred, will be detected and properly isolated, is 100%.

As described in Chapter 2, the FDI can not only detect and isolate two
failures of gyroscopes and accelerometers and detect a third failure,
but can also isolate the third failureif it results in a substantially greater
squarederror than the previous failures, The softfail analyses presented
here assume that two failures only are detected and isolated,

2. The SIRU equipment is in uninterrupted operation throughout the mission,

Equations are derived separately for what we termed soft and hard failure
systems. The term soft failure is defined to encompass performance degradations
which can beisolated only by measurement comparisons (voting or FDI algorithms},
Hard failure is used todescribe faults which donot reguire voting for proper isolation,
In general, these are catastrophic failures which can be isolated by self-test hardware
(BITE) or reasonability type software tests.

SIRU reliability equations are derived separately for systems which can tolerate
different amounts of component failures, These iwo configurations are described
in terms of what failures can be tolerated (Table 5.,1.3). Soft failure systems are
those in which ¥DI can isoclate failures of only two measurement axes. Thus, up to

two gyro and iwo accelerometer modules can be isolated automatically gr two

%
The reliability analysis in R-747 includes analysis of FDI coverage,
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electronic functional axes can be lost, with operation continuing. In addition, one
of two scalers, one of two 40 vdc/5 dc supplies, one of two 28v supplies, one of two
multiplexers and one of three clocks can fail without failing the system,

Table 5.1.3 SIRU Reliability Criteria

Tolerable Failure Combinations
Soft Failure | Hard Failure
Device Redundancy Level System System
Gyro Module 3 (2 Fails {3 Fails
and and
PIPA Module 6 2 Fails) 3 Fails)
Electronic Assembly OR OR
Functiconal Axes :] 3 Fails 3 Fails
and
Scaler & 40v ps 2 1 Fail 1 Fail
and and
Osgcillator 3 1 Fail 2 Fails
Critical Path:
Module & Axes FO-FS FQ-FO-F8

FO = Fail-Operate
FS = Fail-Safe

Hard failure systems are those which include BITE and more extensive FDI
{reasonability tests) ete. This hard category cantolerate the same non-axis-dedicated
electronics failures, but will operate withup tothree gyro or accelerometer modules,
or three functional axes lost. The system will survive failure of iwo of the three
clocks.

The reliability curves in Figs. 5.2.1 through 5.2.4 were calculated as follows.
(All failure rates used are those given in Table 5.1.2).

5.2.1 Triad Reliability Calculations

The following reliability functions are caleulated for the reference triad curves
shown on Figs. 5.2.1 through 5.2.4. Reliability of a single gyro module:
-)th

RG = @ (5.1)

where )"1 = Net gyro module failure rate.
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Reliability of a single accelerometer module:

Aot _
RA = a (5.2)

where A = Net accelerometer module failure rate.

Reliability of axis-dedicated electronics:

—?‘.Bt
Ryp = © {5. 3)

where 7\3 = Net axis-dedicated elecironics assembly failure rate.

Reliability of the non-axis-dedicated electronics:

Xt :
.. 4 (5.4)

RyaE

where )'q = Net non~axis-dedicated electronics assembly failure rate.

J\q= h4+)\5+17+>\8 {5.5)

where (see Table 5.1.2) the failure rate of 40 vdc/5 dc supply is h4, that of the 28

vde preregulator is A, that of the clock is A, and that of the scaler is Ag.

5°

The reliability, R of all of the triad electronics is given by:

EA’
R., = RO R (5.6)
EA AR NAE -
The reliability, RT, of the complete triad is given by:
_ .3 3
RT = RG Ry REA {(5.7)

5.2.2 SIRU Reliability Calculations

This gection comprises the derivation of equations used in obtaining the specific
SIRU reliability curves shown on Figs. 5.2.1 through 5.2.4., The derivation for
soft and hard failure systems is presented later in this chapter,

The SIRU reliability calculations are complicated by the particular relationship
of the axis-dedicated electronics fo the gyros and accelerometers. For each functional
axis three dedicated elements, a dec supply, a 9600 Hz supply and a fuse and diode

module, support both the corresponding gyro and accelerometer modules. Since
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these electronic elements are not cross strapped, a failure in any of them results
in the loss of both a gyro and an accelerometer. The reliability of the inertial
package with no axis electronics failure is derived as shown in Egs. 5.8 through
5.10. The reliability of the axis-dedicated electronics is shown by Eq. 5.3. The
reliability of the complete inertial package including the axis-dedicated electronics
for soft failures is as shown in Eq. 5.11,

This expression is conservative for it ignores several caées in which the
system is unaffected by failures which Eq. 5.11 includes. For instance, if a gyro
failure occurs followed by the failure of its axis electronics, the electronics failure,
in effect, is partially forgiven. Another example is shown by a gyro failure followed
by an axis electronics failure on another axis, While the limit of gyro failures has
been reached, one more accelerometer failure can still be tolerated. Equation 5.11,

to avoid computational complexity, does notinclude these small but definitely positive

terms.

Soft Failure Systems

The reliability RGGS of the six gyros modules in soft failure systems with no
axig electronics failure is given by:

4 _ 2
Roag = Rg (15-24Rg + 10RS) (5.8)

where RG iz given by Eq. 5.1. The reliability of the gyro package is given by the
probability of four of the six gyros surviving.

The reliability, RGAS’ of the six accelerometer modules for soft failure systems
with no axis electronics failure is given by:

_ pd
R = Ry {15 - 24R

2
GAS At IORA) (5.9}

where R_A. is given by Eq. 5.2,

The reliability, Riq of the total inertial package (six gyro and six accelerometer
modules) with no axis electronics failure is given by: '

R (5.10)

Ris = Rgas Rgas

IS
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The reliability RIS AR® of the total inertial package including the axis-dedicated
electronics (see Table 5.1.3) iz given by:

_ .6
Bisar ~ Bar Regs Feas
5 5 4 5 4
- + - + -
* 6R,p (1 RAE)(RG 5RG (1 BG)) (RA SRy (1 RA})
4 2 _4 4
* 15Ryp (1-Ry )™ Ry Ry (5.11)
where Rap is given by Eq. 5b.3.
The reliability, RDE’ of the dual redundant electronics is given by:
R]’)E = Ry R5 RS RS (5,12)
where reliability of the 40/5 vdc supply is
-P\4t 2
R, = [1-(1—e ) ] (5.13)
Reliability of the 28 vdc preregulator is
. 'hst 2]
R, = [1-(1-e ) (5.14)
Reliability of the mulliplexer is
' gt 2
Ry = 1-{1-e } (5.15)
and reliability of the scaler is
gt 2
Ry = 1-(1-e } (5.16)

?\4, ?\5 and 7\8 are defined above, and )‘6 is the multiplexer failure rate.

The reliability of the clock for this system R g is given by the probability of two

C
of the three oscillators surviving:
R = RS +3R2 (1-R.) (5.17)
Cs 7 T 7 .
where ?\7 is the clock failure rate and
-3 Tt
R7 = g (5.18;
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The reliability, REAS‘ of the entire SIRU electronics assembly is given by:

Rpas ™ Bpge Beg (5.19)

The overall SIRU system reliability, R for soft failure systems, is given by:

TS?

_ 5.
Rrs = Rigar Rras (5.20)

where RISAE and REAS are given by Egs. 5.11 and 5.19 respectively.

Hard Failure Systems

The discussion with respect to axis-dedicated electronics failures for soft
failure systems presented above applies in a similar fashion to hard failure systems
and the resulting derivation is presented below, Derivation of the reliability of
gyro and accelerometer arrays, and of the axis elecironics, is also similar. One

additional failure, however, can be tolerated,

The reliability, RGGH’ of the six gyro modules in hard failure systems with
no axis electronics failure is given by:

.3 2 3
RGGH = RG (20-45RG+ SGRG - IORG) {5.21)

where RG is given by Eq. 5.1.

The reliability, RGAH‘ of the six accelerometer modules with no axis electronics
failure is given by:

- 53 _ 2 3
Roag = Ry (20-45R, + 36R, - 10R, (5.22)

where RA is given by Eq. 5.2

The reliability, Ryy- of the inertial package (six gyroand six accelerometer modules)
in hard failure systems with no axis electronics failure is given by:

R =

I - “ecH Feam (5.23)
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The reliability, RIH AF of the total inertial package including the axis-dedicated
electronics (Table 5.1,3) is given by:

4
G

6 5
AE Fggy Fgan ™ OR

5
= R AE (I—RAE) {RG + 5R ({1-R

RrHAE o))

4

5
(RA + SRA

(1-Rp))

4

3 -
+ 15 Ryp (15K, )7 (Rg + 4Re (1-Rg)) (5. 24)

A
+ 4Ry (1-Ry))

3

+ 20 R3 Y R

3
Ar (I"Rag R

3
A
where R, is given by Eq. 5.3.

The reliability of the dual electronics for this system is the same as for the
soft failure case (Eq. 5.12),

The reliability, Ryyr of the clock for the hard failure case (failure of two
ogcillators may be tolerated) is given by:

R =R3+3R3

2
CH " (1-R7) + 3R7 (1~R7) (5.25)

where R, is defined by Eq. 5.18.
The reliability, RE AH' of the entire SIRU electironics assembly is given by:

REAH * Rpyp RCH (5.26)

The overall SIRU system reliability, RTH' in a hard failure system is given by:

R = R (5.27)

TH [HAE TEAH

where Ry and REAH are given by eqs. 5.23 and 5.26 respectively,

5.2.3 Theoretical Results

These equations have been evaluated and plotted using both 90% confidence
level and experienced MTBF values. Results are plotted in Figs. 5.2.1 through
5.2.4. The conclusion which must be drawn from this study is that the SIRU
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configurationisnotably morereliable than a gimbaled triad system built with similar

components.

5.3 Reliability Apalysis Summary

The equations presented above and graphs (Figs. 5.2.1 through 5.2.4) have
been used {o derive the probability of mission success and equivalent MTEBF for
the SIRU and triad systems for a period of 730 hours (one month), See Table 5.3.1

where the equivalent MTBIF numbers were computed using the following equation:

: _ -1730
Equivalent MBTF = i (5.28)

where R is the corresponding system reliability at 730 hours as computed from
Eqgs. 5.7, 5.20, or 5,27,

Table 5.3.1 Reliability Analysis Summary

EQUIVALENT MTBF
MISSION TIME IN HRS: B
730 HRS. MISSION SUCCESS HRS.
SOFT HARD SOFT HARD
FAILURES | FAILURES | FAILURES | FAILURES
.
90% CONFIDENCE
8779 . 2
) FAILURE RATES 9981 12,767 7.619
SiRU
SYSTEM -ﬁ
EXPERIENCED
99 . 17
FAILURE RATES 59 9997 8,000 2,433,333
\
s
90% COMFIDENCE 5874 1370
TRIAD 4 FAILURE RATES
EXPERIENCED
FAILURE RATES 7664 2740
L
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6.0 Test Facility

6.1 Introduction

This secticn contains a description of the facility and subsystem equipment
developed to operate and evaluate the performance of the SIRU system. Section 6.2
describes the test table setup including the system optical alignment features. Section
6.3 provides descriptions of the GSE console and accessory electronic interfaces,
Figure 6.1.1 shows the complete interface for SIRU and the associated support
equipment. The computer facility components shown in the figure are an integral
part of the overall test facility. See Chapter 4 for a discussion of the computer,
its SIRU system interfaces and the associated peripherals,

RIP
RIP HEAT - TEST
| | EXCHANGER I BOX
I i
s B TENE.
RIP iy EA MUK
|
TABLE INTERCONNECT .
RATE TEST BOX D
SERVO TABLE
TABLE SLIF RING ‘
ANGCLE ASSEMBLY
ENCODER GSE CONSOLE
- TEMP,
MONITOR
MODE
TABLE CONTROL
JUNCTION e T GSE
BOX e HEAT PANEL
TEST POINT
® PANEL
POWER AND
FUSE PANEL
+ 28 v
REG. #2
DDF 516 + 28y
INTERFACE PANEL REG, ¥1
¥ + 28V
DDP 536 |_" DIGISTORE UHREG.
ASR 35 COMPUTER + 28 v
ToTY ‘PAPER TAPEL GSE
A o .
READER
\ |
CRT

Fig. 6.1.1 SIRU System Block Diagram
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6.2 Test Table

The test table provided to support the SIRU system consistsof a 2-axis, 16-inch
rotary table mounted on the rotating axis of a similar 2-axis 32-inch rotary table
(both tables are manufactured by the International Machine and Tool Co.). Figure
6.2.1 shows the major components of the test table system. The four table axes
are equipped with precision (0.5 Zed resolution, 2.0 ec accuracy) optical readouts
which allow positioning to a wide range of orientations including the six basic
instrument calibration positions. The rotary axis of the 32-inch table iz equipped
with a rate drive system which can generate constant slew rates up to 1.0 rad/sec
and oscillatory rates at irequencies up to 10 Hz. See Fig. 6.2.2 for a sketch of the

slip ring and encoder assembly.
TEST TABLE SLIP RING & ENCODER ASSY

. FA-INCH DIAMETER
3 - INCH DIAMETER 5 - RIKG ASSEMTLY

7 ‘chu fsi':g?s;;rms 7 ' 60 - § AP RINGS
: : T < § - 4 NP RINGS
_ 1
- — T .!_ =
. J

1
his

i
nbe

;

n-u\.aﬂ.li‘[
i

b
—ed

b
gt pd

i
."-/ /

18 + BIT DIGISEC TNCODER

12 - INCH TARE

Fig., 6.2.2 Test Table Slip Ring & Encoder Assembly

The SIRU system can be aligned to within 10 fec in azimuth and 5 Zed in
elevation in all desired test positions. These alignments are accomplished by
orienting the SIRU system (by autocollimation on the system reference cube) with

respect to transfer lines from the azimuth reference {porro prism). See Fig. 6.2.3
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OPTICAL.
| READOUT

Fig. 6.2.1 Axic Test Table Assembly with SIRU System Installed
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for the optical alignment layout, Figure 6.2.4 shows the SIRU system installed on
the test table.

Fast-Fixed
Autocollimator Array

@ - Theodalite ( Autocollimator)
Temporary Posifions

Test
Package

Parro
Prism

Azimuth Reference
Marker

North-Fixed
Autocollimator Array

Fig,6,2,3 Test Facility - Optical Alignment References

6.3 Support Equipment

Ground Support Equipment (GSE) for the SIRU laboratory ingtallation consists
of the following items of eguipment:

L. GSE Console

. Interconnect Box (ICR)
III. Table Junction Box {TJB)
iv. RIP Test Box

V. Monitor Console

A description of each item, their subassembliés and their application to the
operation and test of the SIRU follows,

6.3.1 The GSIH Console

The GSE consele, Fig. 6.3.1, provides the necessary d¢ power sources and
distribution for the SIRU system. It controls the moding of the system, provides
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Fig. 6.2.4 SIRU System Inslalled on Test Table




Fig. 6.3.1 GSE Console
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auxiliary heat for inertial components, and monitors component temperatures. It
also provides access to system test pointe and ac and dc power for GSE operation.

The console consists of six interlocking sections:

Temperature Monitor
‘Mode Control Panel

GSE Heat Control Panel
Power Distribution Panel
Power Supplies

Test Point Panel

meODOR e

Temperature Monitor

Allinertial module temperatures are sensed in bridges and the amplified signal
from each bridge is multiplexed to the monitor panel via the slip rings on the table
once every 30 seconds. Signals are cycled through and displayed as a deviation
from normal operating temperature. The inertial component being monitored is
identified on the panel., Automatic scanning can be interrupted and manual sequencing
invoked, Aural and visual alarms are activated if the temperature of any inertial
component exceeds its specific limits, the faulty instrument is identified and the

entire inertial system is automatically switched to a safe operating mode,

Mode Control Panel

The Mode Control Panel provides all the power switching devices required to
control the various operational modes of the SIRU system. The Turn-On/Turn-Off
sequence is interlocked and all ¢ritical points in the system and the GSE are channeled

into the Mode Control Panel to insure safe system operation.

GSE Heat Control Panel

As described below, certain modes of operation require that extra heat be
delivered to the inertial components. The GSE Heat Control Panel provides this
extra heat individually to each component. This heat is adjustable and is available
in two modes: preheat and fixed heat. Preheat is used when exira power is needed
to bring the component up to operating temperature before turn on. Fixed heat was
provided as an additional power source to assist the component temperature
controllers when several modules have been removed to minimize the effect of a

n-frame temperature gradient.
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Power Distribution Panel

All the heavy current switching is done in the Power Distribution Panel under
the command of the Mode Control Panel. Safety fusing and over-voltage crowbar
circuitry are also located here. All power and grounds are disiributed from this
point to the GSE and SIRU system.

Power Supplies

The GSE console coniains the following power supplies. The associated usages
are identified.

L +28 vdc - GSE relays and lamps

2. +28 vdc - SIRU temperature, control, clock, and scaler, 40/5 supply,
9600 Hz supply
3. +28 vdc - SIRU dc axis supplies

+28 vde - SIRU accelerometer pulse torque electronics

Test Point Panel

The Test Point Panel provides necessary buffering for all available system
test points used for troubleshooting and system monitoring. (This panel was used

in Phase I only.)

6.3.2 Interconnect Box (ICB)

The ICE is mounted with the SIRU system on the test table and interfaces the
system to the slip ring assembly. The circuitry in the ICB includes wheel current
monitors with out-of-tolerance alarms, A8 multiplexers, AV multiplexers, gyro
interpolator multiplexers, pulse buffers, and mode controls for the clocks and scalers.
All available system operational test points can be monitored through the buffers
in the ICH.

6.3.3 Table Junction Box (TJB)

All the raw inertial data (A€, AV, interpolator) which were multiplexed in the
Interconnect Box for transmission through the slip rings are de-muliiplexed in the
TJB. This raw data are then buffered and sent to the computer for processing.
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6.3.4 RIP Test Box

This small box is located between the Electronic Assembly (EA) and the
Redundant Instrument Package (RIP) and contains dc current sensing resistors, wheel
current sensing iransformers, and swiiches to conirol the gyro and accelerometer

pulse torque electronics.

6.3.5 Monitor Console

This single bay console contains oscilloscopes for monitoring all gyro and
accelerometer error signal Lissajous patterns, adigital voltmeter for troubleshooting

and fest table rate servo power supplies and controls,
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7.0 System Test Results

This chapter describes and presents the results of system tests performed
to evaluate and confirm the operation of the SIRU system. A companion document,
SIRU Utilization Report, R-747, describes in additional detail the test program and
results for single position calibration (SPC), Local Level Navigation and Coearse
and Fine Alignment. Thus, only selected samples of test results in these areas
are included here. ‘

The performance of the failure detection andisolation (¥ DI) and of the statistical
DI Classification and Recompensation (FDICR) is covered in the chapters of this
report and R-747 which are devoted.: to those subjects, and does not appear in this
chapter. '

Test results from inertial components and gyro and accelerometer modules
operated outside of the system environment are covered in the appropriate volume
of this report, Volume II for gyros and gyro modules and Volume IV for ac-

celerometer and accelerometer modules.

Reliability operating results and assessments are presenied separately in
Chapter 5 of this report and for the SIRU Utilization program in R-747.

With the exceptions deseribed above, this chapter contains the principle resulis
of the SIRU test and evaluation program for the entire period from July 1970 through

December 1972,

7.1  System Operating Summary

This section presents the operating summary of the system over the entire
test period. The SIRU gyros in the system, through December 1972, accumulated a
total of 116,400 operating hours and a total of 694 system wheel stop-starts. The
accelerometers accumulatedatotal of 147,800 operating hours withevery instrument
operating in the systern in excess of 23,000 hours. Operating time for the system
was 23,300 hours with a complete complement of instruments and the electronics
assembly.

7.2 Calibration and Stability Data

Thig section presents results from calibration tests and shows short and
long-term instrument stability and the effects of =system cooldowns and module
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replacement. Accelerometer data, because of its security classification, have not

been included in this volume but are presented in Volume IV of this report.

7.2,1 Gyro Torque-to-Balance Stability Statistics

Figures 7.2.1 and 7.2.2 summarize stabilities of bias drift (NBD), g-sensitive
drifts (ADSRA, ADIA and ADQA), g2 or compliance drift, scale factor (SF) and input
axis alignments obtained acrogs remounting, cocldowns and test répetition.

The delta drift, or change in drift magnitude, alignment and SF have been
tabulated and an rms average calculated for the sample size to show the effect of
module remounting (Column 1) and of system cooldowns (Column 2). The larger
sample size of the cooldown data results because all installed instruments are affected

by a system cooldown whereas remounting affects only individual instruments.

Acomparisonof the g-sensitive drift for these two cases shows nearly identical
performance; that is, both the spread in delta magnitudes and the calculated rms
values for each term are similar. This is to be expected, as the environmental
impact on the instrument is nearly the same in each case (all power off). There is
no apparent effect from the physical movement of the module during remounting,
These g-sensitive drift changes across cooldown are a deficiency of the 18 IRIG
Mod B gyro population used in SIRU. An improved instrument, the 18 IRIG Mod D,
with a redesigned, integral wheel and gimbal (described in Volume II) has substantially
reduced this sensitivity. Theeguivalent performance of the Mod D across cooldowns
i5 documented to be on the order of .015% hr.,

The tabulation of standard deviations (Column 3) for the various terms is
derived from one to six months of calibration test results choszen to exclude all
interposing cooldowns or remounts. This data is considered to be represeniative
of the performance across cooldowns expected with the incorporation of the 18 IRIG

Mod D or an equivalent instrument.

The SF and alignment stability performance, for all threé cases, is very
respectable, and the standard deviations are indicative of the stability of the hardware
and the sensitivity or resolution of the calibration and data reduction process. As
explained in subsequent sections, reductions in SF differences across mounting have
been achieved through implementation of hardware modifications, and reductions in
alignment differences across mounting can be achieved through the use of an optical

calibration fixture.
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Table 7.2.1 shows the average sigma of the drift stability applicable to each
instrument in five of the test positions shown in Table 7.2.2, This data was derived
from overnight and weekend test runs of approximately 16 hoursto 60 hours duration,
Statistically, the system performance is seen to be relatively unaffected by position

with respect to gravity.
Table 7.2.1

Average Sigma of the SIRU System Overnight
Stability Data

Axis Gyro Pos#t N |Pos#2 N | Posf#3 N | Pos#d N | Pos#6 N
A MB-424A | 6.08 71 6.06 11 1.98 31 2,97 3| 3.16 6
B MB-426A | 9,39 7] 8.88 10 5. 87 31 1.178 4| 3.06 7
C MB-425 3.41 71 2.88 10 6,72 3 7.48 3 2.31 5
D MB-428B | 3.42 1] 2.91 2 —_ — | 4.3b 1 _— -
E MB-421 6.00 41 4,20 9 3.48 3 2.49 1 5.31 4
F MB-420A | 3.14 6 2.43 a 2,02 3 1.71 3 3.90

Values in ®/hr x 1075

N: Number of OQvernight or Weekend Test Runs

Represeniative data for the A, D and F axis gyros in calibration position 2
are shown in Figs. 7.2.3 through 7.2.10. Figures 7.2.3 through 7.2.5 show three
drift stability calibration tests on the A gyrd in calibration position 2 taken in May,
September and November, 1972, The module is oriented with its output axis (OA)
horizontal, sensing almost full negative earth rate and exhibiting gyro bias drift
and both ADIA and ADSRA magnitudes and stabilities. The standard deviations of
the drift stability data for the three samples are .0040, .0045 and .0041°fhr
respectively. Figures 7.2.6 through 7.2.8 show the results of the same sequence of
tests on the D gyro. In the calibration position 2, the D gyro module is oriented
with its OA horizontal, sensing almost 9%/ hr earth rate and exhibiting gyro bias
drift and both ADIA and AD3RA magnitudes and stability. The standard deviations
of the drift stability data for these three samples are .0027, .0020 and .0020°/hr
respeciively. Figures 7.2.9 and 7.2.10 show the F-gyro with a one sigma siability
of less than 0.0015°/hr. In the calibration position 2, the F-gyro module OA is
vertical and oriented sothatit senses approximately 4°/hr of earth rate and exhibits
essentially its bias drift magnitude and stability. When the F-gyro is placed in
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calibration position 6 (Fig. 7.2.11), the one sigma stability degrades to 0.0048%/ hr.
In calibration position 6, the F-gyromodule is oriented with its OA horizontal sensing
about 5.5°/hr of earth rate and exhibiting bias and both ADIA and ADSRA drift
magnitudes and stabilities. Comparison of the F-gyro data in the two calibration
positions illustirates the effect of the major g-sensitive drift terms on the short

term performance of the instruments,

A transient type instrument failure that was observed in system testing is
illustrated in Fig. 7.2.12, The data was taken on the E-gyrowhich had been randomly
identified as a failure by the SIRU FDI software, Thisg plot confirmed the transient
failure phenomena. The unit remained in the system for continued monitoring, and
additional random, real "soft" failure events were observed by the FDI software.
The plot indicates that the instrument float was restirained at the initiation of the
iest and experienced an exponential return to the nominal drift level (for that
orientation) over the first six to eight hours of the performance test. The one
sigma drift value of 0.04B°fhr and the wvisible roughness of the point-to-point
performance during the remaining fifty hours of the test are indicators of a probable
contaminant in the flotation fluid of this instrument, Subsequent teardown of this

unit verified the presence of a contaminant.

7.2.2 Day-to-Day Gyro Drift Stability

The error in earth rate sensed by each of the system gyros in calibration
position 2, onaday-to-day basis, is shownin Figs, 7.2.13 and 7.2.14. The instrument
compensation routine (RPOTT) was utilized in these tests so that ail the indicated
rates are free of drifts caused by the nominal calibrated gyro drift, ete. parameters,

There were no system cooldowns between the compensation updates,

For the entire population over the three month period, we observe from these
curves that the maximum data spread was better than 0.09%/hr including the sudden
shift in F-gyro performance and the ramping in the D-gyro. On the average, the
day-to-day performance is better than 0.015%/hr. It should be noted that gyTOo axes
A through D in this calibration orientation reflect g-sensitive as well as bias drift
stabilities since their input axes (IAs) and spin axes (SAg) have sizable components
along the g vector.

Both the E and F-gyros, whose OAs are vertical, indicate superior repeatable
day-to-day driff performance, a maximum spread of 0.00 7% hr (except for the F-gyro
calibration shift); this datacorrelates closely with the overnight stability data (Figs.
7.2.9 and 7.2.10). If the stable drift shift of 0.09°/hr for the F-gyrooccurred during
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an operational pericd, the statistical failure detection routine would have detected,
isolated, classified and recompensated this instrument. Recompensation to better
than .007°/hr has been demonstrated in laboratory testing: This characteristically
better performance in the OA vertical orientation provides the performance base
for the self-calibration features of the SPC procedure that has been implemented
under the SIRU Utilization program, R-747, '

7.2.3 End-to-End Gyro Drift Summation Repeatability

After "Dumping'’ System in the Gravitational Field

Table 7.2.3 shows the baseline net drif{ (all compensation terms applied and
the a priori earth rate drift subtracted) sensed by the system gyros in calibration
position 2. The system is then rotated about the Z-axis (horizontal) such that the
X-axis is now vertical up {(calibration position 1). The calibration position 1 data
shows a maximum drift error of -0.0228%/hr in the E-gyro while the majority of
wnits indicate better than 0.015%/hr. This stability across up-to-down rotation in

the g field is indicative of a well calibrated system.
Table 7.2. 3

SIRU Gyro Drift Rate Errors (With Drift Parameter
Compensation Applied)—For the Cal Pos 2
System ''Dumped’ to Cal Pos 1 and then back to Cal Pos 2

System System Axis
Qrientation A B C b} E F
O/hr

Calibration Position 2
(Baseline) -, 00601 -.0111 | -.0026 L0039 L0030 -.0015

Calibration Positicn 1
Positioned System 180°
About Z-Axis -.0032 | -.0063 .0202 | -.0054 | -, 0228 .0118

Calibration Position 2 |-,0093 | -.0034 |-.0062 L0092 | -. 0062 ] ~. 0015

Calibration Position 2
Error With Respect To

Baseline -. 0033 .0076 | -,0036 . 0052 | -, 0092 0
X
(NORTH? ‘ {(NORTH}
- Y {KAST) Y (WEST) -
! ég g
X
CAL. POS. 2 CAL., POS. 1t
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Upon returning again to calibration position 2, each gyro'sl net drift is again
calculated. The maximum error with the gyros returned to their original orientation
is ,0092%/hr and the average return accuracy is within 0.005%/hr of the previous
calibration position 2 drift summations. This small change is primarily due to the
effect on the module electronics of the thermal gradients generated within the module

by "dumping".

7.2.4 Gyro Scale Factor Linearity

Figure 7.2.13 is typical of the system's positive and negative SF linearity
over the range of 0.09 rad/sec to 0.38 fad/sec for each of the SIRU gyro modules.
Note that the plus and minus SF foreach gyrois different, and each gyro’s deviation
from nominal is different, In the system implementation each gyro pulse update is
corrected by the compensation software for a calibrated deviation from nominal
for both its plus and minus SF corresponding to the plus and minus 0.125 rad/sec
input. The linearity curves, therefore, reflect the error propagation from the
calibrated value. This data was obtained by extending the dynamic calibration
program (JIMK) to include the extra rate inputs required. The maximum spread
for all systern axes is approximately 50 ppm over the range of test rates.
Incorporation of the point-slope compensation routine, developed and implemented
onthe SPOT program (NASA Contract NASS-6823) and reportedin Draper Laboratory
report R-743, would reduce the SF deviation from the compensated value for these

instruments to approximately 10 ppm for input rates up to 1 rad/sec,
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Fig. 7.2.15 Gyro Scale Factor Linearity Obtained at System Level Testing
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7.3 Component Test to System Test Parameter Transfer

In general, transferability with reasonable performance has been achieved
(see Figs. 7.2.1 and 7.2.2) during the course of the test program. However, problem
areas were encountered in the demonstration of transferability of module calibration
data between the gyro or accelerometer module normalization test area and in
subsequent tests after installation in the system. These problems and corresponding
recent test findings that indicate that significant improvements are obiainable are

reviewed below.

7.3.1 Gyro Module

A review of the non-g-sensitive (BD} gyro drift across transfer from the gyro
laboratory tests to SIRU system tests shows an rms value of .06 degrees per hour.
Recent efforts have shown this discrepancy to be the result of variationsin transistor
leakage in the pulse torque-to-balance loop H switch dependent upon the residual
polarity of the switch after torquing. Inaddition, an errorinone of the data reduction
programs was uncovered that introduced an uncertainty of approximately 0.12%nr.
This error, when combined with the polarity dependency, appears to account for
the BD transferability discrepancies. Special system tests conducted sinceisclation
of these causes have shown a maximum delta BD of .03 degrees per hour between
the module and system tests. This magnitude can be further reduced in the future
by modifying the calibration and system compensation programs and the computer
interface so that the BDD compensation will be able to correct for H switch polarity
leakage dependency. The interface modification would enable the separate ac-
cumulation of plus and minus A pulses in each input/output (I/0) iteration. This
I/O modification would enable tracking of the individual polarity states of the torquing
circuits and permit the implementation of a precise software compensation routine

for the dual BD) magnitudes.

Torquer SI' shifts (approximately 150 ppm) between module and system tests
had been evidenced and were investigated. The ST magnitude was found to be sensitive
to variations in the level of the 40v excitation between the component test area and
the system test area. Tests were conducted with several pulse to‘rque electronics
(PTE) modules in SIRU gyro module #10 to evaluate:

iy DC amplifier circuit stability

2) SI sensitivity to 40v dc supply variations
3 SF stability

4) SF linedrity

5) SF sensitivity to RC network tuning
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Modification of the dc amplifier compensation, combined with an increase in
the padded resistance of the torquer circuit and resistive tuning of the torquer circuit,
has proven successful in desensitizing the SF to variations in the 40v excitation,
Tests with a modified module have demonstrated a significant improvement; the
delta SF between module and system tests was reduced to a maximum of 13 ppm.

Transfer of alignment from laboratory to system mounting has not been fully
verified, although module alignment repeatability after a system alignment calibration
and then across a subsequent removal of the module with a cooldown and remounting
has been excellent, e.g., an rms of 8 Ge¢ and a maximum spread of 20 fed. The
demonstration of absoclute transferability of alignment calibration between the
laboratory and system has been limited by the non-availability of the precision optical
calibration fixture mentioned earlier, (design and assembly of such a gauge was
not effected during this program because of fiscal and time constraints) that could
be installed in each system 7-frame module location. This fixture would enable
the determination of the frame pad alignments with respect to the system reference
optical cube and allow correlation of laboratory and system data, In general, the
limited correlated test work devoted to replacement of different modules in the
same n-irame slot indicates that the absolute transferahbility is on the order of 4

SN
sec,

7.3.2 Accelerometer Module

The variation in accelerometer bias from laboratory test to system test has
been acceptable with an rms value of 21 micro g's. The rms value of SF deltas
from laboratory to system operationis 29 ppm. No attempt has been made to reduce
this value. If an application requirement for a better SF match existed, a task
could be initiated to reduce this value to less than 15 ppm rms (conservatively
estimated). The status of alignment transfer for the accelerometer module is the

same as for the gyro module.

7.4 Real-Time Atftitude Error Propagation

Tests were conducted with various combinations of zero, one and two instrument
failures in static and dynamic envircnments to determine the error propagation
characteristics of the redundant system. Tests were run with the body axes X, Y,
and 7 vertical and down. Constant angular rates of 0.4, 4, 10, 16, 26 and 40°/sec
in both directions and oscillatory tests of 0,25 Hz,20° p-p, 0.50 Hz,15° p~p, 3.0 Hz,
3/4° p-p, and 5.0 Hz,1/4° p-p were conducted.
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The representative data included in this section are presented as the attitude
error between the body (true) and computed (system error) reference frames as a
function of time., The predominant dynamic errors appearing in the plots are due
to OA coupling and pseudo-coning. Other dynamic errors due to SA cross coupling,
anisoinertia, and SI* errors are present ic a lesser degree. A large repeatable
error appearing in these plots is due to a test table encoder error of 80 sed peak

to peak over one table revolution,

7.4.1 Static Quaternion Attitude Tests

Figure 7.4.1 istypical of the static test results., Even though the test duration
isonly 14 hours, a 24 hour pericd in the X, Y and Z attitude errors can be observed,
The error in the quaternion is quite small, a maximum of 2.5 milliradians in the
14 hour period is shown on the X-axis. This corresponds to a gyro drift

miscompensation and cross coupling error that is equivalent {o less thana 0.01%hr,

7.4.2 Constant Angular Rate Tesis

Inputs, during dynamic {esting, were impressed about the X, Y, and Z body

axes, No multiple axis testing was included,

Figures 7.4.2 through 7.4.4 present closure errors for the quaternion attitude
expressed in {erms of SF error for the X (input) axis and equivalent misalignment
errors for the axes perpendicular to the rate vector, With respect to Figs. 7.4.2
and 7.4.3, the equivalent system alipnment uncertainties correspond to those
out-of-plane angles, which, when operatedon by the total angle traverse accumulated
about the X-axis, would yield the observed error inthe output of the attitude algorithm
axes that are orthogonal (Y and Z} to the rotational axis X. As seen from these
figures, the equivalent system alignment uncertainty was well bounded, approximately
10 5/58, regardless of the failure combination. It is very interesting tonote, however,
that when the L and F-gyro axes were failed, i.e., not used in the least-squares
processing matrix for the triad solution, the equivalent misalignment errors were

essentially nulled.

This result is indicative of a miscalibration load error in either the E or F
instruments. Analysis of the equation stiructure for the four-instrument processing
equations, Appendix A, shows that the F-gyro weighting becomes more dominant
with the failure combinations that were exercised. The F-axis data in the Y-axis
triad solution with gyro A and D failed increases in weighting from 0.425 with no
failures to 0.638. Similarly, in the Z-axis solution, weighting increases from 0.425
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to 0.607 with gyro A and D failed. Considering the foregoing factors, the relative
test time for the different rotational rates and the number of revolutions, it appears
that the equivalent system alignment spread in the data shown was primarily due to
an approximately 0, 03%/hr drift calibration error in the F-pgyro. Thisisnotunexpected
since no special care was taken to obtain a precise calibration load prior to this
test sequence. In addition, in the calibration sequence run 14 days after these
performance tests, an F-gyrodrift performance change from the previous calibration
of 0.18%/hr was observed. The F-gyroinstability was eventually traced to a random
malfunctionin the torquing electronics causing variance type bias performance failure

phenomena.

With regard to I'ig. 7.4.4, the equivalent system X-axis $F error was defined
by comparing the attitude algorithm output X-axis error to the total angle rotation
of the X-axis. Recall that the compensation algorithm used in SIRU corresponds to
a nominal SF calibration at approximately 0.125%/sec. From the test data in the
figure, across all of the combinations in the rate region between 4 and 400fsec, the
equivalent SF error is quite small, a spread of approximately 10 ppm. This
performance is consistent with the SF linearity performance for individual
insiruments shown in Fig., 7.2.15. The roll off at lower rates (0.4°/secr) is also
consistent with data observations on individual instruments and generally relates
to the uncertainties introduced in the estimation of SF calibration at low rates by
the gyro drift calibration uncertainties, The 50 ppm drop across the no failure and
E and F-gyro failure conditions is therefore consistent with the test catibration
condition. The system ST performance is well bounded and reflects the general
guality of the system gyrotorquing performance. Useof a SF linearity compensation
routine, as discussed previously, would have yielded improved performance. H is
interesting tonote that the A and D-gyro failure combination resulted in an increase
in the equivalent SF error at the low rates of about 40 ppm. Once again, this result
appears tocorrespond to the bias compensation error in the ¥-gyro since the X-axis
iriad solution weighting doesnotuse the F-gyro when there areno failures. However,
with A and D-gyro failed, it is scaled to 0.557.

Figures 7.4.5 through 7.4.8 present quaternion attitude as a function of time
with and without OA coupling compensation and with no failures,

The effect of OA coupling errors, resulting from a step rate input, in terms
of the error in the indication of the inertial frame is evidenced in Fig. 7.4.5. As
expected, an inertial frame error in the Y and the Z axes occurs that corresponds
to the change in rate applied about the X reference triad axis. The rate change
affects the E and F instruments which have their OAs colinear with the X-axis, it
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results in an erronecus E and I'-gyro output and a corresponding error in the Y
and Z iriad solution. This output is proportional to the OA coupling coefficient.
The Y and Z axis solution error results in the sinusoidal Y and Z error curves,
Fig. 7.4.5. These error curves correspond to the indication of the ¥ and 7 body
axis orientation with respect to a perfect non-rotating inertial frame. The Y and Z
axis sinusold errors are 1200 urads peak to peak, and the sinusocidal error in the X
axis corresponds to the table encoder calibration error (80 ge?é‘, 400 wrad). When
the table rotation is stopped, an opposite polarity change of rate occurs with a
corresponding £ and F-gyro output that retarns theinertial indication to the correct
orientation with no net error due to OA coupling, The net offsets at the end of the
test are primarily due to SF and alignment error propagation. With OA coupling
compensation implemented in software, the magnitude of the attitude error in the Y
and Z axes for the same input rate step was reduced to 400 urads peak to peak,
Fig. 7.4.6.

The variationin OA coupling error between tests is attributable to the manual

setting of angular rate and rate magnitude (i.e., variation in w magnitude and tire).

The effect of OA coupling error in an oscillatory environment is dramatically
presented in the guaternion attitude plot of Fig. 7.4.7. The Z-axis attitude drift,
termed pseudo—coning,* results when the algorithm receives information from the
instruments for apparent oscillatory inputs 50° out of phase and of the same frequency
about two axes (X and Y). The X-axis oscillation is the true sensed input and the
Y-axis oscillation is the false information caused by the OA coupling error of the
E and F-gyros. The Y-axis sinusoid is the direct result of the OA coupling error
term and the X-axis sinusoid is a function of the encoder error. When QA
compensation is effected, Fig. 7.4.8, the Y-axie OA coupling induced sinusoid is
compensated and the Z-axis attitude drift error is essentially removed. The X-axis

sinusold error is essentially the table encoder error.

A comparison of the theoretical and measured pseudo-coning drifis for the
five oscillatory inputs, presented in Table 7.4.1, indicates the high degree of
correlation achieved in these tests.

A complete description of the propagation andeffects of pseudo-coning is presented
in the Final Report, Strapdown System Performance Optimization Test Evaluations
(SPOT) by Richard Blaha and Jerold Gilmore, R-743, February, 1973,
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Table 4.1.1

SIRU Error Propagation Results for Oscillatory Inputs

Without QA Coupling Compensation Wilh OA Coupling Compensation|
X-Axis Approximale Theoretical Actual T'seudo-Coning| End-to-End Error | Attitude
Oscillatory Inputs Pseudo=-Coning Drift {2/hr) Drift (¢/hr) Expressed in ¢/hr (sec)
15 p-p at 0.5 Hz 22,20 21,75 0. 30% 16
20° p-p at 0.25 Hz 10. 20 10.05 0. 30% 16
3/4° p-p at 3.0 Hz 1.95 1,05 0. 30% 16
29 p-p at 1.0 He 2,55 1.50 0. 30% 16
1/4° p-p at 5,0 Hz 0. 60 None Apparoent B, 08% 4

50

“Within the guantization uncertainty of the test data

7.5 Self- Alignment and Navigation Performance Comparisons

Table 7.5.1 presents standard deviations for latitude, longitude, azimuth and
leveling of the SIRU system calculated from the one sigma values of drift of the
SIRU instruments derived from calibration testing, The first data column shows
alipnment and navigation performance calculated from the instrument one sigma
values over a 6 month uninierrupted operating period. The second data column
shows alignment and navigation performance based on instrument calibration shifts
across system cooldown. The calculated results also reflect accelerometer
performance in the SIRU module configuration. These calculations do not reflect
the performance improvements that would be attained using the statistical self-
calibration techniques or the SPC software developedin the SIRU Utilization Program,
R-747. Similarly, the calculations are based on the population data, and the
improvements inherent in the hardware/software modifications to correct for the
torque loop H switch polarity (bias) leakage problem (Section 7,.3.1) have not been
factored in. Tinally, incorporation of the redesigned gyro, 18 IRIG PM Mod D,
with its reduced cooldown sensitivities, would yield significant improvements. For
example, the Mod D bias stability across cooldowns demonstrates improvement by -
afactorof three and the ADIA and ADSRA stability by a factor of sixtoeight compared
to Mod B performance,.
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Table 7.5.1

Projected Alignment and Navigation Performance

Gyro lo Error Models
Parameter No Cooldqwns
or Mountings Across
{6 Months) Cooldown -
NBD (°/hr) 0,015 0.05
ADOA (°/hr/g) 0,005 0.01
235 ADIA (®/hr/g) 0.02 0.08
EE‘EE ADSRA (O/hrcf)g) , 0.02 0.06
L= Compliance (~ /hr/g”) 0. 008 0.025
S0 Alignment (£od) 2.0 4.0
Scale Factor (ppm) ic. 0 22,0
*North Axis Drift (°/hr) 0.016 0.058
w | Kast Axis Drift (“/hr) 0.013 0.046
igg g __Vertical Axis Drift (°/hr) 0.018 0.0863
EEE ::>;L,atitude Error (nm/hr) 0.87 3.07
5“ & :Longitudc Error (nm/hr) 1,07 3.87
A " Initial Azimuth Alignment (mr) 1.18 4,15
Leveling (fed) ‘ 10.0 10.0

mSystem aligned X-axis down, Y-axis east, Z-axis south

B
Slope for first two hours of navigation run

“"TAt SIRU laboratory latitude

The system performance across caoldowns in alipnment using the Mod 1D is

projected to be equivalent to 1 mr in azimuth alignment.

Figures 7.5.1 and 7.5.2 present typical navigation test datafor the SIRU system
taken in the static test condition. A comparison of these plots with the calculated
latitude and longitude errors of Table 7.5.1 indicates that the one sigma values of

the static error sources used in the calculations represent a conservative system

end-to-end performance,
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PRECEDING PAGE BLANK NOT FILMED

8.0 Program Milestone History

This chapter of the SIRU Development IFinal Report presents the history of
the SIRU development as a series of significant milestones extending from May,
1968 through November, 1971, Subsequent history is summarized in the System
Log, Volume III of the SIRU 1Ttilization Report, R-747.

8.1 Program Initiation

Technical Proposal

In May, 1968, the Draper Laboratory in response to NASA RUP
#BG131-47-8-533P submitted a Technical Proposal to NASA describing a strapdown
system which would replace certain portions of the Apollo primary Guidance,
Navigation and Control system as required to support the long term manned space
flights contemplated for the Apollo Applications Program,

Contract Award

Work on the SIRU system commenced under contract NAS9-8242 in June, 1968,
Delivery called for one developmental modular redundant strapdown system based
on the dodecahedron geometric concept which, in a production version, would provide
a capability to perform a 120 day mission with a .999 mission success probability
followed by a one-half hour reentry phase with .2999 success probability,

The SIRU design configuration was specified to be compatible with mounting
in an Apollo spacecraft in the same equipment bay, replacing the Apollo three gimbaled
IMU. The design was to be compatible with the Apollovibration and shock environment
with avacuum capability using conductive (liguid coolant) heat transfer. In addition,

the system was to be compatible with a detachable coldplate.

The gyi‘oscope specified by NASA for the SIRU design was the Draper
Laboratory designed strapdown instrument, the 18 IRIG Mod B. Thisunitis afloated,
single-degree-of-freedom (S5DF) gyroscope, magnetically suspended, with a gas
bearing wheel design and a 5 radian per second slew capability, Builtwith a permanent
magnet torquer, it is scaled for torque-to-balance operation with input rates up to
one radian per second. The accelerometer specified by NASA was the Draper
Laboratory size 16 Permanent Magnet Torquer Pulsed Integrating Pendulous Acceler-
ometer (PMT PIPA). This unit is a floated, SDF, magnetically suspended specific

force receiver designed for operation in a torque-to-balance mode. Itis distinguished
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from its predecessor, the Apollo PIPA, by inclusion of a PM torquer, a solid float

and a more conventional bellows arrangement.

3.2 Design and Construction

Significant program milestones occurring during the design and construction

of the SIRU engineering meodel were as follows:

a)

b)

c)

d}

e)

f)

h)

September 1968, Initial Design Review.—The first of the two required
design reviews with NASA was held September 16-18, 1968, The overall
SIRU mechanical and electronic design including the computer (DCA)
was presented and approved.

February 1969, Second Design Review.—The second design review with
NASA was held at MIT February 4, 6 and 7, 19683, Specific mechanical
and electronic design features were presenied, modification direction
was received and the plans approved as modified,

May 1969, Contract Review and Evaluation.— An MSC/MIT program
reviewwas held at MIT on May 6-9, 1969, The principle administrative
actions were: elimination of the multiplexer from the deliverable
hardware and approval of the GSE design.

July 1969, SIRU Progress Review.-— An MSC/MIT progress review was
held at MSC, Houstonon July 28-29, 1969, Hardware status, completion
schedules and problem areas were presented and discussed.

January 1970, First Six Position Calibration Test.—On January 27, 1970
the first six position calibration test was run. The second six position
test was completed on February 13, 1970,

March 1970, IBM 360 Plotting Program Implemented.—On March 18,
1970 the IBM 360 plotting program became operative. Overnight stability
data is placed on Digistore tape by the MDGO program and then processed
by the IBM 360.

April 1970, Deletion of Digital Computational Assembly (DCA}. —In
accordance with modification No. 5 to NASB-8242 the requirement for
delivery of a breadboard DCA and associated software was eliminated
as of April 1, 1970 for budgetary reasons., At that time a breadboard
simplex model had been constructed, initial instiruction capability
checkout was. completed and 60% of the instruction combinations had
been run and verified.

June 1970, SIRU Assembly and Checkout Completed. —System hardware
and software are in operating condition ready for NASA "selloff"

demonstration.
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i)

j)

k)

1)

m)

July 1970, NASA Acceptahce Testing Successfully Completed. — The
SIRU demonstration and " selloff" tests were conducted at Draper Lahora-
tory on July 22-24, 1970, The system was accepted subject to correction
of minor discrepancies and instigation of configuration control, By mutual
agreement between NASA and MIT, SIRU remained at Draper Laboratory
to allow a demonstration for industry to be presented in September,
September 1970, Industrial Symposium on SIRU.— An Industrial Sympo-
sium was presented for space shuttle contractors and other interested
parties at MIT on September 9-10, 1970. Titled "Design Principles for
a Modular Redundant Inertial System" it included demonstrations of the
operating SIRU system.

November 1870, Software Improvements Incorporated. — Attitude algo-
rithm and failure isolation routines were speeded by 48% at a cost of
200 memorywords. The change permitted improvement in adaptation
time for a detected failure. Incorporation of the gyro interpolator into
the aititude algorithm software eliminated pulse bursting in the loop
performance, :
March 1871, Gyro Module Inferpolator/Compensator Retrofit Complete.
—In March, 1271, the task of retrofitting all gyro modules with Interpola-
tor/Compensators was completed. The system had been operating with
a complete set of retrofitied modules since the first of the year,
November 1271, Close of SIRU Development.— All static and dynamic

error compensation routines were in successful operation,

185
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8.0 Conclusions and Recommendations

9.1 Introduction

This report has presented the hardware and basic scoftware status of the SIRU
Redundant Modular Strapdown system development program. The SIRU system
achievements in both hardware and software demonstrate several original applica-
tions of new technology which represent significant state of the art inertial system
milestones. Some of the more noteworthy achievements that have been developed
and successfully demonstrated by the SIRU program are described in the following
Conclusion section. Recommendations for further development and evaluation of
the strapdown redundant, modularized, fault tolerant guidance and navigation system

are provided in Section 3.0, Recommendations.
9.2 Conclusions
9.2.1 Hardware

SIRU isthe first designed, fabricated and test evaluated, integrated, redundant
strapdown inertial hardware mechanization. It has uniquely evolved and matured
concepts of redundancy based on dodecahedron geometry, This hardware is free
from single point failure mechanisms and its fault-iolerant operational features

have been successfully demonstirated with multiple "hard” and "soft' failures.

The SIRU, pulse-torgued, strapdown, mechanization has demonsirated wide
dynamic range (one rad/sec) with performance equivalent in many dynamic environ-
ments to that of commercial gimbal systems, During the course of this program
significant strides in achieving stable and precise strapdown pulse weight scale
factor and alignment performance were made in both single degree-of-freedom gyro
and ternary pulse-torgue control technology at the system test level, e.g., gyro
electronics long term scale factor (SF) stability of 10 ppm rms over a six month

test period (no cooldowns) and 22 ppm rms over two years operation was achieved,

SIRU represents an initial demonstration of instrument functional modularity.
Concepts of functional instrument modularity with interchangeable mechanical and
electrical interfaces, and prealigned and calibratedtransferability were implemented,
matured and demonstrated (e.g., across mountings and cooldowns gyro SF
repeatability of 30 ppm rms and alig'nmerﬂ: repeatability of 8 £ed rms were achieved

in system operation).
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9,2.2 Software

SIRU represents the first hardware with an operating, integrated and evaluated
redundancy management software system. This system includes self-contained fault
detection and isolation (FDI) with reorganizational processing routines and recertifi-
cation of "healed" or transient failures. The FDI algorithms have demonstrated
reliable nonambiguous fault isolation with as many as two gyro and two accelerometer

i

measurement axes failures and positive fault detection for a third failure. N

The SIRU program has demonstrated that a comprehensive inertial navigation
and redundancy management software systemn for a strapdown dodecahedron redundant
configuration can be successfully integrated in a representative minicomputer
(DDP-516)operating at 50 iterations per second (36% machine time) with a reasonable
memory allocation (7000-16-bit words). This software system includes the strapdown
processing (twelve instrument static and dynamic compensation, attitude and velocity
alporithms) redundancy management (FDI, processing, reorganization, etc.}, system

7 e Wi e T W
software ipreflight calibration, alignment, " and navigation}, and operating
sofiware (dedicated execuiive, 1/O servicing and display).

Some discussion based on the total SIRU test experience, as it relates to and

affirms the motivation for a redundant implementation, seems desirable.

The SIRU equipment, although a first development model, has proven to be
remarkably reliable {over 20,000 hours of system operation with enly 3 hardware
failures (two of which would typically have been edited out of reliability estimates
as workmanship or correctable design deficiencies). The fact that these failures
didoccur during the SIRU system teeting and that they did not compromise continuing
system operationis of significance. In each case the processing software automati-
cally adapted to reflect the failure status and changed the processing structure to
omit bad data and yield a minimum error propagation solution for continued
satisfactory sysiem performance. First, from a hardware point of view the failures
did not result in any systematic degradation, i.e., the redundant hardware features

retained their integrity and no secondary system operational or performance effects

*

During the SIRU Utilization phase of this contract (R-747), third failure isolation
capabilities were demonstrated for those situations in which a third performance
failure error magnitude was worse than analready existing and isolated performance
failure. In addition, the capability to recalibrate and thereby recertify a failure
that corresponds to a stable performance change was also demonstrated.

ok .
Described in SIRU Utilization Report, R-T747.
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were observed. Second, although several of the failures were of a performance
degradation type that could not have been detected or isolated bjr éelf—moni’toring
electronics typically identifiedas BITE (Built-in Test Equipment), they were reliably
detected and isolated by the FDI software algorithms,

The soft failures that did occur present a broad spectrum of different failure
mode phenomena, e.g., a random float-freedom gyro problem; a malfanétioning
preamplifier in the torque loop with attendent variance type dataoutput performance
and a gyro SF degradation due toa gradually deteriorating solder joint. Inasimplex
triad inertial system implementation, these types of failure modes would, in a space
mission, probably cause a mission abort, Had the transient failures occurred in a
critical mission phase, crew safety would probably be endangered. In a prelaunch
or preflight phase, the transient gyro float-freedom and variance dataoutput failure
phenomena might possibly have been observed on a coincidental basis. Even if
observed, verification andisolation diagnostics in the vehicle would be time consutning
with limited probability of success. Incomparison, the SIRU system using real-time
continuous F DI detected andisolated the failures to the replaceable modular functional
axes. In each case, as the system repair wasg being made, the utility and advantage
of the interchangeable modular insirument module concept was clearly in evidence.
The faulty instrument module was readily replaced by another module, within the

tolerance described previously, usually in less than six minutes.

The motivating need for a redundant system implementation remains apparent
for migsions with time-critical reliability phases or long term missions, as
characterized by the space shuttle, anticipated satellite space missions and current
and anticipated commercial and military aircraft operations. The SIRU program
has demonstrated a realizable and efficient solution to the high réliability operational
readiness questions posed by these applications.

In the final summary the concepts formulated and developed in the SIRU
dodecahedron redundant modular configuration have heen successfully demonstrated
and matured in both hardware and software. Commiiment of strapdown technology
for avariety of applications is forthcoming and the SIRU performance achievements

in strapdown technology represent another significant step toward that realization.

9,2.3 Supplementary Conclusions

As noted in the introduction of this repori, NASA in 1972, subsequent to the
basic development activity described in this report, funded additional SIRU effort
to further mature and utilize concepts of redundancy management and to implement
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other operational features such as preflight single position calibration, self-alignment
and navigation. This report refiectsthe achievements in hardware and basic software
prior to the program extension. Report R-747, a companion report, documents the
technical concepts and achievements in the development of statistical failure
detection, isolation, classification and recalibration (FDICR) technigues, as well as

the cperational software developments included in the SIRU Utilization program.

In recognition of the successful outcome of the effort in these areas some
supplementary conclusionary comment is in order in this report, especially as a
prelude to any recommendations regarding further coherent redundant system

technology development,

Some of the most noteworthy achievements during the additional development

demonstraticon effort were:

1) The implementation of astatistical FDICR technique based on the "wald"
sequential probability test. This technique enabled detection andisolation,
with a specified coverage (reliability, false and missed alarm
probabilities), of mean performance shifts at levels equivalent to 1.5
times the one sigma noiselevel of normal system operation. For example,
in a quiescent maneuver environment, the detection and isolation of a
bias shift as small as 0.07°/hr was routinely achieved with a background
noise level of 0.045%/hr. The noise background corresponded to the A8
quantizationin the twominute sampling period. Similarly, performance
standard deviation changes on the order of four times the nominal spread

were also detected and isolated.

The maximum attitude error accumulaticon prior to detection and
isolation of a performance failure was bounded at 40 fed independent of
the magnitude of the performance degradation. Bias and ramp recompen-
sation to better than .015%/hr and .0008%/hr/minute respectively were
demonstrated repeatedly for the static environment. Accelerometer bias
errors of 0.1 cm,"sec2 and ramp errors of 0.02 cmfseczfminute ina
static envirocnment were also detected and bias compensation to 0.02
c:m/sec2 or less effected.

2) A single position lumped parameter self-calibration to approximately
0.015°/hr or better in the static environment was consistently achieved

using the technique developed and implemented.
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3) The self-alignment scoftware, implemented in a coarse/fine sequential
program achieved totally acceptable magnitudes regardless -of the envi—
ronment input during testing. Coarse alipnment to less than 1% ina
fixed 260 second period and fine alignment fo less than 1 milliradian in
15 minutes were consistently attained,

4) End-to-end performance, demonstrated as the output of a local level

navigator, was on the order of 0.5 nm/hr or less for all static tests.

9.3 BRecommendations

The concepts of redundant modular strapdown technology have been clearly
demonstrated and matured in the 3IRU technology programs documented by these
reports. The modular hardware implementation and the operating software have
undergone a comprehensive laboratory evaluation. The ocbvious and next legical
evolutionary program step to establish confidence in this technology and to
demonstrate its unique advantages should be in the commitment of the SIRU system

to a realistic broad-based flight test evaluation.

Such a flight test effort should seek to establish a base line for Guidance and
Navigation performance of the strapdown implementation across the full spectrum -
of flight environments and mission phases. The utility of the redundant implementa-
tion with its fault tolerant operation and its ability t¢ provide a direct measure of
its operational readiness represents an important factor to evaluate and demonstrate
in pre-flight and- in-flight operations. Similarly, the logistic snd maintenance
enhancement offered by the comprehensive redundancy, self-test software, and
hardware modularity should be assessed in an operational environment. With respect
to the redundancy management design features, both the statistical reliability
enhancement and the significance of the SIRU dodecahedron's fail-operational

characteristics in time-critical mission phases can be evaluated and demonstrated.

Commitment of the SIRU technology to such atest program should be proceeded
by the integration of the SIRU inertial hardware with a complementary redundant
computer complex. Development of a special purpose redundant computer system
does not appear to be realistic technically nor economically feasible. A concept
basedon the utilization of available general purpose computers replicated intriplicate
with fail-safe input/output interfacing to achieve fault-tolerant, fail-operational
mission performance for a single "soft'" computer failure represents a practical
and realizable flight demonstration appreoach. However, the more challenging and
basic computer redundancy implementation approach requires the development of a

high confidence FDI technique for a dual computer complex. For example, in a
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triplicate system, after the first computer failure, should one abort the mission if
critical flight safety phases remain? Conversely, can one sufficiently characterize
potential computer failure modes, as they relate to total system operation, to enable
the development of a high confidence fail-operational FDI for the remaining duplex
configuration? At aminimum, the formulationotf asuitable dual redundant computer
complex with special emphasis on areliable FDI approach and means for re-initializa-
tion betweeen computers to resolve transient failure phenomena is highly recom-

mended for integration with the SIRU inertial subsystem,

Consistent with the integration of SIRU with the computer complex is the need
to fabricate and integrate a multiplexer interface unit with suitable, triplicate
computer, expansion capabilities,. The original SIRU multiplexer design (not
fabricated due to program funding limitations) should be reviewed and revised to
reflect the more advanced state of currently available electronics. The SIRU
laboratorytest experience, the computer complex FDI implementation as formulated,
and flight operations interactive man-machine considerations should also be reflected
in the advanced design. The built-in test equipment (BITE) features to be incorporated
in the multiplexer should complement the software FDI by enabling automatic fault
location diagnostics to the different axis functions (i.e., wheel supply, dc axis supply,

ete. ) to optimize system maintenance,

BITE should also incorporate failure status data display for those hardware
functions that donot reflect asunique axis failuresin the seftware FDI. This display
would communicate t¢ the mission operator in real-time the status ol the triple
redundant clocks and dual redundant scalers and 40v power supplies {these redundant
elements use hardware FDI and active or passive switching provisions in their

redundant mechanization).

Within the software area some limited development appears desirable to enable
amore comprehensive evaluation of possible pilot/system interfacing, The current
SIRU executive gofiware is dedicated and non-interactive except for mode switching
phases, i.e., alignment, navigation, ete. An interactive executive allowing flexible
examination of different system parameters, modification of compensation loads,
redundancy in processing conditions and maintenance diagnostics should be developed.
In addition, the incorporation of the software compensation routines evolved in the
SPOT program (MIT/DL Report R-743) for compensation of anisoinertia, SRA cross
coupling and scale factor linearity appears to be degirable and a review of the OA

compensation bandwidth characteristics should be effected.
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In the area of advanced software development, the concepts evolved in the
SIRU Utilization program can be advantageously matured. Studies to relate the
FDI criteria automatically to mission phase and dynamics should be conducted and
corresponding software demonstrations effected. The single-position self-calibration
technique should be augmented to advantageously utilize optical alignment data as
well as other alignment aids., The evolution of techniques to apportion drift change
correction among the bias and g-sensitive coefficients should be initiated. Finally,
the efficient utilization for flight operations of the total integrated redundant system
with SIRU and the redundant computer complex as a core structure could be
advantageously explored. For example, the SIRU sensing data could also redundantly
provide flight control and stabilization sensing and attitude and heading display,
thereby efficiently and reliably replacing a multiplicity of independent sensors.
The integration of radic-navigation and landing aids with the SIRU concept in a
redundant implementation should be explored to evaluate total system concepts and
to develop and demonstrate operational inflightusage of such aids for inertial system
alignment and compensation improvement. The entire concept of statistical fault
detection, isolation, classification and recalibraticn evolved in the SIRU program
should be reviewed for more comprehensive total guidance, navigation, and control

system application.

Several hardware recommendations and studies appear to be desirable. The
SIRU hardware technelogy demonstrated modular concepts within the boundaries of
reasonable physical size and weight allocations that were possibleusing the electronic
components and packaging technology of the 1960's. The modularity concept is a
sound concept, creating both a building block system design and simplified logistic
and maintenance operations. The application of the technology of the 70's (expected
to include the maturing of medium-scale circuit integration, the advent of realizable
large-scaleintegration, and the availability of improved hybrid circuit capabilities)
to the modular concept would enable realization of a totally integrated modular concept,
A completely self-sufficient instrument module using a single power source and a
digital data bus concept for input and output could be realized. Preliminary studies
of such a design using the Charles Stark Draper Laboratory 13 size instrument
form factor and MSI/hybrid packaging techniquesindicate that an entire SIRU gystem
consisting of six each accelerometer and gyro self-contained modules (no supporting
electronic assembly) could be developed in a volume of 0.25 cubic feet which would
weigh less than 25 lbs. Basictosucha concept howeveris a second logistic objective;
to provide in the module interchangeable sensor compatibility features, i.e., ability
to interface with several different available inertial instruments. Study and
development in this area as well as in the inteprated modular approach is recom-

mended,
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Finally the continued evolution and improvement of strapdown inertial instru-
ments is considered most important. The Draper Laboratory 18 IRIG Mod B
gyroscope has been significantly matured during the course of the SIRU and recently
Navy sponsored programs. The performance and reliability of the permanent magnet
version of the 18 IRIG Mod D gyroscope has demonstrated significant potentials
and should be evaluated for high reliability, high performance, moderate rate
applications. Similarly, the size 13 gyro and accelerometer technology exhibits
the ability to accomodate an extremely wide dynamic rate range, in excess of 200°/sec,
and to provide moderate drift performance. Even smaller and more promising
concepts are under investigation, Industrial technology is making similar advances
and should alsc be encouraged. The cornerstone of future strapdown technology
and its acceptance lies in today's instrument development and continued support is

highly recommended,
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APPENDIX A

MATRIX FPROCESSOR

1. 0 Introduction

For the six gyros, in the SIRU system, the relationship between angular rate
inputs {w) about the selected triad axes and the gyro measurements {m) is conven-

iently expressed in matrix form in terms of the geometry as

m = Hb (1}
where
T _
b™ = I:“"x wy wz]
mT = [m jau! m m m m ]
a b c d e f
5 -8 -c -c o] o}
HL =| o o -3 8 c -C
c c o o s s
and
¢ = Cosine of the dodecahedron half angle
= 0.8506508083
s = Sine of the dodecahedron half angle

0.5257311122

1

Eguation (1) clearly shows the redundant information of the rates about the
triad axes (X, Y and Z) resident in the SIRU configuration, Data from any three

gyros (accelerometers) may be used to determine the equivalent triad axis rate

{acceleration).

The process structure used to obtain the equivalent triad solutions from the

dodecahedron array corresponds to a weighted least squares solution form -

b =@ ¢ im Tt ET ¢ lm



‘ .
where b is defined as the best triad solution estimate and ¢ corresponds to a di-
agonal 6 x 6 matrix whose terms represent the individual variances. This solution
provides a best estimate where both the geometric properties of the configuration

and the individual instrument performance statistics are considered,

For the SIRU system, welghting of the instruments! data was not considered
applicable and a status matrix A was substifuted for lf)"l._ All diagonal elements of
% are 1 when all instruments are performing satisfactorily, and the appropriate
element is set to 0 when an instrument failure is detected.

In the actual computer mechanization, this is accomplished by storage of
common constants (Kij} which are algebraically used to achieve the appropriatc
least squares solution based on the status of the instruments.

2.0 Implementation

To minimize computer operations, the matrix processor depicted in Figure
A-1 was implemented. '

Assemble Fail Status intoa
Six Bit Pattern as in the
Example for C & D Fail Below

001100
(FEDCBA)

Go to Multiply Block Having
Six Bit Pattern

000000 000001 111000
No A e o o @ D,E &F
Fail Fail Fail
Multiplication Multiplication . Multiplication

Fig. A-1 Matrix Processor



Figure A-2 presents an example of the '"No Fail" multiply block with the
desired matrix multiplication included for comparison. The matrix multiplication

requires a total of 18 multiplys whereas the implemented method requires only 6

multiplys, J
000 000

DESIRED MATRIX MULTIPLICATION: [TMA]

MX K1 -K1 -K2  -K2 0 0 MB

MY| =| 0 0 -K1 K1 K2  -K2 MC

MZ K2 K2 0 0 K1 K1 MD

ME

B

REQUIRES 18 MULTIPLYS

IMPLEMENTED:
MX = K1{MA - MB) - K2(MC + MD}

MY

[

K1(MD - MC) - K2(ME + MF)

MZ = K2(MA - MB} - K1(ME + MF)

REQUIRES 6§ MULTIPLYS

K1 = £=0,2628655561

[

K2 = %: 0.4253254042

T

FIGURE A-2 NO FAIL MULTIPLICATION

Figure A-3 compares the implemented manipulation with the desired matrix

multiplication for an "A-gyro Fail",



000 001

DESIRED MATRIX MULTIPLICATION:

_MA_
MX 0 -K4 -K7 =K7 K3 K3 MB
MY| =10 0 -K1 K1 K2 -K2 MC
MZ 0 K8 -K5 ~-K5 K6 Ké MD
ME

|_MF_

REQUIRES 18 MULTIPLYS

IMPLEMENTED:
MX = -K4 MB - KT(MC + MD} + K3(ME + MF)
MY = KI1{MD - MC} + K2{ME - MT)
MZ = K8 MB - K5(MC + MD) + K6(ME + MF)

REQUIRES 8 MULTIPLYS

K3 = s2c/2

K4 = g°

K5 = sc2/2

K6 = 8/2 (¢2+ 1) = K1 + K5
K7 = ¢/2 (s2 + 1) = K2 + K3
K8 = ¢?

FIGURE A-3 A FAIL MULTIPLICATION

As can be seen by the two examples given, this mechanization is more direct.
Table A-1 summarizes the matrices, constants and multiplys for all possible

combinationg of failures (3 maximum).



Number of Failed Instruments 0 1 2 3 Totals
Number of Matrices 1| 6 {15 |20 | a2
Number of Additional Constants 2> | & | 12 2 29
Number of Multiplys {Worst Case) 6 8 12 -9

"TABLE A-1

MATRIX PROCESSOR SUMMARY
3.0 TABULATION OF CONSTANTS AND MATRICES

3.1 Stored Constants

K1: 0.2628655561 K12: 0.0812200241
K2: 0,4253254042 K13;: 0.3130684100
K3: 0,1175570504 © K14: 0. 3440954801
K4: 0.1453085056 . K15: 0, 3942083341
K5: 0.1902113033 K16: 0, 5065553283
K6: 0.4530768594 K17: 0. 5567581822
K7: 0.5428824544 K18: 0. 6069610362
K8: 0,6155367074 K19: 0, 63798810629
K9: 0.5877852523 K20: 0. 0820835864
'K10: 0,9510565163 K21: 0. 3632712640
K11: 0.0502028540 - K22: 1,5388417686
3,2 Matrices
0 Fail - | |
Ki -K1° -K2 -K32 0 o
0 0 K1 Kl K2 -K2 000000
K2 K2 0 0 Kl Kt
1Fall  Fp g4 kY K7 K3 K3
A 0 0 -K1 K1 K2 -K2 000001
8 - -KF K
| 0 K8 K5 5 K6 6|
K4 0 -KT ~K7 -K3  -K3]
B 0 0 -KI K1 K2 -K2 000010
K8 0 K5 K5 K6 K6 |




»

2 Fail

K6
K3

K2

K3
K2

-K1
K5

K7

-K3

K7

-K10

K2

-K1

K9

-K13
-K12

K17

0 -K8 K5 -K5
0 K4 KT -K7
0 0 K1 K1
K8 © -K5 K5
K4 0 K7 -K7
0 0 K1 K1
K2 -K2 0 0
K6 K6 0 -KS8
K3 K3 0 K4
Kz -K2 0 0]
K6 K6 K& 0
K3 -K3 K4 0
K8 0 0 ]
K1 K2 -K2
0 Kio K10
0 0 0 o |
0 0 K9 -K9
0 o0 Kl K1
-K2 -K2 0 o |
K10 KI0 0 0O
0 0 0o 0
0  -K20 KIT -Kii
0 K11 K19 -KI§
0 -K14 K18 K15

000100

001000

010000

100000

006011

001100

110000

000101



o

FKIB
K12

| K17

K13
K12

K17

K1t
K14

K20

|—-Kll

-K14
K20

[ K18
K17

K19

-K13
Ki2

K17

-K11
K14

K20

-K11
-K14

K20

0

0

-K15
K11

K16

-K20
-K11

~K14

-K19
~K18

-K17

-K16
-K15

~-K11

i) -

-K20
-K11

K14

-K186
~K15

K11

~K19
-K18
K17

0 -K
0 K

0 K

-K16
K15

-K11

-K19
K18
-K17

K20 K11
K11 K16

K14 K15

0 -K1
0 K1l
0 K1

-K198
K18

K17

~-K16
K15

K11

-K17
K13

Kiz2

11 K17 |
16 -K19
15 K18
0 K12
0 -K17
0 K13
K12 0 |
K17 0
K13 D_J
“K17
-K19
K18
7 Kii |
9 -KI16
8 K15 |
—
0 -K12
0 -K17
) K13 |
K12  o©
K17 0
Ki3 0
0 -Ki4 |
0 -K20
0 K11

001001

010001

1000901

000110

001010

010010

100010

010100



3 Fails

AB,C

A,B,D

K15
-K11

K16

K15

K11

K16
K18

-K17

K19

-K18
K17
K19
~K18
K17
K19
-K15
K11
K16
¢ 0
0 0
0o 0
0 -2K9
0 0
0 0
0 -K9
0 -KI0
0 -K22
0 -K9
0 -K10
0 - K22
-2K10
0
0

0 -K17 . Ki4 0
0 Ki3 K20 0
0 -K12 K11 0

—
K17 0 0 K14
K13 0 0  -K20
K12 0 0 K11
K17 0 -K14 0|
K13 0 K20 O
Kiz2 0 K11 0

-2K9 K21  -K2t |
0 . K9 ~K9
0 K10 K10

0 -K21 K21 |
0 K9 K9
0 K10 K10
-K9 0 o |
Ki0 O 0
K22 0 2K10
-K9 0|
K10 0
_K22 2K10 O

0 0 - K22 K22 |

0 0 - K9 -K9

0 0 K10 K10

100100

011000

101000

000111

001011

010011

100011

001101



2K8
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—
K10
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K10
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K9

[ K10

-K22

-K10 0
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K9 0

~-K10
-K21

K9
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-K22 0
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-K10
K22

K9

Ko 0
K10 0

K22 o

~K9 o 0
K10 0 0
K21 00
0 -K22  -K22 |
0 K9 ~KO
0 K10 K10
-K9 0 0o
K10 ©0 0
K21 Q0
0 0 0
0 0 -2K9
0 0 0
0 0 0|
0 0 2KY O
0 0 0
0 0o 0
2K10 0 0
0 0o o
0 0 0
-2K10 0 0
0 D0
—
K22 0 -K10
-K9 0 -K22
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001110
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011100
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Appendix B

Gyro and Accelerometer Compensation Algorithms

This appendix provides a descriptive review of the gyro and accelerometer

compensation algorithms.

Figure B-1 illustrates the sequence of compensation and the flow of compensated

data through the matrix processor.
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Fig. B-1 Compensation Software Flow Chart

The first step in gyro compensation adds the finer quantization information
from the gyro interpolator electronics to the accumulated gyro pulses. This added

— . ~
information reduces the loop quantization from 44 sec fo approximately 5.5 sec per

pulse,

The resulting raw attitude datais scaled by the gyro scale factor to determine
Scaling is accomplished by first sizing the

the input axis angular rotation.



accumulated pulses to a nominal scale factor (an even power of 2 for computational
efficiency)}, and then, correcting for the deviation of the true scale factor from the
nominal value. The scale factor correction is determined for each gyro from the
calibration test data and stored in memory by a load making program.

Bias drift (NBD} is compensated with incremental corrections applied to the
gyropulse count. The magnitude of the correctionis derived from the NBD calibration

value (from static test) applied to the compensation iteration period.

Acceleration sensitive drift components (ADIA, ADOA, ADSRA, and major
compliance) are corrected by triad referenced acceleration estimates derived from
the accelerometer outputs., The gyro drift error magnitudes are calibrated using a
Six position procedure (discussed in Chapter 4), but are rescaled to the triad frame
for compensation purposes. Thus, the accelerometer derived velocity increments
in the {riad frame are applied directly to effect the appropriate correction to the
accumulated gyro pulses. The magnitude of correction is dependent on the drift
error magnitude, the velocity increment estimate, and the iteration peried. Since
the correction is based on triad referenced velocity data, the compensation scheme

is independent of first instrument failure and therefore is redundant.

Output axis coupling drift errors result from a lagging float motionin response
to rate changes about the output axis (OA). Hence, extra torque pulses will occur
tomaintain the float at its null position as the gyrocaseis accelerated. Compensation
is accomplished by using angular estimates about the OA of each gyro. These
acceleration estimates are derived directly from the body triad data (XYZ) since
each gyro's OA is colinear with the reference triad., The magnitude of the
compensation is determined by weighing the OA rate change estimates by the gyro
parameter ratio I/ H (moment of inertia about OA divided by wheel angular momentum),

Spin axis cross coupling and the anisoinertia drift errors result from
simultaneous rates applied about the input axis (IA) and the spin reference axis
(SRA). For the 18 IRIG Mod B gyro the anisoinertia magnitude is approximately
equal and of opposite effect to the §pin axis cross coupling error. Thus, the two
error sources cancel in the propagation of attitude errors. These error sources,
while correctable, are not compensated in SIRUat this time.

Gyro misalignment angle errors are compensated by subtracting from the
gyro pulse count the product of_ the estimated rate derived from the triad referenced
vectors and the fixed m_isalignment (determined from dynamic test). The gyro
misalignment calibration is obtained by each individual instrument referenced to



the dodecahedron frame. However, for compensation purposes, the alignment
magnitudes are projected to the triad configuration such that the triad derived rate
estimate can be applied directly in the compensation process. The additional
component of OA misalignment error, which represents the effect of float hangoff
due to the applied input rate, is lumped with the dynamic error term ({spin axis
cross coupling) described above.

Accelerometer Compensations

The accelerometer accumulated pulse data is scaled to determine the magnitude
of the velocity increment. An average scale factor, based on positive and negative

acceleration input calibrations, is used.

Accelerometer bias is compensated by adding increments to the pulse count.
The magnitude is based on the bias magnitude (from static test) and the duration of

the compensation interval.

The accelerometer misalignment angles are fixed quantities dependent on the

mounting alignment and determined by calibration tests. Misalignment errors are
corrected by subtracting the estimated acceleration errors due to the misalignments

from the input accelerometer pulse count.

Centripetal acceleration (Rw?) and tangential acceleration (Rw) normalization
iz reguired because of the dispersed locations of the individual accelerometers.
Ideally, the mass elements of all accelerometers should be located at a single point.
Since this condition is obviously impossible to obtain, corrections are introduced
to account for the distance from an assumed single point to the actual location of
each accelerometer mass element. The error correction is computed from this
distance, the body angular rate, and the change in rate over the compensation interval,
In SIRU, the A accelerometer mass element is the single point reference.

Accelerometer OA coupling, pendulous axis cross coupling and the G2 error
terms donot introduce substantial system errors and are not compensated in SIRU.

A complete software documentation package including detailed software
flowgrams and descriptions is presented separately as Volume III of this report,



APPENDIX C
GYRO AND ACCELERCMETER MODULE SPECIFICATIONS

The principle parameters of the gyro and accelerometer modules as
implemented for the SIRU system are specified in this appendix, They represent
performance consistent with the goals contained in the original NASA Statement of
Work and subsequent cost effective design tradeoffs. Design descriptions of the
individual circuits and the module connector pin listings are provided in Volume II

and Volume IV, respectively.

1. Gyro Module

a) Scale Factor (SF) Nominal Parameters
A6 Pulse 9718 L 9714 | 5715 | dians = 4.1 deo
SF Decay Characteristics Nominal 40 ppm/decade, maximum

80 ppm/decade
Interrogation Rate (Max Pulse Rate) 4800 pps +£1/2 ppm = F,

Loop Torque Rate Capability 1,025 rad/sec (1.0 minimum)
Torquer Duty Cycle {(15/16) (llFl) = 195 microseconds
of 208 microseconds
Stability 0.25 rad/sec in 24 hours (15 ppm p-p)
Stabilization Time One hour
SF Linearity : : + 30 ppm p-p
SF Thermal Sensitivity 1/2 ppm/°F
SF Voltage Sensitivities
PVR Supply 1 ppm/.05%
40v Supply 1 ppm/ 1% (within +5% range)
SI' Dynamic Sensitivity
Radial Displacement 25 ppm/rad/sec about OA
Axial or Radial g Loading 5 ppm/g



IA Alignment Stability

FanY
Thirty day stability with 3 room {emperature cooldowns 5 gec (rss)
Alignment Repeatibility (removal and replacement) 10 sfe\c (res)

Operational Characteristics

Power Supply Characteristics

DC Source Level Load {Max) Ripple
1, 40.0 vde + 0.4 vdc 165 ma <0,43 Vemes
2, 15.000 vde + 0,008 vdc 11 ma <0.002 v
, rms
3. -10.0 vde + 0.5 vde 25 ma <0.140 Vems
4, 10.0 vde £ 0.5 vde 25 ma <0.140 Vims
3. 5.25 vde + 0.25 vdc 140 ma <0.1 Vims
6. 28 vde t 3 vde 760 ma <{(.5 v
rms
7. 28 vde + 0.5 vde 55 ma <0.3 Voems ‘
8. -20vde £1.0 vdc 25 ma <0.2 Vims
AC
1. 9600 Hz, 8.0 Vome * 1%, 2.5 watts max, harmonic content < 2% sine
wave
2, 800 Hz, 2 phase, 28 Vims T 5%, 2.6 watts max each phase, phase A
leads phase B by 90° + 0.5°, harmonic content < 20%
3. 9600 Hz and 800 Hz signals in synchronization



Timing Pulse Characteristics

Interrogate pulse

4.5 + 0.5 vde

" Amplitude
Width 4 0.4 microsecondé
Repetition Rate 4.8 kpps ’
Switch pulse pair
Amplitude 4.5 + 0.5 vde
Width 0.4 microseconds
Spacing 13 microseconds

4.8 kpps
2 microseconds + 1/2

Repetition Rate
Lag of reset pulse to interrogate pulse
microseconds

Output Signal Requirements

5 vdc amplitude, 2 microseconds width
4.5 £ 0.5 vde amplitude, 0 to 31 pulses
at 1.5 mec rate, 200 nanoseconds width,

Ag 'phlses

Interpolator pulses

first pulse starts 10 microseconds
t 1 microsecond after interrogate pulse
leading edge

Interpolator end-of-data pulse 4.5 + 0.5 vdc amplitude, 200 nanoseconds
width, 208.33 microseconds repetition rate,
pulse occurs 3L.34 microseconds after

interrogate pulse leading edge.

Monitoring Line Identification

PVR power test point

2, Single ended SG monitor point, 1250 mv/milliradian of angular input
about.IA at 9600 Hz

3. SF resistance test point _

4, Gyro temperature sensor #4, 500 ohms + 0.5 ohms at operating

temperature (+.00226 ohms/ohm/°F).
5. DC amplifier test point



Auxiliary Input Requirements

1. 0 to 28 vde at 0 to 0.4 amp (for adjustable fixed heat when used with
GSE only).
2, Frequency and Timing Accuracy and Stability— All ac input voliage

frequencies and input signal repetition rates are derived from a clock
whose basic frequency is 3.6864000 mega Hz + 1 part in 10° with a
stability of £3 parts in 1[]7 per week.

Thermal Characteristics

Nominal Thermal Dissipation 21.5 watts

Thermal Dissipation Limiis 17 watts to 30 watts

Nominal Average Module

Mounting Pad Temperature 105°F
Max p-p deviation between pads and average iemperature
£3°F

Temperature Control Range (at 70°F nominal free air
ambient & 1/2 inch insulation) 60° to 110°F

2. Accelerometer Module

a) Qperational Characteristics

Power Supply Characteristics

DC Source Level Load {Max) Ripple
1. 28.0 vdec £ 0.3 vdc 100 ma 0.07 Vims
2. 15,000 vde £ 0.008 vde 11 ma 0.002 Vs
3. -10.0 vde £ 0.% vdc 25 ma 0.140 Y ms
4, 10.0 vde + 0.5 vdc 25 ma 0.140 v
rms
5. 5.25 vde £ 0.25 vde 140 ma D.1 Voms
6. 28 vdc £ 3 vdc 750 ma 0.5 Vims



1. 9500 Hz, 4.0 Vems 1%, 1.6 watts, maximum harmonic content <2%.

Sine wave synchronized to interrogater pulse train,

Timing Pulse Characteristics

Interrogate pulse

Repetition Rate

Amplitude 4.5 £ 0.5 vdc
Width 4 microseconds
Repetition Rate 4.8 kpps

Switch pulse pair
Amplitude 4,5 £ 0.5 vdc
Width 0.4 microseconds
Spacing 13 microseconds

4.8 kpps

Lag of reset pulse to interrogate pulse 2 microseconds +1/2

microseconds

Output Signal Requirements

AV pulses 5 vdc amplitude, 2 microseconds width

Monitoring Line Identification

1. PVR power test point

2. Single ended SG monitor point—400 mv/milliradian rms about OA at
9600 He.

3. Scale factor resistance test point

4, Accelerometer temperature sensor #4—500 ohms + 0.15 chms at

operating temperature (+00226 ohms/ohm/°F).
5. DC amplifier test point.

Auxiliary Input Requirements

1. 0 to 28 vdc at 0 to 0.4 amps (available for adjustable fixed heat when
used with GSE only).
2, Frequency and Timing Accuracy and Stability-—All ac input voltage

frequencies and input signal repetition rates are derived from a clock
whose basic frequency is 3.6864000 mega Hz = 1 part in 108 with a
stability of + 3 parts in 10"/ week.



"APPENDIX D

The SIRU system software has been described in Chapters 2 and 4 of this
volume. Volume II of this report contains detailed descriptions of the software,

listings of the subroutines and load maps. This appendix' is a precis of Volume IIL,

"‘The principal programs and the tasks which each software element addresses
(see Section 4.3.3) are shown in Table D-1. The indicated page number refers to

the full dgscription in Volume III. A short description of each program follows.

Tahle D-1 Software Program Listing

Program Task Page
MPRO Main Program 7
ALPO L
SFPOUT 3l
SX0U Output .36
SDGS 3
READ Al Gl 43
ACOM A2 a7
GCOM - - 52
DCMT G2 61
DCOA 65
ROMS A3 69
PREX Ad 18
GARC 63 8l
GFIs . 87
ERDE } ) 53
CFSE } A5 99
PFIS 112
GPRT } 65 115
PRTY 118
PPEX } Ab _ 123
GMIN } 56 175
GPMA A7 128
EMIN } 138
MG63 67 i40
Mves A8 146
SPUN A9 149
VESP AID 158
VACU All . 169
ERC6 G8 171
AABS 69 174



The main executive of the system operating program (MPRO) calls the
appropriate subroutines toaccomplish thealgorithms shown in ¥ig. 4.3.3 of Chapter
4 and the sysiem tasks listed there It is divided into three sections. The first is
initialization and the enabling of interrupt. Next is a waiting loop which checks to
see if it is time for output and, if so, calls the proper output routines. When this
waiting loop is interrupted (every 5 milliseconds), the program sequence goes to
the third section which decides when the time has come to update the accelerometer
or gyro algorithms, retains the processing registers as they were at the time of
interrupt, calls the appropriate algorithms, restores the processing registers and

returns to whatever was being processed at the time of interrupt.

The subroutines which accomplish these various activities are identified and
described briefly as follows.

AL PO

ALPO provides system status information formatted as shown in Fig. 4.3.4
of Chapter 4 on teletype, CRT screen or as a block of 104 bytes on Digistore tape.

SFPOUT

SFPOUT and OUTI100 provide the ALPQO information in decimal numbers and

seconds of time,
SX0U

This routine determines whether the AL.PO informationis displayed on teletype
or CRT screen,

SDGS

This routine causes the information to be written onto the Digistore tape.
READ

READ causes either the gyro and accelerometer interface to interrupt the
mainpregram every 5 milliseconds, These interruptions start with the accelerometer
and alternate between the accelerometer and the gyro. At each interruption the six
appropriate pulse counters are read and the contents stored. Scaling is 2-6 pulses
which represents 1 pulse AV as 4 cm/sec and 1 pulse Af as 7x2_15 radians,



ACOM

This subroutine compensates each accelerometer output for scale factor, bias
and two misalignments,

- GCOM

GCOM compensates each gyrooutput for SF, NBD, ADIA, ADOA, ADSRA major
compliances and OA coupling, |

DCMT

This subroutine modifies the misalignments of the gyro about the output axis
as a function of the measured input rate at each update. The information is stored

in the base sector where it is available for the gyro compensation program.
DCOA

DCOA calculates a compensation for the error resulting from the effect of a

rotational input on the output gyro axis.

ROMS

When a strapdown system is subjected to a rotational input, accelerometers
will sense acceleration due to sz and Rw. Since the several accelerometers do
not sense these rotations at the same point, they will appear to be in disagreement

" one to another. ROMS compensates the output to represent the origin as a single
point, For convenience, the center of accelerometer A is ithe chosen single point

which makes it necessary to compensate only the other five instruments.
GARC
This subroutineaccumulates the six compensated gyro pulse counts and stores

them for the squared error calculation. It also accumulates the total of the change
in count for use in GFIS,

PREX

PREX accomplishes the same operation for accelerometersas GARC performs

for the gyros.



This subroutine controls the logic for the gyro I'DI procedure. Once every
update it decides which failure should be searched for by consideration of the gyro
fail status and identification from the previous search. It then stores the maximum

allowable total squared error for either the first or second failure search,
ERDE

ERDE is called up by either the gyroor accelerometer FDI logic and provides
the information required to identify the failure,

CTFSE

This subroutine calculates either th'e.first or second squared err.or tefms
for instruments from the sel of accumulated measurements, decides whether the
total squared error exceeds acertain limit and, if it does, decides if any instruments
squared errotr exceeds a certain percentage of the total, If the calculations show
an error equalling or exceeding 212 pulses or the total squared error exceeds 224
an indication is provided that the calculations could not be completed due to huge

errors in one or more instruments,
PRIS

This subroutine controls the logié for the accelerometer FDI procedure and
is substantially the same as GFIS. The accelerometer maximum allowable squared

errors are noi modified prior to this 6peration as is the case of the gyro GFIS,

GPRT

This subroutine is a further extension of the gyro FDI. It determines the

failure status and identifies the proper parity equations to solve.

PRTY

PRTY solves the proper parity equations to provide detection for a third gyro
failure.

PPEX

This subroutine isthe accelerometer equivalent of the PRTY routine for gyros.



GMIN

GMIN, using the gyro fail status instructions from the gyro least-squares
matrix generator, calculates which of the 22 matrices to generate.

GPMA

This subroutine is the least-squares matrix generator for gyros and ac--

celerometers,

EMIN

EMIN is the accelerometer equivalent of the gyro GMIN subroufine.

This subroutine performs the 6x3 matrix multiplications which transform the

5ix gyro Af outpuis into the XYZ frame,.

MPG3

MP63 is the accelerometer equivalent of the gyro MG63 subroutine,

SPUN
This subroutine corrects the quaternion to maintain it at a unity value, i.e.

2:p24+p %2

12+P
x v z

VESP

This subroutine constructs a cosine matrix from the quaternion, transforming
a vector in the body frame to the inertial frame., It then multiplies the AV in the
body frame by this matrix to transform AV into the inertial frame.

VACU

VACU accumulates delta velocity in the inertial frame,



ERC6H

This subfoutine accomplishes the equivalent of torquing a gyro in a gimbal
IMU. It essentially compensates the gyro for a drift in the inertial frame and is
used to take out earth rate. i does this compensation by transforming the negative
of the drift in the inertial frame into the body frame by adding it to the gyro output

as an equivalent NBD,

AABS

AAB3 performs a third order attitude algorithm to update the quaternion of

rotation,
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