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R-746

SIRU DEVELOPMENT FINAL REPORT

ABSTRACT

This report presents a complete description of the development and initial

evaluation of the Strapdown Inertial Reference Unit (SIRU) system sponsored by the

NASA Johnson Space Center under Contract NAS9-8242.

The SIRU configuration is a modular inertial subsystem with hardware and

software features that achieve fault tolerant operational capabilities. The SIRU

redundant hardware design is formulated about a six gyro and six accelerometer

instrument module package. The modules are mounted in this package so that their

measurement input axes form a unique symmetrical pattern that corresponds to

the array of perpendiculars to the faces of a regular dodecahedron. This six axes

array provides redundant independent sensing and the symmetry enables the

formulation of an optimal software redundant data processing structure with self-

contained fault detection and isolation (FDI) capabilities.

This report consists of four volumes.

Volume I, System Development, documents the system mechanization with the

analytic formulation of the FDI and processing structure; the hardware redundancy

design and the individual modularity features; the computational structure and

facilities; and the initial subsystem evaluation results.

Volume II, Gyro Module, is devoted specifically to the Gyro Module, the inertial

instrument and its digital strapdown torque-to-balance loop, the mechanical, thermal,

and electronic design and function, test procedures and test equipment and

performance results and analysis.

Volume III, Software, documents the basic SIRU software coding system used

in the DDP-516 computer. The documentation covers the instrument compensation

software, reorganizational and FDI processing, and the inertial attitude and velocity

algorithm routines as well as servicing, input/output, etc. software.

11iii



Volume IV, Accelerometer Module, is devoted specifically to the Accelerometer

Module, the inertial instrument and its digital strapdown torque-to-balance loop,

the mechanical, thermal and electronic design and function and performance results

and analysis, as it differs from the Gyro Module.

In addition to this report, SIRU Utilization Report R-747, has been issued

documenting analyses, software and evaluation activities in the application of advanced

statistical FDI algorithms, calibration and alignment techniques to the SIRU system.

April 1973
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1.0 Introduction

This SIRU Development Final Report is the first of two SIRU system final

reports. The second, SIRU Utilization Report R-747, is summarized briefly in this

introductory section.

The SIRU Development Final Report provides an overview of the SIRU project,
including historical background, design concept, hardware mechanization, software,

test equipment, reliability and initial test results. In general, it describes the
activities and achievements accomplished during the period from May, 1968 through
November, 1971. At that time a complete operational system had been functional
for five months and both hardware and software had been debugged and consistent
system operation demonstrated. The report is presented in four volumes as follows:

Volume I - System Development

Volume II - Gyro Modules

Volume III - Software Documentation

Volume IV - Accelerometer Module (CONFIDENTIAL)

Volume I contains a complete description of the SIRU system concentrating
on the system hardware but covering in adequate detail system mechanization,
computational software and facilities, test facilities, test results and a reliability
appraisal. Program milestones and conclusions and recommendations are also
included.

Volume II presents in greater detail the design, operation and test results
applicable to the gyro modules and Volume IV provides the same information
applicable to the accelerometer modules. Volume III provides a documentation of
the base-line system software including assembly listings and flowcharts.

The SIRU Utilization Report presents the results of the additional analysis,
software development and testing activities provided for under Amendment 7S to
the basic SIRU contract. The report is presented in three volumes as follows:

Volume I - Theory, Development and Test Evaluations

Volume II - Software Documentation

Volume III - System Log

1



Volume I contains a complete description of the theory, analysis, implementation

and test results for each of the tasks, namely:

1. Statistical Failure Detection Isolation Classification and Recompen-

sation (FDICR)

2. Error Source Propagation Characteristics

3. System Single Position Self-Calibration

4. SIRU Self-Alignment (Gyro Compassing)

5. Local Level Navigator Performance Demonstrations

Volume II provides documentation for the additional or modified software

including assembly listings and flowcharts. Volume III contains a log of significant

system events from the beginning of the system testing program.

1.1 Background

A major requirement for guidance, navigation, and control systems designed

for future spacecraft and aircraft applications is high reliability. As a means for

fulfilling this requirement, attention in recent system studies has been focused on

the use of redundancy concepts with fault tolerant features to achieve an order of

magnitude or better improvement in reliability.

In the Apollo spacecraft, each "primary" system was complemented by a

"backup" system which had limited mission-mode capabilities. For future space

missions this concept, predicated on a fail-safe return to earth, will not suffice; it

fails to provide the necessary reliability and operational capabilities for extended

missions. In commercial and military aircraft, duplex or triplex redundancy in

guidance, navigation, and control systems has become commonplace. In these

applications failure isolation decisions and system reconfiguration selection are

for the most part assigned to the human operator. Advanced guidance and navigation

systems to meet improved air traffic control requirements undoubtedly will

incorporate automatic failure detection and adaptation-especially in critical

guidance phases.

Obtaining an optimum redundant guidance and navigation system can be

approached in several ways. A basic decision, however, will involve the geometric

arrangement of the inertial sensors. The choice is between instrument redundancy

along commonorthogonal axes and a non-orthogonal array of instruments; in either

case the objective is to provide a comprehensive array of measurement data. In

both approaches the mechanization should be free from single point failure

2



possibilities, and provide a self-contained failure detection, isolation and processing

reorganization capability. The operation of the failure detection and isolation

technique must achieve time critical system reliability by eliminating faulty data

from instruments or their electronics before the faulty measurements data affects

successful mission performance, and the remaining data and processing structure,

after reorganization, must have satisfactory mission performance capabilities.

1.2 Historical Background

On May 7, 1968 the Charles Stark Draper Laboratory at the Massachusetts

Institute of Technology submitted a Technical Proposal, in response to NASA RFP

#BG 731-47-8-533P, to the Manned Spacecraft Center of the National Aeronautics

and Space Administration for the design, analysis and development of a redundant

Strapdown Inertial Reference Unit (SIRU). This unit was intended to replace

corresponding assemblies in the Primary Guidance Navigation and Control System

(PGNC) which the laboratory had designed and developed for the Apollo program.

This contractual activity marked the culmination of a research and development

effort to determine and define the fundamental aspects of redundant strapdown inertial

guidance, navigation and control systems. The redundancy concept was based on a

dodecahedron configuration for the inertial instruments that had been proposed and

delineated inan MIT masters thesis published in 1967. During the next two years

under NASA sponsorship (contract NAS 9-6823) a base of supporting strapdown

technology was created including an inertial grade high torque gyroscope, improved

torque-to-balance servo techniques and higher order computational algorithms.

As stated in the May 1968 Technical Proposal, the purpose of the SIRU effort

was "to design, assemble, and test an inertial reference unit suited to the operational

reliability requirements of long-term manned space flights. Redundant, structure

mounted inertial components (strapdown) should be used to provide high reliability

and freedom from operational constraints (e.g., gimbal lock)".

The SIRU was to be configured to interface with the spacecraft planned for

the Apollo Application Program (since modified and renamed Skylab). Specifically,

The former Instrumentation Laboratory of the Department of Aeronautics and
Astronautics at M.I.T.

"A Non-Orthogonal Gyro Configuration", Jerold P. Gilmore, T-472,
Instrumentation Laboratory, MIT, January, 1967.
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the SIRU would replace the Apollo PGNC system Inertial Measurement Unit, the

Coupling Display Unit, and the inertial section of the Power and Servo Assembly.

The new assemblies would interface with the Apollo Guidance Computer and then

the spacecraft to achieve fully redundant guidance, navigation, and control.

Work under Contract NAS 9-8242 commenced June 27, 1968. The Statement

of Work specified that the contract's purpose was to develop and deliver one SIRU,

whose production version would "meet the reliability requirement for long-term

manned space flights." The reliability requirement was defined as "the capability

to performa 120-day mission with a.999 mission success probability and a one-half

hour reentry phase at the end of 120 days with a .9999 mission success probability."

The SIRU was to consist of an Inertial Component Sensor Assembly with the

associated electronics and power supplies necessary to meet the interface

requirements. A Digital Computational Assembly package to verify the operational

capability of the modified Guidance, Navigation and Control system was also

prescribed. As a design goal, the complete package (including associated hardware

and harnesses) was to weigh less than 80 lbs with a power requirement of less than

250 watts.

1.3 Development Summary,

The SIRU system consists of a Redundant Instrument Package (RIP) and an

Electronics Assembly (EA). The geometric redundancy concept is mechanized in

the Redundant Instrument Package, which contains six single degree-of-freedom

gyroscope modules and six linear accelerometer modules. Geometric redundancy

is achieved by using a non-orthogonal mounting configuration in which the instrument

input axes (IAs) are oriented to correspond to the array of normals to the faces of

a dodecahedron, Fig. 1.3.1. This arrangement yields a unique symmetry in which

all instrument input axes are at a spherical angle (63.40) from each other.

In the particular implementation used, pairs of gyro or accelerometer axes

lie in the orthogonal planes of a reference triad and are displaced about the principle

triad axes by an angle. This symmetry yields optimal redundant reorganizational

data processing with minimum error propagation. Moreover, by means of instrument

output comparisons, self-contained failure isolation of up to two out of six of both

instrument types is achieved and a third failure of each may be detected. With the

aid of additional diagnostics, the processing structure still allows continued operation

after three failures on both of the six gyro and six accelerometer measurement

axes.
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Fig. 1. 3. 1 Instrument Input Axes Orientation Relative to

The Instrument Frame Triad and the Dodecahedron

The RIP is an assembly of gyro and accelerometer modules in which each

module isa prealigned and normalized assembly. The modules are interchangeable

and include the instrument and its pulse torque-to-balance control electronics,

temperature controller, etc. The gyro module is scaled to be compatible with a 1

rad/sec input and the accelerometer module is compatible with an Apollo 19 g's

capability. Redundant concepts are also applied in the supporting EA (power supplies,

clock and scalers, etc.). The levels of redundancy used in the EA are based upon

the relative reliability of functional circuits and circuit isolation concepts. For

example, to maintain the inherent reliability of the instrument configuration such

features as triple clock voting, dual scaler channels and six functional power supplies

are employed.
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With respect to reliability, insight into the relative merit of different sensor

geometric configurations is provided by a normalized reliability comparision. The

variation of probability of mission success with normalized time for several sensor

arrangements is illustrated in Fig. 1.3.2. Time (t) is normalized by the mean-

time-between-failures (MTBF) of a sensor axis, i.e., the instrument and its

functionalized electronics. In the illustration, all system sensor axes are assumed

to have the same MTBF. For reference, a reliability curve is shown for a conventional

orthogonal triad package of three sensor axes. The other curves correspond to

systems with self-contained failure isolation features, i.e., three triads (where

mission success is attained by majority agreement); a single triad with three

instruments on each axis (with majority agreement per axis); and the dodecahedron

array (which allows the failure of any two axes). Note that a marked reliability

advantage for the SIRU configuration is clearly observable. Further, if external

failure isolation is assumed so that operation continues until all three triad systems

fail or a fourth SIRU axis fails, SIRU reliability is 0.999 compared to 0.98 for a

normalized time (t/T) of 0.1. It is important to note that redundancy alone does

not supply a complete solution to the problem of system reliability. Each element

in the system must be selected and conservatively applied in a manner that is

consistent with the environment and the mission duration; there is no substitute for

quality engineering. Similarly, an element's statistical MTBF of one million hours

does not preclude its failure, on a random or defect basis. Thus, the system must

be configured to avoid total failure resulting from the failure of a single element.

1.0

T MTBF

T= TIME

0.98

-.J

SIRU CONFIGURATION

FAIL ISOLATION FOR ANY
0C 0.96

0.96 3 INSTRUMENTS TWO SENSOR AXES

3 TRIAD PER AXIS VOTING

TRIAD VOTING

0.94
0 0.1 0.2

NORMALIZED TIME (7T)

Fig. 1. 3. 2 Mission Success Probability
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A Digital Computational Assembly (DCA) design was formulated concurrently

with the development of the inertial sensor and electronics packages. A representative

engineering design was developed to fulfill the processing and strapdown algorithm

system requirements and a breadboard unit built. The DCA design concept was

based on a general purpose computer with duplex processors, memories and I/O

sequencers. It was configured to achieve the system high reliability requirements

and it incorporated multiple error checking, single instruction restart capabilities,

micro-programmed sequence generation, and the use of a serial time multiplexed

input/output. The fabrication of a prototype DCA was not undertaken in this program

due to cost considerations. A report describing the work performed and results

achieved under the DCA task has been published as MIT Engineering Report E-2590,

December, 1970.

A general purpose computation and control facility was developed and expanded

to support system RIP and EA testing, data reduction and analysis as well as

operational software development and evaluation. This facility was also used for

the development and coding of DCA software. It was developed around a general

purpose commercial mini-computer, the Honeywell DDP-516, which is software

compatible with the Honeywell 601 airborne computer. The DDP-516 is a

representative state-of-the-art general purpose machine, employing a 16-bit word

with a memory cycle time of 0.96 microseconds, a high-speed arithmetic package

and 16,384 words of core memory. The peripherals used include: two disc drives;

a teletype unit, a CRT display; a high-speed paper tape reader and an incremental

magnetic tape unit.

Ground support equipment (GSE) consisting of a GSE console with power

supplies and monitoring and control capabilities, an Interconnect Box and Table

Junction Box for table interconnections across the test table slip rings, a RIP test

box and an auxiliary monitor console for signal monitoring and test table control

functions were assembled and combined with the other system hardware.

The computer was interfaced with the SIRU outputs and the test table encoder

and is operated with the system on-line and in real-time. The following specific

software has been developed and debugged and are routinely operating with the SIRU

system.

1. Interface software to operate in real-time with the SIRU outputs and to

display and record the desired computational algorithm outputs.

2. Strapdown attitude and velocity algorithms compatible with general

purpose computer structure and speed.
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3. Static and dynamic instrument error model (e.g., BD, ADIA, etc., SF

and OA coupling, etc.) compensation routines that are also compatible

with failure conditions, (e.g., gyro compensation independent of acceler-

ometer failure status, etc.).

4. An adaptive instrument data processing structure using least-squares

triad body rate and accelerometer estimation with restructuring based

on instrument failure status i.e., by reducing the number of dodecahedron

measurement axes that are processed (six, five, four or three axes) to

reflect the current failure status. A least-squares triad solution is

thereby obtained that uses only those measurement axes that are

performing to an acceptable standard.

5. A failure detection and isolation (FDI) structure based on the total squared

error (TSE) ratio test and parity equations to provide sequential FDI of

any two gyro or accelerometer soft performance failures(equivalent

to approximately ten times the nominal uncertainties). Isolation

ambiguities are limited to two certain simultaneous failures of the same

measurement type that have equivalent failure levels in one FDI test

period. FDI is effected prior to every algorithm interaction cycle.

Thus if a hard failure (catastrophic in nature, e.g., full on output) or a

soft failure (error characteristics several orders of magnitude above

the FDI threshold levels) occurs, it is possible to detect and isolate it

prior to a single iteration period (10 ms at 100/sec) with no error

propagation in the attitude or velocity algorithm outputs. In both cases

soft and hard failure detection of a third failure is achieved.

6. System static and dynamic instrument calibration programs that acquire

and process raw data in the calibration test sequence and generate

printouts in engineering units as well as calibration loads in machine

language for the real-time compensation routines.

7. Programs to provide algorithm output recording and test programs for

performance and simulation testing.

8. A disc operated system with assembler, compiler, and program editor

providing self-contained development and debugging of operational and

test software suitable for the DCA as well as for the DDP-516.

9. Programs for fine grained analysis of performance test results on the

IBM 360.

A soft failure is performance degradation requiring measurement comparisons to
detect. A hard failure is defined as one which is generally catastrophic in nature,
probably could be detected and isolated by Hardware Self Test (BITE) techniques,
and tends to be gross in nature.
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In summary, the SIRU program accomplished the following major achievements.

1. Implemented in hardware a redundant strapdown inertial system based
on the dodecahedron symmetry, incorporating effective FDI and efficient
automatic redundancy management.

2. Designed, fabricated and assembled a modularized, redundant instrument

package consisting of six normalized gyro and accelerometer modules
supported by an EA possessing interchangeable functional modularity
consisting of six axes power supplies, dual power bus and triple clock
redundancy to eliminate single point failure sources. Feasibility of
interchangeable modularity was successfully demonstrated.

3. Developed and demonstrated software to provide redundancy management
and strapdown processing including automatic fault detection and
isolation, static and dynamic instrument compensation, attitude and
velocity algorithms, self alignment and calibration and real-time data
acquisition and analysis.

4. Demonstrated a full-up and continuously operating system reliability
record covering a period in excess of 20,000 hours since July, 1970.

5. Demonstrated over this period operational capabilities and performance
consistent with and exceeding the requirements for the "fail operational/
fail safe" concepts now specified for the Space Shuttle even though its
intended application was for the earlier Apollo Applications (Skylab)
mission.
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2.0 System Mechanization

This section describes in detail the mechanization of the strapdown redundant

system. including normal processing and failure detection and isolation (FDI)

techniques. Software requirements including compensation programs are defined.

Analyses of error propagation and resulting performance forecasts are presented.

The first half of the section deals with all these elements as they apply to the geometric

redundancy and the second half shows the extension of the concept to the electronics

design.

2.1 Computational Functional Flow

2.1.1 Redundant Instrument Processing

The measurement data, derived from the gyros and accelerometers whose

input axes are colinear with the dodecahedron vectors A through F in Fig. 1. 3. 1 in

Chapter 1, must be related to a reference triad, XYZ. For a gyro set, the orientation

yields a relationship between the angular rate inputs (W) about the triad axes and the

gyro measurements (m) that may be expressed in matrix form in terms of the geometry

as:

m = Hb (2.1)

where

b = X WYW

m T = [mab mc d m e m

s-s c c o

H T = o s -s c c
c O O S -s

5 + 1/2

c = cos ( ) 0.85110

s = sin ( 1 0.526

These relationships reflect the dodecahedron configuration shown in Fig. 1.3.1.

In the specific mechanization adopted for SIRU the Y axis is reversed compared to

the dodecahedron which introduces sign changes in the equations. For the SIRU

configuration the corresponding matrix H T is given by:
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H = o -s s c -c
H S so C C 0 0C c 0 0 S S

All the following equations in this volume are representative of this specific

SIRU configuration. As seen from the equation, each instrument provides a measure

of redundant data, e. g., instruments A, B, C, and D sense a component of input

along the X triad axis. By algebraic solution of the equations, equivalent triad axis

rate or acceleration solutions can be obtained from any three gyros or accelerometers.

Subsequent discussion. illustrates that it is possible to isolate up to two failures of

either type instrument and to detect a third failure through self-contained instru-

ment output comparisons.

The processing structure used to obtain equivalent triad solutions from the

dodecahedron array corresponds to a weighted least-squares solution form:

A T -1 1  T -(
b (H H) H -1m (2..2)

where b is defined as the "best" triad solution estimate and 0-1 corresponds to a

diagonal 6x6 matrix whose terms represent the individual instrument variances.

This solution provides a best estimate where both the geometric properties of the

configuration and the individual instrument performance statistics are considered.

For the dodecahedron array the computational implementation allows the selection

of the appropriate triad solution in accordance with the operational status of the

instruments in that 0 can be modified to reflect either degraded or failed instrument

performance. However, for efficient computational usage and time-critical decision

and error propagation minimization, only a "go-no go" criterion has been implemented

(a study to determine the feasibility of generating continuously a weighted least-

squares estimate in an adaptive fashion has been conducted). Thus, processing

reorganization is achieved by replacement of -1 by a status matrix,X , in which

all diagonal elements are unity when all instruments perform satisfactorily . By

setting the appropriate elements to zero when failures are detected, a least-squares

triad solution can be defined for any combination of instruments (i.e., 5, 4, and 3

gyro or accelerometer combinations). (The actual processing matrices appropriate

An additional contract task documented in Report R- 747 covered the implementation
of a statistical approach which, when combined with the current X implementation,
provides higher resolution FDI using a recursive statistical algorithm which also
classifies the fault (mean or variance change) and if the fault corresponds to a
stable mean performance change, recompensates it.
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for each combination of gyros or accelerometers are presented in Appendix A). In
the computer mechanization, this approach is implemented by storage of common
parametric elements that may be assembled to form the appropriate least-squares
solution based on the status of the instruments, X. This structure is regenerative
in that, if instrument "healing" is observed in the failure isolation process, the
instrument may be reinstated. Thus, the failure isolation criteria enables adaptive
data processing.

As noted previously, the self-contained FDI to be discussed in subsequent
paragraphs illustrates that the dodecahedron symmetry enables isolation (determina-
tion of the faulty measurement axes, X, X ) and thereby automatic processing
reconfiguration for up to two of either type of instrument axes failures through
self-contained output comparisons. In addition, dependent upon the order and
magnitude of failures in a sequence of failures, self-contained isolation of a third
failure is also achieved. Under all circumstances self-contained detection of a
third failure of the same type measurement axis is provided. External monitors
may also be used to provide additional ' status data to allow continued operation
after as many as three gyro or accelerometer axes failures.

The advantage of the dodecahedron self-detection and isolation capabilities is
clearly illustrated when one considers that a system employing duplex instrument
redundancy on orthogonal axes experiences total failure with two gyro or two
accelerometer failures on the same axis, and self-contained isolation of performance
degradation between two instruments on the same axis is not possible. Even with
three independent triads,only one fault can be isolated when axis-by-axis voting is
precluded (as when the triad orientations are not precisely aligned with respect to
each other or if a fault occurs in a triad system that causes multiple failures in
that subsystem). Using triple component orthogonal redundancy in a single system
with failure isolation by instrument "voting" between the three instrument signals
on the same axis provides limited capability. A second failure on the same axis
cannot be isolated. The SIRU skewed configuration yields the most efficient redundant
use of six single-degree-of-freedom measurement axes for failure isolation and
reliability improvement.

In principle, any six-instrument, skewed configuration possesses similar
redundant measurement and failure isolation capabilities. The advantage of the
dodecahedron array results from its unique symmetry, whereby the six measurement
axes are spherically distributed with equal angles between all axes. This feature
minimizes geometric error amplification, simplifies failure isolation and optimizes
the response characteristics to provide equalized performance at all attitudes.
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Independent studies by Weinstein , have demonstrated that equivalent perform-

ance is not attainable with triads that, are rotated with respect to each other to

obtain a six axes measurement array.

The relative performance of the SIRU configuration under various failure

conditions may be identified clearly by comparing the SIRU reference triad solution

statistics to the corresponding statistics for an operational three axis system. In

each case, all instrument axes are assumed to have identical and independent

measurement error characteristics. The statistical performance characteristics

of the failure-free, three axis system are defined as having a standard measurement

deviation of a along any axis and a total three- dimensional rss measurement deviation

of (3)1/2 . In comparison, when all six axes of SIRU are operational, the error

statistics of its triad solution provide an axis standard measurement deviation of

0.707a and an rss system deviation of (1.5) 1 / 2 . Similarly; deviations for the SIRU

triad solutions for the various five, four, and three instrument combinations may

also be compared to the basic triad's statistics. These combinations represent

SIRU performance, with failed instruments detected and isolated, i.e.,' the failed

axes no longer being used in the triad solution processing.

In general, the error propagation of a non-orthogonal array with instruments

deleted is such that its triad solution performance statistics reflect both the reduction

in measurement data and the deterioration in geometry. Thus, dependent on the

geometric positions of the deleted (failed) axes, the solution tends to have a maximum

standard deviation along a specific axis (worst- case) and certain failure combinations

have more pronounced rss error amplification than others. However, as illustrated

in Table 2.1.1., SIRU error propagation is bounded and performance is not significantly

affected by processing with reduced instruments.

Table 2. 1. 1

SIRU Performance with Instrument Failures
Versus

An Operational Triad System

Standard Deviation Ratio of Deviation
Instrument (Worst-Case Axis (SIRU Solution to
Failures Solution) a 3-axis System)

None 0.707a 0.707

1 (6 Combinations) 0. 927a 0. 816

2 (15 Combinations) 1. 349a 1.000

3A (10 Combinations) 1. 34 9 a 1. 176

3B (10 Combinations) 2. 890a 1. 902

Weinstein, Warren D., Optimum Skew Angle Between Redundant Inertial Systems,
Grumman Aerospace Corporation, Bethpage, L. I., N. Y.

14



The first column of Table 2.1.1 corresponds to the SIRU processing status,

i.e., operation with all instruments, down to combinations of failures on three

instrument axes. For each of these states, the table shows the SIRU worst-case

single axis triad solution standard deviation and the ratio of the SIRU solution rss

deviation to an equivalent triad system rss deviation. Note that SIRU performance

with one failure is statistically better than an unfailed triad system and for all

two-failure and ten three-failure combinations performance is essentially identical

to an unfailed triad. For the remaining worst three-failure combinations, the

maximum single axis solution standard deviation in comparison to a good triad axis

standard deviation degrades by a factor of three while the corresponding total rss

performance degrades by only a factor of two.

2.1.2 Failure Isolation

The self-contained failure isolation algorithm is based upon a simple compar-

ison of measurement outputs. The unique symmetrical properties of the array allow

one to implement two different but correlated FDI algorithms. One algorithm is

based on the development of a series of "parity equations" and the other on a set of

equations derived from the conical representation of the dodecahedron. Both

algorithms are directly related; for example, the conical equation representation

for the two-failure case is identical to the parity equations. The parity equations

consist of a series of 15 equations, each equation representing a comparison of

four measurements. All the equations will have a zero output (e) if all instruments

are operating properly. The derivations of these equations are presented in MIT/IL

Report T-472, A Non-Orthogonal Gyro Configuration by J. Gilmore, January, 1967.

Table 2.1.2 lists the 15 equations. Each m term in the equations corresponds to an

accumulated 0 count or velocity over some comparison interval. If, however, an

instrument along A has malfunctioned, Eqs. 2.1 through 2.10 will show a non-zero

total, while Eqs. 2.11 through 2.15 equate to zero, thereby isolating the failure. If

a second instrument failure occurs, inspection of the remaining equations (2.11

through 2.15) allows another level of failure isolation. If a third failure occurs and

none of the equations show a zero total, the failure is detected but not isolated.

The conical technique was originally synthesized in the computational software,

but parity equations were subsequently used for the third-fail detect function and in

the statistical FDI algorithms described in the SIRU Utilization Report Volume II,

R-747. The conical technique is displayed in Fig. 2.1.1. Note that each of the five

vectors (B, C, D, E, F) is symmetrically displaced in a conical array about the

central vector A. This relationship is identical for all orientations because of the

symmetry of the dodecahedron array.
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Note: -B A cos 2a

F - A cos 2a tan 2o - 2
Or I

AOr ____ cos 2a -S(B ... +F)
5 cos2a

EA' A -

Fig. 2. 1. 1 Conical Representation of Dodecahedron Normals

Table 2. 1. 2 SIRU Parity Equations

No. Instruments

1 ABCD (m a - mb) c + (mc + md) 
= IEl

2 ABCE (m b - mc)c - (m a + m e )s= Cl

3 ABCF -(m a 
+ m c ) c + (mb + mf) s 

= Il

4 ABDE -(ma 
+ md ) c + (mb + me )s 

= II

5 ABDF (mb - md) c - (ma + mf) s = 1E

6 ABEF (me 
+ m ) c - (ma+ mb) s 

= E

7 ACDE (md - me)c + (ma - m c ) s =

8 ACDF (m c - mf) c+ (ma - m d )s 
= l

9 ACEF (m a - mf) c + (mc - m e )s = 

10 ADEF (ma - m e )c + (md - mf) s 
=

11 BCDE (m c 
+ m e ) c - (mb + md) s 

= E

12 BCDF -(md + m ) c + (mb+ m c ) s = 
K

13 BCEF (mb - me) c - (m c + mf) s = I
l

14 BDEF (mb - mf) c - (md + me) s = E]l

15 CDEF (m c - md) c + (m e - mf) s =ll

Note: m = measurement of axis A accelerometer or gyro s = sin (a)

c =cos (a) E = Threshold Level

16



Using spherical representation one can directly derive the relationship between

each vector and the central vector A:

mb = ma cos 2a

(2. 3)
mf = m a cos 2a

where:

cos 2a = Nf7

When all six instruments are assumed to be operating, six equations, Eq. 2.4, are
obtained by considering each vector A, B..., F and the corresponding conical array

of the other five vectors that surround it:

A [m
Ea =m - 2(mb m - md + me + mf)

Eb = mmb - + (ma + mc + md + m + m)

Ec = mc- Af- (-ma + mb + md - m + m)] (2.4)

Ed = d - -. (-ma + mb m C e - mf)]Ed m -a b-

e = mme o (m. + mb - m + d - m

A
Ef = mf- . 2 (m a + mb + m e - md - me)

For each case the individual equations, Eq. 2.3 above, are then combined. For
example Ea in Eq. 2.4, corresponding to the A vector, is derived by determining A
from Eq. 2.3.

m b mc md me f 1(2.5)
5 cos 2a 5 cos 2a

where A is the estimate of what ma should read based on mb, m ... , mf. The
estimated error E a in what A is reading may be derived by simply:

A A

E = m -A (2.6)
a a

For the situation where a failure is already known (second "fail search") the
procedure is identical except the known "bad" measurement is not included; scaling
may be adjusted accordingly and only five equations used. For processing ease, if
A were known to have failed, ma would be substituted for A in each of the original
six equations, Eq. 2.4. Mathematically these same relationships may be obtained
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by using the best-estimate solution for b in Eq. 2.2. For example, the best-estimate

of what the instrument measurements should be:

m= Hb (2.7)

AT 
=  A

m = m mb... mf- ab f
A

A comparison of the actual measurement (m) with the estimated measurement (m)

yields an estimate of the measurement error for all six instruments (Eo).

A A
E = m - m (2.8)

---O - -

where:

AT = a b Ed e ef]

The estimated error in the measurement of the six axes is given by the same

equations as those listed in Eq. 2.4, except that they are multiplied by 1/2.

The measurement error variance (TSE ) of the six instruments is:
0

T A 2 A 2 2^ A 2 A 2 ^2
TSEo Eo E = Ea + Eb + Ec + E d + E e 2 +E (2. 9)
TSEQ 0 a b c d e f (2.9)

If no instrument errors exist, both equations reduce to zero. If an instrument

failure occurs, the error propagates through Eqs. 2.8 and 2.9. It is dominant in

the faulty instruments' error estimate but is also reflected at reduced magnitude

in the other instrument error estimates. If one knew which instrument was at fault

and adapted the processing structure, the corresponding five-instrument variance

(TSEj ) with the faulty instrument omitted would then equal zero. It can be shown

that the relationship between TSE., the faulty instrument error Ej, and the TSE o

is:

TSE= TSE - 2 (Ej)2 (2. 0)

Thus (from Eq. 2.10), if a failure exists, the failed instrument's squared error

(E 2 ) corresponds to 50% of the total six-instrument variance (TSEo).

If a prior failure has been detected and isolated, a new equation set must be

used to enable a second failure detection and isolation capability. This set must

omit the data from the already known bad axis. The new set is obtained by using

the same equations for Ea through Ef (Eq. 2.8 as detailed in Eq. 2.4) but replacing
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the known failed instrument measurement by the calculated estimate for that axis

using information derived from the remaining five units. For example, if A had

failed previously, ma would be replaced by an estimate of A given by the remaining

five instruments.. A (Eq. 2.5) and the error equations become:

E A-A oaa 2

Ea b = 2 b -- ~ (A + mc + md + me + mf)

Eac [ - A (- + mb + m- me (2. 11)

Ead 1 [md - '* (- + md+ m + e + m f)

Eae 2 e - (+ mb- +md-mf)]

A = 1 Amdi e)]
Eaf = f - -(A + mb + M - md - me

The corresponding measurement error variance is:

T^ 2 + 2 + 2 A 2 2 (2.12)
a a a ab ac Ead a e  af

The general formulation for the new equation set Ejk, derived with the previously
failed instrument (j) not used, corresponds to:

TSEjk = TSEJ - 2.5 (Ejk) (2.13)

TheXjk is a unity matrix except that the hjk term equals 0.

The corresponding variance TSE. is:

E m - m.
-k - -J

where:

A ^ T -1 Tm. = Hb. and b. = (HT -jH) 1 HTX. m-J -- j -J -jk- - -Jk-

If no second failure existsTSE. reduces to zero, i.e., no errors. If a second
failure, 1, occurs, an error propagates in the instrument error estimate Ejk , Eq.
2.13 and TSE j. The error is dominant in Ejl but is also reflected at reduced magnitude
in the other instrument estimates. If the originally failed instrument, j, and the
new failed instrument, 1, are deleted from the processing, a corresponding four-in-
strument variance TSEjk would be computed and would reduce to zero. It can be
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shown that the relationship between TSEjk , the faulty instrument error Ejl and TSE.
is:

AT
TSE = Ejk Ejk (2. 14)

Thus, from Eq. 2.14, the second failed instrument's squared error E 2
corresponds to 40% of the 5 instrument variance TSE.. The computer's failure
isolation algorithm implements these concepts in the following manner. First, all
six individual errors are computed and Eq. 2.9 is used to calculate TSE . The
total squared error is compared to an allowable threshold, which may be varied as
a function of the mission requirement and the dynamic environment. If the system
is operating within the acceptable TSEo criteria, no further activity is required
until the next failure isolation iteration. If the TSE threshold is exceeded, the
ratio of each individual instrument error, Eq. 2.4, is squared and taken with respect
to the TSE . If, for example, E 2 is a significant percentage of TSE exceeding ao a o
selected magnitude, the failure of instrument A is indicated.

The presence of a second failure is detected when the TSE. threshold is
exceeded. This failure is isolated by taking the ratio of E 2 TSE and if E exceedsjk to TSEj and if Ejl exceeds
a selected magnitude, the failure is isolated to the 1 instrument.

While the theoretical maximum squared error (E.) 2 for the first failure
corresponds to 50% of TSE, Eq. 2.10, and (Ejk) for the second failure corresponds
to 40% of TSEj, Eq. 2.14, practical considerations require that an isolation ratio
threshold be chosen which is lower than these theoretical values. The isolation
ratio threshold is defined as R equals E /TSE for the first failure, and for the
second failure, R 1 equals Ejk/ TSEj. Since the use of quantized data and the acceptable
noise and residuals associated with the instrument population increase all the E
terms and the TSE, use of the theoretical values would result in undetected failures.
The use of too low a value would result in false alarms.

A plot is shown in Fig. 2.1.2A which provides an indication of the safe region
for quantifying the detection and isolation thresholds.

This plot shows the largest magnitude ratio, R for an instrument E n which
has not failed (Curve 1) and the corresponding smallest ratio R o for an instrument
Ej which has failed (Curve 2). These ratios are plotted for a normalized signal to
noise expression N that is the ratio of the instrument axis accumulated output (signal)
to the maximum noise magnitude (quantization, uncompensated residuals, etc.) that
may be expected in that output. Thus N is the ratio of a failure measurement error
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to the background noise or error residuals of good instruments. In these plots the

magnitude of the noise is a maximum ( ±1 ) but its signs (+ or -) are considered to
be equally probable. The curves in the figure result from averaging all of the

worst-case noise-values assuming + and - to be equally probable.

0.5 / / / / / / / / / / /

Region of Possible Missed Failures

Curve 2: R for E. failed

0. 4

0.3 Region of Proper Operation

o

tO 0.2

Region Controlled by Instrument Noise

A
Curve 1: R for En unfailed

0.1

Region of Possible False Failures

0 -4
2 4 6 8 10

Ratio of Signal to Noise

Fig. 2. 1. 2A TSE vs Signal-to-Noise Ratio Operating Range-First Fail

Viewing Fig. 2.1.2A, note that if the R. ratio for failure isolation were selected
below Curve 1, false alarms would routinely occur, (i.e. an unfailed instrument
could yield a En/TSEo greater than the selected Ro). Similarly, if the R o ratio
were selected above Curve 2, missed alarms would occur, i.e. a failed instrument
could not yield E /TSE o greater than the selected R o . Thus, to assure reliable
failure isolation a Ro should be selected in the region between the two curves.
Note that the crossover point of the two curves occurs at 1.

As expected, in the region to the left of this crossover no decisions can be
made since the signal and the worst-case noise are equal. As noted previously,
the FDI cycle is initiated when the TSE threshold is exceeded, providing identification
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that a failure exists. The discussion on the curves thus far has reflected on those

regions of Ro selection that yield reliable failure isolation.

Combined FDI operation is a function of the selection of both of these

thresholds. The TSE threshold is selected on the basis of the anticipated signal to

noise (S/N) ratio. The TSE flags the presence of a failure when it is large enough

to assure that noise can not cause an erroneous isolation decision. For the first

fail search, the TSE must correspond at a minimum to a S/N ratio of 1. Conservatively,

since crossover at a higher S/N ratio is possible, a larger S/N criteria should be

used. For example, if all the outputs have a maximum noise component, the specific

worst-case sign polarity (probability of 0.03), and an accumulation in which polarity

occurred at every iteration throughout the FDI period (probability approaching zero),

the crossover in Fig. 2.1.2A would move to approximately a S/N of 5.5. Similarly

the lower Curve 1, would move up and become asymptotic to a ratio of 0.2. In

practice, to provide adequate detection reliability margin, a TSE threshold criteria

of approximately 2 x 6_O2 or 2 x 6AL2 error or greater is used. (The factor of 2 is

derived from Eq. 2.10, where TSE = 2E ). In a static environment, with gyro drift

residuals bounded within 0.10 0 /hr, a 6 min accumulator used with the TSE = 2 x 6(.O) 2

threshold would correspond to approximately 0.15 0 /hr degradation detection where

AO = 5.5 sec. To accomodate for dynamics, an effective A0 of approximately 20

sec has typically been used.

The combined first fail FDI uses a TSE criteria that reflects an S/N ratio

greater than 6 and a failure isolation ratio, R, greater than 0.35. Empirically,

laboratory testing has demonstrated that a ratio as high as 0.44 provides highly

sensitive and reliable FDI performance.

A second set of curves, see Fig. 2.1.2B, applicable to the second FDI is developed

using the same approach. Note that the crossover point of the two curves in Fig.

2.1.2B also occurs at 1. This second fail search FDI curve also reflects a worst-case

noise situation and illustrates a somewhat reduced safe R 1 selection region (area

between Curve 1 and 2) since the lower Curve 1 is asymptotic to 0.15 vs 0.1 on

Fig. 2.1.2A. Similarly the true fail ratio asymptote (Curve 2) has reduced from

0.5 to 0.4. For the absolute worst-case condition (the sign of all noise terms having

a specific polarity distribution),the crossover for this second fail case moves to a

S/N ratio of approximately 9 and the Curve 1 asymptote is 0.3. These factors

illustrate that second fail detection and isolation threshold selection does not have

as much margin as the first fail FDI. This finding is intuitively obvious since

there are fewer comparative measurements. Conversely, if one wishes the same

second fail FDI reliability, some degradation in fault isolation resolution capability
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will occur. For example, FDI reliability equivalent to the previously discussed

illustration of a 0.1o/hr fail degradation isolation would correspond to a 0.15 0 /hr

(TSEjk = 2 x 9A02 capability in the second fail search.

0. 5

Region of Possible Missed Failures

0. 4

Curve 2: RI for Ejl failed

0. 3

Region of Proper Operation
0

4 0. 2 - Region Controlled by Instrument Noise

H Curve 1: R 1 for Ejk unfailed

0.1

Region of Possible False Failures

0
0 2 4 6 8 10 12 14

Ratio of Signal Noise

Fig. 2. 1. 2B TSE vs Signal-to-Noise Ratio Operating Range-Second Fail

In testing, a second fail isolation ratio of 0.38 has been used with good resolution
and high reliability. A 20 sec effective A9 has been used in the TSEjk criterion to
allow for dynamic environment noise. Detailed analyses that provide definitive
assessment of the FDI reliability are presented in the SIRU Utilization Report, R- 747.

Redundancy Management

The software redundancy management system implements the FDI concepts
and equations discussed above in the following manner. Prior to each attitude and
velocity algorithm iteration, the failure detection and isolation algorithms operate

23



on measurements accumulated at the system iteration rate (100 iterations/sec and

50 iterations/sec have been mechanized in the SIRU software). Thus the FDI

algorithms operate to detect and isolate a failure prior to each system iteration.

If a failure is detected,the least-squares matrix processing, Eq. 2.2, is modified

to reflect the failure and only the current good data is processed through to the

attitude andvelocity algorithms. Thus, no known bad datais used. The FDI algorithm

uses individual accumulators for each instrument's measurement data. The accumu-

lators are incremented at each iteration by the new data sample. Thus, at each

iteration, the accumulator represents the sum of past and new data. The extent of

storage, i.e., past data accumulation, is selected on the basis of the desired FDI

resolution (e.g., for the gyros, an equivalent drift). Periodically, all the accumulators

are simultaneously purged of an equal time interval of their oldest data. The finest

detection and isolation resolution is therefore obtained at the FDI test just prior to

a purging (the maximum interval storage capability). The minimum resolution is

obtained at the FDI test of the accumulator data remaining just after a purging. In

test demonstrations a six minute accumulator, purged of old data every two minutes,

has been used. These time parameters are selectable based on the desired resolution.

The tradeoff considerations are discussed later in this report.

After a first failure is detected and isolated, a search is made for a second

failure. The data used in this search does not include the measurement data in the

accumulator corresponding to the axis that was identified as failed in the prior

first fail search. However, the prior failure is continuously examined (its accumulator

continues to be incremented) by returning to the original first fail search equation.

This operation allows recertification (use again in forward processing) should the

failure heal (e.g. the failure may have been due to a transient condition). Thus the

first fail search is continuously repeated. Similar provision is made for recertifying

a second failure. After a second failure has been isolated, the appropriate parity

equation is also examined for a third failure detection.

The ranking of failures for the purpose of failure management is as follows.

If there are two failures, that failure which exceeds the isolation threshold ratio,

computed using data from all six instruments, is ranked first and is considered to
be the worst failure. The other instrument failure is ranked second. If there is a

third failure, the second ranked failure and the third failure are included in the

isolation ratio computation using data from five instruments ( the first ranked failure

is excluded). The instrument exceeding the isolation threshold ratio is ranked second.

If it is the same instrument that was previously ranked second, the failure detection

alarm is continued and the third failure cannot be isolated by software alone.. On

the other hand, if the third failure exceeds the second fail isolation threshold ratio
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(in the 5 instrument test), it is ranked second and taken off-line. The previously

second ranked instrument is now ranked third and remains off-line. In this case a

third failure has been successfully self-isolated. This capability was successfully

demonstrated toward the end of the SIRU Utilization program by an example in which

the third failure was approximately 10 times greater than the original second failure.

An illustration of the error detection process is shown in Fig. 2.1.3 using

data from an actual test on the SIRU system. This figure shows a plot of the E 2

J
magnitude output (in pulses squared) for all instrument axes as a function of test

time. The detection TSE threshold used in this test sequence corresponded to

2 x 12A 2 pulses where AO was 5. 5 sR (an E. errorof 66 s). The failure isolation

ratio used was 0.44. A simulated failure was introduced in the A axis gyro (bias

miscompensated by 25 meru after 120 seconds of normal system operation). Note

that the Ea error magnitude increases until the failure detection threshold is exceeded,

150 seconds after the failure was introduced. At that point the failure is isolated

to the A gyro. After isolation, the A gyro data is no longer processed, and the
error propagation in the estimate of B through F instrument errors is reduced

significantly. The resultant system attitude error during this time interval, Fig.
2.1.4, shows the gyro drift rate error propagating as an attitude error until detection

and isolation occur. The total error accumulation caused by this A gyro failure is
less than 15 sec in both the X and Z axes. Note that the failure detection is

time-dependent since it is based on the magnitude of accumulated E 2 pulses, but
the attitude error is bounded within 28 sec (for the particular magnitude of TSEb

used in this test demonstration) for an isolated failure regardless of the magnitude

of the instrument drift rate error.

It should be noted that the propagation of an error into the system attitude

output, as shown in Fig. 2.1.4, occurs because the processing of data continues

until sufficient error develops to enable a failure detection and isolation decision.

In other words, a finite time is required to accumulate sufficient data to enable a

FDI decision. During this time (until the TSE criteria is exceeded) the error

propagates through the least-squares processing to the attitude algorithm. The

bounded maximum error for the first FDI corresponds to the instrument angle error

E. times one half the cosine of the dodecahedron half angle, 0.425 (see Appendix

A). This reduction in the error propagation magnitude is attributable to the

least-squares processing, six instruments being weighted geometrically, thereby

reducing the effect of a single instrument's measurement error. Generally,this

attitude error propagation has negligible influence on a mission since the basic

drift detection resolution must be compatible with acceptable performance over an

entire mission phase. Thus, if 0.37 0 /hr drift uncertainty performance is the limit
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for acceptable drift performance during a mission phase,the influence of a 15 sec

error associated with the FDI of a 0.38 0 /hr drift error is negligible. Clearly, the

relative performance resolution capabilities are therefore the principle interest.

The resolution, given a.specific TSE criteria, is a function of the system noise, the

calibration residuals, and the FDI accumulator storage time. The tradeoffs involved

in the choice of these parameters are discussed in the next section. It should be

noted, however, that dependent on the computational complex supporting the instru-

ment hardware configuration, processing schemes can be implemented that would

not yield a resultant attitude error when a performance degradation failure above

the FDI thresholds occurs. For example, in a three computer complex all data

from the six measurement axes could be used in all computers for FDI, but only

selected sets of four axes of data would be processed in each computer through the

least-squares matrix. Thus, an attitude error due to the time the failure took to

be detected and isolated would appear in only those computers that were using in

its four axes processing the specific instrument that had failed. At least one computer

for a single failure case would not reflect an attitude or velocity error due to this

failure and all computers, since they were using all axes in their FDI processing,

would know which axes had failed. Therefore,each computer would know the relative

status-of its data. The velocity and attitude status of the affected computers could

be reinitialized, and the processing equation sets reorganized to assure that a second

failure could be tolerated in the same manner by at least one unaffected computer.

FDI Threshold. Tradeoff Considerations

In the present implementation, the gyro failure isolation criteria achieves

detection and isolation in 35 seconds for a performance deterioration equivalent to

a 100 meru change in bias. Proportionately longer times are required for detection

of smaller performance changes. With the current 6 minute accumulator and a 4

cm/sec pulse weight, accelerometer bias changes equivalent to a 0.1 cm/sec 2 can

also be detected and isolated. Equivalent detection and isolation is achieved for

instrument scale factor (SF) and alignment degradation.

Because of the nature of the nominal uncertainties associated with SF and

alignment in strapdown error propagation, special FDI considerations are required

for operation in the laboratory where continuous test revolutions are often imposed.

Scale factor or alignment degradation corresponds to a change from the

calibrated AO or AV pulse weight or an angular change in an instrument's input
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axis orientations from its previous calibrated orientation. Errors due to these

types of degradation do not propagate, however, until rotation (for the gyro) or a

specific force (for the accelerometer) is sensed. Thus, a SF or alignment change

in combination with, for example, a slew (constant rate) input results in an angle

error. This angle represents an equivalent drift magnitude during the slew period.

Of significance in a mission, however, is the attitude error resulting from a SF or

alignment change and its effect on guidance and navigation. The attitude. or velocity

error for the ternary loops used in SIRU is proportional to the total attitude maneuver

or velocity change. In a static environment with only earth rate and gravity inputs,

the error associated with a 1000 ppm SF shift in a single gyro (sensing the major

portion of earth rate) corresponds to 0.015 0 /hr drift. This type of error propagation

is within the calibration uncertainties of drift terms. Representative SF calibration

uncertainties consistent with current moderate performance technological

capabilities is on the order of 100 ppm and in the SIRU configuration 20 ppm

performance has been achieved. For many applications an uncertainty on the order

of 200-300 ppm at the start of the mission and over the entire maneuver profile

may prove satisfactory. For example, from the Space Shuttle trajectory once around

abort studies error coefficients, presented in Appendix A of the SIRU Utilization

Report, R-747, a 200 ppm gyro SF error in the worst axis would correspond to

approximately a 4.4 nautical mile cross track error at the 100,000 foot entry altitude.

Clearly, in a static prelaunch environment large SF deviations can exist, while due

to the nature of their propagation characteristics in this environment, the cor-

responding attitude error would be perfectly acceptable. Similarly, since the TSE

type FDI uses individual axis body frame attitude error estimate accumulations

over a finite period, relatively large gyro SF and alignment errors would not cause
2 - 2the failure threshold levels to be exceeded. For example, with an E = 37 sec

2
criteria ( 6Ae where AO = 5.5 sec) and a six minute accumulation and, if all the

earth rate is about the specific gyro, a failure would be identified only if the SF

has degraded by at least 6,800 ppm (corresponding to approximately 0.10/hr drift).

Operation in such an environment with this type of degradation is perfectly acceptable.

On the other hand, if one were to apply an input to a system rate test of 5 0 /sec, a

SF degradation of only 5.7 ppm could cause the FDI thresholds to be exceeded in
2 = 12 N 2only six minutes. Even if E = 132 sec was used in the FDI logic, the failure

threshold would be exceeded for a SF degradation of only 20 ppm. In both cases SF

uncertainties of this magnitude are perfectly acceptable while the FDI indications

would be anuisance. Clearly, the FDI goal is to detect and isolate a SF degradation

level in SIRU in excess of 100 ppm. Thus to circumvent nuisance problems and

achieve a detection capability consistent with a realistic SF and alignment degradation
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FDI goal, an algorithm was implemented that increased the TSE limit on the basis

of the dynamic input environment. The technique used was to open the threshold on

the TSE based upon the magnitude of a triad solution body angle accumulation.

That is, the TSE is increased by an amount proportional to the magnitude of the 0x,
0 y' 0z body angle traversed in the same six minute FDI accumulation period. For

simplicity, however, rather than generating a vector magnitude, the TSE increment

(ATSE in sec 2) was made proportional to the sum of the magnitude of the individual

triad body axis accumulations, e.g.: the ATSE is synchronized with the FDI

accumulators and it updates the TSE limits prior to each FDI test.

The scaler K, during the test program, was set so that the TSE was increased

by 44 sec for every 1 / 8 radian accumulated. This scaling is equivalent to opening

the TSE to allow for a SF degradation of approximately 150 ppm (i.e. if rotation

was essentially about the degraded axis) under a constant slew test. The considerations

applicable to alignment shifts are essentially identical and the scaling corresponds

to approximately a 30 se alignment shift detection capability.

The isolation resolution performance capability of the SIRU system TSE

technique as a function of the FDI accumulator storage time for different effective
quantization (AO) levels is illustrated in Fig. 2.1.5. Quantization levels of 44 sec,

20 sec and 6 sec are shown in the figure. The limiting condition is for 6 sec resolution

corresponding approximately to the present SIRU gyro interpolator quantization.

Note in the figure that when the storage time exceeds 600 seconds, all of the curves

flatten out and there is little to be gained by longer accumulator storage time.

During the test program, storage times used varied between 3 and 6 minutes. In

the six minute accumulation, for convenience, the old data was purged every 2 minutes.

(One minute purge cycles were implemented with the 3 minute accumulation). The

six minute accumulation represented the maximum accumulation storage time and

therefore the highest resolution FDI. The 4 minute value remaining immediately

after the oldest two minute portion of data had been purged represented the lowest

resolution FDI for the six minute accumulation. These values (360 and 240 seconds

respectively) occur at the knee of the 6 sec quantization curve and for this value of

quantization the accumulator storage times are therefore optimum. The theoretical

performance isolation resolution corresponding to these storage times is on the
order of 0.1°/hr. This 0. 0o/hr value corresponds to using six times the 5.5 sec

quantization noise for Ej in the TSE threshold and a 6 minute accumulator storage

time.
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In the SIRU hardware testing, use of a TSE based on the 6 sec quantization

has resulted in occasional "false alarms", i.e., failure indication of a specific

instrument on a transient basis where no failure has actually occurred. This

phenomenon was traced to the occurrance of a spurious burst of 2-3 pulses which

resulted innonet integrated angle but did, in the presence of other residuals, cause

the TSE to be exceeded during an FDI accumulation cycle time. Thus, on a transient

basis, an instrument was taken out of the data processing structure until the

accumulator purged the transient data burst and requalified the instrument (approx.

120-180 sec later). The noise effect, although random and infrequent, was traced

to the long cable run, (approx 50') and the table slip ring interface between the

gyro module outputs and the computer. An effective quantization corresponding to

the AO = 20 sed curve in Fig. 2.1.5 was used initially to allow for this noise phenomena,

equivalent to operating with a TSE of approximately 2 x 2402 with AO equal to 5.5

sec. Subsequent dynamic testing illustrated that an equivalent noise in a two minute

accumulation period on the order of 18 see could be induced by 1 Hz, 1/2 -p
oscillations. Therefore the 2 x 132 sec 2 TSE criteria was retained as a nominal

threshold. The accumulator structure was not optimized to correspond to a more

sensitive drift resolution (from Fig. 2.1.5 tenminutes would be more optimal) since

the software was sufficient to demonstrate the FDI mechanization and the new
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statistical FDI did not require this type of accumulation approach. During static

tests, however, finer resolution capabilities were demonstrated, e.g., Fig. 2.1.3
r-. 2

illustrates a 2 x 66 sec TSE criteria corresponding to an effective Ae quantization

of 11 ec. A 0.1 0 /hr FDI with a six minute accumulator was demonstrated in static

tests when driftresidual uncertainties were bounded within approximately 0.01 50/hr.

Figure 2.1.6 shows the error propagation in attitude (sec) as a function of the TSE
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2
detection threshold (in sec) . As discussed previously, an attitude error is propagated
until the failure is detected and isolated. This curve shows the linear relationship
of the maximum system attitude error (resulting from the least-squares processing).
The maximum error reflected in a single triad reference axis corresponds to 0.425
and 0.62 of the instrument error (E ) that is accumulated prior to exceeding the
TSE threshold and to isolation of a first and second fail respectively (Appendix A).
As the effective quantization noise is lowered, the system attitude error propagation
is also lowered since the detection threshold can be lowered. With 6 s quantization,
the attitude error is less than 20 sec. When the effective noise is 20 ec the system
attitude error propagation is about 50 sec. A quantization of 44 gc, used prior to
the incorporation of the torque loop interpolator, results in an error propagation of
112 sec. The second failure condition reflects a somewhat higher magnitude of
attitude error propagation since, after the first failure, the least-squares processing
uses the remaining five axes of data. Thus, when another failure occurs, the smoothing
effect degrades. As noted previously, if a redundant computer implementation was
used, simple logical utilization of different sets of measurement axes datain different
computers for the algorithm processing would assure that at least one computer
would be identified as retaining a non-degraded system output.

Table 2. 1. 3 Demonstrated Redundancy Capabilities

Fault Detection and Isolation
No False Alarms

Filter 3 Min 6 Min

Soft Failure: 0. 75 0 /hr 0. 375 0 /hr
(Drift Change) 0. 2 cm/sec 2

100 ppm SF as low as 0. 05 rad/sec input

Quantization Limit: (Random False Alarms on Noise Burst)

AO = 6 se 0. 180 /hr 0.09 0 /hr

AV = 4 cm/sec 0. 13 cm/sec 2  0.065 cm/sec 2

Demonstrated Results-Hard or Soft Failure:

No False Alarms Random False Alarm

System Attitude Error 60 sec 16 se

Velocity Error -15 cm/sec

Table 2.1.3 summarizes the significant performance values for the SIRU TSE
detection and isolation methods for both gyros and accelerometers. For gyros, the
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drift and bias levels have been reliably detected and isolated. They correspond to

the resolution associated with the full six minute accumulator storage time. If

occasional random false alarms are allowed, the detection and isolation thresholds

can also be lowered. For accelerometers, the static FDI operation is essentially

limited by the pulse quantization used. SIRU was scaled for the Apollo mission to

preserve a 19 g capability, resulting in a AV quantization of 4 cm/sec. Dynamic

errors introduced when large angular rate inputs are applied are the primary cause

for random accelerometer false alarms.

The FDI technique described in this text has been limited to the TSE and

parity equation approach. In late 1971 concepts for improving FDI resolution by

specifying the coverage (reliability) and classifying the nature of the performance

degradation (random or stable bias, etc.) with a subsequent recalibration were

conceived. These techniques were based on a statistical FDI algorithm. During

the late 1971-72 period the statistical technique was developed and matured.

Significant performance resolution improvement with reduced data storage was

achieved. For example, FDI resolutions equivalent to 1.5 times the population's

standard deviation was demonstrated. Recalibration with high accuracy was also

demonstrated. The statistical technique is described in the SIRU Utilization Report,

R-747.

2.1.3 General System Software Description

A general purpose computer (Honeywell DDP-516) is used to verify the

redundant SIRU system software design by providing an instrument calibration and

real-time system evaluation capability. The DDP-516 is a 16-bit machine with

memory cycle time of 0.96 microsecond, a high-speed arithmetic package and 16,384

words of core memory. Peripherals used include: two disc drives, each capable

of storing 34 million words; ateletype unit; a CRT character display and a high-speed

paper tape reader. The DDP-516 has been interfaced with the test table encoder

as well as the SIRU instrument module outputs and thereby provides a capability

for real-time system evaluation.

The basic SIRU software flow is shown in Fig. 2.1.7. A detailed software

coding listing and description is presented in Volume III of this report. As shown

in Fig. 2.1.7, the individual gyro and accelerometer outputs (AOs and AVs) are

compensated to provide corrected body rotation and body velocity. This information

is subjected to the FDI test prior to each algorithm iteration and failed axes data

arenot utilized by thematrix processor (reorganization). As previously discussed,
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provision for recertification (reapplication of "healed" instruments) is an automatic

feature of the TSE FDI. Recalibration (recompensation of stable performance

changes), however, is incorporated as part of the statistical FDI technique and is

covered in the SIRU Utilization report. The accelerometer and gyro failure status

is also available for display. The corrected body incremental motion change as

released for updating is utilized in the matrix processor in which the least-squares

solution to transform the corrected individual instrument AOs and AVs into a X, Y,

and Z body frame is performed. The outputs of the matrix processors are used in

attitude and velocity algorithms to update a quaternion transformation into the inertial

frame. The transformation is accomplished using a third-order Taylor series which

achieves high performance at low iteration rates. An analysis of the use of the

third-order quaternion is presented in both the SPOT Final Report, R-743, and

Control, Guidance and Navigation for Advanced Manned Missions, Volume IV, Inertial

Subsystems, R-600 and is not repeated here.

As noted, the first step in the processing structure relates to compensation

of known instrument calibration parameters and dynamic error sources. The gyro

and accelerometer compensation algorithms accumulate pulses from the torquing

electronics and corrects them for the various error sources intrinsic to each

instrument. The result of the compensation yields corrected rotational and velocity

increments in the body frame. The gyro compensation algorithm corrects for the

gyro scale factor, the drift components (acceleration sensitive and non-sensitive)

major compliance, misalignment angles and OA coupling. The accelerometer

compensation algorithm corrects for scale factor, null bias, misalignment angles

and centripetal acceleration normalization. A detailed discussion of the compensation

techniques is presented in Appendix B.

Shown in Fig. 2.1.7 are the compensation algorithms and their integration

with the other algorithms used in the SIRU system. The pulse torque increments

are accumulated for a period of time determined by the iteration cycle (e.g., 10 ms

for 100 iterations per second). The gyro and accelerometer iteration cycles are of

equal length, but are staggered such that the accelerometer-derived velocity data

is available half way through the gyro cycle (and vice versa). This implementation

increases the efficiency of data processing and algorithm performance.

The accumulated input of raw torque pulses is sequentially corrected for each

parameter by incrementally modifying the count by an amount that is dependent

upon the magnitude of the error parameter. After all parameters have been

compensated, two state vectors are derived which represent the body rotation and

velocity increments in the dodecahedron reference frame.
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This incremental data is processed by the FDI algorithm to indicate instrument

failures and by an adaptive matrix processor to transpose the incremental data

from the dodecahedron frame of reference to a triad frame of reference. Transforma-

tion from the dodecahedron to the triad reference frame is accomplished with a

least-squares estimator operating on the six axes of body data. If an instrument

failure occurs, the matrix processor rejects that instrument's output and accurately

compiles the triad data from the remaining instruments' data. Thus, redundant

performance is exhibited in the triad data.

The triad data is used to furnish estimates of the environment when required

to compensate the appropriate parameters (as examples, acceleration sensitive gyro

drift, misalignment angles and OA coupling). Because the triad data is immune to

instrument failures, the compensation scheme is also immune to instrument failure.

Thus the inherent redundancy features are maintained by the use of the triad data

for compensation. For example, since the A-gyro's ADIA term (as determined in

static test) is corrected for g level by using a triad solution derived acceleration

resolved back into the A-gyro IA axis, the loss of the A-accelerometer does not

degrade the compensation of the A-gyro.

The computer memory and percent of machine time required to accomplish the

data processing described above is summarized inTables 2.1. 4A, 2.1. 4B, 2.1. 4C.

Table 2.1.4A shows the memory requirement for all of the routines applicable

to the operating SIRU system, and Table 2.1.4B shows the percentage of computer

time required at selected iteration rates. The system was initially put into operation

at an iteration rate of 100 updates/second and is presently operating at 50 updates/

second. 20 updates/second has been proposed as an acceptable iteration rate for

several representative applications of the SIRU system.

Table 2.1.4C shows the memory presently required for servicing and overhead

routines implemented to aid in the checkout and development of the SIRU system.

These elements would not exist in a functional installation.

The basic SIRU memory requirement (4280 words) can be correlated to the

load map shown in Volume III by adding to it the overhead of 1859 words and the

blank 243 words of memory between the Digistore output routine and the centripetal

acceleration, Rw , compensation to total 6392 words (14370 octal).

Summary descriptions of the SIRU routines are contained in Chapter 4 of Volume

I and full descriptions, plus load map and listings, are contained in Volume III.
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Table 2. 1. 4A Basic SIRU Software

Operation Memory Words

Gyro Compensation 514

Accelerometer Compensation 378

Gyro Matrix Processor 124

Accelerometer Matrix Processor 86

Failure Detection and Isolation
and Matrix Generator 1706

Attitude Transformation Algorithm 278

Quaternion Unifier 176

Velocity Transformation Algorithm 378

Base Sector* 512

Read Routines 138

Total Memory 4290

The base sector is used to store static coefficient compensation, misalignment
compensation, error accumulators, delta theta and delta V registers, quaternion,
fail status and other often used items.

Table 2.1.4B % Machine Time-Basic SIRU

Update Rate % Machine Time

20/sec 16.6

50/sec 42

100/sec 83

Table 2. 1. 4C Laboratory Overhead Software

Operation Memory Words

Earth Rate Compensation 70

Machine Control Executive 230

Output Routines

Magnetic Tape 101

CRT Display 468 1559
Teletype 91

Output Handler 899

1859
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2.2 Electronics_

2.2.1 Redundant Mechanization

The previous discussions have described SIRU's redundant data processing

and failure isolation concepts. In this section, the manner in which these concepts

are extended to the electronics is reviewed. Discussion of the electronic design

features of these circuits is presented in Chapter 3.

Redundant techniques are employed in the electronic mechanization to provide

circuit functions that are free from single-point failure mechanisms. Figure 2.2.1

illustrates the basic features of the mechanization. Functional axes have been defined

FUNCTIONAL
TRIPLE DUAL AXIS A

REDUNDANT REDUNDANT TSYNCHG
OSCILLATOR SCALER

- - - - - - -- SUPPLY GYRO
t-0V MODULE

AXi5AC

I POwER

DUAL
DC POWER BCDE

DUAL SUPPLIES - *

INTERFACE 40V, 5V,-20v, 28v REG FUNCTIONAL
AXIS F

I -- I------------- ---- I-_

28VDC - -- .. .- - . .- -

I {- - . .- -' .. . .- - A- - - --

Fig. 2.2.1 Block Diagram of SIRU System

that correspond to each dodecahedron measurement axis. Each axis consists of a

gyro and an accelerometer module supported by common power supplies. These

power sources include: a 2 phase 800 Hz gyro wheel power supply; a 9600 Hz supply

for suspension and signal generator excitation and a dc axis supply. The dc axis

supply provides the modules' torque electronics with the required logic (5v) and

amplifier (+10v) voltage levels and a separate floating excitation (15v) for each

precision voltage reference (PVR). This per-axis implementation enables the

isolation of any failure to a specific instrument axis or, at most, to a functional

axis . The functional axis concept was implemented for ac and floating dc power
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The timing control pulses for the torque electronics and synchronization

functions for the various power supplies are redundantly implemented. The oscillators

are mechanized in a triple- redundant configuration with output frequency comparisons

by individual failure detectors.

Dual redundancy is employed in the scaler implementation, and high/low

frequency detectors test both the 115.2 kpps and 200 pps outputs. The control pulses

to the torquing electronics are also tested for their presence and proper sequence.

The selection logic gates only one scaler at a time to the system functional axes

and power supplies, but both scalers are continuously operated and monitored by
their detectors. The scaler output lines are separately buffered to assure fail-safe

operation. In both the scaler and oscillator implementation, provisions for test
sequencing of all the combinations are included.

It is important to note that with respect to the dc power supply and the scaler,
the electronic system configuration was mechanized to provide only fail- safe isolation
characteristics because the relative reliability of the particular functional elements
was used to determine the redundancy level to be implemented. For example, the
estimated failure rate of a 40v power supply is less than 10 failures per million
hours whereas a gyro module failure rate estimate might range between 100 and
200 failures per million hours, determined principally by the inertial instrument
and the torque electronics. Thus, dual redundancy is sufficient for the dc power
supply; it does not compromise the end-to-end system reliability index and still
provides fail-safe operation. Similar considerations were applicable to the dual
implementation of scalers. Inclusion of a third scaler and dc power supply would
represent a relatively simple design modification.

2.2.2 Module Electronics

Each gyro and accelerometer module includes its own temperature controller,
preamplifier, torque control loop,etc. Scale factor stability and linearity perform-
ance on the order of 3 and 20 ppm respectively has been achieved with the present
instrument control loop within a 1 rad/sec design range.

A functional block diagram of the gyro module is shown in Fig. 2.2.2. Note
that an Interpolator/Compensator is included in the ternary torque-to-balance loop
function.
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supplies because a dual- redundant implementation would have necessitated a complex

and possibly unreliable system of independent failure detection monitors and switching

networks. Each gyro and accelerometer module includes its own temperature

controller, ternary torque-to-balance control loop and other specialized instrument

electronics.

The mechanization allows for the incremental AO and AV outputs of each

instrument module to be stored redundantly in an interface multiplexer. The

multiplexer would then transmit data and receive control and sampling messages

from the computer assembly on dual buses. A serial data transmission format

would be used. The multiplexer included provisions for digitized analog data

(voltages, etc.) for automatic monitoring to enable more extensive fault localization,

e.g. to replaceable modules. The multiplexer was designed but not incorporated in

the SIRU system due to program funding limitations.

Redundant dc power distribution to the functional axes is achieved by the use

of dual dc power supplies. These supplies are designed so that each can independently

support the total load of all functional axes. They are isolated from each other by

diode networks to provide fail-safe operation. Provisions were made to allow for

the addition of another dc power axis if further contingency planning was desired,

i.e., Fail Operational/Fail Safe.

Discussion of the design implementation of the dual 4 0v supply which provides

power for the gyro torquing current, provides insight into the special design

considerations that are required to avoid a system failure due to a single-point

failure mechanism. First and most obvious, the diode interconnection is provided

on a per-axis basis to assure the availability of 40v power to the gyro modules if

either of the two supplies fails due to a low output level or to an internal short

circuit ahead of the diode. Similarly, to protect against a gyro module short circuit,

fusing is incorporated on a per-axis basis. This feature assures that the 4 0v
distribution to all other gyro modules (a solid- state fuse design has been formulated)

is not influenced by a loading fault. Another more subtle reliability design

requirement, fail-safe voltage regulation feedback, has been incorporated to insure
that the 4 0v input to the gyro module torque loops remains within regulation limits.

If the 40v were to go above the regulation limit, performance degradation could

occur on all axes. Therefore, each 40v module has dual-redundant feedback loops

that regulate and limit its maximum output voltage. The dual feedback loops operate

to insure that if one loop fails the remaining loop will prevent the module voltage
from exceeding the regulation limit. Other design features allow 100% continuous

overload without affecting regulation of the module output.
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Fig. 2. 2. 2 A Functional Block Diagram of the Gyro Module

In standard ternary loop operation, the gyro signal generator (SG) output is

sampled and, when the SG signal reaches a given threshold, the control logic applies

a torque current pulse to the gyro torque generator to return the gyro float to its
null position. Timing pulses to the logic control the current pulse width, and

precision current amplitude control is effected by a current feedback loop that
operates on the basis of a comparison between the PVR and a current sampling

resistor.

The Interpolator/Compensator provides a dual function.. As a compensator

it substantially eliminates the effect of the dynamic characteristics of the gyro float

and linearizes the gyro torque loop output response to the applied input rates.

Without this compensation, lagging gyro float response to a torque pulse can result
in multiple pulsing. In the uncompensated ternary pulse torque-to-balance control

loop at an interrogation rate of 4800 pps and with a float inertia to output axis

damping ratio (I/C) of 330 microseconds, multiple pulsing does occur. In the
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accelerometer loop, with the 16 PIP Mod B I/C ratio so much smaller than for the

gyro, compensation for float dynamics was not considered necessary. As an

interpolator, at each interrogation period the unit samples and holds the analog,

compensated SG signal, performs an A/D conversion, shifts in parallel the digital

data pulses into a serial register and finally sends them to the computer accompanied

by an end-of- data pulse. The digital data is quantized such that each pulse is equivalent

to approximately 5.5 arc seconds or 1 / 8 of the 44 are second torque pulse. Explanation

of the operation of the Interpolator/Compensator is provided in further detail in

Chapter 3.

The torquer compensation module includes RC networks that tune the torquer

so that it is a resistive load for the current switch and provides a trim resistor

for the "dummy" TG load. In the ternary torque loop when torque is not required,

the current is applied to a "dummy" load which is also a heater (equal in resistance

to the torquer) located on the gyro TG alignment end mount. The purpose of this

module is to minimize transients in the current control loop. The switching of the

current to the "dummy" load minimizes these transients in two ways. When no

torque is required to be applied to the gyro the same current level is fed through

the "dummy"; thus the dc amplifier sees essentially a constant voltage, regardless

of the torquing state. In addition using this "dummy" as a heater on the TG end

mount tends to maintain a relatively constant thermal input to the gyro, reducing

loop transients and thermal gradients as well. The 8v power supply is also located

within the module to minimize lead capacitance which affects switching time in the

current switch.

A dc temperature control loop is used in the gyro and accelerometer module.

It is novel in that the control power includes the output transistor's dissipation.

The applied power, therefore, is a linear function of control current and a more

efficient power mechanization results. This efficiency is achieved by mounting the

output power transistor on the instrument alignment mounts (where the heater is

also located) permitting the transistor dissipation power to serve also as control

power.

The accelerometer module electronic configuration is similar to the gyro

module, except that the Interpolator/Compensator functionis not incorporated. The

SIRU torque loop scaling characteristics are listed in Table 2.2.1. The features of

the electronics design are described in further detail in Chapter 3.
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Table 2. 2. 1 SIRU Instrument Torque Loop Characteristics

A) Gyro Torque Loop

Type: Linearized Ternary

Pulse Torque-to-Balance

Dynamic Range: 1 rad/sec

Torque Loop Quantization: 44 s'/pulse

Interpolator Quantization: 5 se/pulse

Torquer Power: 2. 94 watts-1 rad/sec

B) Accelerometer Torque Loop

Type: Ternary Pulse

Torque-to-Balance

Dynamic Range: 19 g

Torque Loop Quantization: 4 cm/sec per pulse

Torquer Power: 0. 78 watt-19. 5 g
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PRECEDING PAGE BLANK NOT FILMED

3.0 System Hardware

3.1 Electronics Assembly and

Redundant Instrument Package

The configuration that has been developed for the SIRU system embodies its

reliability features in a modular implementation for improved maintainability. The

system is configured as two separate assemblies; the Redundant Instrument Package
(RIP) and the Electronics Assembly (EA).

The RIP consists of a mounting and alignment structure, commonly referred
to as the n-frame, upon which the six gyro and six accelerometer modules mount.
The assembled instrument package is shown in Fig. 3.1.1.

Each module consists of a prealigned gyro or accelerometer that is normalized
and packaged with its calibrated electronics in a sealed unit. The instrument's
input axis (IA) is offset at an angle, a (31.70), with respect to its module base.
Thus, when the modules are mated to the -frame's precision mounting surfaces,
which lie in orthogonal planes, the instrument's IAs are aligned to the desired
dodecahedron symmetry. This mounting configuration allows all units to be prealigned
in exactly the same manner, and all modules of each type are replaceable and
interchangeable. Offsets from module instrument alignment to system alignment
measurements after mounting on the n-frame have averaged less than 10 sec.
Maintenance is further enhanced by the n-frame configuration that allows direct
access to every instrument from the front of the package.

One interesting aspect of this mechanical configuration is that all instrument
output axes (OAs) are colinear with the reference orthogonal triad. This circumstance
permits compensation for errors introduced by dynamic inputs about the OA using
calculations developed from the triad solutions without additional geometric
resolution.

The accelerometer module has been designed about the MIT developed size
16 Permanent Magnet (PM) Pulsed Integrating Pendulum (PIP), a single degree-of-
freedom specific-force receiver operated in a torque-to-balance mode. It is primarily
distinguished from its predecessor, the Apollo PIP, by a permanent magnet torquer
and a solid float.

The gyro module has been designed about the size 18 Inertial Reference
Integrating Gyroscope (18 IRIG) Mod B, a single degree-of-freedom gyroscope
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developed by MIT/DL specifically for strapdown application. Its PM torquer is

scaled for torque-to-balance operation with input rates up to one rad/sec, and the

OA suspension capability is sized to limit radial side loading at this rate to a negligible

value. It contains a gas bearing wheel package, with a greater than 5 rad/sec slew

and a multiple stop-start capability. A -final report covering the design and

development of this instrument has been published as MIT Draper Laboratory Report

R-664 dated June 1970.

The packaging system developed by the U.S. Naval Avionics Facility,
Indianapolis (NAFI) was used in the design of the EA as shown in Fig. 3.1.2. This

approach was selected because, among other features, it permitted the definition of

the -frame structural design independently of the status of the electronic module

designs and packaging. The EA design was configured so that functional redundant

elements are completely separate mechanically and electrically. Thus, an oscillator

module or portions of a scaler, etc., may be removed without disabling the system.

Fig. 3.1.2 SIRU Electronics Assembly.
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3.1.1 Weight, Volume, and Power

The weight, volume and power requirements of the RIP and the EA are shown

in Table 3.1.1. Project funding did not permit the development of microminiature

electronics and the interface requirements limited possible size reductions. A

production design without these restrictions would result in significant weight, volume

and power reductions. A further breakdown of the components of the RIP is shown

in Table 3.1.2.

Table 3. 1. 1 SIRU Weight, Power, and Volume

Assembly Weight Volume Power
(lb) (in 3 ) (watts)

Redundant Instrument Package (RIP) 62. 94 1753.84 182. 4

Electronics Assembly (EA) 33.50 1155.00 124.0

RIP-EA Harness 6.25

Totals 102.7 2908.84 306.4

Table 3. 1. 2 Redundant Instrument Package

Assembly Qty Dimensions Weight Power
(in) (lb) (watts)

Gyro Module 6 5 1/4x4 3/8x4 4.35 23.0

Accelerometer Module 6 4 1/4x3 7/8x3 9/16 2.64 7.4

n-Frame 1 20 1/ 4x15 1/16x5 3/4 21.00

The SIRU configuration satisfies manned spacecraft design considerations

(vacuum, thermal by conduction, etc.) and can be compared with the Apollo Inertial

Subsystem (ISS) which has similar packaging density. The total Apollo equivalent

ISS weight, volume and power is 93 lbs, 2654 in 3 and 216 watts, respectively. To

achieve the same relative reliability as SIRU, such as would be required for the

space shuttle, three to four such systems would be required.

As a development model constrained by the time line, fiscal and interface

factors specified in the authorizing contract, the present RIP does not represent an
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ultimate design miniaturization, although it is a realizable competitive equipment

configuration (the use of hybrid medium scale integrated electronic packaging

techniques, for example, could reduce the system weight by over 50%). It serves

to demonstrate the redundancy, the failure detection and isolation capability and

the performance level to be expected from this type of equipment using a high

reliability, low risk packaging technique.

3.2 Redundant Instrument Package

3.2.1 Inertial Component Mounting Concept

The formulation of a mounting concept for the inertial components (ICs) in

the SIRU system was finalized after examination of all design objectives and

constraints. The basic considerations were mounting frame complexity, instrument

environmental sensitivities, module normalization requirements and

interchangeability goals. Each of these basic considerations included supplementary

elements that had to be considered with respect to each other without violating the

objectives of in-flight maintainability and of form factor compatibility with the Apollo

Command Module Lower Equipment Bay.

Figure 3.2.1 shows one possible conceptual approach. This mechanization

aligns the gyros such that all spin axes (SAs) are normal to the Z axis. The resulting

advantage lies in the elimination of one of the g-sensitive drift terms during thrusting

along the Z axis. The major drawback to this configuration is the degree of complexity

required in the mounting frame. Figure 3.2.2 presents the concept that was

implemented. The simple box shaped schematic reflects the ability to position the

instruments in three orthogonal planes while maintaining each instrument's IA aligned

normal to the face of a regular dodecahedron.

Using the "box" approach, several choices were available for the arrangement

which provides the dodecahedron angle. Figure 3.2.3 illustrates two methods. In

the first, the IA is aligned normal to its mounting base and the angle is machined

into the mounting structure. In the second, which was the method selected, the

dodecahedron angle is achieved at the module level. Figure 3.2.4 shows the IA

The contract required mechanical and electrical interface compatibility with the
Apollo GN&C equipment (see Chapter 1, Introduction).
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Fig. 3. 2. 4 Accelerometer Module Mounting & Alignment

51



alignment of the accelerometers and Fig. 3.2.5 illustrates the fixturing and test

method utilized to achieve the proper IA alignment for the gyros. The arrangement

finally chosen represented a modification of the "box" approach which placed all

the instrument modules on the front face with the coldplate heat exchanger mounting

from the rear. The resulting structure is referred to as the r-frame.

SURFACE B

ALIGNMENT ADJUSTMENT rol

SIRU GYRO ,MODULE

TABLE ROTARY
AXIS

ALIGNMENT A
FIXTURE

i- BASE PLATE
,sRAA ~ ALIGNMENT

-! INTERFACE P!N

_ B_ LLEVILLE

SURFACE A PLATE

TRUNNION
AXIS

Fig. 3. 2. 5 Alignment Adjustment SIRU Gyro Module

The selection of this configuration resulted in the simplest design of the

mounting structure with no sacrifice in interchangeability and performance.

Experience has shown that replacement of a module in the system can be accomplished

in less than ten minuteswith a minimum possibilityof damage and with an alignment

repeatability better than 20 sec.
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3.2.2 Mechanical Design of SIRU Redundant Instrument

Package

The SIRU RIP assembly layout is shown in Fig. 3.2.6 with its wiring harness

removed. This assembly consists of a -frame, six gyro modules, six accelerometer

modules, and acoldplate with overall dimensions of 19-7/8 inches by 15-1/16 inches

by 5-3/4 inches and a weight of 70 lbs. with its harness.

P i

Fig. 3. 2. 6 SIRU RIP

The design objectives shown in Table 3.2.1 determined the RIP configuration.

It was originally intended to be mounted within the Apollo Command Module Lower

Equipment Bay with the coldplate connected to the spacecraft coolant lines. The

RIP was to be removable without breaking these coolant lines. The frame was

made as symmetrical as possible to obtain the structural rigidity and mounting

stability necessary to maintain the alignment accuracies required for a strapdown

system in a flight environment. This symmetry also contributed to good thermal

design, providing minimum thermal gradients from component to component. A

three-ball kinematic mounting arrangement was used to mount the RIP to the

navigation base or to the test base. The parts used in this mounting arrangement

are identical to the Apollo Optics Assembly mounting hardware. The ICs were

prealigned and modularized for interchangeability. The frame design was constrained

to be as simple as possible for ease of fabrication. Structural dimensioning and
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design tolerances necessary to meet the mechanical requirements shown in Table

3.2.2 were implemented. Figure 3.2.7 shows the ir-frame consisting of a 6061

aluminum dip-brazed structure with inserts for mounting the instrument modules.

The ICs are mounted on four mutually perpendicular planes (the Y axis plane is

split in two to keep the design compact and symmetrical). An optical cube mounted

on the under side of the Z axis plane is visible through a hole in the plane and from

the X and Y directions. A flat mirror is also mounted on each of the IC mounting

planes. These mirrors were used for alignment and positioning checks during tests.

Different insert materials are used for mounting the gyros than are used for the

accelerometers because of the difference in power dissipations; the gyro pads require

a larger thermal resistance because of higher dissipation. Both materials had to

be hardenable and suitable for lapping to meet the tolerance requirements. Carpenter

455 stainless steel for the accelerometers and beryllium copper #25 for the gyros

are the materials employed.

Table 3. 2. 1 SIRU Design Objectives

1. STRUCTURAL RIGIDITY AND STABILITY

2. THERMAL BALANCE AND GRADIENTS

3. PREALIGNED AND INTERCHANGEABLE I/C MODULES

4. FIT APOLLO LEB WITH S/C HEAT EXCHANGER

5. TOLERANCED TO MEET DESIGN OBJECTIVE ACCURACIES

6. PRODUCIBILITY

Table 3. 2. 2. Mechanical Design Requirements.

RIP AXES TO OPTICS LOS 20 secs

PI FRAME TO NAV BASE 5 sees

PADS AND PINS, X TO Y TO Z TO OPTICAL CUBE 5 s~s

THERMAL GRAD:IENTS 5 sees

STRUCTURAL LOADING AND STABILITY 10 sies
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Figure 3.2.8 shows a cross section through an IC mounting pad including the

tungsten carbide alignment pins which maintain alignment about the axis perpendicular

to the mounting plane. Typical tolerances required to meet the mechanical design

requirements of Table 3.2.2 are: flatness-50 microinches; perpendicularity and

parallelism -100 microinches; and finish-4 to 8 microinches.

System tests were performed to determine -frame distortion under extreme

thermal gradients.

The testing was accomplished by mounting "dummy" thermal gyro and ac-

celerometer modules on the n-frame and running the following sequence of tests.

1. Power to modules on right half of structure

2. Power to modules on left half of structure

3. Power to all modules

4. No power

The results shown in Table 3.2.3 proved the r-frame to be relatively insensitive

to even large thermal gradients.
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Table 3. 2. 3 -Frame Thermal Test Results

TEST CONDITION MISALIGNMENT
ARC SEC

MODULES COOLANT
GYRO MODULE: 21 WATTS EXCITED FLOW X -- X Y -Y

ACC MODULE: 7 WATTS
ACCS: A, B, F OFF -10.2 + 7.1

I. GYROS:C, D, F
ON - 9.7 - 1.8

CA] F €C ACCS: C, D, E iF: + 11.2 -11.0

II GYROS:A, B, E ON + T6 3.5
ON + 10.6 -- 3.5

EA ACCS: C, D, OFF - 5.6 + 4.0

III. GYROS: C, DON 4.7 + 14.4

EG BG BA FG ACCS: ALL
IV. ON + 1.4 - 6.2SGYROS: ALL

V. ON + 1.4 + 0.5
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3.2.3 Modularized Assemblies

The function of the gyro module is to sense the component of rotation being

applied along its IA and deliver as its output a sequence of weighted pulses which

defines the magnitude and sign of the rotation. The action is accomplished by closing

a ternary loop around the gyro by means of precision current pulses to the gyro

torquer. The general specification requirements for the gyro module including scale

factor and drift parameters, input and output power and signal characteristics and

tolerances, thermal limitations and other system features are provided in Appendix

C.

Modularized IC assemblies were incorporated in the SIRU system to meet

the requirement for in-flight maintenance. The modules are configured mechanically,
thermally, and electrically to make replacement as simple and straightforward as

possible. To accomplish a removal it is only necessary to loosen three screws

conveniently located on the module, disengage a single multi-pole connector and

lift the module from the w-frame. Replacement reverses the procedure. This

capability for simple in-flight replacement depends on the prealigned, normalized

condition of each module, the accuracy of the remount alignment provision, the rugged

construction of the assembly, the accuracy and stability of the prealignment operation

and the self-calibration features of the SIRU.

The following is a technical description of the gyro module. Substantially the

same description, accompanied by test results, performance analysis and

comparisons, including a description of the gyro module test equipment and

procedures, is presented in Volume II of this report. The accelerometer module

concept is very similar; a 16 PM PIP Accelerometer (PIPA) is substituted for the
18 IRIG Mod B gyroscope. The accelerometer is also used in a Navy project and

the material describing the accelerometer module performance is presented in
Volume IV (classified CONFIDENTIAL).

The functional block diagram of the gyro module is shown in Fig. 3.2.9. The

gyro module consists of the following components:

1. Gyro - 18 IRIG Mod B

2. Gyro Pulse Torque Electronics (PTE)

3. Interpolator/ Compensator

4. 8 Volt Power Supply

5. Torquer Tuning Network

6. Bandpass Preamplifier

7. Temperature Controller

8. Normalization Assembly
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A description of the function and principal features of each component follows.

Additional information may be found in Volume II.

1. Gyro - 18 IRIG Mod B

General Description

The 18 IRIG Mod B is an advanced design, gas bearing instrument specifically

designed by the Draper Laboratory for the strapdown application. Fig. 3.2.10 is a

cutaway view of the 18 IRIG Mod B 420 series gyroscope showing the various

components. The wheel, made from a fine-grained, hot pressed, alumina ceramic,

rotates at 24,000 rpm on a spool type gas bearing generating an angular momentum

of 150,000 gm-cm2/sec. The ceramic encapsulated motor stator enhances float

mass stability, and reduces the possibility of condensed contaminants on the bearing

surfaces.

Fig. 3.2. 10 18 IRIG Mod B
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The float, which houses the wheel and stator, is fabricated from a high precision-

elastic-limit beryllium which combines low density with excellent stability. It is

surrounded by and floated in a high density, controlled viscosity, chemically inert

dielectric fluid maintained at a precisely controlled temperature. The fluid isolates

the float from environmental inputs and provides the damping which is an essential

characteristic of the single degree-of-freedom (SDF) integrating gyroscope. The

float inertias and compliances about the SA are matched to those of the IA to minimize

dynamic errors from these sources.

The permanent magnet torquer (PMT) is capable of developing 150,000 dyne-cm

of torque, sufficient to balance an input rate of one rad/ sec. Tapered electromagnetic

suspensions provide radial and axial stiffness capable of restraining the float at

the rated input angular velocity. The angular position of the float from its null

location is measured by a multiple E type signal generator (SG). SG sensitivity
when excited by an 8v, 9600 Hz source is 20 mv/milliradian.

The instrument is hermetically sealed within a Mumetal shroud to augment
m agnetic isolation, aid heat transfer control and protect the gyro from unauthorized
adjustment. Temperature control and monitoring are provided by four nickel wire
wound sensors controlling heaters which are located on the gyro end mounts. The
complete instrument measures approximately 2 inches in diameter and 3 7/8 inches
long. Weight is 1.15 pounds. A summary of the characteristics of the 18 IRIG Mod
B gyro is presented in Table 3. 2. 4.

Pulse Torque-to-Balance Operation

The gyro in the SIRU system operates in a closed loop where the torques on
the float are restrained by torques developed by the torque generator (TG). See
Fig. 3.2.11.

An angular rate imposed about the IA of the gyro produces a torque about its
OA and causes the float to rotate from the SG null position. The direction and
magnitude of the float rotation are detected by the SG, and when the SG output voltage
reaches a given threshold level, a discriminator provides a positive or negative
set signal, depending on the polarity of the SG output voltage. These set signals
are interrogated at a given frequency to switch a current pulse of fixed amplitude
and duration to the TG winding. In the control loop mechanization, a principle error
source is inaccuracy in the torque pulse area. For example, a torque pulse of 100
ma amplitude and 200 microseconds width exhibiting a variation from nominal
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Table 3.2.4 18 IRIG Gyroscope Characteristics

Single Degree of Freedom Floated Gyroscope

Weight: 1.15 lbs (523 gms)

Size: 2 inch (5.08cm) Diam. 3.86 inch (9.8cm) Long

* Wheel:

Self acting spool type gas bearing (Aluminum oxide)

Angular Momentum - 150,000 gm-cm2/ sec (24000 RPM)

Maximum Capabilities -.5 RadlIsec about IA
> 50 g's 60-400Hz

Synchronous Motor - 4 pole 24 28v 800Hz
2.6 wattsl/ running

Drift Sensitivity - 0.00401 Hr per Volt

* TORQUER:

Permanent Magnet - 8 poles, Alnico V IX, ring poles
1 Rad I sec at 3 watts

* COIL HOLDER - 8 coils on Beryllium Oxide holder

* SF SENSITIVITIES TO FLOAT MOTION:

Radial - 50ppm for 0.4x 10-3 inches,
Equiv. to 1.0 Rad / sec about OA

Axial - 50ppm for 0. 25 x 10- 3 inches,
Equiv. to 10g accel or 20 F off flotation

Rotational - 50ppm mill i Rad
i.e. 3ppm for

Thermal - 10ppm / OF

* STABLE MAGNET CHARACTERISTICS

Decay 60ppm per decade
(magnetized after assembly)

* LOW DRIFT SENSITIVITY- ForTorque Power Cycling
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Table 3. 2.4 IRIG Gyroscope Characteristics (Cont)

* Thermal:

* Flotation Temperature - 1329'

* Drift Sensitivity - <.030 Hr per F

* Storage 200F - 180oF nominal

* Miscellaneous

* Gyro Elastic Restraint <0. 1 dyn cm per mr

* Float & Housing - Beryllium

* Fluid - Brominated fluorocarbon

* Magnetic - vacuum shroud

Suspension:

* 8 Pole - Electromagnetic Tapered Suspension

Prevents radial side-loading <1 Radl sec - OA

Prevents axial loading <20g 20 F
Reaction torque sensitivity < 0. 015"1 Hr - 17. Excitation

* Excitation - 8V - 9600Hz 0. 83 watts

4 Signal Generator:

* Microsyn - 12 Pole E Type

* Sensitivity - 4.4mvl mr (IA) AO'-0.9mv

* Noise - pickup 800Hz < 160 microvolts
modulated ± 1.6KHz < 10 microV

* Excitation- 8V - 9600Hz 7 ma
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Fig. 3.2. 11 Block Diagram-18 IRIG Closed Loop

of 10 - 4 ma in amplitude or 2x10-10 sec in width will cause an error in scale factor

of one ppm.

Gyro and accelerometer module specifications and input/output characteristics

are provided in Appendix C. The gyro module electrical schematic is Dwg. No.
2304040 and the corresponding schematic for the accelerometer module is Dwg.
No. 2640424.

2. Gyro Pulse Torque Electronics

The function of the gyro PTE is to receive the output from the gyro SG, evaluate
the threshold level in the torque control logic and, if ordered, supply current pulses
to the gyro TG as required to reduce the SG signal below the threshold. The width
of the current pulse is controlled by timing pulses transmitted by the torque control
logic and the amplitude of the current pulse is maintained by a feedback loop involving
the comparison of a precision voltage reference (PVR) and a current sampling
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resistor. The current pulse is transmitted to the gyro TG through a current switch

which is set by the torque control logic to provide the appropriate polarity. The

operation of the PTE is described in detail below.

The output signal from the gyroscope is first amplified by a bandpass

preamplifier, fed into the ac amplifier (x10) in the PTE and then to a comparator

or threshold device (essentially a strobed Schmitt trigger).

As shown in the Timing Diagrams, Figs. 3.2.12 and 3.2.13, and the logic

diagram, Fig. 3.2.14, the comparator is strobed by the leading edge of the 4800 pps

interrogate pulse (INT) which coincides with the peak of the 9600 Hz signal at the

comparator. A phase shift adjustment is made in each module to the SG signal in

the bandpass amplifier to insure this relationship. If, (referring to Fig. 3.2.14) at

the instant of strobe (INT), the peak level of the amplified SG voltage exceeds the

positive threshold level (equivalent to 44 sec input) and is in phase with the INT

pulse, a positive level detect signal is generated which sets the positive level detect

flip-flop (+LDFF) to its positive state. The output of the +LDFF then sets the torque

motor set flip-flop (TMSFF), (Fig. 3.2.15), to its negative state (S2,4=-; S3,5=+).

The positive output of the TMSFF turns on Q3 and Q5 which sets up the current

switch for a negative torque current command.

The output of the +LDFF is also summed with the reset and INT pulses in the
positive AO AND gate to generate a AO pulse upon receipt of the reset pulse. This
Ae pulse goes to the computer.

The output of the +LDFF also goes to the torque switch AND gate where it is

summed with the INT and the switch pulses. When the switch pulse occurs, a torque

switch pulse is generated which sets the torque switch reset flip-flop (TSRFF) to

its switch state so that its output turns on Q6 and turns off Q7. This sets up the

current switch to send current to the torquer winding instead of to the "dummy"

torquer.

After 195.33 microseconds, the INT pulse (4 microseconds wide) starts,

followed 2 microseconds later by the reset pulse (0.4 microseconds wide). These

pulses are summed in the torque reset AND gate which sends a pulse to the TSRFF

switching it back to its reset state so that Q6 turns off and Q7 switches on, returning

the current flow to the "dummy" torquer load.

A similar sequence occurs when the negative threshold level is exceeded except

that a positive torque current and a negative Ae are generated.
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Fig. 3. 2. 13 SIRU Gyro Module-Timing

-LEVEL DETECT RESET
INT -Ae
LEVEL DET.

-LEVEL
-THRESHOLD DETECT FF

F+ TM SET

IT R

9600 H z . LEVEL DETECT FF
S G. SIGNALV I

+LEVEL
+ THRESHOLD DETECT

FF +LEVEL -TM SET
q R DET. FF

+LEVEL RESET - Ae
LEGEND DET. I NT.

AND INT PULSE > + LEVEL DETECT FF

OR INT

INVERT CONTROL PULSES RESET SWITCH

(Switch Reset) -TORQUE
RESET

Fig. 3. 2. 14 PTE Logic

66



* 40 v

Q1

-Dummy Torquer

+ TM Set ---

- TM Set - - Torquer
R S3,51 - 05 Q

Torque F 66 

Torque Reset R S7
DC
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Fig. 3. 2. 15 PTE "H"'' Switch.

The torque delivered to the gyro is a function of the duration and amplitude
of the torque current pulse. The pulse width and gyro torquer sensitivity define
the pulse scale factor (SF) quantization (44 sec). The pulse duration is determined
by the time between the reset and switch pulses and is 13.028 microseconds ± 5
ppm. A stability of 1 ppm over a period of 24 hours is characteristic of the SIRU
performance. The amplitude is maintained by the Torque Current Loop, Fig. 3.2.16.
This control loop compares the voltage drop across a precision (standards quality)
resistor with the PVR. The difference voltage is amplified by the high gain dc
amplifier and fed back to Q1 which controls the torque current supply to maintain a
constant current amplitude.
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Fig. 3. 2. 16 Torque Current Loop

The stability and absolute magnitude of the torque current are, therefore,
established by the PVR, the current sampling resistor (scale factor) and the high
gain dc amplifier. For a given PVR and dc amplifier, the absolute magnitude of
the current is determined by the SF resistor which is selected to match the measured
gyro SF within 200 ppm. The SIRU loop has demonstrated a long term amplitude
stability of 10 ppm.

The mode of operation for the accelerometer loop is intrinsically identical.
Minor parameter differences result from the relative torquer requirements and
normalization practices at the instrument level. The general characteristics of
the accelerometer and its module are shown in Table 3.2.5.

The timing inputs to the torque control logic are reshaped by means of pulse
receivers, one for the interrogate and one for the switch pulse train. The calibration
stability of the module is largely dependent on the rise time characteristics of the
pulse trains. Low noise performance is achieved using a single diode level "standoff"
coupled to a fast rise, two stage pulse amplifier. Output AB lines are transmitted
to the computer through line drivers to compensate for possible variation in
transmission line length, performance characteristics and pickup, -The line drivers
consist of blocking oscillators designed to provide ground decoupling and a high
level of cable drive power.
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Table 3. 2. 5 SIRU Module/PIPA Characteristics

PIPA Module

1. Dimensions 4. 3 in. x'3.9, in, x 3. 6 in.

2. Volume 58.4 in. 3

3. Weight 1170 gm

4. Power 9 watts

PIPA

1. Physical Description

a) Length 2. 1 in.

b) Diameter 1. 6 in.

c) Weight 354 gm

2. Configuration

a) Signal Generator Type Microsyn

b) Torque Generator Type Permanent Magnet

c) Pendulum Support Floated and Magnetic Suspension

3. Pendulosity 1 gm cm

4. Damping Coefficient 120, 000 dyne-cm/rad/sec

5. Operating Temperature 1300F

6. Torque Parameters

a) Mode Pulsed-Ternary

b) Nominal Scale Factor 4 cm/sec/pulse

c) Interrogation Rate 4800 pps

d) Maximum Torque
Rebalance Capability 19. 0 g

7. Power

a) Signal Generator 0. 04 watts

b) Torque Generator 0. 75 watts

c) Magnetic Suspension 0. 6 watts

3. Interpolator/ Compensator

The Interpolator/Compensator (schematic Dwg. No. 2304154) provides a dual
function. As a compensator it substantially eliminates the effect of the dynamic
characteristics of the gyro float and linearizes the gyro torque loop pulse output
response to the applied input rates. Without this compensation, lagging gyro float
response to a torque pulse can result in multiple pulsing. In the uncompensated
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SIRIU pulse torque-to-balance control loop at an interrogation rate of 4800 pps and

with a ratio of float inertia to OA damping of 330 microseconds,multiple pulses do
occur. In the accelerometer the ratio is much smaller and compensation for float

dynamics was not considered necessary.

The float response to a single torque pulse provides insight into this effect of
lagged response on closed loop operation. Less than one fifth of the total float
motion response to a single, fixed magnitude torquing pulse, 195 microseconds in
duration, occurs in the first sampling period (at the 4800 pps interrogation rate).
Thus, if the angular rate about the gyro IA is in excess of 15% of the full-on torque
loop capability, the torque loop will always pulse again because only 15% of the
commanded return travel has occurred before the next interrogation. Over a total
indicated angle the pulse bursting results in an instantaneous reading error and the
base AO resolution is not realized. A compensation technique to eliminate this
problem is shown in Fig. 3.2.17. Analog voltages, ±E Comp, are developed by
generating a 206.3 microsecond pulse from a flip-flop circuit which is set and reset
by the AO and interrogate pulses, respectively. This pulse, which is approximately
the same length as the torque command (195.3 microseconds) is integrated by an
RC network to generate a voltage of the proper phase and magnitude so that when
summed with the gyro SG signal, the combined signal compensates for the gyro
float time constant and eliminates the multiple pulsing.

COMPENSATED SG StGK tL-
TC P.T. E. T-PF.SHOLD

D ET ECT0R

UNCOMPENSATED 0o t Is DATA PULSES

SAMPLE -D
S.G. SIGNAL SUMMING AND
FEOL PT.E AaO HOLD END OF DTA PULSE

AMP

ONE DATA PULSE

IAe a- 4-ECOMPENSATED
5.5

+ E COMPENSATED

4 or - INTERNAL

NET- TIME CONSTANT LOGIC CLOCK sI CLOCK

TJT-

INTERROGATE PIULSE

C /M P ENSTO -D CON VERTE.R

SECTION SECTION

Fig. 3. 2.17 Interpolator Block Diagram
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The effectiveness of this technique is illustrated in Table 3.2.6. This table

presents the distribution of the pulse torque patterns for the compensated and

uncompensated loop of a SIRU gyro module when operated at 1/4 of maximum rate

(.25 rad/sec) and at an interrogation frequency of 4800 pps. The first column
represents the number of times that a particular mode occurred; the second and
third columns are the number of ON pulses and OFF pulses for that particular
mode.

Table 3. 2. 6 SIRU Gyro Module Moding Patterns at 4800 Hz

Input Rate: 0. 25 rad/sec

Number of Torquer
Occurrances On Off

Without
Compensation

1678 2 6

205 2 7

382 3 8

4095 3 9

With
Compensation

1132 1 2

4095 1 3

1937 1 4

The data shows a predominant 3 to 1 ratio of OFF to ON pulses and that the
uncompensated data has characteristically a burst of 3 ON pulses followed by 9
OFF pulses compared to 1 ON and 3 OFF for the compensated data. The spread of
pulse patterns is attributable to noise and variations in table rate. This data illustrates
that compensating the system has removed the spurious output generated by the
limit cycle.

As an interpolator, once each interrogation period, the unit samples and holds
the analog compensated, SG signal, performs an A/D conversion, parallel shifts
the digital data pulses into a serial register and finally sends the data, accompanied
by an end-of-data pulse, to the computer. The data is quantized such that each
data pulse is approximately 5.5 sec or 1/8th of a 44 sec AO pulse.

The timing of the data pulses and the end of data pulse are shown in Fig. 3. 2. 18.
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S-Interrogate Pulse
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sil Interpolator End of Data
-. -- o., Pulse

A) +68 (+5 Vdc amplitude, 2 ~sec wide)

B) -A (+5 Vdc amplitude, 2sec wide)

C) Interpolator Data Pulses. 4.5 Vdc, 0 to 31 pulses at 1.5 mc rate

D) Interpolator End of Data Pulse. 4.5 Vdc, 200 nsec pulse width, 208.33 psec
repetition rate

Fig. 3. 2. 18 SIRU Gyro Module Electrical Interface
Output Signal Requirements

4. 8 Volt Power Supply

The 8v power supply is a dual dc source with identical floated and isolated

outputs. One +8v output provides excitation to the polarity determining logic of the
H switch (see Fig. 3.2.15) and the other +8v output excites the torque-torque reset

logic of the H switch.

The 8v power supply was located within the module to minimize line capacitance
that affects torquing performance. In addition, to further reduce capacitance to

ground and minimize switching transients, the input transformer in the supply is

designed for minimum interwinding capacitance.

The 9600 Hz excitation is used for the 8v power supply because of its availability
in the module, simplifying the module wiring interface. Because of the good regulation
of the 9600 Hz supply and the relatively high frequency, the size of the transformer
and the filter components in the supply can be small. The schematic Dwg. No. is
2304009.
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5. Torquer Tuning Network

This section contains two series RC networks which are connected in parallel

with the gyro TG coil (see Fig. 3.2.19). The networks' function is to tune the coil

so that minimum SF deviation with rate is achieved. The unit also contains a trim

resistor which is in series with the "dummy" torquer mounted on the gyro. The
trim resistor is used to adjust the "dummy" torquer resistance to the actual dc
resistance of the torquer. This "dummy" torquer is a non-inductive heater whose

resistance is approximately equal to the actual torquer dc resistance. The heater

is located on the gyro end mount in the module at the torqter end of the gyro.
Whenno torquer current is needed, the "dummy" is energized by the PTE torque-no

torque logic (Fig. 3.2.15). This transfer provides a constant loai to the current

source. It also provides a thermal input to the gyro equivalent to that seen by the
gyro when torquing is commanded. This action minimizes thermal transients in
the gyro by delivering constant power to the gyro regardless of the torquing
requirements.

GYRO PTE

RC NETWORK

I GYRO
TRIM I TORQUER

I COIL
I - i

GYRO
DUMMY
TORQUER

SF

Fig. 3. 2. 19 Gyro Module RC Network
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6. Bandpass Preamplifier

This amplifier provides the necessary gain to raise the level of the gyro SG

error signal to be compatible with the PTE input circuit. It also provides bandpass

filtering to minimize the unwanted 800 Hz pickup induced by the gyro wheel

excitation. An adjustment is provided in the unit to correct the phasing of the SG

signal so that it matches the timing of the interrogate pulse (see Fig. 3.2.13). The

schematic Dwg. No. is 2304030.

7. Temperature Controller

The function of this unit is to minimize temperature sensitive gyro drift terms

by maintaining the gyro temperature constant within ± 0.10F over a range of ambient

temperatures, wheel power variations, and other thermal disturbances. The

controller contains two legs of a dc resistance bridge; the other two legs being

temperature sensitive resistors located in the gyro. The bridge is balanced at the

operating temperature (1320F) of the gyro. Any deviation from this temperature

unbalances the bridge and generates an error voltage. This error is then amplified

by a low level, high gain, dc, integrated circuit operational amplifier. This amplifier

contains an integrated circuit temperature control loop which keeps the dc amplifier

circuit at constant temperature in order to minimize dc drift due to temperature

variations within the amplifier. This amplifier then drives another amplifier which

drives power output transistors which, in turn, deliver power to a heater located

on the gyro (See Fig. 3.2.20). The power transistors are assembled into the gyro

end mounts so that the power dissipated in the power transistor is transferred to

the gyro. Since the controller is essentially a series dc proportional regulator,

the sum of the power dissipated in the transistor and the power dissipated in the

gyro heaters is linearly proportional to the gyro heater current. This mechanization

is in contrast to the usual situation where the power transistor dissipation is not

part of the control heat (not located at the gyro) so that gyro thermal control is

only by heater power which is proportional to the square of the heater current.

This linear operation simplifies the dynamic compensation of the control loop and

provides for maximum thermal efficiency of the controller output circuitry. Dynamic

loop compensation is achieved by the use of a series of RC networks connected

between the emitter of the TG end mount power transistor and the input to the high

gain amplifier. The time constant and gain of the RC network are chosen so as to

stabilize the control loop which would otherwise be unstable due to the high loop

gain and thethermal lags betweenthe heater and sensor. The network also optimizes

the transient response to thermal disturbances. The schematic Dwg. No. is 2304058.
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All of the components necessary to normalize the various gyro parameters
are located in this assembly. These parameters are the gyro temperature sensor
resistance, the SG phase shift, the suspension "Q", the suspension stiffness and the
SG quadrature. In addition, the two resistors used for suspension current monitoring
are located in this module. The required values of the components located in this
module are determined during the appropriate phases of gyro and gyro module
testing. The schematic drawing number is 2304093.

The location of the above components in an assembled module is shown in
Fig. 3.2.21. The module is constructed in sections to simplify assembly, maintenance
and repair. These subassemblies are shown in Fig. 3.2.22. This figure also shows
a fully assembled module (lower left) and a covered module (upper center).
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Fig. 3. 2. 21 Gyro Module Components

Fig. 3. 2. 22 Gyro Module Subassemblies
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3.3 Electronic Assembly

The EA contains all of the system electronics circuitry not included in the

gyro and accelerometer modules. The electronic elements can be classified as

either axis-dedicated elements or general electronic function elements (see Fig.

2.2.1).

The axis-dedicated elements consist of one each (six total) axis dc power

supply, 9600 Hz ac suspension and SG excitation supply, two phase 800 Hz ac gyro

wheel supply and fuse and diode module. The other electronic functions are

appropriately redundant; 40v 5v, -20v supplies (2 total) and the scalers (clock

countdown chains for timing pulses, etc., 2 total) are implemented in a dual redundant

fashion. The oscillators are triple redundant (3 total).

All elements except the dual dc power supplies are individual plug-in NAFI

modules arranged for easy access and convenient identification. IC test point

connectors, axial data connectors and input power connectors are also accessible

from the top of the assembly. During laboratory testing an extruded aluminum,

finned plate, heat exchanger assembly was used for the EA instead of a coldplate.

(The exchanger is removed for access to the NAFI modules and the connectors).

3.3.1 Axis-Dedicated Electronic Functions

Electronic functions that are axis-dedicated are grouped by axis in the EA

tray. Each function is repeated six times, once for each instrument axis, except

as noted. As shown in Fig. 3.3.1, these functions are the ac power supplies consisting

of a two-phase 800 Hz wheel supply for each gyro, and a 9600 Hz suspension supply

for each gyro and each accelerometer, the fuse and diode modules, and the axis

supporting dc supplies. The failure of any one of these functions affects only the

axis to which it is dedicated (see Table 3.3.1 for specifications and sources).

1) AC Power Supplies

The waveform produced by the ac power supplies is a synthesized

sinewave, formed by first generating a stepped series of outputs (see Figs.

3.3.2, 3.3.3 and 3,3.4). This stepped output utilizes the transistors in the

output stage of the supply in a switching mode rather than in a linear mode

with a corresponding reduction in the power dissipated in the transistor.

This technique achieves an efficiency greater than 70%.
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Table 3. 3. 1 Axis Supply Specifications

800 Hz TWO PHASE Output: Two Phase 800 Hz stepped sinewave 28 V
WHEEL SUPPLY RMS 2.6 W each phase

Regulation: 5%

Supply Type: Sinewave synthesized from square-wave
9600 HZ POWER Output (9600 Hz P. S.) 9600 Hz, 4 V RMS 1.6 W
SUPPLY 9600 Hz, 8 V RMS 2.5 W

Regulation: 1%

Harmonic Content: 2% Max.

Supply Type: Sinewave synthesized from square-waves
DC AXIS SUPPLY Outputs: Two 15 ± 0.008 Vdc at 11.0 ma (for PVR

excitation in one gyro module and one
PIP module)
+10 + 0.8 Vdc at 50 ma
-10 + 0. 8 Vdc at 50 ma
+5.2 ± 0. 3 Vdc at 0. 7 A

Ripple: (Switching Spikes) 0.6 Vp-p (15 V) (switching spikes)
0.5 Vp-p (10 V. -10 V)
0.4 Vp-p (5.2 V)

Noise: 0.003 Vp-p (15 V)

28vde

1 3 4 5 c L
o Sw 0 YRO v I EEL B

T S.

28 Vde

FF FF FF FF FF Sw

-E

E- ---------- ---------

0 Sw o e4!o WHEEL OA
9600 PPS C

5Wl

CONDEL

+:8 v

Fig. 3. 3. 2 800 Hz Gyro Wheel Supply
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Fig. 3. 3. 4 9600 Hz Suspension Supply
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By generating a 5 step waveform, the third and fifth harmonics are

eliminated. In the 9600 Hz supply, this waveform is passed through an LC

filter to reduce the harmonic content to less than 2% (see Fig. 3.3.4). In the

800 Hz supply, the inductive gyro wheel load is tuned by a capacitor in the

gyro module reducing the harmonic content to less than 20%. While the 9600

Hz supply contains an active regulator to obtain 1% regulation, the 800 Hz

supply relies on the regulation of the 28 vdc input which provides a regulation

of 5%.

The 9600 Hz supply is redundantly clocked from the scaler at 115. 2 kpps

and synchronously locked by redundant 9. 6 kpps lines from the scaler to hold

the main 9600 Hz waveform in phase with the interrogate and switch pulse

trains.

2) Fuse and Diode Modules

The purpose of the fuse and diode module is to insure fail-safe operation

of the gyro Interpolator/Compensator from the dual redundant -20 vdc power

supplies and the gyro pulse torque electronics from the dual redundant +40

vdc supplies (see Fig. 3.3.5). It also insures fail-safe isolation of the gyro

temperature controller from the accelerometer temperature controller

operating from a common +28 vdc unregulated supply, and fail-safe isolation

of the gyro Interpolator/Compensator from the accelerometer pulse torque

electronics operating from a common +28 vdc regulated source. One fuse

and diode module is provided for each functional axis.

Fail-safe operation of the redundant dc supplies is provided by the action

of the blocking diodes (CR1, CR2, CR3, and CR4) which prevent one supply

from forcing current in a reverse direction into the other supply in the event

of a low voltage failure. In case of a high voltage failure, the fuses (Fl, F2,

F3, and F4) protect the loads, while blocking diodes again prevent the other

supply from reversing the current until the fuse blows and removes the failed

supply from the circuit. In the event of an overload type failure, the fuses

protect the individual supplies.

Fail-safe isolation of the gyro and accelerometer loads operating from

a common or redurrdant supply is qprovided by fuses (F5, F6, F7, and F8).

In the event of an overload failure, the blowing of one of these fuses removes

the circuit it feeds from the supply, permitting continuing operation of the

other circuit. The diodes are not needed in this circuit since there is no
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failure mechanism which would cause reverse current to flow into the supply.

They are incorporated, however, into the circuit along with other fuses and

diodes (not shown) to permit operation from dual +28 vdc supplies (if

incorporated) in a manner similar to the -20 vdc and +40 vdc supplies.

-20 v DC -20 v DC -40 v DC -40 v DC -28 v DC Unreg. - 28 v DC reg.

A B A B

CR1 ;CR2 "CR3 -CR4 !CR5 !CR6 -CR7 CR8

F5 F6 F7 F8

F1 F2 F3 F4

GYRO PIPA GYRO PIPA
Temp. Temp. Interpolatorl Pulse Torque
Cont. Cont. Compensator Electronics

GYRO GYRO
Interpolatorl Compensator Pulse Torque

Electronics

Fig. 3. 3. 5 Fuse and Diode Module

An advanced, semiconductor, self-resetting fuse was studied for use in

this module instead of the fusible metal type fuse currently employed, but

limited funding did not permit its further development and incorporation into

SIRU. Although there was initial concern that fuse life itself might represent

a reliability problem, no fusing failures have occurred in almost three years

of continuous testing, except for two operator-induced failures.

3) Axis dc Supplies

See Fig. 3.3.6 and Table 3.3.2 for the schematic and output characteristics

of the axis dc supplies.
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Fig. 3. 3. 6 Block Diagram-DC Axis Supply

Table 3. 3. 2 Measured Parameters-DC Axis Supply

I. OUTPUT VARIATIONS

A. 15 Vdc Outputs

1. Load Regulation - + 3 my for ± 10% Load Variation
2. Ripple - 0.1 Vp-p
3. Line Regulation ±1 my for ±5% B + Variation
4. Temperature Coefficient - -100 ppm/C o

B. +10 and -10 Vdc Outputs

1. Load Regulation - ±0. 1 V for +10% Load Variation
2. Ripple - 0.5 Vp-p
3. Temperature Coefficient - -200 ppm/Co

C. +5.2 Vdc Output

1. Load Regulation - ±0. 1 V for ±10o Load Variation
2. Ripple - 0.07 Vp-p
3. Temperature Coefficient - -300 ppm/Co

II. EFFICIENCY - >65%
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The accelerometer and gyro associated with each axis share an axis dc

supply. The supply provides +10v, -10v and 5.2v as well as two independent

15v outputs to provide an independent excitation for the PVR in each module.

The ±10v supplies excite operational amplifiers in the instrument modules

while the 5.2v excite the logic elements in these modules.

3.3.2. General Electronic Functions

All of the non-axis-dedicated electronic functions are located in the EA; two
are tri-redundant, the oscillators and the Hi/Lo detectors; and two are dual-

redundant, the 40/20/5 vdc regulated supplies and the scalers. (It should be noted

that the regulated 28 vdc supplies, while not considered to be a portion of the SIRU
system, are required to be dual redundant in order to preserve the fault-tolerant

character of the system). The EA provides for connection to the redundant 28 vdc

system input with suitable fusing and steering diodes in the fuse and diode modules

and in other 28 vdc-dependent functions.

1) Clock Oscillators

Figure 3.3.7 shows the block diagram of the clock oscillator and scaler as an
array of coordinated functions. The oscillator is a proprietary design developed
by Bulova. Essentially it is a 3.6864 mega Hz crystal oscillator stable to 0.5 ppm
under all the environmental conditions anticipated for the SIRU system.

The tri-redundancy requirement for the clock results from the following
considerations. The system calibration is dependent upon the accuracy and stability
of the clock. Crystal clocks are susceptible to failure by excessive drift; and two
clocks do not provide a voting capability for failure identification. Therefore, a
three-clock redundancy is required to achieve the one failure fault tolerance for a
drift isolation using voting. In addition, Hi/Lo frequency detectors in each oscillator
circuit are provided to isolate large changes for a second failure detection capability.

2) Hi/Lo Detector

The output of each oscillator must be monitored and tested continuously and
the detector operation must be confirmed to preserve the integrity of the system
performance.
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Fig. 3.3.7 SIRU Clock/Scaler

Oscillators may fail or appear to fail under four possible conditions:

1) Frequency too high

2) Frequency too low or non-existent

3) Differential frequency increasing

4) Monitor failure

The Hi/Lo detectors provide tri-redundant monitoring of the condition of the
individual oscillator outputs.

Figure 3.3.8 shows the functional diagram of the Hi/Fail test circuit. This
"fail high" mode arises from two possible sources. The first results from an alternate

design of the oscillator preferred by some manufacturers. In this alternate design
the crystals are cut to operate at twice the Bulova frequency and circuitry is provided
to divide down to the required value. The SIRU system is designed to accept this
alternate design and the Hi/Fail test monitors the possible failure of the flip-flop
used to halve the crystal frequency. The Bulova oscillators currently used in SIRU
are not susceptible to this particular failure mode.
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Fig. 3.3.8 Typical Hi Fail Test

The other failure mode monitored by the Hi/Fail test is a condition of a

significantly higher frequencyoutput from the oscillator due to failures of the tuned

circuit components in the oscillator circuit control loop. As identified in Fig. 3.3.8

input A is the clock input pulse train. These pulses are used to trigger a monostable,

retriggerable multivibrator. The output pulse width (B) is determined by the RC

circuit. The output B is combined with input A in a NON gate. From the waveform

diagram it can be seen that neither A nor B go to zero at the same time if the

clock frequency is normal. Thus the inputs to the NON gate are not at zero at the

same time and the output of the gate is zero. If, however, the clock frequency

becomes significantly higher (= 50%) than the multivibrator frequency (as determined

by the RC network) the inputs will be at zero at the same time and produce an

output at C at the clock frequency. This output is a Hi/Fail indication and is transmitted

to the failure logic.

The Lo/Fail circuit, Fig. 3.3.9, works in a manner similar to the Hi/Fail

circuit. In this case the multivibrator frequency is set at a frequency lower than

the clock frequency by an RC network. The clock pulses, occurring at a rate faster

thanthe 9601 frequency, keep the gate triggeredON producing a steady state logical

"1" at the output. If the clock frequency drops below the multivibrator frequency

the output returns to logical "0" at the end of its pulse width before being triggered

to logical "1" by the clock. The resulting train of pulses at the clock frequency is
transmitted to the failure logic.
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Fig. 3. 3. 9 Typical Lo Fail Test

Figure 3.3.10 shows the functional diagram for the differential test. This

"differential" mode applies to excessive drift in the oscillator. As shown in the

circuit diagram a D flip-flop samples the output of one oscillator while being strobed

by the squared output of another oscillator (clock B). In other words, clock A sets

the output to a "1" while clock B resets it to "0". If the two clocks are at the same

frequency, these two events will occur simultaneously and there will be no change

in the output. If they are at different frequencies an output will be produced at the

difference frequency. A hysteresis circuit is also included, the function of which

is to minimize the noise output of the differential circuit. The difference frequency

goes to a modified Hi/Fail test circuit with capabilities as previously described.

The remaining circuits are similarly tested in pairs. Differences between any

channels exceeding 4 ppm results in "majority vote" logic action to isolate and

"lockout" the highest difference channel. While the differential circuit could be

used to detect Hi/Lo failures directly, the reaction time is so relatively slow

(milliseconds) that the alternate circuits (nanosecond reaction time) are preferred

for these tests.
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Fig. 3. 3. 10 Typical Differential Test

The Hi/Lo monitors are configured to be self-testing for power and logic

failures within the module. Failures not associated with frequency tests result in

automatic channel transfer. Channel transfers may also be commanded externally

by the ground support equipment (GSE) or the computer.

In the previous discussion of the Hi/Lo detectors, the use of the term "transfer"

implies that the oscillator channel being tested is the channel in control. The

probability of failure on the channel in control is only one in three. Therefore, in

two cases out of three the failed channel will not induce a transfer and the only

notice of failure will be to the fail status line to the computer.

Any failure will always produce the "lockout" signal. "Lockout", however, is

not of a latched or permanent type, A failed channel is still tested and if the failure

clears, the channel is again ready for use. Transient failures which are self-clearing

result in only temporary disablement.
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3) 40/20/5 dc Supplies

These supplies are provided as dual redundant non-axis-dedicated functions

located in the EA. Each supply is capable of supporting the entire SIRU system

demand for 40 vdc, +5 vdc and -20 vdc power. The 40 vdc provides power to the H

switches of the module PTEs. The -20v provides power for the gyro module

Interpolator/Compensator. The 5v power is used for the logic excitations of the

EA functions such as the scaler, and the logic elements of the 800 and 9600 Hz

supplies. Table 3.3.3 details the summary specification and Fig. 3.3.11 shows the

circuit block diagram. A dual feedback circuit in each supply prevents high voltage

runaway. This protection assures that if a feedback line failed open, the other line

would hold the supply voltage to prevent an increase to a Hi/ Fail limit. An excessively

high voltage at the gyro module PTE 40 vdc H switch circuits could exceed the

regulation limits of the PTE de current control loop causing performance degradation.

The dual feedback provision prevents this possible failure mode.

A coupling scheme is provided with the dual supplies so that balanced loading

of both supplies exists when no failures are present. This balanced loading results

in better regulation of the 5 vdc logic supply. This improved regulation is due to

the fact that the +5v logic supply does not have an independent regulator but depends

on the regulation of the 40v dc supply. The diode coupling arrangement, shown in

Fig. 3.3.12, connects three axes to supply No. 1 through a single diode drop and the

remaining three axes to supply No. 1 through two series diode drops. Conversely,

the three axes connected to supply No. 1 through the single diode drop are connected

to supply No. 2 through two series diode drops, and the remaining three axes are

connected to supply No. 2 through a single diode drop. This load steering scheme

applies only to the 40 vdc lines which carry the principle system loads. Each 40

vdc supply has the capability of supplying double the system load; thus in normal

balanced operation with both supplies functioning, each is operating at 25% of full

load capacity.

4) Scaler

Scalers are provided as a dual redundant non-axis-dedicated function located

on the EA. The scaler block diagram is shown in Fig. 3.3.13 and the clock/scaler

redundancy block diagram is shown in Fig. 3.3.14. The principle functions of the

scaler circuit consist of the following:

1. Generation of necessary synchronizing signals for all electronic functions

2. Self test of scaler circuits and outputs

3. Transfer to backup scaler upon failure
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Fig. 3. 3. 11 Block Diagram-40 /5 vdc Supply

Table 3. 3. 3 Measured Parameters-40/5 vdc Supply

I. OUTPUT VARIATIONS

A. 40 Vdc Output

1. Load Regulation - +0.05 V for ±10% Load Variation
2. Ripple - 0.5 Vp-p
3. Line Regulation - ±0.02 V for ±20% B+ Variation
4. Temperature Coefficient - +250 ppm/C

B. -20 Vdc Output

1. Load Regulation - ±0.05 V for +10%o Load Variation
2. Ripple - 0.1 V p-p
3. Line Regulation - ±0.01 V for +20% B+ Variation
4. Temperature Coefficient - +250 ppm/Co

C. 5 Vdc Output

1. Load Regulation - +0.05 V for +10% Load Variation
2. Ripple - 0.3 Vp-p
3. Line Regulation - +0.003 V for +20% B+ Variation
4. Temperature Coefficient - +500 ppm/C o

II. EFFICIENCY - >70%
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Fig. 3. 3. 12 Diode Load Steering Scheme
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The following descriptions are presented for each of the functions identified

above.

1. Generation of Signals

a) Module PTE timing signals-interrogate and switch pulses, 4.8 kpps.

b) EA suspension and SG 9600 Hz supplies-a 115.2 kpps pulse train and

a 9.6 kpps synchronizing signal provide clocking for the 9600 Hz

suspension power supplies. The 9.6 kpps signal synchronizes the 9600

Hz "zero+" crossover for suspension lock control.

c) EA dc axis and 40/5v dc power supplies-A 38.4 kpps signal clocks

and synchronizes all the dc power supplies.

d) EA 800 Hz wheel supplies-A 9.6 kpps synchronization signal for

waveform generation and a 200 pps synchronization pulse signal is

provided for the 800 Hz supplies.

e) Other timing functions-The 9.6 kpps signal also serves as a clean pulse

for testing the interrogate and switch pulse train within the scaler.

The 200 pps signal also is available to the computer as a timing signal.

All of the output signals are steered from the scaler to the using circuit by

pulse drivers which are integral parts of the scaler. The pulse driver configuration
is shown in Fig. 3.3.15. Each signal originates at an SN 5401 gate driving dual
transformer coupled lines resulting in redundantly bussed signals (signals on either
Bus A or Bus B). Either scaler may drive these buses since they are diode isolated
and when connected in parallel will generate logic "OR".

Q _J Q J Q

5v dc

HI- A

SLO- A

41. MD Z369A

Fig. 3. 3. 15 Typical Sync Driver
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The SN 5401 gate output also drives a switch transistor the collector of which

feeds serially to enable the succeeding flip-flop in the divide down chain of a
conventional synchronous counter. This arrangement permits a failure of the SN

5401 gate to cause failure of the succeeding scaler sections. This failure is detected

by a simple end-of-counter failure detection circuit which will be described later.

No further test circuits are required for this sequence of signals. The synchronizing

pulses derived by these techniques are approximately 400 nanoseconds wide.

2. Self-Test of Scaler

Each scaler has a main scaler that divides down to 200 pps. In the main

scaler, the 38. 4 kpps, 9. 6 kpps and 200 pps output signals are derived by conventional

countdown techniques driven as described above. The lowest frequency, 200 pps,

is fed to a Hi/Lo retriggerable one shot circuit similar to that described for the

Hi/Lo monitor. A failure in an internal gate or flip flop of a synchronous scaler

will result in locking the Enable of a next succeeding state change to either logical

one (1) or zero (0) For the first state (1) the result will be an increase in the

lowest frequency equal to 2N where 1 < N < M and M is the highest number of

flip-flops sharing one clock frequency. The Hi/Fail test circuit will reveal this

condition effectively. For the second state (0) the lowest scaler frequency becomes

zero which is detected in the Lo / Fail circuit previously described. Thus, the operation

of the main scaler is tested by applying the 200 pps signal to one Hi/Fail and one

Lo/Fail circuit.

The 115.2 kpps signal is derived from a subscaler linked synchronously with

the main scaler. Self-test is by means of a separate Hi/Lo test section. The

outputs of these test sections are logically "OR" connected to one "FAIL" gate for

the scaler.

The fault tolerance capabilities and test provisions for the two line drivers

which pass signals from the scaler to six, separate interrogate and the six separate

switch pulse line drivers are shown schematically in Fig, 3. 3.16. The drivers are

designed to operate four interrogate and switch pulse lines with up to two lines

"dead" shorted without serious degradation. A failure in any one line (due to a

transformer or other failure) will fail that axis of the SIRU system. Failure of a

driver transistor or other component will be detected by the test feedback line and

cause transfer of control to the back up scaler. The test feedback circuit is shown

in Fig. 3.3.17. The test feedbacks from both the interrogate and switch driver are

fed to a sequence detector circuit. If the proper sequence of interrogate leading

edge, switch pulse #1, interrogate lagging edge, switch pulse #2 and the 9.6 kpps
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synchronizing pulse is not present or fails to occur, the 4800 Hz output to a Lo/Fail

test circuit will become quiescent, actuate an "OR" to the scaler "FAIL" gate, and

transfer control to the "backup" scaler.

3. Transfer to "Backup" Scaler

A simplified form of the scaler transfer circuit is shown in Fig. 3.3.18. The

circuit is a SR flip-flop shared between scalers. When the system is activated

initially, if there are FAIL inputs (no scaler fails) into both 5401s, the choice of

scalers (output of 5401s) is random and an INHIBIT command is sent to one scaler

and not to the other. If a FAIL signal appears at the input to the 5401 which is not

issuing an INHIBIT command, it will change its state to INHIBIT, and cause the

other 5401 to reverse its state. This action locks out the failed scaler and activates

the functioning scaler. The 5 vdc power on separately fused lines is cross strapped

to effect transfer in the event of power failure. External commands or override

options are also possible.

FA L- 4K
SC 1 540

SC1-5v dc

- - -
SC2

SC2- 5v DC

FAIL
SC2

\~IN~\~T - SCALE :f1 2

Fig. 3. 3. 18 Typical Transfer Circuit

4. 3.6864 mega Hz Optional Clock Drivers

Originally intended as clock lines to a dedicated computer, simplex "OR" gate
outputs are power amplified to drive a redundant "Coax A" and "Coax B" bus. The
design and test provisions are the same as for the drivers previouslydescribed.
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5. Power Requirement Summary

Table 3.3.4 presents a Power/Efficiency Summary for the EA. The total load

identified under the heading "Power Out" includes all channel (wheels, PTE, etc.)

power. The variable power for the temperature controllers is excluded, but under

normal control conditions a total of 6 watts is required for the gyro temperature

control power and a total of 3 watts is required for the accelerometer temperature

control power.

Table 3.3.4. Power Dissipation in Electronic Assembly.

Power Power Dissipation Total
Circuit In Out per Circuit Dissipation Efficiency Modules

9600 Hz 28 volt -~ 9W 4 each
Microsyn 5 volt ~ i. 15W 4.2W 5. 95W 35. 7W 41% 24 total

800 Hz 28 volt -~ 7W 1. 8W 10. 8W 75% 6 each
Wheel 36 total

DC Axis 28 volt ~ 12.3W 5.2W 4.3W 25.8W 65% 2 each

Supply 12 total

40/5 Volt 28 volt ~ 112W 78.5W 33.5W 40W 70% 1 each

Supply 2 total

Oscillators 28 volt ~ 0. 18W - 0. 18W 0.54W 1 each
3 total

Clock

Scaler #1 #1 5.7W
Scaler #2 5.0 #2 3.8W
Hi/Lo #1 Olt #1 0. 95W - 12. 18W 12. 18W 21 total
Hi/Lo #2 #2 0. 98W
Hi/Lo #3 L#3 0.75W

3.4 SIRU Thermal Design

3.4.1 Introduction

Temperature control of the SIRU system,to reduce the effect of the temperature

sensitivity of the inertial sensors and some of the electronics modules, was
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accomplished by separately controlling the temperature of each gyro and ac-

celerometer module and maintaining the mounting base structure (ir-frame) nearly

isothermal (coarse control) by means of a liquid-to-air heat exchanger cooling loop.

The EA is forced-air cooled in laboratory operations; in a spacecraft installation,a

coldplate would be mounted on the top or bottom of the EA. EA cooling provisions

assure that the junction temperature of the silicon devices are nominally held well
below the limits required for reliable operation (Figs. 3.4.1 and 3.4.2).

COOLANT
OUTLET

F3 WAY0.46 GPM FLOWVALVE
(MAX) METEVALVE

LIQUID TO AIR

HEAT EXCHANGER

ACCUMULATOR C 1

COOLANT
RETURN PUMP

FROM 7r FRAME

Fig. 3. 4. 1 SIRU Liquid-to-Air Heat Exchanger Flow Diagram

3.4.2 System Description

The SIRU system had to be designed to operate on spacecraft coolant lines

and be removable without breaking these coolant lines, as well as to operate in a

system test laboratory environment at minimum cost. These conditions required

several compromises in the thermal design.

The approach taken was to design the RIP and the EA as flyable equipment

and the heat exchanger (HX) for the RIP and cooling mechanism for the EA as rotary

table mounted laboratory apparatus. For operation in the test laboratory in a 750
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F environment, the liquid cooling HX package, Fig. 3.4.3, was designed to maintain

the RIP -frame at a slight temperature rise above ambient, thus avoiding the need

for a refrigeration unit on the rotary table. The liquid-to-air HX package is mounted

on the test table, making liquid slip rings unnecessary.

Each inertial sensor module has its individual temperature controller, and

the mounting provisions for each module provide both alignment and thermal path

control (thermal resistance). Controlling the heat flow by means of high thermal

resistance minimizes thermal coupling between the inertial sensor modules and

reduces the control power requirement. Coarse temperature control of some of

the inertial sensor, module mounted, electronics circuits is achieved as a by-product

of the inertial sensor temperature control by means of module thermal resistance

design. Maximum thermal resistance to ambient as required in a spacecraft

environment would be achieved by an insulating cover (thermal shroud) for the RIP.

The mounting pad materials for the gyro and accelerometer modules were

selected tomake the thermal impedances betweenmodules and 7-frame compatible;

i.e. both gyro and accelerometer modules operate at the same percentage of maximum

control power of their individual temperature controller circuit. The EA is

forced-air cooled to meet laboratory test needs. For spacecraft use it could be

connected to the liquid cooling loop or mounted on a heat-sinked structure, depending

on the allowable spacecraft temperature range.

Mechanically the thermal design can be considered as consisting of four

different control areas, namely: RIP, EA, gyro module and accelerometer module.

3.4.3 System Thermal Design Concept

Individual temperature control for each IC is not only consistent with the

redundant implementation but allows for unsymmetrical thermal changes. Examples

of these unsymmetrical changes are position sensitivity, module mounting thermal

resistance variations, single component wheel power variation and random inputs
such as torque commands.

In order to provide maximum isolation of the controlled element, the heaters

are located at the IC mounting surfaces within the modules. The liquid cooling
loop to the RIP coldplate develops a reasonably constant thermal sink. The RIP

coldplate mounts to the back of the RIP 7-frame in the central well area. Hold
down screws accessible from the front of the RIP allow attachment of the coldplate
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from the front. A gasket spacer between the coldplate and the RIP allows adjustment

of the thermal resistance between the w-frame and coldplate.

Use of a coolant loop provides the capability to regulate the amount of heat

which is transferred from the u-frame to the coldplate (Fig. 3.2.7). Coolant

temperature and flow rate may be adjusted to hold the u-frame at a nearly isothermal

temperature, suitably lower than the inertial sensor control point. Such adjustment

of the thermal resistance from the n-frame to the heat-sink can be accomplished

to compensate for environmental conditions or system operating mode. Thus, in

the standby mode, a high thermal resistance would minimize the power required to

keep the -frame at temperature. In the operate mode a lower thermal resistance

would keep the instruments within the allowable controller temperature. This

regulation capability was not instrumented in the SIRU system for laboratory

operation.

The design of the coolant loop for laboratory operation of the system was

based on operation at 70 ± 50 F ambient temperature to avoid the use of a refrigeration

unit. Design goals were achieved by reaching a compromise in coolant flow rate

and coldplate gasket width and material as discussed below.

A low coolant flow rate reduces w-frame to module temperature differences

(gradients) for the gyro modules (which need more critical temperature control) at

the expense of higher temperature gradients for the accelerometer modules. To

maintain the same coldplate transfer, a low flow rate also requires a lower coolant

inlet temperature. Narrower gasket width results in lower w-frame temperature

differences for both type of modules, but also at the expense of lower coolant inlet

temperature requirements. A gasket made of aluminum has a lower thermal

resistance than one of titanium, offering the possibility of a higher coolant inlet

temperature. These variables were optimized in the SIRU system by a small increase

in the coolant flow rate, utilizing a gasket of 0.5 inch wide aluminum and accepting

a slight increase in the r-frame temperature gradients.

A forced-air cooled n-frame had been considered, but it required too much

space and blower power, and temperature control sensitivity was unsatisfactory.

For spacecraft operation, with a 450 F coolant supply, as specified in Apollo,
an adaptive regenerative HX could be used for u-frame temperature control. The
lower coolant temperature supply would, otherwise, dictate even higher inertial sensor

thermal isolation to avoid excessive control power. Optimum thermal performance
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would be attained by using a regenerative HX and a thermal control by-pass valve

operating as a function of gyro module temperature control power. The regenerative

HX would interface with the spacecraft environmental control system with hot and

cold liquid mixing occurring at the n-frame coldplate inlet. Other methods for

controlling the coolant loop in the spacecraft environment are also feasible.

To attain the fine temperature control needed for both the gyros and ac-

celerometers, proportional control loops are used. The control circuit is novel in

that the control power is a linear function of control current. The control power in

dc control loops typically corresponds to 12 R. In the SIRU system linear control

is achieved by mounting the output power transistors directly on the IC mounting

block along with the control heaters. The control power then becomes a function of

both the applied heater power and the power dissipated in the transistor. Since the

major portion of the controller power is dissipated in the transistor the resulting

control is both linear and efficient.

A ternary torque loop is used to drive the inertial instruments. In the zero

torque mode, the torquing current is directed to a "dummy" heater, equal in resistance

to the torquer, located at the TG end of the instrument. This arrangement results

in a constant power input to the TG end of the instrument, thereby, reducing thermal

gradients on the r-frame. Each gyro or accelerometer module is thermally and

mechanically interchangeable.

The use of thermoelectric elements instead of heaters was considered with

the objective of reducing control power. The concept was not implemented in the

SIRU development model to avoid the impact of new technology for a non-essential

purpose. Thermoelectrics should be reconsidered in future designs. Since

thermoelectrics are bi-polar heat pump devices, the control point can be set at

zero control power. For a heater system, zero control power means the system

has just lost control.

3.4.4 Thermal Design of the Accelerometer Module

The thermal design of the accelerometer module was based on a multinodal

thermal network, Fig. 3.4.4, and thermal model test analysis. The test results

indicated what changes should be made to the first-cut design. Thermal resistance

between control heater and mounting block was too high, while the thermal resistance

between accelerometer and block was too low for good control action and minimal

temperature variation at the block (see Fig. 3.2.4). One of the effects of these

combinations was that the temperature variation at the PTE module mounted to the

side of the block was unacceptable.
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Fig. 3. 4. 4 SIRU PIP Module Thermal Model Network.

Recommendations resulting from these tests and incorporated into the final
design were:

a) To decrease the control heater-to-block thermal resistance by changing

the ring material from stainless steel to aluminum

b) To increase the accelerometer-to-block thermal resistance by increasing
the clearance between the accelerometer body and block cavity

c) To increase the block-to-base thermal resistance by the use of Micalex
washers instead of titanium under the mounting screws

d) To use an aluminum accelerometer mounting block

A nodal network representation of the accelerometer module thermal model
as shown in Fig. 3.4.4 identifies the resistance values in units of oF/watt. The
numbers indicated by arrows are heat input values in watts. The ambient node can
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vary from 60 0 F to 110 0 F. Total dissipation is 5.7 watts excluding the control power

of 2.9 watts. The resistancevalue of 40.0 0F/watt from cover to ambient is a predicted

value based on the assumption that a thermal jacket having 0.5 inch thick insulation

will be provided for the RIP in the spacecraft. If this jacket is not present, this

resistance value could be as low as about 8.0 0F/watt.

The tested prototype accelerometer module can be represented in its simplest

form by a nodal network of three equivalent resistors. Equivalent resistance for a

5.6 watt dissipation from control point to i-frame equals 90 F/watt (including

1.20F/watt through greased pads). Equivalent resistance for 2.9 watt maximum

control power from control point to w-frame equals 13.00 F/watt. Equivalent

resistance from control point toambient equals 12.00 F/watt without n-frame cover

and 40.0 0F/watt with 1/2 inch insulated n-frame cover.

Final thermal performance data shows that with bare modules (no insulated

i-frame cover) in a laboratory ambient of 75 F, the accelerometer modules will

stay within temperature control range (0-100% control power) over a I-frame

temperature range of approximately 920F to 125 0 F. In a spacecraft ambient of 600

F to 110 0 F, the accelerometer module will maintain temperature control over a

I-frame temperature range from 77 F to 103oF if a 1/2 inch insulated i-frame

cover is used (see Fig. 3.4.5). Temperature sensitive electronic modules in the

accelerometer module, such as the PTE, will experience temperature excursions

which are approximately 50% of the w-frame temperature excursions (see Fig. 3.4.6).

The detailed description of the accelerometer temperature control circuit is

presented in Volume IV.

A separate GSE heater and sensor assembly is mounted on the accelerometer

alignment block. This heater and temperature sensor are used for GSE temperature

control of the accelerometer module at 125 0 F, when the SIRU system is in the standby

mode. A fourth accelerometer body wrap-around sensor is used in conjunction

with the GSE to monitor accelerometer temperature at all times. Table 3.4.1. is a

summary of the accelerometer temperature control circuit parameters.

3.4.5 Thermal Design of the Gyro Module

The final gyro module thermal design was based on a multi-nodal thermal

network, Fig. 3.4.7, and model test analysis.
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Table 3. 4. 1 PIPA Module Temperature Control Parameters

Voltage: 28 vdc unregulated

Heater Power: 2. 9 watts max @ 21. 5 vdc

Power Transistor: 2N3752

Control Heater Resistance: 159 ohms

GSE Heater Resistance: 44 ohms

Control Sensor Resistance: 510 ohms @ 1300F

Monitor Sensor Resistance: 498. 5 ohms @ 1300F

GSE Sensor Resistance: 510 ohms @ 1300F

Sensors Temp. Coefficient: +0. 00226 ohms/ohms/oF

PIPA Nominal Temperature: 130 + 1. 60F

PIPA Temp. Control Accuracy: +0. 10F

9.40

Gyro

2.24 1.63 3.30

Control Heat
( SG ) Control Heat

3.30 1.27 (T Ambient

NAA 32.00TIM

8.10 1.32 Base
Cover

Bracket

PI-FRAME

Fig. 3.4. 7 SIRU Gyro Module Thermal Model Network
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Results of these thermal test evaluations produced the following conclusions:

1) A variable-gap thermal interface material of high thermal conductance

was needed between the gyro alignment plate and the module base plate

to lower the thermal resistance.

2) The module could be successfully matched thermally to the ac-

celerometer module on the a-frame by choice of suitable pad material

in combination with the required thermal interface material (see Fig.

3.2.7).

3) The control heater power had to be increased to obtain a wider temperature

control range.

The control heater power was increased by interchanging the 80 ohm GSE

heaters with the 140 ohm control heaters. Thus, power was increased from 6.6

watts to 10.5 watts.

Tests were conducted to find a suitable thermal interface material (TIM) for

module matching. The material chosen was a design by North American Aviation

used on the Apollo program. This material consists of a copper foil helix wrapped

around a one-eighth inch diameter silastic tubing. The copper helix provides the

heat conduction path and the silastic tubing develops the necessary mechanical

support. Thermal conductance can be varied to a small degree by the amount of

compression applied and by maintaining the interface surface either dry or greased

(see Fig. 3.4.8). The combination of this material and beryllium copper 7-frame

pad material accomplished the thermal matching.

COPPER HELIX - -Z

0.01"

SILASTIC TUBING

Fig. 3. 4. 8 Illustration of North American TIM.
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The nodal network representation of the gyro module thermal model shown in

Fig. 3.4.7 identifies the resistance values inunits ofoF/watt. The numbers indicated

by arrows are the heat input values in watts. The ambient node can vary from

600F to 1100F. Total dissipation is 17.5 watts excluding the control power of 10.5

watts. The resistance value of 32.0 0 F/watt from cover to ambient is a predicted

value based on the assumption that a jacket having 0.5 inch thick insulation covers

all modules on the a-frame. If this jacket is not present, this resistance value

could be as low as about 7.00F/watt.

The tested protoype gyro module can be represented in its simplest form by

a nodal network of three equivalent resistors. Equivalent resistance for 17.5 watts

dissipation (excluding control power) from control point -frame is 2.6 0 F/watt

(including 0.3 0 F/watt through greased pads). Equivalent resistance for 10.5 watts

maximum control power, control point to i-frame equals 3.4 0 F/watt. Equivalent

resistance, control point to ambient is 4 0 F/watt without 7-frame cover and 20 0 F/watt

with 1/ 2 inch insulated i-frame cover.

Final thermal performance data shows that with bare modules (no insulated

7-frame cover) in a laboratory ambient of 75 0 F, the gyro modules will stay within

temperature control range (0-100% control power) over a i-frame temperature range

of approximately 880F to 127 F. In a spacecraft ambient of 600F to 113 F, the
gyro modules will maintain temperature control over a u-frame temperature range

of 690F to 970F, if a 1/2 inch thick insulated 7-frame cover is used. Temperature
sensitive electronics modules on the gyro module, such as the PTE, will experience

temperature excursions which are 38% of u-frame temperature excursions (see Fig.
3.4.9).

The detailed description of the gyro temperature control circuit is presented
in Volume II, Gyro Module.

3.4.6 Thermal Design of the u-Frame

Like the accelerometer and gyro modules, the final thermal design of the
u-frame, Fig. 3.4.4, evolved from preliminary multinodal thermal network analysis
by a computer program and thermal model tests. The test results indicated the
following conclusions and recommendations;

a) A 4 F temperature variation between mounting pads on the w-frame could
be expected at low control power for both gyro and accelerometer

modules.
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b) Rearrangement of modules by moving the gyro modules to colder locations

and the accelerometer modules to hotter locations would reduce the

temperature variations occurring in these modules.

c) Reducing the coldplate contact area to about 1 inch width in the U -shaped

heat exchanger pattern under the center part of theTr-frame was necessary

to minimize r-frame temperature variations.

d) Use of a gasket of titanium alloy, with greased interfaces, between the

coldplate and the r-frame would provide the necessary thermal adjustment

to permit use of a colder liquid coolant supply.

e) Thermal coupling between modules and i-frame could be adjusted by

choice of pad material to provide a thermal match between the gyro

and accelerometer modules. The pad materials must provide a hard

surface to avoid wear and scratches which would affect alignment.

f) No changes in the basic T-frame structure were required.

g) For operation in 600-1100F ambient, as required for flight, the module

side of the r-frame would require a cover with 0.5 inch thick conventional

foam insulation.

h) Relocating the coolant inlet to the left side of i-frame would reduce

temperature differences at the gyro modules.

A sketch displaying temperature distribution at each inertial sensor module

location on the I-frame is shown in Fig. 3.4.10. The average IT-frame temperature

varies from 93.00F to 99.40F at the module locations. Maximum temperature

difference at the gyro module locations is 4.8 0 F, and at accelerometer module

locations is 5.00F. These results were obtained with a 74.4 F inlet coolant

temperature and a flow rate of 0.20 gallons per minute (gpm).

i-frame temperature differences for accelerometer and gyro rrodules as a

function of coolant flow rate and gasket width are shown in Fig. 3.4.11. The graph

indicates that coolant flow rate and coldplate titanium gasket width are parameters

which must be traded off. Reduced flow rate decreases T-frame temperature

differences for the more critical gyro modules, but at the expense of higher -frame
temperature differences for the accelerometer modules and a lower inlet coolant
temperature. Reducing the titanium gasket width decreases temperature differences
for both type modules, but at the expense of a lower inlet coolant temperature.

For laboratory operations, ambient temperature is controlled at 75±50F.
Operation in this environment was achieved without refrigeration, usinga liquid-to-air
HX pumping unit (Fig. 3.4.3), by increasing the flow rate to 0.25 gpm and replacing
the 1.0 inch titanium gasket material with 0.5 inch aluminum.
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The curves of Fig. 3.4.5 show the 7-frame temperature range allowable to
maintain thermal control over an ambient temperature range of 600F to 1100F.

Optimized parametric requirements for this figure are coolant temperature of 60 F,

coolant flow rate of 0.2 to 0.3 gpm, an insulated -frame cover and a 1.0 inch titanium

gasket between the coldplate and the 27-frame. Under these conditions, a maximum

temperature variation of 90F at the base of the modules on the r-frame can be
expected. This variation is composed of 50F for 27-frame location, 2oF for mounting
interface resistance variation and 20F for liquid coolant supply temperature and

flow rate changes. The 7-frame and ambient temperature limits are established

as follows.

Minimum Temperature Limit

1. Conditions

Minimum 27-frame temperature at module 780F

Minimum ambient temperature 600F

2. Limiting Factor

Accelerometer module control power full on

3. Penalty

If either 27-frame or ambient temperature is reduced, the affected
accelerometer module's thermal demand will exceed its controller

capability and the module temperature will drop.

Maximum Temperature Limit

1. Conditions

Maximum 7-frame temperature at module 970F
Maximum ambient temperature 1100F

2. Limiting Factors

Gyro module control power full off

3. Penalty

If either 7-frame or ambient temperature is increased, the affected gyro
module's thermal demand drops to zero and the module temperature
will increase.
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For applications requiring operation over a wider range of ambient

temperatures, modification of the insulating spacer size and material, a-frame

insulation, and implementation of a regulated coolant loop are required.

3.4.7 Thermal Design Features of the

Liquid-To-Air Heat Exchanger

The SIRU liquid-to-air HX, Fig. 3.4.3, is a closed, pressurized system (5

psig) that supplies a fixed rate of coolant flow to the i-frame in any orientation. It

is mounted on the rotary table in order to avoid liquid rotary joints.

The system consists of the following:

a) a pump for coolant circulation

b) a manually operated three-way valve for coolant flow direction (coolant

outlet temperature setting)

c) a reservoir and expansion bellows (accumulator)

d) a flow meter for flow rate adjustment

e) a heat-sink consisting of a forced-air to liquid HX

The flow diagram of the coolant loop is shown in Fig. 3.4.1. The specifications

for the unit are as follows:

1) Cooling Capacity: 200 watts at 700F ambient, 0.46 gpm coolant flow

and 750F coolant outlet temperature (HX capacity of 22 watts/oF)

2) Coolant Flow: Adjustable from 0 to 0.46 gpm

3) Coolant: Inhibited Ethylene Glycol/Water mixture

4) Coolant Temperature: Adjustable, 750F min. in 700F ambient

5) Power: 115v, 60 cycles, 1 phase, 0.92 amps

The HX would not be used in the flight configuration of SIRU.

3.4.8 Thermal Design Features of the Electronic Assembly

The EA cooling system was designed for the laboratory environment only.

Prime considerations were: simplicity of design, minimal effort, no active

temperature control, avoidance of liquid coolant and easy dissassembly.

115



The final design, Fig. 3.4.2, consists of two separately removable, modular

forced-air HXs mounted over the NAFI modules and a finned, natural convection

heat-sink under the 40/5v power supplies. Each of the two identical, forced-air

HX cools two rows of NAFI modules. Ambient cooling air (13 cfm) is drawn through

the extruded aluminum finned plate and cover by a muffin fan operating on 115 vac,
60 cycle power. The HX surfaces are machined and greased for improved thermal

conductance.

Since the EA is air cooled from the module side, removal of the NAFI modules

requires the prior removal of the heat exchanger above that row of modules. The

40/5v power supplies, on the other hand, can be removed unimpeded from the module

side.

At the 700F room temperature, the maximum NAFI module frame temperature

is 930F. Under these conditions the semiconductor junction temperatures inside

the modules remain below the 105 0 C reliability limit imposed on high reliability

equipment in the Apollo program. The power supplies, however, operate slightly

above (1200C) these established limits. Thermal resistance between NAFI modules

and the structure is kept low by use of special clips (Bircher). Modules which

dissipate the most heat are provided with more clips per module. Thermal analysis

shows that temperature gradients along any row of NAFI modules is less than 20F.

Total power dissipated in the EA is 124 watts, 40 watts of which is at the 40/5v

power supplies. Table 3.3.4 shows the distribution of power dissipation in the EA.

3.5 Documentation

The essential documentation of the RIP is contained in Fig. 3.5.1 which provides

a simplified family tree showing the principal assembly and schematic drawings.

Table 3.5.1 shows an index of the drawings identified with each of the electronic

modules incorporated in the SIRU EA.

A review of the electrical and hardware items currently incorporated in SIRU
shows that of approximately 350 items identified in the documentation by commercial
designation, 250 are already qualified under military specifications or could readily

be qualified by IDEP, previous military application or authenticated test data. Of
the remainder, 50 items of miscellaneous hardware require some degree of effort
to identify completely. It is estimated that one half of these (25 items) will turn
out to be military specification equivalents. The remainder, approximately 75 items,
require some degree of qualification action in order to meet a strict requirement
for qualified parts selection.
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Table 3.5. 1 Electronic Assembly Documentation Index

MODULE TITLE . ASSEMBLY NO. SCHEM.

DC AXIS SUPPLY 2304016 2304005

DC AXIS SUPPLY DRIVER 2304011 2304006

FUSE & DIODE 2304039 2304034

LOGIC TRANSFER HIILO MONITOR 2304051 2304031

INTERROGATOR & SW LINE DRIVER 2304070 2304066

EXTERNAL CLOCK DR 2304074 2304071

5 VDC PULSE DR 2304079 2304067

4015 V DC SUPPLY 2304086 2304033

TIMING & FUSE MOD 2304091 2304082

800 HZ WHEEL SUPPLY PWR AMP SECT II 2304097 2304098

9600 HZ SUSPENSION SUPPLY SECT II 2304105 2304095

2304250
800 HZ WHEEL SUPPLY PWR AMP SECT IlVI 2304108 2304251

9600 HZ SUSPENSION SUPPLY SECT IV 2304112 2304096

9600 HZ SUSPENSION SUPPLY SECT I I 2304114 2304113

SCALER I 2304236 2304204

SCALER 2 2304237 2304205

SCALER 3 2304238 2304206

SCALER 4 2304239 2304207

SCALER 5 2304240 2304208

900 HZ SECT I , 800 HZ SECT III 2304241 2304153

800 HZ SECT IV 2304242 2304150

800 HZ WHEEL SUPPLY PWR SECT V 2304255 2304106

CLOCK OSCILLATOR 2304308
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4.0 Computation Facility and SIRU Software

The SIRU system was designed with an integral, dedicated computer in mind.

The computer and its peripheral equipment were sized to support development and

checkout including test software, and to carry out the full regime SIRU operational

software. This chapter discusses the computational facility dedicated to the SIRU

system, the test and operational software and the data handling and analysis programs

written for this system.

4.1 SIRU Computation Facility

A computer facility was assembled to support, initially, the development,

checkout and testing of the SIRU system including the development of SIRU software

and software for the originally planned DCA. This same facility later supported

the operational system. Major components of the facility are listed in Table 4.1.1.

The general purpose computer is a commercial DDP-516 manufactured by

Honeywell. It is a 16-bit machine with a memory cycle time of 0.96 microsecond

and includes the high-speed arithmetic package as well as 16,384 words of core

memory. The Honeywell DDP-516 is compatible with current state-of-the-art

airborne flight computers and as such serves as an excellent design demonstration

and software verification vehicle. The computer has hardware interrupt and its

structure incorporates direct, indirect and indexed addressing. The DDP-516 is

relatively fast, its add time is 1.92 microseconds and the high-speed arithmetic

package features a single precision multiply (5.82 microseconds) and divide (10.5

microseconds maximum) and double precision add and subtract (2.88 microseconds).

The computer is compatible with the real-time processing requirements of the SIRU

system running at a 100 update/second rate. In addition, the availability of a

sophisticated disc operating system (DOS) developed for this particular computer

by NASA/ERC enables operation with a large, moving head disc storage unit with

backup capability. This combination of memory and versatile interactive capability

provided a viable software development facility.

A detailed description of the computer peripherals listed in Table 4.1.1 as

part of the Computation Facility is presented as follows.
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Table 4. 1. 1

Major Components of the SIRU Computation Facility

Equipment Name Identification

Computer Honeywell DDP-516
Disc Drives CDC 9433
Teletype ASR-35

CRT Display Sanders 720
Magnetic Tape I/O Digistore W1-001
Paper Tape I/O Remex

Dedicated Data Link to IBM 360/75 Bell 201A Data Phone
Test Table Interface Wayne George Encoder

With the availability of DOS, a standard Honeywell disc control unit was added
to the DDP-516. Two CDC 9433 drives are used, each capable of storing about 34
million words of data on line. The discs were used for the storage of: operational
software programs, system calibration and data reduction programs and system
test data for subsequent processing and error analysis. Programs were developed
to "back-up" a disc by copying it on the second drive. Thus, a file copy of the
current programs and data was always available.

User oriented input/output (I/O) capability is available either through the
ASR-35 teletype unit or the Sanders 720 CRT. The CRT was procured to facilitate
software development and for use as a real-time display. In all of the operational
software described below in Section 4.2 (and in greater detail in Volume III), provision
is made for real-time display of the system status.

Other I/O devices comprise a high speed Remex optical paper tape reader, a
Digistore magnetic tape deck and a dedicated data phone link to MIT/CSDL's IBM
360/75 computer. A paper tape punch is available on the teletype, and all other
forms of output (card decks, magnetic tapes, disc packs, etc.) are available at the
IBM 360/75 through the data phone link. Initially, SIRU was dependent upon Digistore
tape to transfer data to the IBM 360/75 complex, but the data phone link was
incorporated midway through the program.

A final interface links the computer to the SIRU system and its test table.
This interface contains an up-down counter for each inertial component, two
interrogate pulse counters and a test table rotary axis readout. The up-down counters
service the Ae and AV outputs of the inertial components (IC). The gyro float angle
interpolators are read separately.
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An interface was planned for mating the SIRU system with the dual redundant

Digital Computation Assembly (DCA). However, the DCA and its associated

multiplexer were not implemented in hardware during this program period..

Figure 4.1.1 shows the computation facility as set up in the laboratory, Figure

4.1.2 is a block diagram of the operation, and Figure 4.1.3 shows additional detail

of a typical AV or AO counter channel.

Fig. 4. 1. 1 SIRU Computation Facility
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Direct Multiplex Control Cycle Stealer Disk Driver #1

Control Data
Honeywell DDP D DMC Subchannel #1 Disc Control & 76 KC bit ratehead

516 M Interface disk drive # 2
0. 96 ps cycle time C 3.6 Million word!
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5.26 ps Multiply DMC Sub5.26channels Multiply b BYTE 46 KC bit rate Sanders 720 CRT

Parallel 1000 Characters
16 Word Core #416 Word Core #4 "--- Interface 84 ch. x32 lines

Memory 110 Bus
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Fig. 4. 1. 2 Computation Facility Block Diagram
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Flip Flop Bus bit 16

count 4 bit bit

Up/ Downbit 9

UpFDown Select Cou1ter

Read Gyro or Pip A-F
Note Data Gate Allows Counting Only During nterrogate Pulse.

Fig. 4.1.3 Typical Counter Channel Diagram.

4.2 SIRU Software Overview

A regime of modular, interacting programs was developed which functions,
in general, to calibrate the system, verify its performance, provide failure detectionand isolation (FDI) and develop navigation functions.

Using these programs the DDP-516 computation facility is used to perform

the following specific tasks:

1. Direct and perform automatically (with the exception of table orientation
positioning since digital table servo positioning was not available) themultiple position calibration test operation on the SIRU system during
which a complete IC parameter determination is obtained, printed and
stored. A single position sequence is designed to operate overnight

and unsupervised.
2. Direct and perform reatime systemof modular, interacteting prograing during which the computer

implements all the operational software for the following system tests:

a) Pre-launch calibration sequence
b) Pre-launch alignment (gyrocompassing) sequence
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c) IC on-line compensation (static and dynamic)

d) Redundant six axes body measurements data to least-squares

computational triad frame and implementation of adaption matrix

for isolated faults

e) FDI equation computations to provide Fail Operational, Fail

Operational, Fail Safe (FO, FO, FS) capability

f) Implementation of strapdown attitude and velocity algorithms

supporting the navigation functions

3. Develop and checkout all of the software requirements for the previously

described operations including data storage and transfer for subsequent

analysis using Draper Laboratory's IBM 360/75 computation facility.

4.3 SIRU Software Description

The following description of the operational software is an abbreviated version

of the detailed description provided in Volume III. Previous chapters in this volume

have described the analytical theory and implementation of the software. The

following material summarizes the software description contained in Volume III.

All the operational software for the SIRU test system was developed on the DDP-516

computer facility, while complementary data analysis, data plotting and simulation

programs were prepared for the IBM 360/75.

This development included the hardware checkout software, the system

calibration and calculation programs, software development tools e.g., text editor

and CRT display drivers, and an assembler for the DCA. A DCA self-test program

was developed using the text editor and the DCA assembler.

4.3.1 Static Calibration Tests

SIRU performance is evaluated by comparison of system data with external

references. The comparison is accomplished through the use of two parallel sets

of computer programs, the SIRU DDP-516 software and an array of analysis,

simulation and comparison programs available on MIT/CSDL's IBM 360/75. A

dedicated link between the two computers facilitates the almost immediate evaluation

of the SIRU real-time performance. The more important programs for each computer

are explained in this section.

The simplest operating mode of the SIRU system is "static calibration" testing.

Given the deterministic models of the ICs, it has been shown that a six position

test (see Table 4.3.1) yields data necessary and sufficient to isolate and compute
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the static error parameters listed in Table 4.3.2. A DDP-516 program, STLOOP,

used in each position, serves to collect instrument output in the form of elapsed

time and torque pulse count for each of the twelve instruments. This data set is

indexed serially by test position and date, and stored on the disc. In the calibration

sequence, STLOOP is run in each of the six positions. Fig. 4.3.1 illustrates the

engineering display. Table 4.3.2 lists the terms and engineering units shown in the

figure.

Table 4. 3. 1 Static Testing Equations

Wij = INTRATE - SF (NGij +) (1 + DSFi +) - (NGij -) (1 + DSFi -) (rad/sec)
nom TGij

where

Wij = total drift of the ith gyro in the jth calibrate position (i = A through F,
j = 1 through 6)

DSFik = scale factor deviation from nominal of the ith gyro, where k denotes
the + or - scale factor (ppm)

TGij = number of timing pulses for the ith gyro in the jth calibrate position

INTRATE = loop interrogate rate used for timing (4 800 pulses/sec)

SFnom = 2 1 3 + 2 14 + 215 rad/torque pulse = 0. 213623 mrad/torque pulse

NGij = number of positive (+) or negative (-) Ae pulses accumulated for the
ith gyro in the jth calibrate position

ADIA = (WA6 - WA5) cosa GA - (WA1 - WA2) sina GA + WIEV
2

ADSA = (WAl-WA2) cosa GA + (WA6 - WA5) sina GA

ADOA = (WA4 - WA3) + GSA*WIEV
6 2

WAj + 2WIEH (cosa GA + sina GA + GSA )
BDA = j=1 6

(WA5 + WA6 - WA1 = WA2) + WIE (GSA - cosa GA)

A2DA 2 Sin (2a + 2GOA*)

where

aGA = a + GOA*
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Fig. 4. 3. 1 CRT Keyboard Display Eciuipment
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Two other programs are used to access this data and reduce it to modeled

parameters (in engineering units). GYRCAL searches the filed data to retrieve the

latest STLOOP data set for each of the six positions, extracts the gyro information,

and calculates the drift parameters. A similar program, PIPCAL reduces

accelerometer data to extract a b , SF error and two misalignments for each functional

axis. The results from GYRCAL and PIPCAL are filed on the disc for later use in

the real-time compensation load.

STLOOP may be iterated to collect a continual record of system static

performance in one position. In this case, the 11 minute test is used to collect 50

to 300 data sets which are identical in form to those discussed above. As before,

they are filed serially for later analysis. At the command of the test technician,

the data is transferred to the IBM 360/75. Several versions of a MAC 360 program,

ICSASTAB, are resident there. These programs process the raw data into engineering

units, subject it to statistical analysis and produce printed and plotted records of

the performance stability of the twelve inertial components. This procedure is

routinely followed and a substantial body of data is available to confirm system

performance levels. Figure 4.3.2, for instance, graphically displays the stability

of one gyro over a weekend run. The mean output represents a component of earth

rate plus the gyro drift; the standard deviation of the data indicates the corresponding

performance.

GYRO F
-284 .284 MEAN = -0288.346 MERU(4. 33/HR)

SIGMA = 0 124 MERU(. 00186°/HI)
DATE: 08 JA 70; POS: 1

-288
z

3 -292

50 100 150 200 250

Fig. 4. 3. 2 SIRU Gyro Stability

The user may, alternatively, specify earlier data sets by serial number.

Gyro misalignment and SF calibration requires a dynamic test, which is described
later.
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Gyro scale factor (SF) error and misalignments can be determined only through
dynamic tests as described below.

4.3.2 Dynamic Calibration Tests

Certain gyro parameters (SF error, misalignments about Spin Axis (SA) and
Output Axis (OA), anisoinertia) are determined from dynamic calibration tests (test
program JIMK). Data is taken in three test positions, with the table rotated in both
positive and negative directions. Five rotation rates are used in each sense chosen
so that:

cosa w. = sina w i + 1

Using this rule, the test conditions for all instruments reflect the same rate inputs.

Upon completion of data collection (3 positions, 2 senses, and 5 rates yielding

30 data sets), a DDP-516 program, DYNCAL, retrieves data from the disc, calculates
the gyro error parameters (Table 4.3.3), and displays and stores these values.

Table 4. 3. 3 Rate Testing Equations

General format of the 4-simultaneous equations required

A GOi* + B Pi + C SFGi- = D

E GOi *,  + F Pi + G SFGi- = H

I GOi* + J Pi + KSFGi+ = L

M GOi* + N Pi + PSFGi+ = Q

where GOi -, = output axis misalignment (Radians)

(ISA APi = anisoinertia H I) (sect)

SFGi+ = gyro scale factors Radians

4.3.3 Real-Time Operational Software and Verification

The real-time operating software for the SIRU system comprises a complex
of interacting routines coded in machine language. It is shown schematically in
Fig. 4.3.3, SIRU Data Processing, and is described in detail in Volume III. This
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section bridges the gap between the schematic and the machine language routines.

The routines themselves are also discussed.

CORRECTED COMPUTATIONAL
GYRO MODULES GYRO COMPENSATIdN BODY MOTION MATRIX PROCESSOR TRIAD SOLUTION

A 68A aAc ATTITUDE

B 08_ BDADIA, ADSAADOA 08, ALGORITHM

CC 0 1 Fyij Yik A0Cc !IT '_H G 1u _4 ,' RlTq '5Bl
D ,AD- ANISOELASTIC 48 0 2

E ARBE ANISOINERTIA 9AEC TRIAD LEAST SOUARE

F F ~OA COUPLING ESTIMATE- BODY FRAME
F + a BF C F

m *-I q tI

m ^ (a.el IG ADAPTIVE GUIDANCE
f ImW AND

2 NA MATRIX NAVIGATION
" • m " T 2 GENERATOR EQUATIONS

FAILURE ISOLATION

A * AVA AVAc TRIAD LEAST SQUARE AV
B + AVB ESTIMATE- BODY FRAME TRANSFORM

C AV AV V

D A VD ANISOINERTIA AVDe Z

E AV E -- E,

F AV F ---- V Fc

ACCEL. MODULES ACCEL COMPENSATION CORRECTED MATRIX PROCESSOR COMPUTATIONAL
BODY VELOCITY TRIAD VELOCITY

Fig. 4. 3. 3 SIRU Data Processing

The computational requirements of a strapdown system are as follows:

(1) Correct the raw gyro and accelerometer pulse counts by compensation

routines to accommodate for the calibrated bias terms, misalignments,

etc.

(2) Derive the computational triad solution for body rotation and velocity

increments through the matrix processors

(3) Effect the failure detection and isolation equations, yielding current

system failure status

(4) Adapt separate gyro and accelerometer matrix processors to reflect

current failure status (XG - gyro axis failures and NA - accelerometer

axis failures)

(5) Transform the body axis triad angular solution (AO x , Aey, Aze) to a

body frame with respect to inertial reference attitude indication,

quaternion (q) four parameter representation

(6) Transform the body triad velocity solution (AVx, AVy, AV z ) to an inertial

velocity in the inertial frame
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Other software subsequently added during the SIRU Utilization program and

documented in R-747 included:

(1) Single position calibration

(2) Gyrocompassing routine

(3) Statistical FDI software with on-line recalibration

(4) Local vertical navigator

Although these operations were identified in Chapter 2, it must be recognized

that the actual computation process is a complex procedure. The algorithms are

divided into two sets, an accelerometer data processor and a gyro data processor.

The system accumulates AV and BO pulses from the torque- to-balance

instrument loops after initialization. With the system operating at 100 iterations

per second the accelerometer and gyro pulse counters are processed every 10

milliseconds (ms). Their processing, however, is interleaved so that the 10 ms of

AV accumulation processing precedes the 10 ms of AO accumulation processing by

5 ms. The velocity and attitude algorithms are staggered in the same manner.

This staggering is achieved immediately upon initialization by using the first 5 ms

of AO data after initialization in the first attitude algorithm iterations prior to a

full 10 ms velocity update.

The tasks accomplished during the accelerometer and gyro updates are listed

here. To process the accelerometer outputs we require the system to perform the

following tasks:

Al) Read the status of the six counters

A2) Compensate the output for average SF, bias and misalignments of each

accelerometer's input axis about its output and penduluous reference

axes

A3) Compensate the output for errors due to Rw 2 and Rw as a function of

the accelerometer's position relative to the angular input

A4) Accumulate the corrected output for the purpose of FDI

A5) Perform FDI resulting in a current failure status

A6) Check the parity equations for third fail

A7) Create a least-squares matrix (as a function of fail status) to transform

the six compensated AVs into the XYZ body frame

A8) Do the 6 x 3 matrix multiplication

A9) Unitize the attitude quaternion prior to velocity algorithm processing
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A10) Do the velocity algorithm i.e., use the current attitude quaternion to

generate the velocity transformation matrix and transform the

incremental body velocity into the inertial frame

All) Accumulate AV inertial for output processing

To process the gyro outputs we presently require the system to perform the following

tasks:

Gl) Read the table encoder, and the six gyros and interpolator accumulators
G2) Compensate the output for ±SF, Null Bias Drift (NBD), Acceleration

Dependent Input Axis drift (ADIA), Acceleration Dependent Output Axis
drift (ADOA), Acceleration Dependent Spin Reference Axis drift (ADSRA),
anisoelasticity, misalignments, anisoinertia, Spin Reference Axis (SRA)
cross-coupling and OA coupling

G3) Accumulate the corrected output for FDI

G4) Perform the FDI processing resulting in a current failure status

G5) Check the parity equation for third fail

G6) Create the least-squares matrix (as a function of failure status) to
transform the six compensated Aes into the XYZ body frame

G7) Do the 6x3 matrix multiplication

G8) Compensate for earth rate

G9) Update the attitude quaternion

In the time remaining, the system status is documented either on the teletype,
the CRT display or on an incremental magnetic tape for further analysis (Fig. 4.3.4).
The information outputted includes the attitude quaternion, AV1 accumulated over
some interval, a squared error monitor and fail status for gyros and accelerometers,
the test-table angle encoder output and time since initialization.

Coding of these operations is divided among thirty subroutines and a main
program which sequences and controls communication between them. A brief
description of the softwareat this level appears in Appendix D. Volume III presents
a detailed description, including listings and load maps.

Each of these routines was subjected to extensive test verification and
integrated system testing. For example end-to-end tests (12 to 60 hour duration)
in a local vertical navigational mode have been repeatedly performed. In this test,
the system software maintains an inertial reference by means of a quaternion, qIB'
which represents and quantifies the rotation from the inertial to the current body
frame. A third order quaternion update algorithm is employed. The incremental
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AV B is transformed into the inertial frame, and used to update inertial velocity

and position estimates.

QUAT 0.999999 0.000016 0.000069 0.000035

DELVRF - 979.664062 8.601562 - 8.453125

ERRORS A 0.25 1.89 A

B 0.01 1.89 6 PIPA
GYRO

c 10.01 0.01 C SQUARED
SQUARED

D 0.06 3.51 D ERROR
{ERROR

E 0.39 0.39 E

F 0.14 0.56 F

0.87 8.26 (Total Squared Error)

GYRO FAIL (First & Fail) (2nd Fail) (3rd Fail)

PIPA FAIL (First & Fail) (2nd Fail) (3rd Fail)

TIME 180.00 (sec)

TABLE ANGLE 0.761531 (revs)
Note: (Identification in parenthesis not shown on CI1T)

Fig. 4. 3. 4 CRT System Status Display

The test results are typically evaluated using a series of evaluation programs

resident in the IBM 360/75 computation facility.

Test data stored on the tape or disc and transferred to the IBM 360/75 for

evaluation comprise real-time attitude, inertial velocity and inertial position

estimates from SIRU software, and a record of table rotation over the test interval.

Initial attitude, velocity and position are given. The record of table motion is

processed by a third order quaternion update algorithm to yield a theoretical or

"perfect" system attitude. This algorithm matches that of the SIRU software, but
its input is free of gyro quantization and drift errors. The "perfect" attitude is

used to process the specific force input due to gravity for "perfect" navigation.

Comparison is made with the system's real-time record, both at the attitude and

navigation (velocity and position) levels. As with the static tests discussed

previously, the MAC language program includes a variety of options for reporting

and plotting indices of performance. Thus this program provides a flexible tool

for the analysis of SIRU system performance from a variety of tests. Static, constant
slew and oscillatory tests have been processed, and show good agreement between
measured (SIRU) and computed ("perfect") performance.
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5.0 SIRU Reliability Appraisal

5.1 Observed Operational Reliability

Table 5.1.1 presents a summary of the SIRU system hardware reliability over

the period beginning 27 January, 1970 and ending 19 November, 1971. During this

period, the SIRU system was operated for 14,600 hours with a total of 71,000 gyro

module operating hours and 88,000 accelerometer module operating hours. No

simultaneous failures occurred. There were two gyro failures (January, 1971 and

March, 1971) and one gyro module PTE failure (April, 1971). One of the gyro failures

was a gas bearing wheel non-start after 2811 wheel hours of operation and 1745

wheel start/stop cycles. The other gyro evidenced intermittent float hangups after

5017 wheel hours of operation and 1914 wheel start/stop cycles. The PTE failure

was due to a marginal solder joint (that degraded with time) at one of the scale

factor (SF) resistor terminals. As a workmanship failure, it does not reflect on

the PTE reliability as determined by the reliability of the PTE electronic components.

It does, however, reflect a potential hazard that is not easily screened and represents

a continuing reliability hazard to the system population.

Table 5. 1. 1 SIRU System Hardware Reliability

Data from 1/27 /70 to 11/19/71 Component Failures OperatingHours SystemFailures

3 14,600 0

No. of MTBF Operating Hours
Failures Measured 90% Conf "Actual"' Req'd*

Gyro 2 35,500 13,400 71,000 185,000

PTE 1 159,000 40,700 159,000 620,000

Accelerometer 0 88, 000 38, 300 88,000 202,000

Operating Hours required to demonstrate measured MTBF with 90% confidence

Table 5.1.2 is a tabulation of estimates of failure rates for SIRU hardware

components. The failure rates for the electronics were estimated using a component

parts count of each circuit with electronic component failure rates based upon Apollo

experience. The conservative failure rate of 75 x 10-6 failures/hr shown in the
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gyro reliability range (Table 5.1.2) reflects the 13,400 hour MTBF value (at the

90% confidence level) from Table 5.1.1. The measured MTBF of 35,500 hours for

the gyros (Table 5.1.1) was used to determine the lower failure rate value of 28 x

10 - 6 for the gyro shownin Table 5.1.2. (This estimate is also conservative because

in this gyro population the wheel start problem was a known design deficiency that

was subsequently resolved by a bearing material change). The failure rates shown

for the accelerometer modules are conservative and were obtained by assuming

that one failure did occur in the 88,000 hours of operation even though there were

actuallyno failures during this period. The lower accelerometer failure rate given
x 16in Table 5.1.2 (11.4 x 10-6), corresponds toan assumed one failure in 88,000 hours.

The pessimistic accelerometer failure rate (26 x 10 - 6 ) corresponds to the 90%

confidence MTBF of 38,300 hours shown in Table 5.1.1.

Table 5 1. 2 SIRU Failure Rate Estimates

Failure Rate,X

Gyro Module: (Failures per Hour)

Gyro 28-100 x 10 - 6

Gyro PTE, Interpolator & 8v Supply 15 x 10 - 6

Temperature Control 3 X 10 - 6

Wheel Supply 11 x 10 - 6

Net Gyro Module Each Axis = X1  57-129 x 10 - 6

Accelerometer Module:

PIP 11.4-50 x 10- 6

PIP PTE 8v Supply 12 x 10 - 6

Temperature Control 3 x 10 - 6

Net PIP Module Each Axis = N2 26.4-65 x 10 - 6

Electronics Assembly (6 Axes Support):

9600 Hz Supply 10 x 10 - 6

DC Axis Supply 12 x 10 - 6

Fuse/Diode Module 1 x 10 - 6

Net Electronics Assembly = X 3  23 x 10 - 6

Electronics Assembly (Dual or Triple Redundant):

40/5 vdc Supply = X4  12 x 10 - 6

28 vdc Pre-Regulated = X5  12 x 10 - 6

Multiplexer = X6  10 x 10-6

Clock = 7  1 x 10 - 6

Scaler = N 8  10 x 10 - 6
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5.2 Theoretical Reliability Calculations

Various SIRU reliability curves (reliability vs. mission time) are presented

in Figs. 5.2.1 through 5.2.4 using the SIRU reliability criteria given in Table 5.1.3

for defining hard and soft failures and the failure rates listed in Table 5.1.2. Included

for reference on each plot is the corresponding reliability of a triad system having

non-redundant components with the same failure rates as the SIRU components.

Fig. 5.2.1 presents SIRU reliability for the soft failure configuration using the 90%

confidence failure rates for gyros and accelerometers. Fig. 5.2.2 presents SIRU

reliability for the hard failure configuration using the 90% confidence failure rates

for gyros and accelerometers. Figures 5.2.3 and 5.2.4 repeat the two previous

figures using the failure rates experienced during the test programs for gyros and

accelerometers.

These analyses are based on the following two assumptions:

1. The FDI coverage, defined as the probability that a failure, having

occurred, will be detected and properly isolated, is 100%.

As described in Chapter 2, the FDI can not only detect and isolate two

failures of gyroscopes and accelerometers and detect a third failure,

but can also isolate the third failure if it results in a substantially greater

squared error than the previous failures. The soft fail analyses presented

here assume that two failures only are detected and isolated.

2. The SIRU equipment is in uninterrupted operation throughout the mission.

Equations are derived separately for what we termed soft and hard failure

systems. The term soft failure is defined to encompass performance degradations

which can be isolated only by measurement comparisons (voting or FDI algorithms).

Hard failure is used to describe faults which do not require voting for proper isolation.

In general, these are catastrophic failures which can be isolated by self-test hardware

(BITE) or reasonability type software tests.

SIRU reliability equations are derived separately for systems which can tolerate

different amounts of component failures. These two configurations are described

in terms of what failures can be tolerated (Table 5.1.3). Soft failure systems are

those in which FDI can isolate failures of only two measurement axes. Thus, up to

two gyro and two accelerometer modules can be isolated automatically or two

The reliability analysis in R-747 includes analysis of FDI coverage.
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electronic functional axes can be lost, with operation continuing. In addition, one

of two scalers, one of two 40 vdc/5 dc supplies, one of two 28v supplies, one of two

multiplexers and one of three clocks can fail without failing the system.

Table 5. 1. 3 SIRU Reliability Criteria

Tolerable Failure Combinations

Soft Failure Hard Failure
Device Redundancy Level System System

Gyro Module 6 (2 Fails (3 Fails
and and

PIPA Module 6 2 Fails) 3 Fails)

Electronic Assembly OR OR
Functional Axes 6 3 Fails 3 Fails

and
Scaler & 40v ps 2 1 Fail 1 Fail

and and
Oscillator 3 1 Fail 2 Fails

Critical Path:
Module & Axes FO-FS FO-FO-FS

FO = Fail-Operate

FS = Fail-Safe

Hard failure systems are those which include BITE and more extensive FDI
(reasonability tests) etc. This hard category can tolerate the same non-axis-dedicated
electronics failures, but will operate with up to three gyro or accelerometer modules,
or three functional axes lost. The system will survive failure of two of the three
clocks.

The reliability curves in Figs. 5.2.1 through 5.2.4 were calculated as follows.
(All failure rates used are those given in Table 5.1.2).

5.2.1 Triad Reliability Calculations

The following reliability functions are calculated for the reference triad curves
shown on Figs. 5.2.1 through 5.2.4. Reliability of a single gyro module:

RG = e (5.1)

where X1 = Net gyro module failure rate.
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Reliability of a single accelerometer module:

-X2 t
RA = e (5.2)

where X = Net accelerometer module failure rate.

Reliability of axis-dedicated electronics:

-X3 t

RAE = e (5.3)

where X3 = Net axis-dedicated electronics assembly failure rate.

Reliability of the non-axis-dedicated electronics:

-X t
RNA E = e q (5.4)

where X = Net non-axis-dedicated electronics assembly failure rate.

S= 4 + 5 + 7 + A8 (5.5)

where (see Table 5.1.2) the failure rate of 40 vdc/5 dc supply is X4 , that of the 28

vdc preregulator is X 5, that of the clock is 7 and that of the scaler is X8 .

The reliability, REA, of all of the triad electronics is given by:

3
R = RAE R (5.6)EA AE NAE

The reliability, RT, of the complete triad is given by:

3 3
R T = R G  RA REA (5.7)

5.2.2 SIRU Reliability Calculations

This section comprises the derivation of equations used in obtaining the specific

SIRU reliability curves shown on Figs. 5.2.1 through 5.2.4. The derivation for

soft and hard failure systems is presented later in this chapter.

The SIRU reliability calculations are complicated by the particular relationship

of the axis- dedicated electronics to the gyros and accelerometers. For each functional

axis three dedicated elements, a dc supply, a 9600 Hz supply and a fuse and diode

module, support both the corresponding gyro and accelerometer modules. Since
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these electronic elements are not cross strapped, a failure in any of them results

in the loss of both a gyro and an accelerometer. The reliability of the inertial

package with no axis electronics failure is derived as shown in Eqs. 5.8 through

5.10. The reliability of the axis-dedicated electronics is shown by Eq. 5.3. The

reliability of the complete inertial package including the axis-dedicated electronics

for soft failures is as shown in Eq. 5.11.

This expression is conservative for it ignores several cases in which the

system is unaffected by failures which Eq. 5.11 includes. For instance, if a gyro

failure occurs followed by the failure of its axis electronics, the electronics failure,
in effect, is partially forgiven. Another example is shown by a gyro failure followed

by an axis electronics failure on another axis. While the limit of gyro failures has

been reached, one more accelerometer failure can still be tolerated. Equation 5.11,

to avoid computational complexity, does not include these small but definitely positive

terms.

Soft Failure Systems

The reliability R 6GS of the six gyros modules in soft failure systems with no

axis electronics failure is given by:

R6GS = RG (15- 2 4 RG + 1 0 RG (5.8)

where RG is given by Eq. 5.1. The reliability of the gyro package is given by the
probability of four of the six gyros surviving.

The reliability, R 6 AS, of the six accelerometer modules for soft failure systems

with no axis electronics failure is given by:

R6AS = RA (15- 2 4 RA + 10RA) (5.9)

where RA is given by Eq. 5.2.

The reliability, RIS, of the total inertial package (six gyro and six accelerometer
modules) with no axis electronics failure is given by:

RIS = R6GS R6AS (5.10)
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The reliability RISAE, of the total inertial package including the axis-dedicated

electronics (see Table 5.1.3) is given by:

6
R =R R RISAE AE 6GS 6AS

5 5 4 5 4
+ 6RAE (-R AE)(RG + 5 R (1-RG)) (RA + 5RA (-RA))

4 24 4
+ 15RAE (l-RAE) RG RA (5.11)

where RAE is given by Eq. 5.3.

The reliability, RDE , of the dual redundant electronics is given by:

RDE = R4 R 5 R 6 R 8  (5.12)

where reliability of the 40/5 vdc supply is

R = 1-(1-e ) ] (5.13)

Reliability of the 28 vdc preregulator is

R 5  = (1-e t ) (5.14)

Reliability of the multiplexer is

R = -(-e t) 2 ] (5.15)

and reliability of the scaler is

[ 21

R =8 I-(1-e 8 ] (5.16)

X4' '5 and X8 are defined above, and X6 is the multiplexer failure rate.

The reliability of the clock for this system RCS, is given by the probability of two

of the three oscillators surviving:

= R3 + 3R2 (1-R ) (5.17)CS 7 7 7

where X7 is the clock failure rate and

R 7 = e (5.18)

141



The reliability, REAS, of the entire SIRU electronics assembly is given by:

REAS = RDE RCS (5.19)

The overall SIRU system reliability, RTS , for soft failure systems, is given by:

RTS = RISAE REAS (5.20)

where RISAE and REAS are given by Eqs. 5.11 and 5.19 respectively.

Hard Failure Systems

The discussion with respect to axis-dedicated electronics failures for soft

failure systems presented above applies in a similar fashion to hard failure systems

and the resulting derivation is presented below. Derivation of the reliability of

gyro and accelerometer arrays, and of the axis electronics, is also similar. One

additional failure, however, can be tolerated.

The reliability, R6GH, of the six gyro modules in hard failure systems with
no axis electronics failure is given by:

3 2
R 6GH = R G  (20 - 45 RG+ 36R G - 10R (5.21)G 6  10G G) G G

where R G is given by Eq. 5.1.

The reliability, R6AH, of the six accelerometer modules with no axis electronics
failure is given by:

RA H  RA (20 - 4 5 RA + 3 6 RA 10 R (5.22)

where RA is given by Eq. 5.2

The reliability, RIH, of the inertial package (six gyro and six accelerometer modules)
in hard failure systems with no axis electronics failure is given by:

RIH = R6GH R6AH (5.23)
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The reliability, RIHAE of the total inertial package including the axis-dedicated

electronics (Table 5.1.3) is given by:

6 5 5 4
RIHAE RAE R6GH R6A H + 6 RAE (-RAE) (RG + 5RG (1-RG))

(RA + 5R 4  (-RA))

4 2 4 3+ 15 RAE(1-RAE) (1-RAE) (R G + 4 R G  (1-RG)) (5.24)

4 3
(RA + 4RA (-RA))

3 3 3 3
+ 20 R (l-R ) R 3  R 3

AE AE G A

where RAE is given by Eq. 5.3.

The reliability of the dual electronics for this system is the same as for the

soft failure case (Eq. 5.12).

The reliability, RCH , of the clock for the hard failure case (failure of two

oscillators may be tolerated) is given by:

RCH = + 3R (1-R ) + 3 R (1-R )2 (5.25)
CH 7  7  7  7  7

where R, is defined by Eq. 5.18.

The reliability, REAH, of the entire SIRU electronics assembly is given by:

REA H = RDE RCH (5.26)

The overall SIRU system reliability, RTH , in a hard failure system is given by:

RTH = RIHAE REA H  (5.27)

where RIH and REAH are given by eqs. 5.23 and 5.26 respectively.

5.2.3 Theoretical Results

These equations have been evaluated and plotted using both 90% confidence

level and experienced MTBF values. Results are plotted in Figs. 5.2.1 through

5.2.4. The conclusion which must be drawn from this study is that the SIRU

143



configuration is notably more reliable than a gimbaled triad system built with similar

components.

5.3 Reliability Analysis Summary

The equations presented above and graphs (Figs. 5.2.1 through 5.2.4) have

been used to derive the probability of mission success and equivalent MTBF for

the SIRU and triad systems for a period of 730 hours (one month). See Table 5.3.1

where the equivalent MTBF numbers were computed using the following equation:

-730Equivalent MBTF In R (5.28)

where R is the corresponding system reliability at 730 hours as computed from

Eqs. 5.7, 5.20, or 5.27.

Table 5. 3. 1 Reliability Analysis Summary

MISSION TIME EQUIVALENT MTBF
730 HRS. MISSION SUCCESS IN HRS.

SOFT HARD SOFT HARD
FAILURES FAILURES FAILURES FAILURES

% E .9779 .9981 32,767 347,619
SIRU FAILURE RATES

SIRU
SYSTEM

.9959 .9997 178,000 2,433,333
FAILURE RATES

90% CONFIDENCE .5874 1370
TRIAD FAILURE RATES

EXPERIENCED
FAILURE RATES .7664 2740
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6.0 Test Facility

6.1 Introduction

This section contains a description of the facility and subsystem equipment

developed to operate and evaluate the performance of the SIRU system. Section 6.2

describes the test table setup including the system optical alignment features. Section

6.3 provides descriptions of the GSE console and accessory electronic interfaces.

Figure 6.1.1 shows the complete interface for SIRU and the associated support

equipment. The computer facility components shown in the figure are an integral

part of the overall test facility. See Chapter 4 for a discussion of the computer,

its SIRU system interfaces and the associated peripherals.

RIP
RIP HEAT TEST
EXCHANGER BOX

RIP EA

TABLE INTERCONNECT.
RATE TEST BOXSERVO TABLE
TABLE SLIP RINGINGANGLE ASSEMBLY

ENCODER GSE CONSOLE

TEMP.
MONITOR

MODE
TABLE CONTROL

JUNCTION G SE
BOX HEAT PANEL

TEST POINT
PANEL

POWER AND
FUSE PANEL

+28 V
REG.#2

DDP 516 + 28 V

INTERFACE PANEL REG.#1

+ 28 V

DDP 516 DIGISTORE UNREG.

ASR 35 COMPUTER + 28 V
TTY PAPER TAPE GSE

READER

CRT

Fig. 6.1.1 SIRU System Block Diagram
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6.2 Test Table

The test table provided to support the SIRU system consists of a 2-axis, 16-inch

rotary table mounted on the rotating axis of a similar 2-axis 32-inch rotary table

(both tables are manufactured by the International Machine and Tool Co.). Figure

6.2.1 shows the major components of the test table system. The four table axes

are equipped with precision (0.5 sec resolution, 2.0 sec accuracy) optical readouts

which allow positioning to a wide range of orientations including the six basic

instrument calibration positions. The rotary axis of the 32-inch table is equipped

with a rate drive system which can generate constant slew rates up to 1.0 rad/sec

and oscillatory rates at frequencies up to 10 Hz. See Fig. 6.2.2 for a sketch of the

slip ring and encoder assembly.

TEST TABLE SLIP RING & ENCODER ASSY

/4-1NCH 0iAM ER
3 -INCH DIA YMTR 5 - RING ASSEMLY
21 - PAI;G ASSiMB1Y 60 -I AMP RINGS

ALLU 10 - A..P RINGS 5 - 4 A.P RINGS

Fig. 6. 2. 2 Test Table Slip Ring & Encoder Assembly

The SIRU system can be aligned to within 10 sec in azimuth and 5 sec in

elevation in all desired test positions. These alignments are accomplished by

orienting the SIRU system (by autocollimation on the system reference cube) with

respect to transfer lines from the azimuth reference (porro prism). See Fig. 6.2.3
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Fig. 6. 2. 1 Axis Test Table Assembly with SIRU System Installed
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for the optical alignment layout. Figure 6.2.4 shows the SIRU system installed on

the test table.

East-Fixed
Autocollimator Array

T LOS

S- Theodolite ( Autocollimator)
Temporary Positions

Test
Package

Prism LOS

Azimuth Reference

North-Fixed 
Marker

Autocollimator Array

Fig. 6. 2. 3 Test Facility - Optical Alignment References

6.3 Support Equipment

Ground Support Equipment (GSE) for the SIRU laboratory installation consists

of the following items of equipment:

I. GSE Console

II. Interconnect Box (ICB)

III. Table Junction Box (TJB)

IV. RIP Test Box

V. Monitor Console

A description of each item, their subassemblies and their application to the

operation and test of the SIRU follows.

6.3.1 The GSE Console

The GSE console, Fig. 6.3.1, provides the necessary dc power sources and
distribution for the SIRU system. It controls the moding of the system, provides
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auxiliary heat for inertial components, and monitors component temperatures. It

also provides access to system test points and ac and dc power for GSE operation.

The console consists of six interlocking sections:

A. Temperature Monitor

B. Mode Control Panel

C. GSE Heat Control Panel

D. Power Distribution Panel

E. Power Supplies

F. Test Point Panel

Temperature Monitor

All inertial module temperatures are sensed in bridges and the amplified signal

from each bridge is multiplexed to the monitor panel via the slip rings on the table

once every 30 seconds. Signals are cycled through and displayed as a deviation

from normal operating temperature. The inertial component being monitored is

identified on the panel. Automatic scanning can be interrupted and manual sequencing

invoked. Aural and visual alarms are activated if the temperature of any inertial

component exceeds its specific limits, the faulty instrument is identified and the

entire inertial system is automatically switched to a safe operating mode.

Mode Control Panel

The Mode Control Panel provides all the power switching devices required to

control the various operational modes of the SIRU system. The Turn-On/Turn-Off

sequence is interlocked and all critical points in the system and the GSE are channeled

into the Mode Control Panel to insure safe system operation.

GSE Heat Control Panel

As described below, certain modes of operation require that extra heat be

delivered to the inertial components. The GSE Heat Control Panel provides this

extra heat individually to each component. This heat is adjustable and is available

in two modes: preheat and fixed heat. Preheat is used when extra power is needed

to bring the component up to operating temperature before turn on. Fixed heat was

provided as an additional power source to assist the component temperature

controllers when several modules have been removed to minimize the effect of a

r-frame temperature gradient.
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Power Distribution Panel

All the heavy current switching is done in the Power Distribution Panel under

the command of the Mode Control Panel. Safety fusing and over-voltage crowbar

circuitry are also located here. All power and grounds are distributed from this

point to the GSE and SIRU system.

Power Supplies

The GSE console contains the following power supplies. The associated usages

are identified.

1. +28 vdc - GSE relays and lamps

2. +28 vdc - SIRU temperature, control, clock, and scaler, 40/5 supply,

9600 Hz supply

3. +28 vdc - SIRU dc axis supplies

4. +28 vdc - SIRU accelerometer pulse torque electronics

Test Point Panel

The Test Point Panel provides necessary buffering for all available system

test points used for troubleshooting and system monitoring. (This panel was used

in Phase I only.)

6.3.2 Interconnect Box (ICB)

The ICB is mounted with the SIRU system on the test table and interfaces the

system to the slip ring assembly. The circuitry in the ICB includes wheel current

monitors with out-of-tolerance alarms, AO multiplexers, AV multiplexers, gyro

interpolator multiplexers, pulse buffers, and mode controls for the clocks and scalers.

All available system operational test points can be monitored through the buffers

in the ICB.

6.3.3 Table Junction Box (TJB)

All the raw inertial data (AO, AV, interpolator) which were multiplexed in the

Interconnect Box for transmission through the slip rings are de-multiplexed in the

TJB. This raw data are then buffered and sent to the computer for processing.
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6.3.4 RIP Test Box

This small box is located between the Electronic Assembly (EA) and the

Redundant Instrument Package (RIP) and contains dc current sensing resistors, wheel

current sensing transformers, and switches to control the gyro and accelerometer

pulse torque electronics.

6.3.5 Monitor Console

This single bay console contains oscilloscopes for monitoring all gyro and

accelerometer error signal Lissajous patterns, a digitalvoltmeter for troubleshooting

and test table rate servo power supplies and controls.

153



PRECEDING PAGE BLANK NOT FILMED

7.0 System Test Results

This chapter describes and presents the results of system tests performed

to evaluate and confirm the operation of the SIRU system. A companion document,

SIRU Utilization Report, R-747, describes in additional detail the test program and

results for single position calibration (SPC), Local Level Navigation and Coarse

and Fine Alignment. Thus, only selected samples of test results in these areas

are included here.

The performance of the failure detection and isolation (FDI) and of the statistical

FDI Classification and Recompensation (FDICR) is covered in the chapters of this

report and R-747 which are devoted to those subjects, and does not appear in this

chapter.

Test results from inertial components and gyro and accelerometer modules

operated outside of the system environment are covered in the appropriate volume

of this report; Volume II for gyros and gyro modules and Volume IV for ac-

celerometer and accelerometer modules.

Reliability operating results and assessments are presented separately in

Chapter 5 of this report and for the SIRU Utilization program in R-747.

With the exceptions described above, this chapter contains the principle results

of the SIRU test and evaluation program for the entire period from July 1970 through

December 1972.

7.1 System Operating Summary

This section presents the operating summary of the system over the entire

test period. The SIRU gyros in the system, through December 1972, accumulated a

total of 116,400 operating hours and a total of 694 system wheel stop-starts. The

accelerometers accumulated a total of 147,800 operating hours with every instrument

operating in the system in excess of 23,000 hours. Operating time for the system

was 23,300 hours with a complete complement of instruments and the electronics

assembly.

7.2 Calibration and Stability Data

This section presents results from calibration tests and shows short and

long-term instrument stability and the effects of system cooldowns and module
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replacement. Accelerometer data, because of its security classification, have not

been included in this volume but are presented in Volume IV of this report.

7.2.1 Gyro Torque-to-Balance Stability Statistics

Figures 7.2.1 and 7.2.2 summarize stabilities of bias drift (NBD), g-sensitive

drifts (ADSRA, ADIA and ADOA), g2 or compliance drift, scale factor (SF) and input

axis alignments obtained across remounting, cooldowns and test repetition.

The delta drift, or change in drift magnitude, alignment and SF have been

tabulated and an rms average calculated for the sample size to show the effect of

module remounting (Column 1) and of system cooldowns (Column 2). The larger

sample size of the cooldown data results because all installed instruments are affected

by a system cooldown whereas remounting affects only individual instruments.

A comparison of the g-sensitive drift for these two cases shows nearly identical

performance; that is, both the spread in delta magnitudes and the calculated rms

values for each term are similar. This is to be expected, as the environmental

impact on the instrument is nearly the same in each case (all power off). There is

no apparent effect from the physical movement of the module during remounting.

These g-sensitive drift changes across cooldown are a deficiency of the 18 IRIG

Mod B gyro population used in SIRU. An improved instrument, the 18 IRIG Mod D,
with a redesigned, integral wheel and gimbal (described in Volume II) has substantially

reduced this sensitivity. The equivalent performance of the Mod D across cooldowns

is documented to be on the order of .015 0 /hr.

The tabulation of standard deviations (Column 3) for the various terms is
derived from one to six months of calibration test results chosen to exclude all
interposing cooldowns or remounts. This data is considered to be representative

of the performance across cooldowns expected with the incorporation of the 18 IRIG

Mod D or an equivalent instrument.

The SF and alignment stability performance, for all three cases, is very

respectable, and the standard deviations are indicative of the stability of the hardware

and the sensitivity or resolution of the calibration and data reduction process. As

explained in subsequent sections, reductions in SF differences across mounting have
been achieved through implementation of hardware modifications, and reductions in
alignment differences across mounting can be achieved through the use of an optical
calibration fixture.
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ACROSS ACROSS STANDARD
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RMS= 0. 06 RMS= 0. 05 RMS 0.03

-. 15 . 5 -.15 .15 .15

NBD ( dogfhr)

RMS 0. 06 RMS= 0. 06 RMS = 0.04

-. 15 .15 -. 15 .15 .15

ADSRA deg/hlr g )

RMS= 0. 05 RMS= 0.08 RMS = 0.04

-,3 0 ".3 -. .3 . .3

ADIA (,deg/hr'/g)

RATS 0.01 IMS = . 01 RMS =0. O5

FPri m , , R n n
S15 U .15 -. 15 ) .15 0 .15

ADOA ( A'g/r/g )

No coldowns or motutini lUs

1 - i month.

Fig. 7. 2. 1 Gyro Drift Performance
18 IRIG Mod B
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Fig. 7. 2. 2 Gyro Compliance, Scale Factor, and Alignment Data
18 IRIG Mod B
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Table 7.2.1 shows the average sigma of the drift stability applicable to each

instrument in five of the test positions shown in Table 7.2.2. This data was derived

from overnight and weekend test runs of approximately 1-6 hours to 60 hours duration.

Statistically, the system performance is seen to be relativelyunaffected by position

with respect to gravity.

Table 7. 2. 1

Average Sigma of the SIRU System Overnight
Stability Data

Axis Gyro Pos#1 N Pos#2 N Pos#3 N Pos#4 N Pos#6 N

A MB-424A 6.08 7 6.06 11 1.98 3 2.97 3 3.16 6

B MB-426A 9.39 7 8.68 10 5.67 3 1.78 4 3.06 7

C MB-425 3.41 7 2.88 10 6.72 3 7.48 3 2.31 5

D MB-428B 3.42 1 2.91 2 - - 4.35 1 - -

E MB-421 6.00 4 4.20 9 3.48 3 2.49 1 5.31 4

F MB-420A 3.14 6 2.43 9 2.02 3 1.71 3 3.90 7

Values in 0 /hr x 10- 3

N: Number of Overnight or Weekend Test Runs

Representative data for the A, D and F axis gyros in calibration position 2

are shown in Figs. 7.2.3 through 7.2.10. Figures 7.2.3 through 7.2.5 show three

drift stability calibration tests on the A gyro in calibration position 2 taken in May,

September and November, 1972. The module is oriented with its output axis (OA)

horizontal, sensing almost full negative earth rate and exhibiting gyro bias drift

and both ADIA and ADSRA magnitudes and stabilities. The standard deviations of

the drift stability data for the three samples are .0040, .0045 and .00410/hr

respectively. Figures 7.2.6 through 7.2.8 show the results of the same sequence of

tests on the D gyro. In the calibration position 2, the D gyro module is oriented

with its OA horizontal, sensing almost 90 1hr earth rate and exhibiting gyro bias

drift and both ADIA and ADSRA magnitudes and stability. The standard deviations

of the drift stability data for these three samples are .0027, .0020 and .0020 0 /hr

respectively. Figures 7.2.9 and 7.2.10 show the F-gyro with a one sigma stability

of less than 0.0015 0 /hr. In the calibration position 2, the F-gyro module OA is

vertical and oriented sothatit senses approximately 40 1/hr of earth rate and exhibits

essentially its bias drift magnitude and stability. When the F-gyro is placed in
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RAI = ROT. Axis 32" Table
RA2 = ROT. Axis 16" Table
TAI = TRUN. Axis 32" Table
TA2 = TRUN. Axis 16" Table

Table Position 4 Table Position
RA1=0 0  RA1=2700

rth RA2=180 north -RA2=2700
T:Al=0 / TA= 00
TA2=90 0  TA2=90 0

Y - - east Z - east

Z XX
Y

2 Table Position Table Position
RA1=0 0  RA1=00

north RA2=0 0  north RA2=2700
TA1=00  Z / TA1=900

TA2 =900 TA2 =900

east -- - east

z i ¥

3 Table Position 6 Table Position
RA1=900  RA1=900

north RA2=900  north RA2=00
TA1=00  ' TA1=00
TA2 =900 TA2=00

Z .... -east X - east

x1 Y

Note : Positions 2, 4 & 6 are the Basic Positions for Rate Testing

Table 7. 2. 2 Gyro and Accelerometer Static Calibrate Positions
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Fig. 7.2.3 A-Axis Gyro Drift Stability, May 3, 1972, Cal Pos 2
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Fig. 7. 2.4 A-Axis Gyro Drift Stability, September 18, 1972, Cal Pos 2
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Fig. 7. 2. 5 A-Axis Gyro Drift Stability, November 9, 1972, Cal Pos 2
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Fig. 7.2. 6 D-Axis Gyro Drift Stability, May 9, 1972, Cal Pos 2
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calibration position 6 (Fig. 7.2.11), the one sigma stability degrades to 0.0048 0 /hr.

In calibration position 6, the F-gyro module is oriented with its OA horizontal sensing

about 5.50 /hr of earth rate and exhibiting bias and both ADIA and ADSRA drift

magnitudes and stabilities. Comparison of the F-gyro data in the two calibration

positions illustrates the effect of the major g-sensitive drift terms on the short

term performance of the instruments.

A transient type instrument failure that was observed in system testing is
illustrated in Fig. 7.2.12. The data was taken on the E- gyro which had been randomly

identified as a failure by the SIRU FDI software. This plot confirmed the transient

failure phenomena. The unit remained in the system for continued monitoring, and

additional random, real "soft" failure events were observed by the FDI software.

The plot indicates that the instrument float was restrained at the initiation of the

test and experienced an exponential return to the nominal drift level (for that

orientation) over the first six to eight hours of the performance test. The one

sigma drift value of 0.048 0 /hr and the visible roughness of the point-to-point

performance during the remaining fifty hours of the test are indicators of a probable

contaminant in the flotation fluid of this instrument. Subsequent teardown of this

unit verified the presence of a contaminant.

7.2.2 Day-to-Day Gyro Drift Stability

The error in earth rate sensed by each of the system gyros in calibration

position 2, on a day-to-day basis, is shown in Figs. 7.2.13 and 7.2.14. The instrument

compensation routine (RPOTT) was utilized in these tests so that all the indicated

rates are free of drifts caused by the nominal calibrated gyro drift, etc. parameters.

There were no system cooldowns between the compensation updates.

For the entire population over the three month period, we observe from these

curves that the maximum data spread was better than 0.090/hr including the sudden

shift in F-gyro performance and the ramping in the D-gyro. On the average, the

day-to-day performance is better than 0.015 0 /hr. It should be noted that gyro axes

A through D in this calibration orientation reflect g-sensitive as well as bias drift

stabilities since their input axes (IAs) and spin axes (SAs) have sizable components

along the g vector.

Both the E and F-gyros, whose OAs are vertical, indicate superior repeatable
day-to-day drift performance, a maximum spread of 0.007 0 /hr (except for the F-gyro
calibration shift); this data correlates closely with the overnight stability data (Figs.

7.2.9 and 7.2.10). If the stabledrift shift of 0.09 0 /hr for the F-gyrooccurred during
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an operational period, the statistical failure detection routine would have detected,

isolated, classified and recompensated this instrument. Recompensation to better

than .007 01/hr has been demonstrated in laboratory testing; This characteristically

better performance in the OA vertical orientation provides the performance base

for the self-calibration features of the SPC procedure that has been implemented

under the SIRU Utilization program, R-747.

7.2.3 End-to-End Gyro Drift Summation Repeatability

After "Dumping" System in the Gravitational Field

Table 7.2.3 shows the baseline net drift (all compensation terms applied and

the a priori earth rate drift subtracted) sensed by the system gyros in calibration

position 2. The system is then rotated about the Z-axis (horizontal) such that the

X-axis is now vertical up (calibration position i). The calibration position 1 data

shows a maximum drift error of -0.0228 0 1/hr in the E-gyro while the majority of

units indicate better than 0.015 0 /hr. This stability across up-to-down rotation in

the g field is indicative of a well calibrated system.

Table 7.2.3

SIRU Gyro Drift Rate Errors (With Drift Parameter
Compensation Applied)--For the Cal Pos 2

System "Dumped" to Cal Pos 1 and then back to Cal Pos 2

System System Axis
Orientation A B C D E F

0/hr

Calibration Position 2
(Baseline) -.0060 -.0111 -.0026 .0039 .0030 -.0015

Calibration Position 1
Positioned System 1800
About Z-Axis -. 0032 -. 0063 .0202 -. 0054 -. 0228 .0116

Calibration Position 2 -. 0093 -. 0034 -. 0062 .0092 -. 0062 -. 0015

Calibration Position 2
Error With Respect To
Baseline -.0033 .0076 -.0036 .0052 -.0092 0

X

(NORTH) (NORTH)

Y (EAST) Y (WEST)

X

CAL. POS. 2 CAL. POS. 1
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Upon returning again to calibration position 2, each gyro's net drift is again

calculated. The maximum error with the gyros returned to their original orientation
is .00920/hr and the average return accuracy is within 0.0050/hr of the previous

calibration position 2 drift summations. This small change is primarily due to the
effect on the module electronics of the thermal gradients generated within the module
by "dumping".

7.2.4 Gyro Scale Factor Linearity

Figure 7.2.15 is typical of the system's positive and negative SF linearity
over the range of 0.09 rad/sec to 0.38 rad/sec for each of the SIRU gyro modules.
Note that the plus and minus SF for each gyro is different, and each gyro's deviation
from nominal is different. In the system implementation each gyro pulse update is
corrected by the compensation software for a calibrated deviation from nominal
for both its plus and minus SF corresponding to the plus and minus 0.125 rad/sec
input. The linearity curves, therefore, reflect the error propagation from the
calibrated value. This data was obtained by extending the dynamic calibration
program (JIMK) to include the extra rate inputs required. The maximum spread
for all system axes is approximately 50 ppm over the range of test rates.
Incorporation of the point-slope compensation routine, developed and implemented
on the SPOT program (NASA Contract NAS9- 6823) and reported in Draper Laboratory
report R-743, would reduce the SF deviation from the compensated value for these
instruments to approximately 10 ppm for input rates up to 1 rad/sec.

NEGATIVE S.F. LINEARITY 100 POSITIVE S. F. LINEARITY
G 115

BBG

FG, DGG

S -100

EG _____ __E G
CG

.- -200
CG

I I I I I I I I
0.4 0.3 0.2 0.1 0 0.1 0.2 0.3 0.4

-IA RATE (rad./sec.) +IA RATE

Fig. 7. 2. 15 Gyro Scale Factor Linearity Obtained at System Level Testing
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7.3 Component Test to System Test Parameter Transfer

In general, transferability with reasonable performance has been achieved

(see Figs. 7.2.1 and 7.2.2) during the course of the test program. However, problem

areas were encountered in the demonstration of transferability of module calibration

data between the gyro or accelerometer module normalization test area and in

subsequent tests after installation in the system. These problems and corresponding

recent test findings that indicate that significant improvements are obtainable are

reviewed below.

7.3.1 Gyro Module

A review of the non-g- sensitive (BD) gyro drift across transfer from the gyro

laboratory tests to SIRU system tests shows an rms value of .06 degrees per hour.

Recent efforts have shown this discrepancy to be the result of variations in transistor

leakage in the pulse torque-to-balance loop H switch dependent upon the residual

polarity of the switch after torquing. In addition, an error in one of the data reduction

programs was uncovered that introduced an uncertainty of approximately 0.12 0 1hr.

This error, when combined with the polarity dependency, appears to account for

the BD transferability discrepancies. Special system tests conducted since isolation

of these causes have shown a maximum delta BD of .03 degrees per hour between

the module and system tests. This magnitude can be further reduced in the future

by modifying the calibration and system compensation programs and the computer

interface so that the BD compensation will be able to correct for H switch polarity

leakage dependency. The interface modification would enable the separate ac-

cumulation of plus and minus AO pulses in each input/output (I/O) iteration. This

I/O modification would enable tracking of the individual polarity states of the torquing

circuits and permit the implementation of a precise software compensation routine

for the dual BD magnitudes.

Torquer SF shifts (approximately 150 ppm) between module and system tests

had been evidenced and were investigated. The SF magnitude was found to be sensitive

to variations in the level of the 40v excitation between the component test area and

the system test area. Tests were conducted with several pulse torque electronics

(PTE) modules in SIRU gyro module #10 to evaluate:

1) DC amplifier circuit stability

2) SF sensitivity to 40v dc supply variations

3) SF stability

4) SF linearity

5) SF sensitivity to RC network tuning
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Modification of the dc amplifier compensation, combined with an increase in

the padded resistance of the torquer circuit and resistive tuning of the torquer circuit,

has proven successful in desensitizing the SF to variations in the 40v excitation.

Tests with a modified module have demonstrated a significant improvement; the

delta SF between module and system tests was reduced to a maximum of 13 ppm.

Transfer of alignment from laboratory to system mounting has not been fully

verified, although module alignment repeatability after a system alignment calibration

and then across a subsequent removal of the module with a cooldown and remounting

has been excellent, e.g., an rms of 8 sec and a maximum spread of 20 sec. The

demonstration of absolute transferability of alignment calibration between the

laboratory and system has been limited by the non- availability of the precision optical

calibration fixture mentioned earlier, (design and assembly of such a gauge was

not effected during this program because of fiscal and time constraints) that could

be installed in each system n-frame module location. This fixture would enable

the determination of the frame pad alignments with respect to the system reference

optical cube and allow correlation of laboratory and system data. In general, the

limited correlated test work devoted to replacement of different modules in the

same u-frame slot indicates that the absolute transferability is on the order of 4

sec.

7.3.2 Accelerometer Module

The variation in accelerometer bias from laboratory test to system test has

been acceptable with an rms value of 21 micro g's. The rms value of SF deltas

from laboratory to system operation is 29 ppm. No attempt has been made to reduce

this value. If an application requirement for a better SF match existed, a task

could be initiated to reduce this value to less than 15 ppm rms (conservatively

estimated). The status of alignment transfer for the accelerometer module is the

same as for the gyro module.

7.4 Real-Time Attitude Error Propagation

Tests were conducted with various combinations of zero, one and two instrument

failures in static and dynamic environments to determine the error propagation

characteristics of the redundant system. Tests were run with the body axes X, Y,
and Z vertical and down. Constant angular rates of 0.4, 4, 10, 16, 26 and 40 0 /sec

in both directions and oscillatory tests of 0.25 Hz,20 0 p-p, 0.50 Hz,15 0 p-p, 3.0 Hz,
3/40 p-p, and 5.0 Hz,1/4 0 p-p were conducted.
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The representative data included in this section are presented as the attitude

error between the body (true) and computed (system error) reference frames as a

function of time. The predominant dynamic errors appearing in the plots are due

to OA coupling and pseudo-coning. Other dynamic errors due to SA cross coupling,

anisoinertia, and SF errors are present to a lesser degree. A large repeatable

error appearing in these plots is due to a test table encoder error of 80 sec peak

to peak over one table revolution.

7.4.1 Static Quaternion Attitude Tests

Figure 7.4.1 is typical of the static test results. Even though the test duration

is only 14 hours, a 24 hour period in the X, Y and Z attitude errors can be observed.

The error in the quaternion is quite small, a maximum of 2.5 milliradians in the

14 hour period is shown on the X-axis. This corresponds to a gyro drift

miscompensation and cross coupling error that is equivalent to less than a 0.01 0 /hr.

7.4.2 Constant Angular Rate Tests

Inputs, during dynamic testing, were impressed about the X, Y, and Z body

axes. No multiple axis testing was included.

Figures 7.4.2 through 7.4.4 present closure errors for the quaternion attitude

expressed in terms of SF error for the X (input) axis and equivalent misalignment

errors for the axes perpendicular to the rate vector. With respect to Figs. 7.4.2

and 7.4.3, the equivalent system alignment uncertainties correspond to those

out-of-plane angles, which, when operated on by the total angle traverse accumulated

about the X- axis, would yield the observed error in the output of the attitude algorithm

axes that are orthogonal (Y and Z) to the rotational axis X. As seen from these

figures, the equivalent system alignment uncertainty was well bounded, approximately

10 sec, regardless of the failure combination. It is veryinteresting tonote, however,

that when the E and F-gyro axes were failed, i.e., not used in the least-squares

processing matrix for the triad solution, the equivalent misalignment errors were

essentially nulled.

This result is indicative of a miscalibration load error in either the E or F

instruments. Analysis of the equation structure for the four-instrument processing

equations, Appendix A, shows that the F-gyro weighting becomes more dominant

with the failure combinations that were exercised. The F-axis data in the Y-axis

triad solution with gyro A and D failed increases in weighting from 0.425 with no

failures to 0.638. Similarly, in the Z-axis solution, weighting increases from 0.425
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to 0.607 with gyro A and D failed. Considering the foregoing factors, the relative

test time for the different rotational rates and the number of revolutions, it appears

that the equivalent system alignment spread in the data shown was primarily due to
an approximately 0.0301/ hr drift calibration error in the F-gyro. This is not unexpected
since no special care was taken to obtain a precise calibration load prior to this
test sequence. In addition, in the calibration sequence run 14 days after these
performance tests, an F-gyro drift performance change from the previous calibration
of 0.18 0 /hr was observed. The F-gyro instability was eventually traced to a random
malfunction in the torquing electronics causing variance type bias performance failure
phenomena.

With regard to Fig. 7.4.4, the equivalent system X-axis SF error was defined
by comparing the attitude algorithm output X-axis error to the total angle rotation
of the X-axis. Recall that the compensation algorithm used in SIRU corresponds to
a nominal SF calibration at approximately 0.125 0 /sec. From the test data in the
figure, across all of the combinations in the rate region between 4 and 40 0 /sec, the
equivalent SF error is quite small, a spread of approximately 10 ppm. This
performance is consistent with the SF linearity performance for individual
instruments shown in Fig. 7.2.15. The roll off at lower rates (0.4 0 l/sec) is also
consistent with data observations on individual instruments and generally relates
to the uncertainties introduced in the estimation of SF calibration at low rates by
the gyro drift calibration uncertainties. The 50 ppm drop across the no failure and
E and F-gyro failure conditions is therefore consistent with the test calibration
condition. The system SF performance is well bounded and reflects the general
quality of the system gyro torquing performance. Use of a SF linearity compensation
routine, as discussed previously, would have yielded improved performance. It is
interesting to note that the A and D- gyro failure combination resulted in an increase
in the equivalent SF error at the low rates of about 40 ppm. Once again, this result
appears to correspond to the bias compensation error in the F-gyro since the X-axis
triad solution weighting does not use the F -gyro when there are no failures. However,
with A and D-gyro failed, it is scaled to 0.557.

Figures 7.4.5 through 7.4.8 present quaternion attitude as a function of time
with and without OA coupling compensation and with no failures.

The effect of OA coupling errors, resulting from a step rate input, in terms
of the error in the indication of the inertial frame is evidenced in Fig. 7.4.5. As
expected, an inertial frame error in the Y and the Z axes occurs that corresponds
to the change in rate applied about the X reference triad axis. The rate change
affects the E and F instruments which have their OAs colinear with the X-axis. It
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results in an erroneous E and F-gyro output and a corresponding error in the Y

and Z triad solution. This output is proportional to the OA coupling coefficient.

The Y and Z axis solution error results in the sinusoidal Y and Z error curves,

Fig. 7.4.5. These error curves correspond to the indication of the Y and Z body

axis orientation with respect to a perfect non-rotating inertial frame. The Y and Z

axis sinusoid errors are 1200 prads peak to peak, and the sinusoidal error in the X

axis corresponds to the table encoder calibration error (80 , 400 prad). When

the table rotation is stopped, an opposite polarity change of rate occurs with a

corresponding E and F-gyro output that returns the inertial indication to the correct

orientation with no net error due to OA coupling. The net offsets at the end of the

test are primarily due to SF and alignment error propagation. With OA coupling

compensation implemented in software, the magnitude of the attitude error in the Y

and Z axes for the same input rate step was reduced to 400 prads peak to peak,

Fig. 7.4.6.

Thevariationin OA coupling error between tests is attributable to the manual

setting of angular rate and rate magnitude (i.e., variation in w magnitude and time).

The effect of OA coupling error in an oscillatory environment is dramatically

presented in the quaternion attitude plot of Fig. 7.4.7. The Z-axis attitude drift,

termed pseudo-coning, results when the algorithm receives information from the

instruments for apparent oscillatory inputs 900 out of phase and of the same frequency

about two axes (X and Y). The X-axis oscillation is the true sensed input and the

Y-axis oscillation is the false information caused by the OA coupling error of the

E and F-gyros. The Y-axis sinusoid is the direct result of the OA coupling error

term and the X-axis sinusoid is a function of the encoder error. When OA

compensation is effected, Fig. 7.4.8, the Y-axis OA coupling induced sinusoid is

compensated and the Z-axis attitude drift error is essentially removed. The X-axis

sinusoid error is essentially the table encoder error.

A comparison of the theoretical and measured pseudo-coning drifts for the

five oscillatory inputs, presented in Table 7.4.1, indicates the high degree of

correlation achieved in these tests.

A complete description of the propagation and effects of pseudo-coning is presented
in the Final Report, Strapdown System Performance Optimization Test Evaluations
(SPOT) by Richard Blaha and Jerold Gilmore, R-743, February, 1973.
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Table 4. 1. 1

SIRU Error Propagation Results for Oscillatory Inputs

Without OA Coupling Compensation With OA Coupling Compensation

X-Axis Approximate Theoretical Actual Pseudo-Coning End-to-End Error Attitude
Oscillatory Inputs Pseudo-Coning Drift (o/hr) Drift (o/hr) Expressed in 0

/hr (sec)

150 p-p at 0.5 Hz 22.20 21.75 0. 30* 16

200 p-p at 0.25 Hz 10.20 10.05 0. 30* 16

3/40 p-p at 3.0 Hz 1.95 1.05 0. 30* 16

20 p-p at 1.0 Hz 2.55 1. 50 0. 30* 16

1/40 p-p at 5.0 Hz 0.60 None Apparent 0.08* 4

Within the quantization uncertainty of the test data

7.5 Self-Alignment and Navigation Performance Comparisons

Table 7.5.1 presents standard deviations for latitude, longitude, azimuth and

leveling of the SIRU system calculated from the one sigma values of drift of the

SIRU instruments derived from calibration testing. The first data column shows

alignment and navigation performance calculated from the instrument one sigma

values over a 6 month uninterrupted operating period. The second data column

shows alignment and navigation performance based on instrument calibration shifts

across system cooldown. The calculated results also reflect accelerometer

performance in the SIRU module configuration. These calculations do not reflect

the performance improvements that would be attained using the statistical self-

calibration techniques or the SPC software developed in the SIRU Utilization Program,
R-747. Similarly, the calculations are based on the population data, and the

improvements inherent in the hardware/ software modifications to correct for the

torque loop H switch polarity (bias) leakage problem (Section 7.3.1) have not been

factored in. Finally, incorporation of the redesigned gyro, 18 IRIG PM Mod D,

with its reduced cooldown sensitivities, would yield significant improvements. For

example, the Mod D bias stability across cooldowns demonstrates improvement by

a factor of three and the ADIA and ADSRA stability by a factor of six to eight compared

to Mod B performance.

179



Table 7. 5. 1

Projected Alignment and Navigation Performance

Gyro lo Error Models
Parameter No Cooldowns

or Mountings Across
(6 Months) Cooldown

NBD (o/hr) 0.015 0.05

ADOA (o/hr/g) 0.005 0.01
S0 ADIA ( 0 /hr/g) 0.02 0.08

J ADSRA (o/hr/g) 0.02 0.06

Compliance ( /hr/g2) 0.009 0. 025
U Alignment (see) 2.0 4.0

Scale Factor (ppm) 10.0 22.0

North Axis Drift (0/hr) 0.016 0. 058

o East Axis Drift (o/hr) 0. 013 0.046
a)d Vertical Axis Drift (o/hr) 0.018 0.063

Latitude Error (nm/hr) 0. 87 3. 07

UZ U .Longitude Error (nm/hr) 1.07 3.87
Initial Azimuth Alignment (mr) 1. 18 4.15

Leveling (sec) 10.0 10.0

System aligned X-axis down, Y-axis east, Z-axis south

Slope for first two hours of navigation run

At SIRU laboratory latitude

The system performance across cooldowns in alignment using the Mod D is
projected to be equivalent to 1 mr in azimuth alignment.

Figures 7.5.1 and 7.5.2 present typical navigationtest dataforthe SIRU system
taken in the static test condition. A comparison of these plots with the calculated
latitude and longitude errors of Table 7.5.1 indicates that the one sigma values of
the static error sources used in the calculations represent a conservative system
end-to-end performance.
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8.0 Program Milestone History

This chapter of the SIRU Development Final Report presents the history of

the SIRU development as a series of significant milestones extending from May,
1968 through November, 1971. Subsequent history is summarized in the System

Log, Volume III of the SIRU Utilization Report, R-747.

8. 1 Program Initiation

Technical Proposal

In May, 1968, the Draper Laboratory in response to NASA RFP

#BGl31-47-8-533P submitted a Technical Proposal to NASA describing a strapdown

system which would replace certain portions of the Apollo primary Guidance,

Navigation and Control system as required to support the long term manned space

flights contemplated for the Apollo Applications Program.

Contract Award

Work on the SIRU system commenced under contract NAS9- 8242 in June, 1968.

Delivery called for one developmental modular redundant strapdown system based

on the dodecahedron geometric concept which, in a production version, would provide

a capability to perform a 120 day mission with a .999 mission success probability

followed by a one-half hour reentry phase with .9999 success probability.

The SIRU design configuration was specified to be compatible with mounting

in an Apollo spacecraft in the same equipment bay, replacing the Apollo three gimbaled

IMU. The design was to be compatible with the Apollo vibration and shock environment

with avacuum capability using conductive (liquid coolant) heat transfer. In addition,

the system was to be compatible with a detachable coldplate.

The gyroscope specified by NASA for the SIRU design was the Draper

Laboratory designed strapdown instrument, the 18 IRIG Mod B. This unit is a floated,

single-degree-of-freedom (SDF) gyroscope, magnetically suspended, with a gas

bearing wheel design and a 5 radian per second slew capability. Built with a permanent

magnet torquer, it is scaled for torque-to-balance operation with input rates up to

one radian per second. The accelerometer specified by NASA was the Draper

Laboratory size 16 Permanent Magnet Torquer Pulsed Integrating Pendulous Acceler-

ometer (PMT PIPA). This unit is a floated, SDF, magnetically suspended specific

force receiver designed for operation in a torque-to-balance mode. It is distinguished
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from its predecessor, the Apollo PIPA, by inclusion of a PM torquer, a solid float

and a more conventional bellows arrangement.

8. 2 Design and Construction

Significant program milestones occurring during the design and construction

of the SIRU engineering model were as follows:

a) September 1968, Initial Design Review.-The first of the two required

design reviews with NASA was held September 16-18, 1968. The overall

SIRU mechanical and electronic design including the computer (DCA)

was presented and approved.

b) February 1969, Second Design Review.-The second design review with

NASA was held at MIT February 4, 6 and 7, 1969. Specific mechanical

and electronic design features were presented, modification direction

was received and the plans approved as modified.

c) May 1969, Contract Review and Evaluation.-An MSC/MIT program

reviewwas held at MIT on May 6-9, 1969. The principle administrative

actions were: elimination of the multiplexer from the deliverable

hardware and approval of the GSE design.

d) July 1969, SIRU Progress Review.-An MSC/MIT progress review was

held at MSC, Houstonon July 28-29, 1969. Hardware status, completion

schedules and problem areas were presented and discussed.

e) January 1970, First Six Position Calibration Test. -On January 27, 1970

the first six position calibration test was run. The second six position

test was completed on February 13, 1970.

f) March 1970, IBM 360 Plotting Program Implemented.-On March 18,

1970 the IBM 360 plotting program became operative. Overnight stability

data is placed on Digistore tape by the MDGO program and then processed

by the IBM 360.

g) April 1970, Deletion of Digital Computational Assembly (DCA). -In

accordance with modification No. 5 to NAS9-8242 the requirement for

delivery of a breadboard DCA and associated software was eliminated

as of April 1, 1970 for budgetary reasons. At that time a breadboard

simplex model had been constructed, initial instruction capability

checkout was completed and 60% of the instruction combinations had

been run and verified.

h) June 1970, SIRU Assembly and Checkout Completed.-System hardware

and software are in operating condition ready for NASA "selloff"

demonstration.
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i) July 1970, NASA Acceptance Testing Successfully Completed. -The

SIRU demonstration and "selloff" tests were conducted at Draper Labora-

tory on July 22-24, 1970. The system was accepted subject to correction

of minor discrepancies and instigation of configuration control. By mutual

agreement between NASA and MIT, SIRU remained at Draper Laboratory

to allow a demonstration for industry to be presented in September.

j) September 19 70, Industrial Symposium on SIRU.--An Industrial Sympo-

sium was presented for space shuttle contractors and other interested

parties at MIT on September 9-10, 1970. Titled "Design Principles for

a Modular Redundant Inertial System" it included demonstrations of the

operating SIRU system.

k) November 1970, Software Improvements Incorporated. -Attitude algo-

rithm and failure isolation routines were speeded by 48% at a cost of

200 memory words. The change permitted improvement in adaptation

time for a detected failure. Incorporation of the gyro interpolator into

the attitude algorithm software eliminated pulse bursting in the loop

performance.

1) March 1971, Gyro Module Interpolator/Compensator Retrofit Complete.

-In March, 1971, the task of retrofitting all gyro modules with Interpola-

tor/Compensators was completed. The system had been operating with

a complete set of retrofitted modules since the first of the year.

m) November 1971, Close of SIRU Development.--All static and dynamic

error compensation routines were in successful operation.
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9. 0 Conclusions and Recommendations

9. 1 Introduction

This report has presented the hardware and basic software status of the SIRU

Redundant Modular Strapdown system development program. The SIRU system

achievements in both hardware and software demonstrate several original applica-

tions of new technology which represent significant state of the art inertial system

milestones. Some of the more noteworthy achievements that have been developed

and successfully demonstrated by the SIRU program are described in the following

Conclusion section. Recommendations for further development and evaluation of

the strapdown redundant, modularized, fault tolerant guidance and navigation system

are provided in Section 3.0, Recommendations.

9. 2 Conclusions

9. 2.1 Hardware

SIRU is the first designed, fabricated and test evaluated, integrated, redundant

strapdown inertial hardware mechanization. It has uniquely evolved and matured

concepts of redundancy based on dodecahedron geometry. This hardware is free

from single point failure mechanisms and its fault-tolerant operational features

have been successfully demonstrated with multiple "hard" and "soft" failures.

The SIRU, pulse-torqued, strapdown, mechanization has demonstrated wide

dynamic range (one rad/ sec) with performance equivalent in many dynamic environ-

ments to that of commercial gimbal systems. During the course of this program

significant strides in achieving stable and precise strapdown pulse weight scale

factor and alignment performance were made in both single degree-of-freedom gyro

and ternary pulse-torque control technology at the system test level, e.g., gyro

electronics long term scale factor (SF) stability of 10 ppm rms over a six month

test period (no cooldowns) and 22 ppm rms over two years operation was achieved.

SIRU represents an initial demonstration of instrument functional modularity.

Concepts of functional instrument modularity with interchangeable mechanical and

electrical interfaces, and prealigned and calibrated transferability were implemented,

matured and demonstrated (e.g., across mountings and cooldowns gyro SF

repeatability of 30 ppm rms and alignment repeatability of 8 sec rms were achieved

in system operation).
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9.2.2 Software

SIRU represents the first hardware with an operating, integrated and evaluated

redundancy management software system. This system includes self-contained fault

detection and isolation (FDI) with reorganizational processing routines and recertifi-

cation of "healed" or transient failures. The FDI algorithms have demonstrated

reliable nonambiguous fault isolation with as many as two gyro and two accelerometer

measurement axes failures and positive fault detection for a third failure.

The SIRU program has demonstrated that a comprehensive inertial navigation

and redundancy management software system for a strapdown dodecahedron redundant

configuration can be successfully integrated in a representative minicomputer

(DDP- 516) operating at 50 iterations per second (36% machine time) with a reasonable

memory allocation (7000 16-bit words). This software system includes the strapdown

processing (twelve instrument static and dynamic compensation, attitude and velocity

algorithms) redundancy management (FDI, processing, reorganization, etc.), system

software ipreflight calibration, alignment, and navigation), and operating

software (dedicated executive, I/O servicing and display).

Some discussion based on the total SIRU test experience, as it relates to and

affirms the motivation for a redundant implementation, seems desirable.

The SIRU equipment, although a first development model, has proven to be

remarkably reliable (over 20,000 hours of system operation with only 5 hardware

failures (two of which would typically have been edited out of reliability estimates

as workmanship or correctable design deficiencies). The fact that these failures

did occur during the SIRU system testing and that they did not compromise continuing

system operation is of significance. In each case the processing software automati-

cally adapted to reflect the failure status and changed the processing structure to

omit bad data and yield a minimum error propagation solution for continued

satisfactory system performance. First, from a hardware point of view the failures

did not result in any systematic degradation, i.e., the redundant hardware features

retained their integrity and no secondary system operational or performance effects

During the SIRU Utilization phase of this contract (R-747), third failure isolation
capabilities were demonstrated for those situations in which a third performance
failure error magnitude was worse than an already existing and isolated performance
failure. In addition, the capability to recalibrate and thereby recertify a failure
that corresponds to a stable performance change was also demonstrated.

Described in SIRU Utilization Report, R-747.
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were observed. Second, although several of the failures were of a performance

degradation type that could not have been detected or isolated by self-monitoring

electronics typically identified as BITE (Built-in Test Equipment), they were reliably

detected and isolated by the FDI software algorithms.

The soft failures that did occur present a broad spectrum of different failure

mode phenomena, e.g., a random float-freedom gyro problem; a malfunctioning

preamplifier in the torque loop with attendent variance type data output performance

and a gyro SF degradation due to a gradually deteriorating solder joint. In a simplex

triad inertial system implementation, these types of failure modes would, in a space

mission, probably cause a mission abort. Had the transient failures occurred in a

critical mission phase, crew safety would probably be endangered. In a prelaunch

or preflight phase, the transient gyro float-freedom and variance data output failure

phenomena might possibly have been observed on a coincidental basis. Even if

observed, verification and isolation diagnostics in the vehicle would be time consuming

with limited probability of success. In comparison, the SIRU system using real-time

continuous FDI detected and isolated the failures to the replaceable modular functional

axes. In each case, as the system repair was being made, the utility and advantage

of the interchangeable modular instrument module concept was clearly in evidence.

The faulty instrument module was readily replaced by another module, within the

tolerance described previously, usually in less than six minutes.

The motivating need for a redundant system implementation remains apparent

for missions with time-critical reliability phases or long term missions, as

characterized by the space shuttle, anticipated satellite space missions and current

and anticipated commercial and military aircraft operations. The SIRU program

has demonstrated a realizable and efficient solution to the high reliability operational

readiness questions posed by these applications.

In the final summary the concepts formulated and developed in the SIRU

dodecahedron redundant modular configuration have been successfully demonstrated

and matured in both hardware and software. Commitment of strapdown technology

for avariety of applications is forthcoming and the SIRU performance achievements

in strapdown technology represent another significant step toward that realization.

9.2.3 Supplementary Conclusions

As noted in the introduction of this report, NASA in 1972, subsequent to the

basic development activity described in this report, funded additional SIRU effort

to further mature and utilize concepts of redundancy management and to implement
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other operational features such as preflight single position calibration, self- alignment

and navigation. This report reflects the achievements in hardware and basic software

prior to the program extension. Report R-747, a companion report, documents the

technical concepts and achievements in the development of statistical failure

detection, isolation, classification and recalibration (FDICR) techniques, as well as

the operational software developments included in the SIRU Utilization program.

In recognition of the successful outcome of the effort in these areas some

supplementary conclusionary comment is in order in this report, especially as a

prelude to any recommendations regarding further coherent redundant system

technology development.

Some of the most noteworthy achievements during the additional development

demonstration effort were:

1) The implementation of a statistical FDICR technique based on the "Wald"

sequential probability test. This technique enabled detection and isolation,

with a specified coverage (reliability, false and missed alarm

probabilities), of mean performance shifts at levels equivalent to 1.5

times the one sigma noise level of normal system operation. For example,

in a quiescent maneuver environment, the detection and isolation of a

bias shift as small as 0.070 /hr was routinely achieved with a background

noise level of 0.045 0 /hr. The noise background corresponded to the An

quantization in the two minute sampling period. Similarly, performance

standard deviation changes on the order of four times the nominal spread

were also detected and isolated.

The maximum attitude error accumulation prior to detection and

isolation of a performance failure was bounded at 40 sec independent of

the magnitude of the performance degradation. Bias and ramp recompen-

sation to better than .015 0 /hr and .0008 0 /hr/minute respectively were

demonstrated repeatedly for the static environment. Accelerometer bias

errors of 0.1 cm/sec 2 and ramp errors of 0.02 cm/sec2/minute in a

static environment were also detected and bias compensation to 0.02

cm/sec 2 or less effected.

2) A single position lumped parameter self-calibration to approximately

0.015 0 /hr or better in the static environment was consistently achieved

using the technique developed and implemented.
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3) The self-alignment software, implemented in a coarse/fine sequential

program achieved totally acceptable magnitudes regardless of the envi-

ronment input during testing. Coarse alignment to less than 10 in a

fixed 260 second period and fine alignment to less than 1 milliradian in

15 minutes were consistently attained.

4) End-to-end performance, demonstrated as the output of a local level

navigator, was on the order of 0.5 nm/hr or less for all static tests.

9. 3 Recommendations

The concepts of redundant modular strapdown technology have been clearly

demonstrated and matured in the SIRU technology programs documented by these

reports. The modular hardware implementation and the operating software have

undergone a comprehensive laboratory evaluation. The obvious and next logical

evolutionary program step to establish confidence in this technology and to

demonstrate its unique advantages should be in the commitment of the SIRU system

to a realistic broad-based flight test evaluation.

Such a flight test effort should seek to establish a base line for Guidance and

Navigation performance of the strapdown implementation across the full spectrum

of flight environments and mission phases. The utility of the redundant implementa-

tion with its fault tolerant operation and its ability to provide a direct measure of

its operational readiness represents an important factor to evaluate and demonstrate

in pre-flight and -in-flight operations. Similarly, the logistic and maintenance

enhancement offered by the comprehensive redundancy, self-test software, and

hardware modularity should be assessed in an operational environment. With respect

to the redundancy management design features, both the statistical reliability

enhancement and the significance of the SIRU dodecahedron's fail-operational

characteristics in time-critical mission phases can be evaluated and demonstrated.

Commitment of the SIRU technology to such a test program should be proceeded

by the integration of the SIRU inertial hardware with a complementary redundant

computer complex. Development of a special purpose redundant computer system

does not appear to be realistic technically nor economically feasible. A concept

based on the utilization of available general purpose computers replicated in triplicate

with fail-safe input/output interfacing to achieve fault-tolerant, fail-operational

mission performance for a single "soft" computer failure represents a practical

and realizable flight demonstration approach. However, the more challenging and

basic computer redundancy implementation approach requires the development of a

high confidence FDI technique for a dual computer complex. For example, in a
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triplicate system, after the first computer failure, should one abort the mission if

critical flight safety phases remain? Conversely, can one sufficiently characterize

potential computer failure modes, as they relate to total system operation, to enable

the development of a high confidence fail-operational FDI for the remaining duplex

configuration? At a minimum, the formulationof a suitable dual redundant computer

complex with special emphasis on a reliable FDI approach and means for re-initializa-

tion betweeen computers to resolve transient failure phenomena is highly recom-

mended for integration with the SIRU inertial subsystem.

Consistent with the integration of SIRU with the computer complex is the need

to fabricate and integrate a multiplexer interface unit with suitable, triplicate

computer, expansion capabilities. The original SIRU multiplexer design (not

fabricated due to program funding limitations) should be reviewed and revised to

reflect the more advanced state of currently available electronics. The SIRU

laboratory test experience, the computer complex FDI implementation as formulated,

and flight operations interactive man-machine considerations should also be reflected

in the advanced design. The built-in test equipment (BITE) features to be incorporated

in the multiplexer should complement the software FDI by enabling automatic fault

location diagnostics to the different axis functions (i.e., wheel supply, dc axis supply,

etc. ) to optimize system maintenance.

BITE should also incorporate failure status data display for those hardware

functions that do not reflect as unique axis failures in the software FDI. This display

would communicate to the mission operator in real-time the status of the triple

redundant clocks and dual redundant scalers and 40v power supplies (these redundant

elements use hardware FDI and active or passive switching provisions in their

redundant mechanization).

Within the software area some limited development appears desirable to enable

a more comprehensive evaluation of possible pilot/ system interfacing. The current

SIRU executive software is dedicated and non-interactive except for mode switching

phases, i.e., alignment, navigation, etc. An interactive executive allowing flexible

examination of different system parameters, modification of compensation loads,

redundancy in processing conditions and maintenance diagnostics should be developed.

In addition, the incorporation of the software compensation routines evolved in the

SPOT program (MIT/DL Report R- 743) for compensation of anisoinertia, SRA cross

coupling and scale factor linearity appears to be desirable and a review of the OA

compensation bandwidth characteristics should be effected.
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In the area of advanced software development, the concepts evolved in the

SIRU Utilization program can be advantageously matured. Studies to relate the

FDI criteria automatically to mission phase and dynamics should be conducted and

corresponding software demonstrations effected. The single- position self-calibration

technique should be augmented to advantageously utilize optical alignment data as

well as other alignment aids. The evolution of techniques to apportion drift change

correction among the bias and g-sensitive coefficients should be initiated. Finally,

the efficient utilization for flight operations of the total integrated redundant system

with SIRU and the redundant computer complex as a core structure could be

advantageously explored. For example, the SIRU sensing data could also redundantly

provide flight control and stabilization sensing and attitude and heading display,

thereby efficiently and reliably replacing a multiplicity of independent sensors.

The integration of radio-navigation and landing aids with the SIRU concept in a

redundant implementation should be explored to evaluate total system concepts and

to develop and demonstrate operational inflight usage of such aids for inertial system

alignment and compensation improvement. The entire concept of statistical fault

detection, isolation, classification and recalibration evolved in the SIRU program

should be reviewed for more comprehensive total guidance, navigation, and control

system application.

Several hardware recommendations and studies appear to be desirable. The

SIRU hardware technology demonstrated modular concepts within the boundaries of

reasonable physical size and weight allocations that were possible using the electronic

components and packaging technology of the 1960's. The modularity concept is a

sound concept, creating both a building block system design and simplified logistic

and maintenance operations. The application of the technology of the 70's (expected

to include the maturing of medium-scale circuit integration, the advent of realizable

large-scale integration, and the availability of improved hybrid circuit capabilities)

to the modular concept would enable realization of a totally integrated modular concept.

A completely self-sufficient instrument module using a single power source and a

digital data bus concept for input and output could be realized. Preliminary studies

of such a design using the Charles Stark Draper Laboratory 13 size instrument

form factor and MSI/hybrid packaging techniques indicate that an entire SIRU system

consisting of six each accelerometer and gyro self-contained modules (no supporting

electronic assembly) could be developed in a volume of 0.25 cubic feet which would

weigh less than 25 lbs. Basic to such a concept however is a second logistic objective;

to provide in the module interchangeable sensor compatibility features, i.e., ability

to interface with several different available inertial instruments. Study and

development in this area as well as in the integrated modular approach is recom-

mended.
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Finally the continued evolution and improvement of strapdown inertial instru-

ments is considered most important. The Draper Laboratory 18 IRIG Mod B
gyroscope has been significantly matured during the course of the SIRU and recently
Navy sponsored programs. The performance and reliability of the permanent magnet
version of the 18 IRIG Mod D gyroscope has demonstrated significant potentials

and should be evaluated for high reliability, high performance, moderate rate
applications. Similarly, the size 13 gyro and accelerometer technology exhibits

the ability to accomodate an extremely wide dynamic rate range, in excess of 2000/sec,
and to provide moderate drift performance. Even smaller and more promising

concepts are under investigation. Industrial technology is making similar advances

and should also be encouraged. The cornerstone of future strapdown technology

and its acceptance lies in today's instrument development and continued support is
highly recommended.
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APPENDIX A

MATRIX PROCESSOR

1.0 Introduction

For the six gyros, in the SIRU system, the relationship between angular rate

inputs (w) about the selected triad axes and the gyro measurements (m) is conven-

iently expressed in matrix form in terms of the geometry as

m = Hb (1)

where

bT =[ x  y z]

mT [ma mb mc md me mf]

s -s -c -c o o

HT = o -s s c -

C C O O S S

and

c = Cosine of the dodecahedron half angle

= 0. 8506508083

s Sine of the dodecahedron half angle

0.5257311122

Equation (1) clearly shows the redundant information of the rates about the

triad axes (X, Y and Z) resident in the SIRU configuration. Data from any three

gyros (accelerometers) may be used to determine the equivalent triad axis rate

(acceleration).

The process structure used to obtain the equivalent triad solutions from the

dodecahedron array corresponds to a weighted least squares solution form

b = (H T 0-1 H)-1 H T o-1 m
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where b' is defined as the best triad solution estimate and € corresponds to a di-

agonal 6 x 6 matrix whose terms represent the individual variances. This solution

provides a best estimate where both the geometric properties of the configuration

and the individual instrument performance statistics are considered.

For the SIRU system, weighting of the instruments data was not considered

applicable and a status matrix X was substituted for 0- 1 . All diagonal elements of

X are 1 when all instruments are performing satisfactorily, and the appropriate

element is set to 0 when an instrument failure is detected.

In the actual computer mechanization, this is accomplished by storage of

common constants (Kij) which are algebraically used to achieve the appropriate

least squares solution based on the status of the instruments.

2. 0 Implementation

To minimize computer operations, the matrix processor depicted in Figure

A-1 was implemented.

Assemble Fail Status into a
Six Bit Pattern as in the
Example for C & D Fail Below

001100
(FEDCBA)

Go to Multiply Block Having
Six Bit Pattern

000000 000001 111000
No A * 0 * 0 D, E,& F
Fail Fail Fail
Multiplication Multiplication Multiplication

Return Return Return

Fig. A-i Matrix Processor
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Figure A-2 presents an example of the "No Fail" multiply block with the

desired matrix multiplication included for comparison. The matrix multiplication

requires a total of 18 multiplys whereas the implemented method requires only 6

multiplys.

000 000

DESIRED MATRIX MULTIPLICATION: MA

MX K1 -K1 -K2 -K2 0 0 MB

MY= 0 0 -K1 K1 K2 -K2 MC

MZ K2 K2 0 0 1 K1 MD

ME

MF

REQUIRES 18 MULTIPLYS

IMPLEMENTED:

MX = K1(MA - MB) - K2(MC + MD)

MY = K1(MD - MC) - K2(ME + MF)

MZ = K2(MA - MB) - Kl(ME + MF)

REQUIRES 6 MULTIPLYS

K1 = = 0. 26286555612

K2 = 0.4253254042
2

FIGURE A-2 NO FAIL MULTIPLICATION

Figure A-3 compares the implemented manipulation with the desired matrix

multiplication for an "A-gyro Fail".
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000 001

DESIRED MATRIX MULTIPLICATION:

MA

MX 0 -K4 -K7 -K7 K3 K3 MB

MY =0 0 -K1 K1 K2 -K2 MC

MZ 0 K8 -K5 -K5 K6 K6 MD

ME

MF

REQUIRES 18 MULTIPLYS

IMPLEMENTED:

MX = -K4 MB - K7(MC + MD) + K3(ME + MF)

MY = Kl(MD - MC) + K2(ME - MF)

MZ = K8 MB - K5(MC + MD) + K6(ME + MF)

REQUIRES 8 MULTIPLYS

K3 = s 2 c/2

K4 = s 3

K5 = sc 2 /2

K6 = s/2 (c 2 + 1) = K1 + K5

K7 = c/2 (s 2 + 1) = K2 + K3

K8 = c 3

FIGURE A-3 A FAIL MULTIPLICATION

As can be seen by the two examples given, this mechanization is more direct.

Table A-1 summarizes the matrices, constants and multiplys for all possible

combinations of failures (3 maximum).
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Number of Failed Instruments 0 1 2 3 Totals

Number of Matrices 1 6 15 20 42

Number of Additional Constants 2 6 12 2 22

Number of Multiplys (Worst Case) 6 8 12 9

TABLE A-

MATRIX PROCESSOR SUMMARY

3. 0 TABULATION OF CONSTANTS AND MATRICES

3. 1 Stored Constants

Kl: 0.2628655561 K12: 0.0812299241

K2: 0.4253254042 K13: 0. 3130684100

K3: 0.11:75570504 K14: 0. 3440954801

K4: 0.1453085056 K15: 0. 3942983341

K5: 0.1902113033 K16: 0. 5065553283

K6: 0.4530768594 K17: 0.5567581822

K7: 0.5428824546 K18: 0. 6069610362

K8: 0.6155367074 K19: 0.63798810629

K9: 0.5877852523 K20: 0.9820835864

K10: 0.9510565163 K21: 0.3632712640

K11: 0.05020.28540 K22: 1.5388417686

3.2 Matrices

0 Fail
1 -K1 -K2 -K2 0 0

0 0 -K1 K1 K2K 2 2 000000

K2 K2 0 0 K1 K1

1 Fail- 000001
1 Fail 0 -K4 -K7 -K7 K3 K3

A 0 0 -K1 K1 K2 -K2 000001

0 K8 -K5 -K5 K6 K6

K4 0 -K7 -K7 -K3 -K3

B 0 0 -K1 K1 K2 -K2 00.0010

K8 0 K5 K5 K6 K6
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Appendix B

Gyro and Accelerometer Compensation Algorithms

This appendix provides a descriptive review of the gyro and accelerometer

compensation algorithms.

Figure B-I illustrates the sequence of compensation and the flow of compensated

data through the matrix processor.

Raw Gyro Data -e Incremental
AE / BA Body Motion

B + NBD ADIAADOAADSRA OA Misalignment Adaptile

6C actor 1 Compensation and Major Compliance Coupling Compensation BC Matrix ti

6 - ICorrection Compensation Compensation Pocessor Y ; hm
D gritBDm
E B Z

AtI FOI Adaptive
Input

7 E Incremental
7 Ali Body FI

Velocity

AVerpolator Incremental
Raw Accelerometer A Adaptive Body
Data ,/ B Input Vlocity

VB BX To

B Scale Null Misalignment Centripedal C Adaptive AV Transformation
Factor Bias Compensation Acceleration B Matrix Y Matrix

6V Correction Compensation Ncrmalization Piocessor IB

AV BE

E BF

Fig. B-1 Compensation Software Flow Chart

The first step in gyro compensation adds the finer quantization information

from the gyro interpolator electronics to the accumulated gyro pulses. This added

information reduces the loop quantization from 44 sec to approximately 5.5 sec per

pulse.

The resulting raw attitude datais scaled by the gyro scale factor to determine

the input axis angular rotation. Scaling is accomplished by first sizing the
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accumulated pulses to a nominal scale factor (an even power of 2 for computational
efficiency), and then, correcting for the deviation of the true scale factor from the
nominal value. The scale factor correction is determined for each gyro from the
calibration test data and stored in memory by a load making program.

Bias drift (NBD) is compensated with incremental corrections applied to the
gyro pulse count. The magnitude of the correction is derived from the NBD calibration
value (from static test) applied to the compensation iteration period.

Acceleration sensitive drift components (ADIA, ADOA, ADSRA, and major
compliance) are corrected by triad referenced acceleration estimates derived from
the accelerometer outputs. The gyro drift error magnitudes are calibrated using a
six position procedure (discussed in Chapter 4), but are rescaled to the triad frame
for compensation purposes. Thus, the accelerometer derived velocity increments
in the triad frame are applied directly to effect the appropriate correction to the
accumulated gyro pulses. The magnitude of correction is dependent on the drift
error magnitude, the velocity increment estimate, and the iteration period. Since
the correction is based on triad referenced velocity data, the compensation scheme
is independent of first instrument failure and therefore is redundant.

Output axis coupling drift errors result from a lagging float motion in response
to rate changes about the output axis (OA). Hence, extra torque pulses will occur
to maintain the float at its null position as the gyro case is accelerated. Compensation
is accomplished by using angular estimates about the OA of each gyro. These
acceleration estimates are derived directly from the body triad data (XYZ) since
each gyro's OA is colinear with the reference triad. The magnitude of the
compensation is determined by weighing the OA rate change estimates by the gyro
parameter ratio I/H (moment of inertia about OA divided by wheel angular momentum).

Spin axis cross coupling and the anisoinertia drift errors result from
simultaneous rates applied about the input axis (IA) and the spin reference axis
(SRA). For the 18 IRIG Mod B gyro the anisoinertia magnitude is approximately
equal and of opposite effect to the spin axis cross coupling error. Thus, the two
error sources cancel in the propagation of attitude errors. These error sources,
while correctable, are not compensated in SIRUat this time.

Gyro misalignment angle errors are compensated by subtracting from the
gyro pulse count the product of the estimated rate derived from the triad referenced
vectors and the fixed misalignment (determined from dynamic test). The gyro
misalignment calibration is obtained by each individual instrument referenced to
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the dodecahedron frame. However, for compensation purposes, the alignment

magnitudes are projected to the triad configuration such that the triad derived rate

estimate can be applied directly in the compensation process. The additional

component of OA misalignment error, which represents the effect of float hangoff

due to the applied input rate, is lumped with the dynamic error term (spin axis

cross coupling) described above.

Accelerometer Compensations

The accelerometer accumulated pulse data is scaled to determine the magnitude

of the velocity increment. An average scale factor, based on positive and negative

acceleration input calibrations, is used.

Accelerometer bias is compensated by adding increments to the pulse count.

The magnitude is based on the bias magnitude (from static test) and the duration of

the compensation interval.

The accelerometer misalignment angles are fixed quantities dependent on the

mounting alignment and determined by calibration tests. Misalignment errors are
corrected by subtracting the estimated acceleration errors due to the misalignments

from the input accelerometer pulse count.

Centripetal acceleration (Rw2 ) and tangential acceleration (RL ) normalization

is required because of the dispersed locations of the individual accelerometers.

Ideally, the mass elements of all accelerometers should be located at a single point.

Since this condition is obviously impossible to obtain, corrections are introduced

to account for the distance from an assumed single point to the actual location of

each accelerometer mass element. The error correction is computed from this

distance, the body angular rate, and the change in rate over the compensation interval.

In SIRU, the A accelerometer mass element is the single point reference.

Accelerometer OA coupling, pendulous axis cross coupling and the G 2 error

terms donot introduce substantial system errors and are not compensated in SIRU.

A complete software documentation package including detailed software

flowgrams and descriptions is presented separately as Volume III of this report.
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APPENDIX C

GYRO AND ACCELEROMETER MODULE SPECIFICATIONS

The principle parameters of the gyro and accelerometer modules as

implemented for the SIRU system are specified in this appendix. They represent

performance consistent with the goals contained in the original NASA Statement of

Work and subsequent cost effective design tradeoffs. Design descriptions of the

individual circuits and the module connector pin listings are provided in Volume II

and Volume IV, respectively.

1. Gyro Module

a) Scale Factor (SF) Nominal Parameters

-13 -14 -15AO Pulse 2 + 2 + 2 radians = 44.1 sec

SF Decay Characteristics Nominal 40 ppm/decade, maximum

60 ppm/decade

Interrogation Rate (Max Pulse Rate) 4800 pps + 1/2 ppm = F 1
Loop Torque Rate Capability 1.025 rad/sec (1.0 minimum)

Torquer Duty Cycle (15/16) (1/F 1) = 195 microseconds

of 208 microseconds

Stability 0.25 rad/sec in 24 hours (15 ppm p-p)

Stabilization Time One hour

SF Linearity ± 30 ppm p-p

SF Thermal Sensitivity 1 /2 ppm/ OF

SF Voltage Sensitivities

PVR Supply 1 ppm/.05%

40v Supply 1 ppm/1% (within ±5% range)

SF Dynamic Sensitivity

Radial Displacement 25 ppm/rad/sec about OA

Axial or Radial g Loading 5 ppm/g
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b) IA Alignment Stability

Thirty day stability with 3 room temperature cooldowns 5 sec (rss)
Alignment Repeatibility (removal and replacement) 10 sec (rss)

c) Operational Characteristics

Power Supply Characteristics

DC Source Level Load (Max) Ripple

1. 40.0 vdc ± 0.4 vdc 165 ma <0.43 v
rms

2. 15.000 vdc ± 0.008 vdc 11 ma <0.002 v rms

3. -10.0 vdc ± 0.5 vdc 25 ma <0.140 v
rms

4. 10.0 vdc ± 0.5 vdc 25 ma <0.140 v
rms

5. 5.25 vdc ± 0.25 vdc 140 ma <0.1 v
rms

6. 28 vdc ± 3 vdc 750 ma <0.5 v rms

7. 28 vdc ± 0.5 vdc 55 ma <0.3 v rms

8. -20 vdc ± 1.0 vdc 25 ma <0.2 vrms

b. AC

1. 9600 Hz, 8.0 v rm s  1%, 2.5 watts max, harmonic content < 2% sine

wave

2. 800 Hz, 2 phase, 28 vrms ± 5%, 2.6 watts max each phase, phase A

leads phase B by 900 ± 0.50, harmonic content < 20%
3. 9600 Hz and 800 Hz signals in synchronization
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Timing Pulse Characteristics

Interrogate pulse

Amplitude 4.5 ± 0.5 vdc

Width 0.4 microseconds

Repetition Rate 4.8 kpps

Switch pulse pair

Amplitude 4.5 ± 0.5 vdc

Width 0.4 microseconds

Spacing 13 microseconds

Repetition Rate 4.8 kpps

Lag of reset pulse to interrogate pulse 2 microseconds ±1/2

microseconds

Output Signal Requirements

AO pulses 5 vdc amplitude, 2 microseconds width

Interpolator pulses 4.5 ± 0.5 vdc amplitude, 0 to 31 pulses

at 1.5 mc rate, 200 nanoseconds width,

first pulse starts 10 microseconds

± 1 microsecond after interrogate pulse

leading edge

Interpolator end-of-data pulse 4.5 ± 0.5 vdc amplitude, 200 nanoseconds

width, 208.33 microseconds repetition rate,

pulse occurs 31.34 microseconds after

interrogate pulse leading edge.

Monitoring Line Identification

1. PVR power test point

2. Single ended SG monitor point, 1250 mv/milliradian of angular input

about IA at 9600 Hz

3. SF resistance test point

4. Gyro temperature sensor #4, 500 ohms ± 0.5 ohms at operating

temperature (+.00226 ohms/ohm/OF).

5. DC amplifier test point
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Auxiliary Input Requirements

1. 0 to 28 vdc at 0 to 0.4 amp (for adjustable fixed heat when used with

GSE only).

2. Frequency and Timing Accuracy and Stability- All ac input voltage

frequencies and input signal repetition rates are derived from a clock

whose basic frequency is 3.6864000 mega Hz ± 1 part in 108 with a

stability of ±3 parts in 107 per week.

Thermal Characteristics

Nominal Thermal Dissipation 21.5 watts

Thermal Dissipation Limits 17 watts to 30 watts

Nominal Average Module

Mounting Pad Temperature 105 0 F

Max p-p deviation between pads and average temperature

±30 F

Temperature Control Range (at 70 0 F nominal free air

ambient & 1/2 inch insulation) 600 to 110 0 F

2. Accelerometer Module

a) Operational Characteristics

Power Supply Characteristics

DC Source Level Load (Max) Ripple

1. 28.0 vdc ± 0.3 vdc 100 ma 0.07 v rms

2. 15.000 vdc ± 0.008 vdc 11 ma 0.002 v rms

3. -10.0 vdc ± 0.5 vdc 25 ma 0.140 v
rms

4. 10.0 vdc ± 0.5 vdc 25 ma 0.140 v rms

5. 5.25 vdc ± 0.25 vdc 140 ma 0.1 vrms

6. 28 vdc ± 3 vdc 750 ma 0.5 v rms
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b. AC

1. 9600 Hz, 4.0 v ± 1%, 1.6 watts, maximum harmonic content <2%.

Sine wave synchronized to interrogator pulse train.

Timing Pulse Characteristics

Interrogate pulse

Amplitude 4.5 ± 0.5 vdc

Width 4 microseconds

Repetition Rate 4.8 kpps

Switch pulse pair

Amplitude 4.5 ± 0.5 vdc

Width 0.4 microseconds

Spacing 13 microseconds

Repetition Rate 4.8 kpps

Lag of reset pulse to interrogate pulse 2 microseconds ± 1/2

microseconds

Output Signal Requirements

AV pulses 5 vdc amplitude, 2 microseconds width

Monitoring Line Identification

1. PVR power test point

2. Single ended SG monitor point-400 mv/milliradian rms about OA at

9600 Hz.

3. Scale factor resistance test point

4. Accelerometer temperature sensor #4-500 ohms ± 0.15 ohms at

operating temperature (+00226 ohms/ohm/OF).

5. DC amplifier test point.

Auxiliary Input Requirements

1. 0 to 28 vdc at 0 to 0.4 amps (available for adjustable fixed heat when

used with GSE only).

2. Frequency and Timing Accuracy and Stability-All ac input voltage

frequencies and input signal repetition rates are derived from a clock

whose basic frequency is 3.6864000 mega Hz ± 1 part in 108 with a

stability of ± 3 parts in 10 /week.
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APPENDIX D

The SIRU system software has been described in Chapters 2 and 4 of this

volume. Volume III of this report contains detailed descriptions of the software,

listings of the subroutines and load maps. This appendix is a precis of Volume III.

The principal programs and the tasks which each software element addresses

(see Section 4.3.3) are shown in Table D-l: The indicated page number refers to

the full description in Volume III. A short description of each program follows.

Table D-1 Software Program Listing

Program Task Page

MPRO Main Program 7

ALPO 20

SFPOUT 31

SXOU Output 36

SDGS 39

READ Al, GI1 43

ACOM A2 47

GCOM 52
DCMT G2 61

DCOA 65

ROMS A3 69

PREX A4 78

GARC G3 81

GFIS 87

ERDE 04 93

CFSE A5 99

PFIS 112
GPRT G5 115

PRTY J 118

PPEX A6 123

GMIN G6 125

GPMA J A7 128

EMIN f 138

MG63 G7 140

MV63 A8 146

SPUN A9 149

VESP AI0 158

VACU All 169

ERC6 G8 171

AA6S G09 174
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The main executive of the system operating program (MPRO) calls the

appropriate subroutines to accomplish the algorithms shown in Fig. 4.3.3 of Chapter

4 and the system tasks listed there It is divided into three sections. The first is

initialization and the enabling of interrupt. Next is a waiting loop which checks to

see if it is time for output and, if so, calls the proper output routines. When this

waiting loop is interrupted (every 5 milliseconds), the program sequence goes to

the third section which decides when the time has come to update the accelerometer

or gyro algorithms, retains the processing registers as they were at the time of

interrupt, calls the appropriate algorithms, restores the processing registers and

returns to whatever was being processed at the time of interrupt.

The subroutines which accomplish these various activities are identified and

described briefly as follows.

ALPO

ALPO provides system status information formatted as shown in Fig. 4.3.4

of Chapter 4 on teletype, CRT screen or as a block of 104 bytes on Digistore tape.

SFPOUT

SFPOUT and OUT100 provide the ALPO information in decimal numbers and

seconds of time.

SXOU

This routine determines whether the ALPO information is displayed on teletype

or CRT screen.

SDGS

This routine causes the information to be written onto the Digistore tape.

READ

READ causes either the gyro and accelerometer interface to interrupt the

main program every 5 milliseconds. These interruptions start with the accelerometer

and alternate between the accelerometer and the gyro. At each interruption the six

appropriate pulse counters are read and the contents stored. Scaling is 2- 6 pulses

which represents 1 pulse AV as 4 cm/sec and 1 pulse AO as 7x2 - 15 radians.
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ACOM

This subroutine compensates each accelerometer output for scale factor, bias

and two misalignments.

GCOM

GCOM compensates each gyro output for SF, NBD, ADIA, ADOA, ADSRA major

compliances and OA coupling.

DCMT

This subroutine modifies the misalignments of the gyro about the output axis

as a function of the measured input rate at each update. The information is stored

in the base sector where it is available for the gyro compensation program.

DCOA

DCOA calculates a compensation for the error resulting from the effect of a

rotational input on the output gyro axis.

ROMS

When a strapdown system is subjected to a rotational input, accelerometers

will sense acceleration due to Rw 2 and Rw. Since the several accelerometers do

not sense these rotations at the same point, they will appear to be in disagreement

one to another. ROMS compensates the output to represent the origin as a single

point. For convenience, the center of accelerometer A is the chosen single point

which makes it necessary to compensate only the other five instruments.

GARC

This subroutine accumulates the six compensated gyro pulse counts and stores

them for the squared error calculation. It also accumulates the total of the change

in count for use in GFIS.

PREX

PREX accomplishes the same operation for accelerometers as GARC performs

for the gyros.
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GFIS

This subroutine controls the logic for the gyro FDI procedure. Once every

update it decides which failure should be searched for by consideration of the gyro

fail status and identification from the previous search. It then stores the maximum

allowable total squared error for either the first or second failure search.

ERDE

ERDE is called up by either the gyro or accelerometer FDI logic and provides

the information required to identify the failure.

CFSE

This subroutine calculates either the first or second squared error terms

for instruments from the set of accumulated measurements, decides whether the

total squared error exceeds a certain limit and, if it does, decides if any instruments

squared error exceeds a certain percentage of the total. If the calculations show

an error equalling or exceeding 212 pulses or the total squared error exceeds 224

an indication is provided that the calculations could not be completed due to huge

errors in one or more instruments.

PRIS

This subroutine controls the logic for the accelerometer FDI procedure and

is substantially the same as GFIS. The accelerometer maximum allowable squared

errors are not modified prior to this operation as is the case of the gyro GFIS.

GPRT

This subroutine is a further extension of the gyro FDI. It determines the

failure status and identifies the proper parity equations to solve.

PRTY

PRTY solves the proper parity equations to provide detection for a third gyro

failure.

PPEX

This subroutine is the accelerometer equivalent of the PRTY routine for gyros.
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GMIN

GMIN, using the gyro fail status instructions from the gyro least-squares

matrix generator, calculates which of the 22 matrices to generate.

GPMA

This subroutine is the least-squares matrix generator for gyros and ac-

celerometers.

EMIN

EMIN is the accelerometer equivalent of the gyro GMIN subroutine.

MG63

This subroutine performs the 6x3 matrix multiplications which transform the

six gyro AO outputs into the XYZ frame.

MP63

MP63 is the accelerometer equivalent of the gyro MG63 subroutine.

SPUN

This subroutine corrects the quaternion to maintain it at a unity value, i.e.

2 + p 2  2 + p 2= 1
x y z

VESP

This subroutine constructs a cosine matrix from the quaternion, transforming

a vector in the body frame to the inertial frame. It then multiplies the AV in the

body frame by this matrix to transform AV into the inertial frame.

VACU

VACU accumulates delta velocity in the inertial frame.
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ERC6

This subroutine accomplishes the equivalent of torquing a gyro in a gimbal

IMU. It essentially compensates the gyro for a drift in the inertial frame and is

used to take out earth rate. It does this compensation by transforming the negative

of the drift in the inertial frame into the body frame by adding it to the gyro output

as an equivalent NBD.

AA6S

AA6S performs a third order attitude algorithm to update the quaternion of

rotation.
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