9,934 research outputs found

    Divergence and convergence of inertial particles in high Reynolds number turbulence

    Full text link
    Inertial particle data from three-dimensional direct numerical simulations of particle-laden homogeneous isotropic turbulence at high Reynolds number are analyzed using Voronoi tessellation of the particle positions, considering different Stokes numbers. A finite-time measure to quantify the divergence of the particle velocity by determining the volume change rate of the Voronoi cells is proposed. For inertial particles the probability distribution function (PDF) of the divergence deviates from that for fluid particles. Joint PDFs of the divergence and the Voronoi volume illustrate that the divergence is most prominent in cluster regions and less pronounced in void regions. For larger volumes the results show negative divergence values which represent cluster formation (i.e. particle convergence) and for small volumes the results show positive divergence values which represents cluster destruction/void formation (i.e. particle divergence). Moreover, when the Stokes number increases the divergence takes larger values, which gives some evidence why fine clusters are less observed for large Stokes numbers. Theoretical analyses further show that the divergence for random particles in random flow satisfies a PDF corresponding to the ratio of two independent variables following normal and gamma distributions in one dimension. Extending this model to three dimensions, the predicted PDF agrees reasonably well with Monte-Carlo simulations and DNS data of fluid particles.Comment: 23 pages, 9 figure

    Expectation-Maximization Binary Clustering for Behavioural Annotation

    Get PDF
    We present a variant of the well sounded Expectation-Maximization Clustering algorithm that is constrained to generate partitions of the input space into high and low values. The motivation of splitting input variables into high and low values is to favour the semantic interpretation of the final clustering. The Expectation-Maximization binary Clustering is specially useful when a bimodal conditional distribution of the variables is expected or at least when a binary discretization of the input space is deemed meaningful. Furthermore, the algorithm deals with the reliability of the input data such that the larger their uncertainty the less their role in the final clustering. We show here its suitability for behavioural annotation of movement trajectories. However, it can be considered as a general purpose algorithm for the clustering or segmentation of multivariate data or temporal series.Comment: 34 pages main text including 11 (full page) figure

    Prediction of remaining life of power transformers based on left truncated and right censored lifetime data

    Get PDF
    Prediction of the remaining life of high-voltage power transformers is an important issue for energy companies because of the need for planning maintenance and capital expenditures. Lifetime data for such transformers are complicated because transformer lifetimes can extend over many decades and transformer designs and manufacturing practices have evolved. We were asked to develop statistically-based predictions for the lifetimes of an energy company's fleet of high-voltage transmission and distribution transformers. The company's data records begin in 1980, providing information on installation and failure dates of transformers. Although the dataset contains many units that were installed before 1980, there is no information about units that were installed and failed before 1980. Thus, the data are left truncated and right censored. We use a parametric lifetime model to describe the lifetime distribution of individual transformers. We develop a statistical procedure, based on age-adjusted life distributions, for computing a prediction interval for remaining life for individual transformers now in service. We then extend these ideas to provide predictions and prediction intervals for the cumulative number of failures, over a range of time, for the overall fleet of transformers.Comment: Published in at http://dx.doi.org/10.1214/00-AOAS231 the Annals of Applied Statistics (http://www.imstat.org/aoas/) by the Institute of Mathematical Statistics (http://www.imstat.org

    Information transmission in oscillatory neural activity

    Full text link
    Periodic neural activity not locked to the stimulus or to motor responses is usually ignored. Here, we present new tools for modeling and quantifying the information transmission based on periodic neural activity that occurs with quasi-random phase relative to the stimulus. We propose a model to reproduce characteristic features of oscillatory spike trains, such as histograms of inter-spike intervals and phase locking of spikes to an oscillatory influence. The proposed model is based on an inhomogeneous Gamma process governed by a density function that is a product of the usual stimulus-dependent rate and a quasi-periodic function. Further, we present an analysis method generalizing the direct method (Rieke et al, 1999; Brenner et al, 2000) to assess the information content in such data. We demonstrate these tools on recordings from relay cells in the lateral geniculate nucleus of the cat.Comment: 18 pages, 8 figures, to appear in Biological Cybernetic
    • …
    corecore