889 research outputs found

    Resiliency Assessment and Enhancement of Intrinsic Fingerprinting

    Get PDF
    Intrinsic fingerprinting is a class of digital forensic technology that can detect traces left in digital multimedia data in order to reveal data processing history and determine data integrity. Many existing intrinsic fingerprinting schemes have implicitly assumed favorable operating conditions whose validity may become uncertain in reality. In order to establish intrinsic fingerprinting as a credible approach to digital multimedia authentication, it is important to understand and enhance its resiliency under unfavorable scenarios. This dissertation addresses various resiliency aspects that can appear in a broad range of intrinsic fingerprints. The first aspect concerns intrinsic fingerprints that are designed to identify a particular component in the processing chain. Such fingerprints are potentially subject to changes due to input content variations and/or post-processing, and it is desirable to ensure their identifiability in such situations. Taking an image-based intrinsic fingerprinting technique for source camera model identification as a representative example, our investigations reveal that the fingerprints have a substantial dependency on image content. Such dependency limits the achievable identification accuracy, which is penalized by a mismatch between training and testing image content. To mitigate such a mismatch, we propose schemes to incorporate image content into training image selection and significantly improve the identification performance. We also consider the effect of post-processing against intrinsic fingerprinting, and study source camera identification based on imaging noise extracted from low-bit-rate compressed videos. While such compression reduces the fingerprint quality, we exploit different compression levels within the same video to achieve more efficient and accurate identification. The second aspect of resiliency addresses anti-forensics, namely, adversarial actions that intentionally manipulate intrinsic fingerprints. We investigate the cost-effectiveness of anti-forensic operations that counteract color interpolation identification. Our analysis pinpoints the inherent vulnerabilities of color interpolation identification, and motivates countermeasures and refined anti-forensic strategies. We also study the anti-forensics of an emerging space-time localization technique for digital recordings based on electrical network frequency analysis. Detection schemes against anti-forensic operations are devised under a mathematical framework. For both problems, game-theoretic approaches are employed to characterize the interplay between forensic analysts and adversaries and to derive optimal strategies. The third aspect regards the resilient and robust representation of intrinsic fingerprints for multiple forensic identification tasks. We propose to use the empirical frequency response as a generic type of intrinsic fingerprint that can facilitate the identification of various linear and shift-invariant (LSI) and non-LSI operations

    Multimedia Forensics

    Get PDF
    This book is open access. Media forensics has never been more relevant to societal life. Not only media content represents an ever-increasing share of the data traveling on the net and the preferred communications means for most users, it has also become integral part of most innovative applications in the digital information ecosystem that serves various sectors of society, from the entertainment, to journalism, to politics. Undoubtedly, the advances in deep learning and computational imaging contributed significantly to this outcome. The underlying technologies that drive this trend, however, also pose a profound challenge in establishing trust in what we see, hear, and read, and make media content the preferred target of malicious attacks. In this new threat landscape powered by innovative imaging technologies and sophisticated tools, based on autoencoders and generative adversarial networks, this book fills an important gap. It presents a comprehensive review of state-of-the-art forensics capabilities that relate to media attribution, integrity and authenticity verification, and counter forensics. Its content is developed to provide practitioners, researchers, photo and video enthusiasts, and students a holistic view of the field

    Preprocessing reference sensor pattern noise via spectrum equalization

    Get PDF
    Although sensor pattern noise (SPN) has been proven to be an effective means to uniquely identify digital cameras, some non-unique artifacts, shared amongst cameras undergo the same or similar in-camera processing procedures, often give rise to false identifications. Therefore, it is desirable and necessary to suppress these unwanted artifacts so as to improve the accuracy and reliability. In this work, we propose a novel preprocessing approach for attenuating the influence of the nonunique artifacts on the reference SPN to reduce the false identification rate. Specifically, we equalize the magnitude spectrum of the reference SPN through detecting and suppressing the peaks according to the local characteristics, aiming at removing the interfering periodic artifacts. Combined with 6 SPN extraction or enhancement methods, our proposed Spectrum Equalization Algorithm (SEA) is evaluated on the Dresden image database as well as our own database, and compared with the state-of-the-art preprocessing schemes. Experimental results indicate that the proposed procedure outperforms, or at least performs comparably to, the existing methods in terms of the overall ROC curve and kappa statistic computed from a confusion matrix, and tends to be more resistant to JPEG compression for medium and small image blocks

    Security of Forensic Techniques for Digital Images

    Get PDF
    Digital images are used everywhere in modern life and mostly replace traditional photographs. At the same time, due to the popularity of image editing tools, digital images can be altered, often leaving no obvious evidence. Thus, evaluating image authenticity is indispensable. Image forensic techniques are used to detect forgeries in digital images in the absence of embedded watermarks or signatures. Nevertheless, some legitimate or illegitimate image post-processing operations can affect the quality of the forensic results. Therefore, the reliability of forensic techniques needs to be investigated. The reliability is understood in this case as the robustness against image post-processing operations or the security against deliberated attacks. In this work, we first develop a general test framework, which is used to assess the effectiveness and security of image forensic techniques under common conditions. We design different evaluation metrics, image datasets, and several different image post-processing operations as a part of the framework. Secondly, we build several image forensic tools based on selected algorithms for detecting copy-move forgeries, re-sampling artifacts, and manipulations in JPEG images. The effectiveness and robustness of the tools are evaluated by using the developed test framework. Thirdly, for each selected technique, we develop several targeted attacks. The aim of targeted attacks against a forensic technique is to remove forensic evidence present in forged images. Subsequently, by using the test framework and the targeted attacks, we can thoroughly evaluate the security of the forensic technique. We show that image forensic techniques are often sensitive and can be defeated when their algorithms are publicly known. Finally, we develop new forensic techniques which achieve higher security in comparison with state-of-the-art forensic techniques

    Digital Multimedia Forensics and Anti-Forensics

    Get PDF
    As the use of digital multimedia content such as images and video has increased, so has the means and the incentive to create digital forgeries. Presently, powerful editing software allows forgers to create perceptually convincing digital forgeries. Accordingly, there is a great need for techniques capable of authenticating digital multimedia content. In response to this, researchers have begun developing digital forensic techniques capable of identifying digital forgeries. These forensic techniques operate by detecting imperceptible traces left by editing operations in digital multimedia content. In this dissertation, we propose several new digital forensic techniques to detect evidence of editing in digital multimedia content. We begin by identifying the fingerprints left by pixel value mappings and show how these can be used to detect the use of contrast enhancement in images. We use these fingerprints to perform a number of additional forensic tasks such as identifying cut-and-paste forgeries, detecting the addition of noise to previously JPEG compressed images, and estimating the contrast enhancement mapping used to alter an image. Additionally, we consider the problem of multimedia security from the forger's point of view. We demonstrate that an intelligent forger can design anti-forensic operations to hide editing fingerprints and fool forensic techniques. We propose an anti-forensic technique to remove compression fingerprints from digital images and show that this technique can be used to fool several state-of-the-art forensic algorithms. We examine the problem of detecting frame deletion in digital video and develop both a technique to detect frame deletion and an anti-forensic technique to hide frame deletion fingerprints. We show that this anti-forensic operation leaves behind fingerprints of its own and propose a technique to detect the use of frame deletion anti-forensics. The ability of a forensic investigator to detect both editing and the use of anti-forensics results in a dynamic interplay between the forger and forensic investigator. We use develop a game theoretic framework to analyze this interplay and identify the set of actions that each party will rationally choose. Additionally, we show that anti-forensics can be used protect against reverse engineering. To demonstrate this, we propose an anti-forensic module that can be integrated into digital cameras to protect color interpolation methods

    Multimedia Forensics

    Get PDF
    This book is open access. Media forensics has never been more relevant to societal life. Not only media content represents an ever-increasing share of the data traveling on the net and the preferred communications means for most users, it has also become integral part of most innovative applications in the digital information ecosystem that serves various sectors of society, from the entertainment, to journalism, to politics. Undoubtedly, the advances in deep learning and computational imaging contributed significantly to this outcome. The underlying technologies that drive this trend, however, also pose a profound challenge in establishing trust in what we see, hear, and read, and make media content the preferred target of malicious attacks. In this new threat landscape powered by innovative imaging technologies and sophisticated tools, based on autoencoders and generative adversarial networks, this book fills an important gap. It presents a comprehensive review of state-of-the-art forensics capabilities that relate to media attribution, integrity and authenticity verification, and counter forensics. Its content is developed to provide practitioners, researchers, photo and video enthusiasts, and students a holistic view of the field
    • …
    corecore