74 research outputs found

    Deciphering the Role of the Barr Body in Malignancy: An insight into head and neck cancer

    Get PDF
    X chromosome inactivation is the epitome of epigenetic regulation and long non-coding ribonucleic acid function. The differentiation status of cells has been ascribed to X chromosome activity, with two active X chromosomes generally only observed in undifferentiated or poorly differentiated cells. Recently, several studies have indicated that the reactivation of an inactive X chromosome or X chromosome multiplication correlates with the development of malignancy; however, this concept is still controversial. This review sought to shed light on the role of the X chromosome in cancer development. In particular, there is a need for further exploration of the expression patterns of X-linked genes in cancer cells, especially those in head and neck squamous cell carcinoma (HNSCC), in order to identify different prognostic subpopulations with distinct clinical implications. This article proposes a functional relationship between the loss of the Barr body and the disproportional expression of X-linked genes in HNSCC development

    Identification of circulating lncRNAs associated with gallbladder cancer risk by tissue-based preselection, cis-eQTL validation, and analysis of association with genotype-based expression

    Get PDF
    Long noncoding RNAs (lncRNAs) play key roles in cell processes and are good candi dates for cancer risk prediction. Few studies have investigated the association between individual genotypes and lncRNA expression. Here we integrate three separate datasets with information on lncRNA expression only, both lncRNA expression and genotype, and genotype information only to identify circulating lncRNAs associated with the risk of gallbladder cancer (GBC) using robust linear and logistic regression techniques. In the first dataset, we preselect lncRNAs based on ex pression changes along the sequence “gallstones → dysplasia → GBC”. In the second dataset, we validate associations between genetic variants and serum expression levels of the preselected lncR NAs (cis-lncRNA-eQTLs) and build lncRNA expression prediction models. In the third dataset, we predict serum lncRNA expression based on individual genotypes and assess the association between genotype-based expression and GBC risk. AC084082.3 and LINC00662 showed increasing expression levels (p-value = 0.009), while C22orf34 expression decreased in the sequence from gallstones to GBC (p-value = 0.04). We identified and validated two cis-LINC00662-eQTLs (r2 = 0.26) and three cis-C22orf34-eQTLs (r2 = 0.24). Only LINC00662 showed a genotyped-based serum expression associ ated with GBC risk (OR = 1.25 per log2 expression unit, 95% CI 1.04–1.52, p-value = 0.02). Our results suggest that preselection of lncRNAs based on tissue samples and exploitation of cis-lncRNA-eQTLs may facilitate the identification of circulating noncoding RNAs linked to cancer risk

    Differential expression of long non-coding RNAs are related to proliferation and histological diversity in follicular lymphomas

    Get PDF
    "This is the peer reviewed version of the following article: Roisman, Alejandro, et al. "Differential expression of long non‐coding RNA s are related to proliferation and histological diversity in follicular lymphomas." British journal of haematology (2018), which has been published in final form at https://doi.org/10.1111/bjh.15656. This article may be used for non-commercial purposes in accordance with Wiley Terms and Conditions for Self-Archiving."Long non-coding RNAs (lncRNAs) comprise a family of non-coding transcripts that are emerging as relevant gene expression regulators of different processes, including tumour development. To determine the possible contribution of lncRNA to the pathogenesis of follicular lymphoma (FL) we performed RNA-sequencing at high depth sequencing in primary FL samples ranging from grade 1-3A to aggressive grade 3B variants using unpurified (n = 16) and purified (n = 12) tumour cell suspensions from nodal samples. FL grade 3B had a significantly higher number of differentially expressed lncRNAs (dif-lncRNAs) with potential target coding genes related to cell cycle regulation. Nine out of the 18 selected dif-lncRNAs were validated by quantitative real time polymerase chain reaction in an independent series (n = 43) of FL. RP4-694A7.2 was identified as the top deregulated lncRNA potentially involved in cell proliferation. RP4-694A7.2 silencing in the WSU-FSCCL FL cell line reduced cell proliferation due to a block in the G1/S phase. The relationship between RP4-694A7.2 and proliferation was confirmed in primary samples as its expression levels positively related to the Ki-67 proliferation index. In summary, lncRNAs are differentially expressed across the clinico-biological spectrum of FL and a subset of them, related to cell cycle, may participate in cell proliferation regulation in these tumours.Peer ReviewedPostprint (author's final draft

    Differential expression of long non-coding RNAs are related to proliferation and histological diversity in follicular lymphomas

    Get PDF
    Long non‐coding RNAs (lncRNAs) comprise a family of non‐coding transcripts that are emerging as relevant gene expression regulators of different processes, including tumour development. To determine the possible contribution of lncRNA to the pathogenesis of follicular lymphoma (FL) we performed RNA‐sequencing at high depth sequencing in primary FL samples ranging from grade 1‐3A to aggressive grade 3B variants using unpurified (n = 16) and purified (n = 12) tumour cell suspensions from nodal samples. FL grade 3B had a significantly higher number of differentially expressed lncRNAs (dif‐lncRNAs) with potential target coding genes related to cell cycle regulation. Nine out of the 18 selected dif‐lncRNAs were validated by quantitative real time polymerase chain reaction in an independent series (n = 43) of FL. RP4‐694A7.2 was identified as the top deregulated lncRNA potentially involved in cell proliferation. RP4‐694A7.2 silencing in the WSU‐FSCCL FL cell line reduced cell proliferation due to a block in the G1/S phase. The relationship between RP4‐694A7.2 and proliferation was confirmed in primary samples as its expression levels positively related to the Ki‐67 proliferation index. In summary, lncRNAs are differentially expressed across the clinico‐biological spectrum of FL and a subset of them, related to cell cycle, may participate in cell proliferation regulation in these tumours

    Deciphering the Role of the Barr Body in Malignancy: An insight into head and neck cancer

    Get PDF

    Molecular perturbations in cholangiocarcinoma: is it time for precision medicine?

    Get PDF
    The complexity of cholangiocarcinoma (CCA) cellularity and the molecular perturbation mechanisms that underlie the diversity of growth patterns of this malignancy remain a clinical concern. Tumours of the biliary system display significant intrinsic chemoresistance, caused by significant stromal involvement and genome–wide tumour heterogeneity, hampering disease remission and palliation as well as promoting the metastatic behaviour. It is crucial to advance our present understanding of the risk and molecular pathogenesis of CCA. This will facilitate the delineation of patient subsets based on molecular perturbations and adjust for precision therapies
    • 

    corecore