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Abstract 

 

Digital images are used everywhere in modern life and mostly replace traditional photographs. 

At the same time, due to the popularity of image editing tools, digital images can be altered, 

often leaving no obvious evidence. Thus, evaluating image authenticity is indispensable. Im-

age forensic techniques are used to detect forgeries in digital images in the absence of 

embedded watermarks or signatures. Nevertheless, some legitimate or illegitimate image post-

processing operations can affect the quality of the forensic results. Therefore, the reliability of 

forensic techniques needs to be investigated. The reliability is understood in this case as the 

robustness against image post-processing operations or the security against deliberated attacks.   

In this work, we first develop a general test framework, which is used to assess the effec-

tiveness and security of image forensic techniques under common conditions. We design 

different evaluation metrics, image datasets, and several different image post-processing op-

erations as a part of the framework.  

Secondly, we build several image forensic tools based on selected algorithms for detecting 

copy-move forgeries, re-sampling artifacts, and manipulations in JPEG images. The effective-

ness and robustness of the tools are evaluated by using the developed test framework. 

Thirdly, for each selected technique, we develop several targeted attacks. The aim of tar-

geted attacks against a forensic technique is to remove forensic evidence present in forged 

images. Subsequently, by using the test framework and the targeted attacks, we can thoroughly 

evaluate the security of the forensic technique. We show that image forensic techniques are 

often sensitive and can be defeated when their algorithms are publicly known. Finally, we de-

velop new forensic techniques which achieve higher security in comparison with state-of-the-

art forensic techniques. 



 

   

Zusammenfassung 

 

Digitale Bilder werden überall im modernen Leben verwendet und ersetzen meist traditionelle 

Fotografien. Dabei können digitale Bilder oft ohne offensichtlich Beweise mit Hilfe von 

Bildverarbeitungwerkzeugen verändert werden. Deshalb ist die Überprüfung der Authentizität 

von Bildern unverzichtbar. Bildforensische Techniken werden verwendet, um Bildfälschungen 

in Abwesenheit von eingebetteten digitalen Wasserzeichen oder Signaturen zu erkennen. 

Dennoch können einige legitime oder illegitime Anwendungen der Bildnachbearbeitung die 

Qualität der bildforensischen Ergebnisse beeinflussen. Daher muss die Zuverlässigkeit 

forensischer Techniken untersucht werden. Die Zuverlässigkeit wird in diesem Fall als die 

Robustheit dieser gegen Operationen der Bildnachbearbeitung oder als die Sicherheit gegen 

zielgerichtete Angriffe verstanden. 

In dieser Arbeit, entwickeln wir zunächst ein allgemeines Testframework, welches 

verwendet wird, um die Robustheit und Sicherheit der forensischen Techniken unter 

gemeinsamen Bedingungen zu messen. Wir entwerfen Metriken zur Auswertung, 

Wahrnehmung, Bilddatenbank, und verschiedene Operationen der Bildnachbearbeitung als 

Teil des Rahmenprogramms. 

Zweitens erstellen wir mehrere forensische Werkzeuge auf Basis von ausgewählten 

forensischen Algorithmen zur Erkennung von Copy-Move (kopieren und verschieben) 

Fälschungen, Re-sampling der Bilder, und Manipulationen in JPEG Bildern. Die Leistung und 

Robustheit der forensische Werkzeuge werden mit dem entwickelten Testframework 

ausgewertet. 

Als Drittes, entwickeln wir für jede ausgewählte Technik mehrere zielgerichtete Angriffe. 

Das Ziel zielgerichteter Angriffe ist es, forensische Beweise in gefälschten Bildern zu 

entfernen. Anschließend, können wir mit Hilfe des Testframeworks und der zielgerichteten 

Angriffe die Sicherheit der forensischen Techniken sorgfältig prüfen. Wir zeigen, dass 

bildforensische Techniken oft anfällig sind und besiegt werden können wenn ihre Algorithmen 

öffentlich bekannt sind. Schließlich entwickeln wir neue forensische Verfahren, die im 

Vergleich mit modernsten forensischen Techniken eine höhere Sicherheit erreichen. 
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1 Introduction 

1.1 Motivation 

Photographs do not always tell the truth. In fact, the first image1 forgeries appeared a long time 

ago, probably several years after Joseph Nipce produced the first photograph in 1825. For ex-

ample, an iconic portrait of the US President Abraham Lincoln taken around 1860 is actually a 

forged image: the head of President Lincoln is depicted on the body of another person (see 

Figure 1-1). However, in the early days of photography, it was not easy to create forged images 

because making forgeries at that time required specific physical and chemical equipment and 

skills.  

 

Figure 1-1: Shown on the left is the forged image of the US President Abraham Lincoln, 
which is a composite of the head of President Lincoln and a picture of the body of the southern 
politician John Calhoun (on the right)2.  

Nowadays, digital multimedia content (images, audio, video, etc.) can easily be created, 

stored, and transmitted. Digital images are ubiquitous in news, entertainment, science, finan-

cial documents, evidence in the court of law, etc. At the same time, since image editing tools 

are popular, making forgeries in digital images is an easy task. Even a novice can create a 

forged image without leaving obvious evidence that can be recognized by human eyes. Thus, 

the reliability of images became dubious and image authentication emerged as an important 

problem. There are many methods for digital image authentication, which can be divided into 

two main approaches, namely active and passive ones. The first approach consists of image 

watermarking methods and the second approach contains image forensic methods. 

                                                      
1
 In this thesis, the word image refers to natural photographs taken by cameras, unless otherwise mentioned. 

2
 Most photographs in this thesis are courtesy of Hany Farid and the Darmouth Image Science Group. 
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Digital image watermarking is a popular method for image authentication, in which some 

additional information (called watermark) need to be embedded into an image during or after 

its creation. During detection, the watermark can be read and used for authentication. The ma-

jor drawback of this approach is that watermarks need to be embedded in the image before 

distribution. However, most cameras in the market nowadays are not equipped with the func-

tion for watermark embedding (and this situation is unlikely to change in the near future) [1]. 

Thus, developing image authentication methods which do not rely on watermarks became an 

urgent need.  

Image forensics is a passive method in which no information needs to be embedded prior to 

distribution. There are three main directions for image forensics research. The first direction 

identifies the sources of images, the second direction attempts to discriminate computer-

generated images from natural images, and the third direction, probably the most important 

one, tackles the problem of forgery detection for digital images [1]. Since the problem of im-

age forensics is very broad, our research focuses on forgery detection in digital images. 

Unfortunately, there is no universal technique that can detect every type of image forgery, thus 

many different image forensic techniques have been proposed, each of which comes with ad-

vantages and disadvantages. Therefore, the evaluation of forensic techniques for digital images 

has become an important problem. 

1.2 Research Questions and Contributions 

The main question addressed in this thesis is:  

How can we evaluate the effectiveness and security of digital image forensic techniques? 

To answer this question, several objectives have been achieved: 

1. We developed a general test framework that allows a fair evaluation of image forensic 

techniques. 

2. We built a number of image forensic techniques and applied the test framework to 

evaluate their effectiveness.  

3. We designed targeted attacks against the selected image forensic techniques in order 

to assess their security and their resistance against attackers who aim at fooling the 

forensic tools. 

4. We developed several new image forensic techniques for different types of image 

tampering, which overcome some limitations of existing algorithms. 
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1.3 Thesis Organization 

The rest of the thesis is organized as follows: 

In Chapter 2 we introduce important approaches for image authentication, both active and 

passive. In the active approach, we focus on image watermarking, its requirements and appli-

cations. In the passive approach, we provide a survey of main directions of image forensics, 

which aims at determining the source of images, distinguishing synthetic images from real im-

ages, and finding manipulations in images. In the last part of the chapter, we introduce the 

converse problem of forensics, namely anti-forensics. The goal of anti-forensics is to defeat 

forensic techniques. Nevertheless, anti-forensics can be used for assessment the security of 

forensic techniques. In this chapter, we define several concepts and terms, which we use in 

subsequent parts of the thesis.    

In Chapter 3 we design a general framework for evaluation image forensic techniques. We 

define basic concepts and summarize the steps required to assess forensic techniques. We de-

fine several metrics that allow to measure performance of forensic techniques. Most metrics 

can be used for every technique, but some of them are suitable for a particular type of forensic 

technique. In addition, several general attacks are surveyed in this chapter.  

In Chapter 4 we deal with copy-move forgery detection techniques. After studying existing 

techniques, we select three well-known ones for evaluation and improvement. Some targeted 

attacks are designed for each technique in order to assess the security. The evaluation results of 

the techniques are obtained by applying the framework of Chapter 3. Consequently, we design 

a new copy-move forgery detection technique. Chapter 4 is based on the papers:   

� H.C. Nguyen, S. Katzenbeisser, "Security of Copy-Move Forgery Detection Tech-

niques". In 36th International Conference on Acoustics, Speech and Signal Processing 

(ICASSP 2011). IEEE Press, 2011. 

� H.C. Nguyen, S. Katzenbeisser, "Detection of Copy-Move Forgery in Digital Images 

Using Radon Transformation and Phase Correlation". In 8th International Conference 

on Intelligent Information Hiding and Multimedia Signal Processing (IIH-MSP 2012). 

IEEE Press, 2012. 

Chapter 5 deals with image re-sampling detection. When making forgeries, an image or a 

part of it is often resized or rotated. These geometric transforms involve a re-sampling step, 

which leaves detectable artifacts. Therefore, detecting traces of re-sampling became an impor-

tant method to judge the authenticity of digital images. Similar to Chapter 4, we first survey 

state-of-the-art techniques for re-sampling detection and select three widely used techniques 
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for evaluation within our test framework. Lastly, a new technique for re-sampling detection is 

proposed. Chapter 5 is based on the papers:   

� H.C. Nguyen, S. Katzenbeisser, "Performance and Robustness Analysis for some Re-

sampling Detection Techniques in Digital Images". In 10th International Workshop on 

Digital Forensic and Watermarking (IWDW 2011). Springer LNCS 7128, 2012. 

� H.C. Nguyen, S. Katzenbeisser, "Robust Re-sampling Detection in Digital Images". In 

13th International Conference on Communications and Multimedia Security (CMS 

2012). Springer LNCS 7394, 2012. 

Chapter 6 works with images compressed in JPEG format. When creating a forged JPEG 

image, it has to be loaded into a photo editing software, manipulated and then re-saved as 

JPEG. Therefore, detecting double JPEG compression is a significant step to authenticate JPEG 

images. However, when an image is cropped before recompression, detectable artifacts intro-

duced by the JPEG compression algorithm will likely be destroyed. Thus, techniques for 

detection of cropped double JPEG compression are needed. In this chapter, we evaluate tech-

niques for detecting double JPEG and cropped double JPEG compression. Lastly, we design a 

new technique to detect double JPEG compressed images even if they were resized before the 

second compression. Chapter 6 is based on the paper: 

� H.C. Nguyen, S. Katzenbeisser, "Detecting Resized Double JPEG Compressed Images 

– Using Support Vector Machine". In 14th International Conference on Communica-

tions and Multimedia Security (CMS 2013). Springer LNCS 8099, 2013. 

Chapter 7 concludes the thesis. The contributions of the thesis are highlighted, the benefits 

of this work are elaborated, and an outlook for future research is given.  
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2 Preliminaries 

In this chapter, we briefly introduce image watermarking, image forensics, and anti-forensics. 

Watermarking is a method for digital image protection and authentication. This method re-

quires to actively embed a watermark into images. Image forensics is a passive method, so it 

does not require any embedded information in images for authentication. The authenticity of 

an image can usually be determined based on the detection of alterations of intrinsic properties 

of images. Anti-forensics is a method to disguise illegitimate manipulations in images in order 

to deceive forensic techniques. Research on anti-forensics helps us to thoroughly understand 

the security of forensic techniques. 

2.1 Digital Image Watermarking 

Cryptography is the most commonly used method for protection digital data. Encrypted data 

can be protected and it is only accessible after decryption. Nevertheless, cryptography is not 

suitable for some applications such as multimedia data distribution, where data needs to be 

protected and traced even if it must be available in the clear [2].  

Digital watermarking is a method to hide some watermarks into digital multimedia data 

(called cover data or host data), usually in a way that not easily be recognized by a human ob-

server. The output of the watermarking scheme is watermarked data. After the embedding, the 

watermark can be detected or extracted from the watermarked data. The process of adding a 

watermark into the cover data is known as watermark embedding (Figure 2-1) and the con-

verse process is known as watermark detection or watermark extraction (Figure 2-2). In order 

to strengthen the security, watermarking schemes usually use a secret key  [2]. If the detection 

process needs the original image, it is called non-blind watermarking. Otherwise, it is called 

blind watermarking. Since blind watermarking is the most applicable, the term watermarking 

often implies to blind watermarking. 

 

Figure 2-1: Watermark embedding process. 
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Figure 2-2: Watermark detection process. 

Digital image watermarking has many applications (see Section 2.1.2), so different water-

marking methods have been proposed. These methods are categorized into three main types: 

robust watermarking, fragile watermarking, and semi-fragile watermarking. They are briefly 

described as follows: 

Robust watermarking: In this type, the most important requirement for watermarks is robust-

ness against unintentional or malicious content manipulations. Robust watermarking is 

probably the most important type of watermarking and it is widely used in copyright manage-

ment and digital content distribution.  

Fragile watermarking:  In contrast to robust watermarking, fragile watermarks have only lim-

ited robustness to a certain set of modifications. This type of watermarking is mostly applied to 

detect alterations of the watermarked image and is used for content authentication.  

Semi-fragile watermarking: Since fragile watermarks are easily destroyed by any image ma-

nipulation, the incidental distortion by common post-processing operations can damage the 

watermark and render the image inauthentic. Semi-fragile watermarks are based on the image 

content instead of its digital representation. Thus, slight modifications caused by common im-

age processing like mild JPEG compression, filtering, and contrast enhancement are accepted, 

meanwhile other manipulations which change the image content, like object addition, deletion 

and replacement can be revealed [3]. 

2.1.1 Requirements 

There are some requirements that a watermarking system needs to satisfy. The importance of a 

requirement of a watermarking system always depends on the application. Nevertheless, some 

requirements are usually considered in watermarking systems: imperceptibility, robustness and 

security. 

Imperceptibility:  This is one of the most important requirements for watermarking systems: 

the watermarked content should be kept similar to the original content. In other words, the em-
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bedded watermarks should not create any unwanted artifact, causing visual quality degrada-

tion. 

Robustness: This requirement means that the watermark cannot be removed or destroyed 

without visually degrading the content. The importance of this requirement is highly depends 

on the application.  

Security: This is the ability to resist against deliberated attacks. It should be difficult for an 

adversary to remove or destroy a watermark without the knowledge of the secret key even if 

the watermarking algorithm is publicly known. For robust watermarking, any attempts to re-

move or destroy a watermark will severely degrade the visual quality of the image. For fragile 

watermarks, such attempts will destroy the authentication information [3]. 

2.1.2 Applications 

Digital watermarking has many applications in different areas. Several applications of water-

marking are listed in brief as follows [2]: 

Copyright protection:  This is probably the most important application of image watermark-

ing. The embedded watermark can be recovered from an image and used to verify the 

authentication or ownership of the image. This application requires very high robustness: the 

watermark must not be destroyed, and in case more watermarks have been embedded, no am-

biguity on the first inserted mark can be tolerated. 

Copy protection: Digital content can carry watermarks consisting of copy information. This 

system is very useful for digital content distribution. For example, there were proposals to 

augment the DVD standard with copy information so that a disc can be read by a DVD player 

but no copies can be made. 

Content authentication: The objective of this application is to detect modifications of digital 

content. For authentication applications, a so-called fragile watermark is embedded which will 

be destroyed once the content is modified. It should be noted that fragile watermarking re-

quires the lowest level of robustness among all possible watermarking applications. 

Fingerprinting:  While in copyright protection, the same watermark is embedded into every 

copy; in fingerprinting, different copies carry watermarks. The watermarks in fingerprinting 

encode information on the legitimacy of a recipient of a copy instead of the source of the data.  
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2.2 Digital Image Forensics 

The drawback of digital watermarking is that it works only for the images where a watermark 

was embedded at the time of recording. Image forensics is a passive method, which can be 

used to detect image tampering without using an embedded watermark or any type of finger-

print. Image forensics is based on the assumption that although digital forgeries may leave no 

obvious evidence, they may alter intrinsic statistics of an image. 

Image tampering has a long history and many examples of image tampering became 

known. For example, in a photograph made in circa 1865, General Francis P. Blair was added 

into the original photograph (Figure 2-3a). Due to the influence of photographs, they are often 

doctored because of political motives. Another example is shown in Figure 2-3b, where Po Ku 

had been removed from the left most position of the original photograph, after he fell out of 

favor with Mao Tse Tung [4]. 

Image tamperings do not only appear in politics, but also in many areas of everyday life. 

For example, image doctoring or retouching can be seen regularly on billboards, advertise-

ments and magazine covers. There is no general rule when a modification must be considered 

an image tampering and it highly depends on applications. A slight doctoring or retouching is 

usually acceptable for most entertainment magazines. For example, the biceps of tennis player 

Andy Roddick were conspicuously enlarged on the cover of Men’s Fitness magazine (Figure 2-

4a). He commented that he was “pretty sure I’m not as fit as the Men’s Fitness cover suggests”, 

but a spokesman for Men’s Fitness said “We wouldn’t comment on any type of production is-

sue. And I don’t see what the big issue is here” [4]. 

A little modification may be not a big issue in magazines such as Man’s Fitness or Star, but 

it may be a more serious problem in scientific journals like Nature or Science. On the cover of 

Nature in August 2007 appeared three autonomous aircrafts taking atmospheric measurement. 

However, the top and the bottom aircrafts have been found to be copied and pasted (Figure 2-

4b). After it was exposed, the editors had to print the following clarification: “The cover cap-

tion should have made it clear that this was a montage. Apologies” [4]. 
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(a) 

 

          (b) 

Figure 2-3: (a) Circa 1865:  shown on the left is the forged photograph after General Francis 
P. Blair was added at the rightmost position and shown on right is the original photograph; (b) 
1936: shown on the left is the forged photograph after removing Po Ku and shown on the right 
is the original photograph. 

Image tampering is much more critical if it occurs in an image depicting scientific results. 

The Korean scientist Hwang Woo Suk has laid claim to a set of human-cloning patents, re-

ceived a scientific excellence award, and published many papers. However, it became to know 

that in at least two of his papers published in the journal Science have been fabricated [5]. Mis-

souri University professor Michael Roberts and co-authors published a paper (Cdx2 Gene 

Expression and Trophectoderm Lineage Specification in Mouse Embryos) in the journal Sci-

ence. Contrary to conventional wisdom, the published research showed evidence that the first 

two cells of mouse embryos possess markers that indicate from a very early period whether 

they will grow into a fetus or placenta. However, an investigation uncovered that accompany-

ing images (Figure 2-4c) of the paper were doctored. The authors had to withdraw the paper 

and explain their actions before a scientific committee [4]. 
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                    (a)                                         (b)                                              (c) 

Figure 2-4: (a) 2007: the retouched photograph of Roddick in Men’s Fitness Magazine; (b) 
2007: a copy-move forged picture on the cover of Nature; (c) 2007: manipulated result of the 
group of professor Michael Roberts in a paper published in the journal of Science. 

 

              (a)                                (b)                                                   (c)    

Figure 2-5: 2011: banned advertisements by the ASA of (a) Christy Turlington, (b) Julia 
Roberts and (c) Natalie Portmann. 

Although not all areas require accuracy like in science, manipulations in images can affect 

their perception. In 2011, the British Advertising Standards Authority (ASA) banned two ads 

by cosmetics company L’Oreal due to excessive retouching. The first was an ad for Maybelline 

featuring Christy Turlington (Figure 2-5a) promoting a product called “The Eraser”. The sec-

ond was an ad for Lancome featuring Julia Roberts (Figure 2-5b), which claimed to “recreate 

the aura of perfect skin.” In making their judgment on the Lancome ad, the ASA stated that 

they “could not conclude that the ad image accurately illustrated what effect the product could 

achieve, and that the image had not been exaggerated by digital post production techniques” 

[4]. In 2012 the ASA has banned another advertisement from appearing in any UK markets. 

The ad of Dior, featuring Natalie Portman (Figure 2-5c) was cited for being manipulated and 

Dior has agreed to withdraw this ad [6]. 
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Along with forgery detection, other directions in image forensics, namely source identifica-

tion and identification of synthetic images have been addressed in the scientific literature [1], 

[7]. In the following, we briefly review the main directions in image forensics.  

2.2.1 Image Source Identification 

The main goal of image source identification is to identify the digital image acquisition device 

(mostly the digital camera) or their characteristics (brand, model, etc.). Although some infor-

mation on the acquisition device can be extracted from the image header file, this information 

can easily be modified or removed, therefore, it cannot reliably be used for the forensic pur-

pose [1].  

 

Figure 2-6: The pipeline for image capturing in digital cameras. 

Digital cameras consist of a lens system, filters, Color Filter Array (CFA), imaging sensor, 

and a digital image processor (Figure 2-6) [8]. While taking a picture with a digital camera, the 

light reflecting the object runs through the lenses of the camera. After passing the lenses, the 

light goes through a set of filters, which are used to control the visible parts of the spectrum 

and reduce aliasing. The main part of a digital camera is the imaging sensor, consisting of an 

array of photodiode elements, or pixels, which convert light to analog signals. The signals are 

then converted to the digital domain and subsequently processed by the digital image proces-

sor. Digital cameras deploy Charge-Coupled Device (CCD) or Complimentary Metal-Oxide 

Semiconductor (CMOS) as imaging sensors. Sensor pixels are sensitive only to the brightness 

of light, thus producing a monochromatic output. To produce a color image, a CFA is used in 

front of the sensor so that each pixel records the light intensity of a single color. The output 

from the sensor is a mosaic of red, green, and blue pixels of different intensities. The measured 

color values are passed to the component of digital image processing, which applies several 

operations in order to produce a visual pleasant image [1], [9]. 

Each processing step may leave detectable artifacts, which are caused by specific character-

istics of the corresponding components. Among them are the distortions of the lens, CFA 

interpolation, the imperfection of the imaging sensor, and artifacts of the color processing al-

gorithms [1]. Some techniques extract specific features in images and then use them in 
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classifiers in order to discriminate cameras. For example, the authors in [10] extract 34 fea-

tures to fingerprint camera models and [11] uses 33 features of color, image quality, wavelet 

domain. Choi et al. [12] propose the lens radial distortion as a fingerprint to find the source 

camera. The choice of CFA and the details of the CFA interpolation are the most pronounced 

variations among different camera models [1]. Several techniques based on the features of CFA 

interpolation have been developed [13–15]. Geradts et al. [16] propose matching of CCD 

pixels and use them to determine the source camera. Sensor noise is mainly due to the imper-

fection of the imaging sensor resulting in slight difference between the captured scene and the 

image acquired by the camera [17]. The dominating component of sensor pattern noise is the 

Photo-Response Non-Uniformity (PRNU), because of the sensor manufacturing process, sili-

cone inhomogeneities, and thermal noise [7]. In order to identify source camera, many 

techniques rely on PRNU have been developed [18–23]. An extension of sensor-based camera 

identification to images corrected for lens distortion is introduced in [24]. The PRNU noise 

features and CFA interpolation artifacts can be jointly used for detecting source type and cam-

era model [25].  

2.2.2 Identification of Synthetic Images 

With the development of image processing and computer vision, computer-generated images 

can be created that are very similar to natural photographs. For example, a computer-generated 

image of a famous Korean actress (Song Hye Kyo), created by Indonesian artist Max Edwin 

Wahyudi, is shown in Figure 2-7. To create this image, he used a combination of digital sculpt-

ing, design application Pixelogic Zbrush and animation modelling software Autodesk 3DS 

Max [26]. The goal of this forensic direction is to discriminate natural photographs from syn-

thetic images.  

 

Figure 2-7: A computer generated picture of Song Hye Kyo. 
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The main idea of most of the existing work aiming at identifying synthetic images are to 

extract significant features from natural images and computer-generated images and use ma-

chine learning techniques for classification. Therefore, the most crucial difference between the 

techniques lies in the feature selection process. Lyu and Farid [27] use higher order statistics of 

wavelet transformation coefficients to design features. These features can be used to train a 

SVM-based classifier. Ng et al. [28] designed 192 features, which are based on identifying the 

distinctive characteristic of computer-generated images and natural images. The authors in [29] 

proposed a method, in which the features are obtained from characteristic functions of wavelet 

coefficients histograms. One can also exploit the fact that most real photographs are taken by 

digital cameras, which leave specific artifacts that do not exist in computer generated images. 

Thus, Dehnie et al. [30] proposed a method to discriminate synthetic images from digital cam-

era images. Dirik et al. [31] extended the approach of [30] to include CFA interpolation 

artifacts. 

2.2.3 Forgery Detection for Digital Images  

Forgery detection is probably the most important problem of digital image forensics. Although 

many image manipulation methods have been proposed, there is no unique technique capable 

of detecting every forged image. We briefly revisit state of the art forgery detection techniques 

in some main categories, mostly following [32]: 

Pixel-based methods: Since pixels are basic elements of digital images, analyzing pixel-level 

correlations can expose an image tampering. Copy-move (or cloning) is a common method for 

image tampering in order to conceal an object in the image. To detect this forgery, many tech-

niques have been proposed. Most of existing copy-move forgery detection techniques relies on 

analyzing the specific features of image blocks, which are extracted by using different algo-

rithms, such as DCT transform [18], DWT transform [33], FMT transform [34], and PCA 

analysis [35]. We will discuss this forgery type in more detail in Chapter 4.  

Another common forgery is composition, where two or more images are spliced. The au-

thors of [36], [37] show that splicing disrupts high-order Fourier statistics, which can be used 

to detect this forgery. 

To create a convincing forged image, the image or its portions are usually resized or ro-

tated. These geometric transforms require re-sampling, which consists of an interpolation step. 

Interpolation creates specific artifacts, which can be uncovered through analyzing the correla-

tions of neighboring pixels [38], [39] or computing the second derivatives of the image [40], 

[41]. We will discuss this forgery type in more detail in Chapter 5. 
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Format-based methods: Most cameras encode images in the JPEG format. In order to create 

a forged image, the JPEG image is loaded into an imaging editor and it is re-saved as JPEG 

after modification have been performed. Thus, the forged JPEG image exhibits artifacts of 

double JPEG compression, which can be uncovered by some techniques [42][43]. It is noted 

that if the JPEG image has been cropped before the second compression, the corresponding 

JPEG blocking grids in the first compression and in the second compression are no longer 

aligned, so the aforementioned do not work. To detect this type of forgery, some more robust 

techniques have been proposed [44–46]. We will discuss techniques to detect forgeries in 

JPEG images in more detail in Chapter 6.   

Camera-based methods: As presented in Section 2.2.1, digital cameras are equipped several 

components. Each of them may leave detectable artifacts, which are caused by specific charac-

teristics of the corresponding components. The artifacts can be applied to determine camera 

source as well as image integrity. The CFA interpolation leaves forensic artifacts that can be 

used for detecting image manipulations [47–49]. Some other camera artifacts can be used as 

evidence of tampering, such as chromatic aberration [50] and sensor noise [51]. 

Physics-based methods: There are some techniques for estimating different properties in the 

lighting environment under which a person or an object was photographed. Thus, differences 

in lighting across the image can be used as tampering evidence [52], [53]. The lighting of a 

scene in practice can be complex due to different positions of the lights. A method to estimate a 

low-parameter representation of such complex lighting environments is described in [54]. Be-

sides, inconsistencies in shadows can be used for tampering detection [55], [56]. 

Geometry-based methods: The principal point is the projection of the camera center onto the 

image plane, so it is moved proportionally when an object is translated in the image [32]. The 

authors of [57] use the inconsistencies in the principal point across an image as evidence of 

tampering. The discrepancies in motion blur in images have been used for detecting spliced 

images [58]. 

2.3 Digital Image Anti-Forensics  

Anti-forensics is a method allowing to mislead forensic analysis of digital images. This 

method is usually used to assess the reliability of forensic methods, especially in the presence 

of an adversary that wants to influence the result of the forensic algorithm. Anti-forensics is 

also known as counter-forensics [59]. 
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2.3.1 Effectiveness and Security of Forensic Techniques 

While the effectiveness of a digital image forensic technique is the detection capacity of the 

technique in case no legitimate or illegitimate attack has been applied to forged images, the 

robustness of a digital image forensic technique is its reliability even if legitimate image post-

processing is performed [59]. Most forensic techniques in the literature are tested with some 

common post-processing operations such as JPEG compression and Gaussian noise addition in 

order to measure their reliability. The authors of [60] show that the common manipulations 

allow to judge the reliability of the forensic techniques only on an average. In fact, based on 

the knowledge of a forensic technique, which are mostly published, adversaries can design de-

liberated attacks in order to defeat the technique.  

The security of a digital image forensic technique is defined by its reliability to detect for-

geries even in case intentionally concealed illegitimate post-processing has been applied to 

forged images [59]. In other words, security is the ability to withstand anti-forensics. Thus, the 

security of an image forensic technique can be evaluated by examining its resistance against 

targeted attacks. 

In the next section, we briefly introduce several anti-forensic techniques, which are used to 

assess the security of different forensic techniques. 

2.3.2 Anti-Forensic Techniques 

At present, only a few anti-forensic techniques have been proposed. One of the earliest digital 

image anti-forensic techniques was introduced by [60]. The technique has successfully de-

stroyed the traces of re-sampling, which are caused by image resizing or rotation. To hide 

fingerprints left by image re-sampling, a set of targeted attacks have also been proposed in 

[61]. Some other anti-forensic techniques try to forge the PRNU noise of camera sensor left in 

images [62] and to artificially synthesize CFA artifacts [63]. Stamm et al. [64], [65] proposed 

methods to remove quantization artifacts from the DCT coefficients of JPEG compressed im-

ages and from the wavelet coefficients of wavelet-based compression schemes such as Set 

Partitioning in Hierarchical Trees (SPIHT) and Embedded Zero-tree Wavelet (EZW). 

While anti-forensics can defeat forensic techniques, some anti-forensic operations may 

leave detectable evidence of their own. Detecting traces of anti-forensic operations can un-

cover the presence deliberated attacks as well as help to improve forensic techniques. Since the 

median filter is used in some anti-forensic techniques [60], [61], detecting traces of median 

filtering can uncover the evidence of possible attacks [66]. The authors of [67] show that how 

such anti-forensic techniques [64], [65] affect the visual quality of JPEG images. 
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3 A Framework for Evaluation of Image Forgery Detection  

3.1 Introduction                                 

Many forgery detection techniques for digital images have been proposed in the literature. 

Therefore, there is a need to evaluate forgery detection techniques in a controlled environment 

in order to assess their performance. The purpose of evaluation is two-fold. Firstly, it provides 

either a qualitative or a quantitative method of evaluating a technique. Secondly, it allows to 

compare different techniques under similar criteria [68]. So far, most existing detection tech-

niques were only tested independently, it is difficult to reproduce their experimental results and 

compare the techniques to each other. Therefore, in order to test detection techniques in an ef-

ficient and comparable way, we propose a general framework that uses common evaluation 

conditions of image datasets, evaluation metrics, and attacks.  

As mentioned in Chapter 2, there are two main approaches for image authentication: the ac-

tive approach using watermarking techniques [2] and the passive approach involving image 

forensic techniques [32]. For the evaluation of watermarking techniques, several standard 

frameworks or benchmarking systems have been proposed such as Stirmark [69], Checkmark 

[70], and Optimark [71], etc. In these systems, the watermarking technique under test is used 

to embed watermarks into several host images. The major requirement of embedded water-

marks is to remain detectable even if the watermarked images have been altered. To measure 

this robustness, different manipulations are applied to watermarked images before they are fed 

into the detector. The output of watermark detector is used to evaluate the effectiveness and 

robustness of the analyzed technique. In order to obtain reliable results, one should perform 

multiple trials with different watermarks and images of various sizes and contents. When 

building benchmarking systems, the essential components are evaluation metrics and the set of 

image manipulations or possible attacks [72]. An important problem in the evaluation of wa-

termarking techniques is to assess the perceptual quality of an image that has been 

watermarked or attacked. There is a tradeoff between the watermark embedding strength and 

the visual quality of the image. Since there is no universal metric for evaluation of perceptual 

quality, different metrics are usually considered in the benchmarking systems. The Peak Signal 

to Noise Ratio (PSNR) is one of the most popular metrics for perceptual quality evaluation. 

In the field of image forensics, each forgery detection technique is usually assessed inde-

pendently. Some authors have tried to compare detection techniques of the same type [73–77]. 

The authors of [73] evaluate three copy-move forgery detection techniques based on the Dis-
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crete Cosine Transform (DCT), Principal Component Analysis (PCA), and the Fourier-Mellin 

Transform (FMT). They test the robustness of the techniques against common image manipu-

lations such as JPEG compression, rotation and scaling. The effectiveness and robustness of 

some re-sampling detection techniques have been analyzed in [74]. The effectiveness and ro-

bustness of several copy-move forgery detection techniques were measured in [75], [77] and 

some DCT-based forgery detection techniques were evaluated in [76]. All mentioned works 

used empirical methods to test a group of techniques in the same category under the same con-

dition. However, they did not propose an evaluation framework that other people can 

subsequently use.  

In this chapter, we describe a general framework for evaluating the effectiveness and secu-

rity of image forgery detection techniques. To this end, we introduce the attack models and the 

infrastructure of the evaluation system. In addition, we design a test tool in order to support the 

evaluation in practice. With the framework, all analyzed techniques can be tested under the 

same condition, which therefore allows fair comparisons. The framework will be used for 

evaluating the selected forensic techniques; results are shown in the next chapters.   

 

3.2 The Proposed Framework                               

3.2.1 Framework Infrastructure and Evaluation Process    

The main goal of the proposed framework is to empirically evaluate the effectiveness and se-

curity of image forgery detection techniques under a common condition. In forgery detection 

techniques, the input is the to-be-tested image and the output is a decision indicating whether 

the image is forged. Subsequently, in the framework for evaluation of detection techniques, the 

input is the tested technique and the output is an evaluation report describing the effectiveness 

and security of the techniques. The common infrastructure and evaluation process of the pro-

posed framework are shown in Figure 3-1. The infrastructure consists of several components 

of evaluation metrics, possible attacks, and image datasets. These components are necessary 

for the process of testing a detection technique and they will be briefly described in the next 

sections. 
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Figure 3-1: The infrastructure of the proposed framework. 

As mentioned in Section 2.3.1, the security of a forensic technique can be evaluated by as-

sessing the resistance of the technique against targeted attacks. There are two attack models for 

forensic techniques: 

� Blind attack model: In this model, the adversary does not know the algorithm of the 

detection technique; he sees the forensic technique as a black box. Thus, the technique 

can only be attacked by using common image manipulations. With respect to evaluating 

the security of a forensic technique, these attacks are not enough to gain a reliable secu-

rity evaluation.  

� Non-blind attack model: In this model, the adversary knows the forensic algorithm in 

detail, so he can design targeted attacks against the technique. Since the adversary can 

utilize knowledge of the forensic technique, this allows tests under more stringent con-

ditions. In fact, most existing image forensic algorithms are published in the literature; 

the non-blind attack model is thus more realistic and applicable.  

The evaluation process of the framework is shown in more detail in Figure 3-2. To evaluate 

the effectiveness of a forensic technique, the detection processes are applied to a dataset of 

forged images. A forged image is created by making forgeries to an original image. Since there 

are many types of forgeries, many different datasets of forged images need to be created. The 

security of a technique is assessed by applying the detection processes to datasets of attacked 

images. An attacked image is created by applying targeted attacks to a forged image. An attack 

against a forensic technique is considered successful if the technique detects the attacked im-

age as original.  
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Figure 3-2: The evaluation process of the framework for assessment of forensic techniques. 

 

3.2.2 Performance Evaluation Metrics 

A performance metric is a meaningful and computable measure used for quantitatively evaluat-

ing the performance of any forgery detection technique [68]. In this section, we first revisit the 

common metrics of true positive rate and false positive rate. Then we define some metrics 

which are designed for a specific type of forgery, such as the correctness rate and the incor-

rectness rate.  

The outcome of a forensic technique is binary: either positive (predicting that the image is 

forged) or negative (predicting that the image is original). The test results for each image may 

or may not match the actual status of the image. Thus, we can consider true positives, where a 

forged image is correctly identified as forged), false positives, where an original image is in-

correctly identified as forged, true negatives, where an original image is correctly identified as 

original, and  false negatives, where a forged image is incorrectly identified as original. 

The true positive rate (TPR) and the false positive rate (FPR) are defined as 

  
FNTP

TP
TPR

+
=  ,  

  
FPTN

FP
FPR

+
= , 

where TP, TN, FP, FN are the number of true positives, true negatives, false positives and false 

negatives respectively. 

The detection rate is the fraction of the number of images detected as forged and the total 

number of testing images. In a test with a dataset of all forged images, the true positive rate is 
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equal to the detection rate. Similarly, in the test with a dataset containing only original images, 

the false positive rate is computed as the fraction of the number of original images which have 

been detected as forged and the total number of testing images. 

While the detection rate and false positive rate are general metrics, some other evaluation 

metrics are only suitable for a certain forgery type. Copy-move forgery is a very popular prob-

lem in image forensics, where an image is judged as forged if there are two similar regions in 

the image. Typically, these algorithms are able to identify the copied regions pretty accurately. 

However, the detection algorithm may produce false positives when the detected results are, 

for example, parts of homogeneous image regions or produce errors when estimating the 

forged regions.  In order to evaluate the accuracy of detection techniques, we use the so-called 

correctness rate, which described as follows.  

Assuming that D1 and D2 are the copied parts in the tested image; R1 and R2 are the two 

similar image regions which were detected by the forensic technique. The accuracy of the 

technique based on D1, D2, R1, and R2 is evaluated by computing a metric C as follows: 

  
21

2211

DD

DRDR
C

+
∩+∩

=  . 

Assuming that the number of testing images is N and the number of images correctly de-

tected as forged is Nc, the correctness rate (CR) is defined as:  

  
N

Nc
CR=  . 

Consequently, the incorrectness rate (ICR) is defined as: 

  
N

NfNc
ICR

−=  , 

where Nf denotes the number of images detected as forged.  

3.2.3 Perceptual Evaluation Metrics 

To assess the security of a detection technique, different attacks against the technique must be 

used. At the same time, the attacks usually degrade the perceptual quality of the attacked im-

ages. A good attack not only deceives the detection technique, but it creates as little impact to 

image visual quality as possible. For example, it is unacceptable if an attack deceives a foren-

sic technique but also distorts images so much that the attack can be easily recognized by 

human eyes. There is usually a tradeoff between the strength of an attack and the perceptual 

quality of attacked images. For a fair benchmarking of image forensics, the perceptual quality 
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loss due to an attack is an important issue that should be considered. Although there are many 

metrics for the evaluation of image visual quality, none of them is universal. Therefore, in this 

section, we review common metrics which take the effects of the Human Visual System (HVS) 

into account; some of them will be used for perceptual quality evaluation in next chapters. 

One of the most popular perceptual quality metrics for digital images is the Mean Square 

Error (MSE). The MSE is the mean of the squared error values across the entire image be-

tween an image I and its manipulated version K (of the same size of M×N) and it can be 

defined as follows: 
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The Signal to Noise Ratio (SNR) is defined as the power ratio between a signal (meaning-

ful information) and noise (unwanted signal). This metric is useful to quantify how much noise 

is contained in an image. The larger the SNR is, the better the quality of the manipulated im-

age. The SNR can be computed as follows: 
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A more popular (and widely-used) version of the SNR is the Peak Signal to Noise Ratio 

(PSNR). The PSNR is the ratio between the maximum possible power of a signal (or the peak 

value of the input image, called MAXI) and the power of corrupting noise that affects the fidel-

ity of its representation. In gray-scale images, when the pixels are represented using 8 bits per 

sample, MAXI = 255. The PSNR can be calculated based on the mean square error as follows: 

 
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The SNR and PSNR are usually measured in decibel (dB). Although these metrics are very 

popular and simple to calculate, they are not always correlated to human vision [78]. Thus, 

better methods for image perceptual quality evaluation have been proposed. Wang et al. [79] 
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proposed an improved approach called Structural Similarity Index Metric (SSIM). It is based 

on the fact that the HVS is highly adapted for extracting structural information. Another ap-

proach is the Weighted Peak Signal to Noise Ratio (WPSNR) first introduced in [80]. Based on 

the fact that the human eyes are less sensitive to modifications in textured areas than in smooth 

areas, the WPSNR uses an additional parameter called the Noise Visibility Function (NVF), 

which is a texture masking function. The WPSNR of an image can be calculated as follows 

[80]: 
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The NVF uses a Gaussian model to estimate how much texture exists in any area of an im-

age. For flat regions, the NVF is close to 1; for edges or textured regions, the NVF is close to 

0. Thus, for smooth images, WPSNR approximately equals to PSNR, but for highly textured 

image, WPSNR is higher than PSNR. The function NVF at a pixel (i, j) is given as: 
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where )j,i(2σ denotes the local variance in a window of size (2L+1)×(2L+1) centered around 

the pixel with coordinate (i, j) and θ  is a tuning parameter dependent on the image. The local 

variance is computed as: 
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The tuning parameter is given as: 

  
2
max

D

σ
θ =  ,  

where 2
maxσ  is the maximum local variance for a given image and D is an experimentally de-

termined parameter that ranges from 50 to 100.  

The value of NVF for an image of size M×N can be computed as the normalization of the 

noise visibility function of every image pixel: 
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In our framework, we use both metrics PSNR and WPSNR for perceptual quality evalua-

tion (the first metric due to its popularity and the second metric due to its better correlation to 

human vision). 

3.2.4 Possible Attacks    

As mentioned in Section 3.2.1, attacks can be classified as blind and non-blind. In the former 

case, the detection algorithm is not known to the attacker, so the technique can only be at-

tacked by general image manipulations. In the latter case, targeted attacks can be designed to 

defeat a certain detection technique. In other words, within a benchmark tool we can consider 

general attacks and targeted attacks.  

General attacks consist of common image processing operations which may destroy foren-

sic evidence and are applicable to any forensic tool. Some popular operations such as 

geometric transformations, JPEG compression, and Gaussian noise addition are usually con-

sidered in this category. Targeted attacks are specifically tailored towards a particular detection 

technique. Since targeted attacks are closely related to the technique which they affect, we will 

discuss them in more detail in the following chapters. In this section, we list important image 

manipulations which are implemented as general attacks in our framework. Some of them have 

already been used in the watermarking benchmarking systems of Stirmark [69] and Checkmark 

[70]. Various common attacks are described in brief as bellows:  

A. Geometric transformations 

� Rotation: Rotating the whole image or a part of it with a small angle. This operation is 

not easily recognized for a human observer, but it can affect the position of forensic 

evidence in the image.  

� Rotation and cropping: Rotating the whole image and then cropping out a rectangular 

part from the rotated image which belongs to the original image. 

� Rotation, cropping and rescaling: Rotating the whole image, cropping out a rectan-

gular part from the rotated image which belongs to the original, and then rescaling the 

cropped part to the same size of the original image. 

� Scaling: This attack can be divided into two groups: non-uniform scaling and uniform 

scaling. Non-uniform scaling uses different factors in horizontal and vertical directions. 
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Under uniform scaling, the scaling factor in horizontal and vertical are identical. In ex-

periments, one often uses uniform scaling. 

� Cropping: Cropping a small number of pixels from the edges of images. This manipu-

lation is not easily visually recognized, but it can be an effective attack, especially 

against techniques which work by detecting image blocking artifacts.  

B. Image Enhancing 

� Mean filtering : is a simple filtering method used for image smoothing. It is often used 

to reduce noise in images. 

� Median filtering : is a popular filtering method to reduce noise in images. It is often 

better than the mean filter since it preserves useful details in images.  

� Histogram modification: is a method for adjusting image intensities to enhance con-

trast of images. 

� Gamma correction: This is used to enhance images or adapt images for display. 

C. Noise addition: Typically, additive white Gaussian noise is added to the whole image 

(globally) or to a part (locally). 

D. JPEG compression: This is very popular lossy compression, which reduces invisible de-

tails in images. It is usually considered as an important attack against many forensic 

techniques. The degree of compression can be adjusted and there is a tradeoff between the 

compression factor and image quality. 

To make convincing forgeries, several different attacks can be combined. For example, 

cropping can be combined with other operations such as rescaling to retain the size of the im-

age. Rotation and scaling alone are sometimes not enough to defeat a detector and are used in 

combination with JPEG compression [81]. 

3.2.5 Image Datasets 

To empirically evaluate the effectiveness and security of a forensic technique, the technique is 

tested on different types of images. In this section, we introduce a method to create the neces-

sary datasets of forged images and attacked images. Firstly, a dataset of uncompressed original 

images forms the basis of our test; we choose a dataset of original images from the Uncom-

pressed Color Image Database (UCID) [82]. This dataset consists of 1338 uncompressed 

images, including photos of natural scenes and objects, both indoor and outdoor. Besides, the 

UCID dataset is widely-used, free and can easily be downloaded from the Internet. A database 
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consisting of original single JPEG compressed image is created by compressed the uncom-

pressed original dataset with different quality factors. 

Following the proposed evaluation process, in order to evaluate the effectiveness of a tech-

nique, we have to run tests on datasets of forged images. Since there are many forgery types, 

we prepared different forged datasets respectively. Forged datasets are created by applying 

some forgery manipulations to the dataset of original images and some of them are listed as 

follows:  

� Copy-move: copy a random part of the original image and move it to another non-

overlapping position in the same image. Since the size and location of the copied parts 

can affect the detection result, we use both squared and non-squared regions of various 

sizes when creating forgeries.  

� Re-sampling: apply geometric transformations (e.g. up-sampling, down-sampling, rota-

tion etc.) with different factors to original images in order to create re-sampled images. 

� Double JPEG compression: double JPEG compressed images are created by applying 

JPEG compression with different quality factors one more time to a single JPEG com-

pressed image. 

3.2.6 The Test Tool 

In this section, we briefly introduce a test tool based on the proposed framework in order to 

assess forgery detection techniques. The main purpose of this tool is to support the evaluation 

of forensic techniques in practice. To this end, we developed a set of Matlab functions, which 

are divided into three main groups: 1) attack functions, 2) functions for creating datasets of 

forged images and attacked images and 3) test functions.  

The tool stimulates the detection process of a forensic technique on different image data-

sets. It applies a series of tests to different image datasets of forged images and attacked 

images. Each test is accomplished by applying the detection function to an image. The names 

of the image datasets to be used are parameterized in a profile, specified by users. Subse-

quently, the detection results of the forensic technique on the analyzed datasets are obtained 

from a report file. In order to accomplish an evaluation of a forensic technique by using this 

tool, users need to provide the detection function, configure the profile of image datasets and 

run the test functions. 
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Note that most forensic techniques use predefined thresholds, which influence the detection 

results. In our approach, the analyzed techniques cannot be changed by the test tool. The tool 

works only with hard decision detectors, which generate a binary output whether the detected 

image is forged or original. In order to get soft decisions as well as showing the mutual rela-

tionship between different parameters, users can try different thresholds and apply the 

framework to several versions of the forensic technique. 

3.3 Summary 

In this chapter, we proposed a test framework for the evaluation of digital image forgery detec-

tion techniques. With the framework, the techniques can be assessed by using common 

metrics, datasets and attacks in order to measure their effectiveness and security. Since the 

techniques were tested under the same condition, they can be compared in a fair manner. We 

built a test tool to support the evaluation process of image forgery detection techniques easily 

and automatically.  
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4 Security of Copy-Move Forgery Detection Techniques 

4.1 Introduction 

In this chapter we first survey techniques for copy-move forgery detection techniques for digi-

tal images and propose a method to evaluate them. We discuss several widely-used techniques, 

implement them and evaluate them by using the test framework proposed in Chapter 3. Subse-

quently, experimental results allow assessing the effectiveness, robustness, security, and image 

perceptual quality of the considered techniques. In order to evaluate the security of these tech-

niques, we design different targeted attacks against each of them. Finally, we propose a new 

technique, which has higher robustness against some common attacks, such as rotation or 

Gaussian noise addition.  

 

Figure 4-1: Shown on the left is the copy-moved image and shown on the right  is the original 
image. 

Detection of copy-move forgeries is a popular image forensic problem, for which many fo-

rensic techniques have been developed. The purpose of a copy-move forgery is mostly to hide 

an important object of an image by covering it with a part copied from another region within 

the same image. When it is done skillfully, it is difficult to detect by human eyes. Moreover, 

because the copied parts come from the same image, most important statistical properties of 

the copied parts are similar to the rest of the image and thus it will be difficult to detect forger-

ies by using methods that look for incompatibilities in statistical measures in different parts of 

the image [18]. An example of this forgery can be seen in Figure 4-1, which shows the image 

of an Iranian missile test that appeared on the front page of many newspapers. However, it was 

revealed later that the second missile from the right was copied and moved from the third mis-

sile in order to conceal the fact that a missile on the ground did not fire. 
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Many techniques for copy-move forgery detection have been proposed in the literature. In 

order to detect duplicated regions in an image, a simple approach is performing an exhaustive 

search, in which the image is compared with its circularly shifted versions. Since that would 

examine every possible pair of image regions, this method is computationally very demanding 

[18]. Most existing techniques for copy-move forgery detection follow a more efficient ap-

proach based on small fixed-sized overlapping image blocks. The detection process of this 

approach is presented in Figure 4-2. The analyzed image is firstly divided into overlapping 

blocks. Specific features of each block are extracted in a succinct way in order to reduce com-

putational complexity as well as increase robustness of the techniques. Although it is not 

required, most techniques use a subsequent sorting step in order to reduce the complexity for 

matching similar regions. To this end, the features of each block are usually vectorized, then 

these vectors are sorted and all pairs of contiguous vectors are examined in order to identify 

similar blocks. Finally, to judge if the image is forged, in the matching step, one searches for 

two groups of connected blocks so that every pair of similar blocks has the same distance in 

the image.  

 

Figure 4-2: The general scheme for detecting copy-move forgeries in digital images. 

The most distinguishing property of various copy-move forgery detection algorithms is the 

employed extracted features. The feature extraction methods of most existing detection tech-

niques can be categorized into four main groups: techniques based on frequency 

transformation, dimensionality reduction, moments and color features [75]. The features can be 

obtained from the frequency domain by using the Discrete Cosine Transform (DCT) [18], Dis-

crete Wavelet Transform (DWT) [83] or Fourier-Mellin Transform (FMT) [34]. In order to 

reduce dimensions of block features, the technique in [35] uses the Principal Component 

Analysis (PCA) while the technique in [84] uses Singular Value Decomposition (SVD). A 

typical technique based on color features is proposed in [85]. Some techniques are based on 

moments, such as [86] uses blur moments and [87] uses Zernike moments.  

An important problem in copy-move forgery detection is to find a robust representation for 

the image blocks, so that duplicated blocks can de identified even after modifications have 

been applied to the forged image [73]. The authors in [88] proposed rotation-invariant features 

by using log-polar transform. Another rotation-invariant selection method called Same Affine 
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Transformation Selection (SATS) is presented in [89]. Some other special feature descriptions 

such as the Scale Invariant Features Transform (SIFT) [90] and Speed-Up Robust Feature 

(SURF) [91] have been employed as well. Several SIFT-based techniques for copy-move for-

gery detection have been proposed by Huang et al. [92], Pan and Lyu [93], and Amerini et al. 

[94]. The authors in [95] applied SURF features in their technique.  

Since many copy-move forgery detection techniques have been proposed, it is important to 

evaluate and compare them. There are some existing works that compare different detection 

schemes. The authors of [73] evaluated effectiveness and robustness against some geometric 

transformation of three techniques based on DCT [18], PCA [35] and FMT [34]. They used 

only a few images in their test and performed no security and perceptual quality evaluation. 

The work in [75] presents a common pipeline for copy-move forgery detection and performs a 

comparative study on a number of detection techniques. The authors introduce a benchmark 

database for evaluation of copy-move forgery detection techniques. They tested the robustness 

of the techniques only against two geometric transformations (scaling and rotation), and a per-

ceptual quality measurement is also not included.  

4.2 Effectiveness Analysis 

4.2.1 Implementation of Detection Techniques 

A major obstacle when evaluating detection techniques is that their implementations are often 

not available. Therefore, we first implemented selected algorithms based on the short descrip-

tions in the papers [18], [35], [85]. In this section, we briefly review these techniques and give 

some notes on the implementation. All techniques follow the general scheme for copy-move 

forgery detection presented in Figure 4-2. Firstly, the analyzed M×N image is divided into 

overlapping blocks of size B×B pixels, resulting in  (M–B+1)×(N–B+1) image blocks. Next, 

the characteristic features of every overlapping block are extracted, and then the features are 

vectorized. Finally, these vectors are sorted lexicographically in order to identify similar 

blocks.  

Fridrich et al. [18] used several low quantized frequency DCT coefficients for feature ex-

traction. There is no specific information on the number of DCT coefficients given in the 

paper. In our implementation of [18], we use only six lowest DCT coefficients in each block. 

In the lossy JPEG compression process, higher quantized DCT coefficients will be eliminated, 

therefore, the extracted features in [18] are expected to be robust against JPEG compression. In 

order to prevent too many false matches, the authors of [18] used a large block size, B = 16. 
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They also computed a new 16×16 quantization table based on the 8×8 standard quantization 

table and an experimental formula. 

Similarly to the technique of Fridrich et al. [18], but instead of using DCT, Popescu and 

Farid [35] performed PCA for every overlapping 8×8 image block to produce a short represen-

tation; truncation of the PCA basis reduces the number of dimensions [35]. This representation 

is also known to be robust to minor variations in the image due to additive noise and lossy 

compression.  

Luo et al. [85] proposes a method to use features based on the information in color chan-

nels. Following the method, in each image block, two groups of features are calculated: 1) the 

first three features (c1, c2, c3) are the averages of red, green, blue components respectively; and 

2) The Y channel (Y = 0.299R + 0.587G + 0.114B) is divided into 2 equal parts in 4 directions, 

then the last four features are computed: ci = sum(part1) / (sum(part1) + sum(part2)), where i 

ranges over the image partition depicted in Figure 4-3. Since we use gray-scale images in our 

experiments and in order to use the same datasets with other considered techniques, we modi-

fied the algorithm [85] to deal with gray-scale images. Most details of the algorithm are 

preserved, except the transition from three color channels to only one channel. That may be the 

reason that our experimental results of the modified scheme are not fully comparable to the 

original paper [85].  

 

Figure 4-3: Image regions used in the method by Luo et al. [85]. 

An image is declared to be as forged if there are two groups of connected blocks, where 

each block in a group has a corresponding similar block in the other group, and every pair of 

similar blocks has the same spatial distance in the image. To reduce false matches, an image is 

considered as forged if and only if the number of similar pairs is greater than a predefined 

threshold. Larger values of the threshold may cause the algorithm to miss some not-so-closely 

matching blocks, while too small values increase false positives [18]. In each technique, this 

threshold is usually determined through experiments.  

All forensic techniques are based on some predefined thresholds. Although we tried to fol-

low exactly the original papers, the thresholds of the analyzed techniques were adjusted 

slightly to get optimal results with our dataset (e.g. the detection rate of forged dataset is high 

while obtaining low false positive). In our experiment we select the thresholds for all tested 
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techniques so that the detection rate is larger than 95% in a test with the datasets of forged im-

ages and the false positive rate is lower than 5% on a test with the dataset of original images. 

4.2.2 Effectiveness Analysis of Detection Techniques 

We apply the test framework to empirically evaluate the three schemes [18], [35], [85]. We 

create different datasets of original images, forged images and attacked images following the 

framework of Chapter 3. As original images we randomly selected 200 uncompressed images 

from [82] and then converted them to gray-scale. The dataset of forged images is created by 

randomly copying a part in each original image and moving it to another position of the same 

image. The copied parts can be square or non-square. In the first case, we set the size of the 

copied parts to 64×64 pixels. In the second case, in order to make it easier for automatic tests, 

all copied parts are created in the same way by taking in each image a square region of size 

64×64, but eliminating the two small square parts of size 12×12 in its upper-left and bottom-

right corners. Experimental results are shown in Table 4-1 and Table 4-2. In general, all ana-

lyzed techniques can detect forgeries with high accuracy. In the case of square copied parts, all 

techniques work well with detection rates (DR) higher than 95% and correctness rates (CR) 

higher or equal to 94%, while the incorrectness rates (ICR) are very low. For non-square parts, 

there are no significant differences in comparison to the previous case, except [18] which has a 

lower CR. The truncating and rounding processes of the technique [18] are the causes for its 

lower detection rate; however, these processes make [18] more robust against some post-

processing operations.  

 
Fridrich et al. 

[18] 
Popescu and  
Farid [35] 

Luo et al. 
[85] 

DR 95.5% 100% 99.5% 

CR 94.0% 99.5% 99.0% 

ICR  1.5%  0.5%  0.5% 

Table 4-1:  Detection rates, correctness rates and incorrectness rates while evaluating forged 
images where copied parts are square. 

 Fridrich et al. 
[18] 

Popescu and 
Farid [35] 

Luo et al. 
[85] 

DR  94.5% 100%  100% 

CR  80.0%   99.5%    99.0% 

ICR  14.5%   0.5%    1.0% 

Table 4-2:  Detection rates, correctness rates and incorrectness rates while evaluating forged 
dataset where copied parts are non-square. 
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4.3 Robustness and Security Analysis 

In the papers [18], [35], [85], the authors made some robustness tests, but did not perform any 

security evaluation. In this section, we analyze the robustness as well as the security of the 

above techniques under identical conditions. Robustness can be assessed by applying the de-

tection techniques to a set of forged images, which underwent post-processing operations. 

Several different post-processing operations were listed in Section 3.2.4. Furthermore, we also 

design dedicated attacks in order to evaluate the security of the detection techniques.     

At the beginning, we tested the robustness of the techniques under Gaussian noise addition 

of various SNR of 24, 29, and 40 dB. The experimental results are shown in Table 4-3. Al-

though [18] did not show any robustness test, our tests indicate that the DCT-based technique 

is extremely robust against Gaussian noise addition. The techniques of Popescu and Farid [35] 

and Luo et al. [85] show less robustness.    

The robustness against JPEG compression with different quality factors (QF) of 40, 60, and 

90 is shown in Table 4-4. Since [18] is a DCT-based technique, it is mostly robust against 

JPEG compression with correctness rates about 90%, even in the case of a low quality factor of 

40. The technique of Popescu and Farid [35] is quite robust only in the case of a high compres-

sion quality factor. The pixel-based technique [85] has very high false positive rate and it is 

mostly defeated with a correctness rate of only 1.5%.  

Lastly, we examined the robustness against image rotation with the angles of 1, 2, and 3 de-

grees (Table 4-5). Although [18] seems not so robust against rotation, with correctness rates of 

about 60% in the tested cases, it is the best amid the analyzed techniques. The PCA-based 

technique of Popescu and Farid [35] is not very robust against geometric transformations, be-

cause the re-sampling operations in the transformation process affect the eigenvalues. The 

modified technique of Luo et al. [85] is based on pixel values in the spatial domain, so it is 

highly sensitive to any geometric transformation. 

Fridrich et al. [18] Popescu and Farid [35] Luo et al. [85]  

SNR DR CR DR CR DR CR 

24 dB 83.5% 80.5% 15.0% 15.0% 0% 0% 

29 dB 92.5% 91.0% 46.5% 46.5% 0% 0% 

40 dB 94.5% 93.0% 89.0% 89.0% 1% 0% 

Table 4-3:  Detection rates and correctness rates after Gaussian noise addition. 
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Fridrich et al. [18] Popescu and Farid [35] Luo et al. [85]  

QF DR CR DR CR DR CR 

40 90.0% 89.0% 43.5% 11.5% 32.0% 1.5% 

60 93.0% 92.0% 45.5% 16.0% 23.0% 1.5% 

90 95.0% 93.5% 79.0% 78.0% 3.5% 1.5% 

Table 4-4: Detection rates and correctness rates after JPEG compression. 

Fridrich et al. [18] Popescu and Farid [35] Luo et al. [85]  

Angle DR CR DR CR DR CR 

1° 62.5% 60.0% 25.0% 25.0% 1.5% 1.5% 

2° 72.0% 65.0% 33.0% 26.5% 1.0% 0% 

3° 77.0% 61.0% 63.0% 24.0% 2.0% 0% 

Table 4-5: Detection rates and correctness rates after rotation. 

After checking the robustness with respect to common image processing operations, we report 

results for some targeted attacks that use specific characteristics of the detection techniques.  

Attack 1: We considered a simple operation which is widely-used in watermarking. This as-

signs the least significant bit (LSB) of each pixel a random value in {0, 1}. The operation can 

change every image pixel but the perceptual quality of the image is mostly not affected. The 

results (in Table 4-6) show that the DCT-based technique and PCA-based technique are robust 

against this attack, while the color pixel-based technique by Luo et al. [85] is completely de-

feated.  

Fridrich et al. [18] Popescu and Farid [35] Luo et al. [85] 

DR CR DR CR DR CR 

94.5% 92.5% 89.0% 89.0% 1.0% 0% 

Table 4-6: Detection rates and correctness rates after changing LSB. 

Attack 2: This attack is a combination of simple geometric transformations. Though geometric 

transformations often distort images, they may be effective against many copy-move forgery 

detection methods. In this attack, a small portion of the image is cropped and subsequently the 

cropped image is rescaled to its original size in order to hide trace of the transformations. 

Given a forged image of size M×N, we crop S pixels so that the cropped image is the rectangle 

part [S, S, M–S, N–S] of the forged image. Then the cropped image is rescaled to the previous 

size using bi-cubic interpolation. Through some experiments on different S values, we found 

that when S is equal to 3, the attack is more powerful, defeating the techniques of Popescu and 
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Farid and Luo et al. and affecting the technique of Fridrich et al. in 50% of the cases (see Table 

4-7). 

Fridrich et al. [18] Popescu and Farid [35] Luo et al. [85] 

DR CR DR CR DR CR 

50.0% 44.5% 5.5% 4.5% 4.0% 2.5% 

Table 4-7: Detection rates and correctness rates in evaluation for cropping and rescaling. 

Attack 3: Since the technique [18] is DCT-based, we consider attacks that directly modify 

DCT coefficients. A possible attack works similar to a watermarking scheme proposed by 

Koch and Zhao [96] which operates on DCT coefficients. Firstly, the image is divided into 

overlapping blocks of size 16×16 pixels, and then each block is transformed by DCT. We 

choose two random DCT coefficients among the lowest AC coefficients. These two coeffi-

cients are swapped and a random small positive number is added to one of them. At the end, all 

DCT blocks are transformed back from the frequency domain into the spatial space by the In-

verse Discrete Cosine Transform (IDCT). Experimental results are shown in Table 4-8. 

Although the DCT-based technique [18] is very robust against JPEG compression, it is not ro-

bust to this attack, because the attack directly modifies DCT coefficients. However, the 

disadvantage of this attack is its low fidelity (i.e. the quality of attacked images is reduced), 

especially when the image has large homogeneous regions. 

Fridrich et al. [18] Popescu and Farid [35] Luo et al. [85] 

DR CR DR CR DR CR 

42.5% 36.0% 92.5% 83.5% 9.0% 4.5% 

Table 4-8: Detection rates and correctness rates after swapping DCT coefficients. 

Attack 4: Through the above tests, we found that skillful geometric transformation operations 

can be very effective attacks against some of the detection techniques. Although a direct attack 

on DCT coefficients can be effective against the technique of Fridrich et al., it resulted in 

rather low fidelity. For these reasons, we choose another alternative attack where we use crop-

ping, rescaling, and JPEG compression, instead of directly manipulating DCT coefficients. 

Firstly, the forged image is cropped by 3 pixels, and then the cropped image is JPEG com-

pressed two times with different qualities, 70 and 60. The image is then converted to the 

original format and rescaled to the original size. The effectiveness of this attack is quite im-

pressive, while its fidelity is very high. According to the experimental result is shown in Table 

4-9, only about 30% of forged images are detected by [18] and the other techniques are mostly 

defeated.  
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Fridrich et al. [18] Popescu and Farid [35] Luo et al. [85] 

DR CR DR CR DR CR 

35.0% 31.0% 23.0% 3.5% 12.5% 0% 

Table 4-9: Detection rates and correctness rates after the combination attack of cropping, 
double JPEG compression and rescaling. 

Visual quality degradation due to the attack is an important issue to be considered in order 

to develop a good attack. Using the same image datasets, which are used to evaluate the effec-

tiveness and security of the detection techniques, we calculate the PSNR and WPSNR between 

forged images and their attacked versions. We take the average PSNR and WPSNR of every 

pair images from the dataset of forged images and the dataset of attacked images. The results 

are shown in Table 4-10, Table 4-11, and Table 4-12. Although geometric transformations usu-

ally degrade the visual quality, in the case of cropping with a small number of pixels and 

rescaling to the previous size, it is also difficult to realize the manipulations. Thus, our pro-

posed targeted attacks are still useful.  

SNR  PSNR WPSNR 

24 dB 20.46 dB 33.41 dB 

29 dB 22.86 dB 36.42 dB 

40 dB 28.41 dB 42.94 dB 

Table 4-10: Visual quality evaluation of attacked images by adding noise. 

QF PSNR WPSNR 

40 20.08 dB 33.06 dB 

60 20.99 dB 34.35 dB 

90 24.63 dB 38.87 dB 

Table 4-11: Visual quality evaluation of attacked images by JPEG compressing. 

 PSNR WPSNR 

Swapping DCT coefficients 23.37 dB 34.70 dB 

Cropping and rescaling 14.79 dB 24.74 dB 

Cropping, compressing and rescaling 14.69 dB 24.65 dB 

Table 4-12: Visual quality evaluation of several attacks. 
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4.4 A New Technique for Copy-Move Forgery Detection  

An important characteristic for detection techniques is to use a robust representation, so that 

duplicated blocks can be identified from a forged image even if the image was post-processed. 

The technique of Fridrich et al. [18] can be robust against some image modifications, but can-

not resist more specific attacks as shown in the last section.   

In this section, we design a new technique for copy-move forgery detection. In the pro-

posed technique, we use the Radon transform for extracting block features and the phase 

correlation for matching similar blocks. Through our evaluation, we show that the proposed 

technique is more robust against some image post-processing operations, such as rotation and 

Gaussian noise addition, than the technique of Fridrich et al. [18]. We also realize that our 

technique is more robust than [18] when in-processing attacks are applied, i.e. where a part of 

an image is rotated before it is moved to a different place in the image. 

4.4.1 Radon Transformation and Phase Correlation 

A. Radon Transformation 

The Radon transformation computes projections of an image along the directions given by 

various angles, as shown in Figure 4-4 (where r is the perpendicular distance of a line from the 

origin and θ is the angle formed by the distance vector). The result of the Radon transforms of 

an image f(x, y), denoted as g(r, θ), and is the sum of the intensities of the pixels in each direc-

tion, i.e. a line integral. It is possible to express the Radon transformation as follows: 

 ∫ ∫
∞

∞−

∞

∞−

−−== dydxyxryxfyxfRrg )sincos(),()),((),( θθδθ  , 

where we used the sifting property of the impulse function δ. This function reduces the double 

integral to a projection beam in the direction θ that has a distance r from the center of the co-

ordinate system [97]. The Radon transformation has robustness properties against rotation, 

scaling, and translation (RST) operations [98], [99] and it is also robust against additive noise 

[100]. 
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Figure 4-4: The Radon transform of f(x, y) projects follows a particular direction. 

B. Phase Correlation 

The phase correlation is a technique to measure the similarity of two images (or image blocks) 

of the same size. To compute the maximum phase correlation of two images I1 and I2, one per-

forms in following steps:  

1. Apply the Fourier transform F on both images:  

F1 = F (I1),   

F2 = F (I2). 

2. Calculate the cross-power spectrum by element-wise multiplying the first result F1 

with the complex conjugate of the second result F2 and normalizing this product:  

*
21

*
21

.

.

FF

FF
R =  , 

where x * denote the complex conjugate of and | x | is the complex magnitude of x.  

3. Obtain the normalized cross-correlation by applying the inverse Fourier transform 1−F  

to the cross-power spectrum: 

)R(FIR 1−=  . 

4. Compute the maximum of the phase correlation: 

PC = max (IR) . 
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The maximum phase correlation PC infers the location of the peak of the relative 

translation offset between the pair images I1 and I2, and can be used as a similarity cri-

terion.  

4.4.2 The Proposed Technique 

In this section, following the general scheme presented in Figure 4-2, we propose a new tech-

nique based on Radon transformation and phase correlation. The technique consists of the 

following steps (a detailed description is presented in Algorithm 4-1). 

Segmentation: Divide the M×N image to be tested into overlapping blocks. The image is 

scanned from the upper left corner to the lower right corner, sliding a B×B block over the im-

age. This results in (M–B+1)×(N–B+1) blocks. 

Feature extraction: For each block, apply the Radon transform in various directions, which 

are specified by a set of angles. The result is a matrix where each column contains the projec-

tions with respect to predefined angle.  

Sorting: Vectorize the transformed matrices of every block and store each of them as a row in 

a matrix. Subsequently, the rows are sorted lexicographically.  

Matching:  Compute the maximum phase correlation of two image blocks, which are corre-

sponding to every pair of contiguous rows. Two blocks are approximate if their maximum 

phase correlation is larger than a predefined threshold.  

Decision: If there are two groups of connected approximate blocks, where every pair of ap-

proximate blocks has the same spatial distance in the image and the number of blocks in each 

group is larger than another predefined threshold, we rate the image as forged. 

Algorithm 4-1:  Improved technique for copy-move forgery detection. 

1. Input an M×N image. 

2. Initialize the parameters: 

� B: fixed size of image block. 

� θ: set of angles (e.g. θ  = {0, 1, 2, …, 179}). 

� T1: maximum phase correlation threshold (range from 0 to 1). 

� T2: minimum offset threshold. 

� T3: threshold on the number of connected image blocks. 
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� C: a M×N matrix, which is initialized by zero. 

3. Apply Radon transform for a set of angles θ to each overlapping B×B block, resulting 

in a matrix R (each column of R is the Radon transform for one of the angles in θ).   

4. Vectorize R for each image block and store it as a row of a matrix S. Subsequently, the 

number of rows of S corresponds to the same of the number of image blocks. 

5. Sort the rows of S in lexicographic order. Let is
r

 denotes the row i of S; let bi denote 

the block corresponding to is
r

 (note that unlike is
r

 and 1+is
r

, the blocks bi and bi+1 are 

usually not adjacent); let (xi , yi) denote the position of the block bi in the image (top-

left corner). 

6. For every pair of is
r

 and 1+is
r

 

� Compute the maximum of phase correlation between the bi and bi+1, resulting 

in PCi. 

� If PCi > T1 then 

If (xi – xi+1)
2 + (yi – yi+1)

2 > T2 then 

 u = |xi – xi+1| 

 v = |yi – yi+1| 

 C(u, v) = C(u, v) + 1 

End if 

          End if   

7. If C(u, v) > T3 for any pair (u, v) then the image is judged as forged. 

  

4.4.3 Experimental Results 

In this section we evaluate our proposed technique (called RTPC) and compare to the DCT-

based technique [18] (called DCT). We use the framework mentioned in Chapter 3 for this 

purpose. 

In the Radon transform, the more angles we use the cost in terms of time and memory con-

sumption increases. In our experiments, we specify projection directions by angles from 0° to 

179° with a reasonable incremental step of 10°. To choose a good threshold for the maximum 

phase correlation, we test the RTPC technique on several image datasets by using different 
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values of the threshold (T1) of 0.7, 0.8 and 0.9. We found that once the threshold T2 is fixed to 

20, the detection rates in detecting the forged dataset are always larger than 99%, but the false 

positive rates in classifying original images are 18%, 12% and 5.5% respectively. Therefore, in 

our experiments, we set the threshold T1 = 0.9. With the same parameters of the threshold T2 = 

20, the technique [18] has a detection rate of 99.5% in detection of the forged dataset and a 

false positive rate of 4.5% in detection of the original dataset. The results show that both tech-

niques work well in the absence of attacks. 

Next, we test the techniques against some common attacks such as rotation and noise addi-

tion. The experimental results are presented in Table 4-13 and Table 4-14. We realize that both 

analyzed techniques are quite robust against rotation with the small angle of 1°. While the 

technique [18] is not robust against rotation with larger degrees, the RTPC technique is more 

robust and can detect rotated images by 3° with detection rates larger than 70%. While [18]  

seems robust against Gaussian noise addition only with the SNR larger than 40 dB, the RTPC 

technique is more robust against noise addition in most cases. 

Angle 1° 2° 3° 4° 

DCT [18] 94.0% 65.0% 41.5% 26.5% 

RTPC 99.5% 96.5% 71.0% 36.0% 

Table 4-13: Detection rates for detecting rotated images (B = 16). 

SNR 45 dB 40 dB 35 dB 30 dB 

DCT [18] 96.0% 46.0% 15.0% 5.0% 

RTPC 94.5% 88.5% 67.5% 29.0% 

Table 4-14: Detection rates for detecting forged images with added Gaussian noise (B = 16).  

Angle  1° 2° 3° 4° 

DCT [18] 36.0% 23.5% 20.5% 15.5% 

RTPC 72.0% 28.0% 25.0% 19.5% 

Table 4-15: Detection rates for detecting copy-rotate-moved images (B = 16). 

Additionally, we test the techniques with a simple in-processing attack. The dataset of at-

tacked images is created by copying a random square part of size of 64×64 pixels in each 

image from the original dataset, rotating the copied part with a small angle, and then pasting it 

at another position of the same image. The experimental results are shown in Table 4-15. We 
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can see that the technique [18] is not robust against this attack and the RTPC based technique 

is rather robust only in the case of the small rotation angle of 1°. 

In order to keep the compatibility with the paper [18], in the previous tests, we used an im-

age block size of 16×16 pixels (B = 16) for both tested techniques. However, in copy-move 

forgery detection, the block size can affect the detection rates of the forensic techniques sig-

nificantly. Thus, we evaluate the techniques with another block size of 8×8 pixels (B = 8). We 

set the threshold T2 to 25 in order to keep the false positive of the technique at 4.5% while the 

detection rate at 99.5%. Since the original technique of [18] uses the block size of 16, some 

thresholds of the technique [18] were adjusted so that the false positive is lower than 5% and 

the detection rate in the absence of any post-processing or attack is about 99%.  

The experimental results of the detection techniques when B = 8 in the tests of rotation, 

Gaussian noise addition and an in-processing attack are shown in Table 4-16, 4-17, and 4-18. 

We realize that by using a smaller block size of 8×8 pixels, the proposed technique is robust 

against rotation with angles smaller than 4°, Gaussian noise addition with SNR larger than 35 

dB and the in-processing rotation with an angle of 1°. In comparison to [18], our technique is 

more robust in all test cases. 

Angle 1° 2° 3° 4° 

DCT [18] 91.0% 52.5% 34.5% 23.0% 

RTPC 99.5% 99.5% 79.0% 49.5% 

Table 4-16: Detection rates for detecting rotated images (B = 8). 

SNR 45 dB  40 dB 35 dB 30 dB 

DCT [18] 35.0% 3.5% 0% 0% 

RTPC 92.0% 89.0% 67.5% 25.0% 

Table 4-17: Detection rates for detecting images with added Gaussian noise (B = 8). 

Angle 1° 2° 3° 4° 

DCT [18] 41.5% 31.5% 28.0% 19.5% 

RTPC 82.0% 47.5% 40.5% 23.0% 

Table 4-18  Detection rates for detecting copy-rotated-moved images (B = 8). 
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4.5 Summary 

Copy-move forgery detection is an important problem in the field of digital image forensics. In 

this chapter we applied the proposed framework to evaluate the effectiveness, robustness and 

security of three copy-move forgery detection techniques of Fridrich et al. [18], Popescu and 

Farid [35] and Luo et al. [85]. The effectiveness and security of the techniques were evaluated 

by examination of their detection rates and correctness rates in tests on forged images and at-

tacked images respectively. We designed some targeted attacks based on the analysis of the 

characteristics of each technique and thereby assessed their security. We have shown that all 

tested techniques can effectively be defeated by rather simple signal processing techniques. It 

is then possible to disguise a forged image as authentic. Lastly in this chapter, we designed a 

new technique for the detection of copy-move forgeries. The technique uses the Radon trans-

form and phase correlation, resulting in more robust results in comparison with the baseline 

technique [18] in the same test conditions. 
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5 Security of Re-sampling Detection Techniques 

5.1 Introduction 

In order to create convincing forged images, one usually applies geometric transformations to 

the images or to a part of them. Many geometric transformations such as rotation and resizing 

involve a re-sampling step, which may not be easily realized by human eyes. Interpolation is 

the central step of re-sampling in order to estimate the value of a signal at intermediate posi-

tions of the original samples. This step is the key to smooth the signal and create a visually 

appealing image [101]. Since interpolation creates specific statistic artifacts in the re-sampled 

images, detecting traces of re-sampling is a popular approach in the field of image forensics.  

Many re-sampling detection techniques have been proposed, and they can be divided into 

two main approaches. The first approach is based on predicting the dependency of neighboring 

image pixels [38], [102], [103]. The second approach is based on computing the variance of 

the second derivatives of the analyzed image [40], [41], [104]. To evaluate the effectiveness of 

the techniques the authors of [38] used 200 uncompressed images as the original dataset, and 

selected 50 images to create re-sampled versions. The number of testing images in [102] and 

[103] is 200 and all of them have been used to produce re-sampled images. The techniques in 

[104] were tested with only one image, while in [40] used 114 images, and [41] used 40 im-

ages. To evaluate the robustness of a certain technique, the authors usually apply several post-

processing operations to re-sampled images.  

It is obviously difficult to judge which detection technique is better since they were evalu-

ated on different datasets under different testing conditions. To fill this gap, Uccheddu et al. 

[105] proposed an experimental methodology and applied it to evaluate and compare the two 

re-sampling detection techniques of Kirchner and Gloe [103] and Mahdian and Saic [41]. In 

the paper, the authors used a dataset of 200 images in different categories; both analyzed tech-

niques were tested following the same methodology. In the effectiveness test they considered 

only re-scaled images and in the robustness test they limited their study to JPEG compression.  

In this chapter, we study three well-known re-sampling detection techniques of Gallagher 

[40], Mahdian and Saic [41], and Popescu and Farid [38]. Next, we apply the general test 

framework of Chapter 3 to evaluate the effectiveness and robustness of the techniques. We 

design some targeted attacks in order to defeat the techniques. Consequently, we can assess the 

security of the detection techniques.  
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Lastly, we propose some improvements which enhance the robustness despite post-

processing operations. 

5.2  Effectiveness Analysis 

5.2.1 Implementation of Detection Techniques 

Since the implementation of re-sampling detection techniques are often not available, we first 

implemented detection algorithms according to the description in published papers. In this sec-

tion, we review the techniques in [38], [40], [41] and give details on their implementations.  

Gallagher realized that low-order interpolated signals introduce periodicity in the variance 

of their second derivatives with a period that is equal to the re-sampling factor [40]. This ob-

servation can be used to detect whether an image has been re-sampled. Specifically, the 

periodicity is uncovered by computing the discrete Fourier transform (DFT) of the second de-

rivatives of the analyzed signals. In image forensics, the signals are rows (or columns) of the 

analyzed image. 

Although Mahdian and Saic [41] proved more generally that the variance of the nth deriva-

tive of a re-sampled signal is also periodic, they used only the second derivative in their 

experiments. This detection algorithm consists of the following steps. Firstly, in a similar way 

as [40], the second derivatives of the analyzed signal is calculated. Next, the Radon transfor-

mation (see Section 4.5.1) is employed to compute projections of magnitudes of the second 

derivatives along specified directions. The authors apply this algorithm to every row (or col-

umn) of the examined image. The implementation of the core part of the technique is available 

on the website of the authors [106].  

The algorithm of Popescu and Farid [38] is probably the most widely used method. The au-

thors noted that there are linear dependencies between neighboring image samples (pixels) in 

re-sampled images. In order to determine these correlations, they employed the expecta-

tion/maximization (EM) algorithm [107] to estimate the linear correlation between each pixel 

and its neighbors, eventually computing the probability of each sample being correlated to its 

neighbors. To this end, the technique employs a linear predictor to approximate the value of 

each sample yi as the weighted sum of its surrounding N×N samples. Thus, the residue of each 

sample yi and its neighbors can be modeled as: 

   ∑
−=

+−=
N

Nk
kikii yyr α  . 
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The correlation probability pi of each sample is computed based on the prediction error r i 

which is modelled as a zero-mean Gaussian random variable:  

   








 −
=

2

2

2
exp

2

1

σπσ
i

i

r
p  . 

The probability values of all samples of an image together form the probability matrix 

(called p-map). The authors of [38] empirically found that the p-map of a re-sampled image is 

periodic and the periodicity becomes evident through the peaks in the frequency domain. 

However, the values of the weights (α) are usually not known in practice, so the p-map can not 

be computed directly. The authors of [38] use an initial set of α for the estimation and then use 

Weighted Least Squares (WLS) integrated into an iterative EM algorithm in order to optimize 

the values of α and estimate the correlation of neighboring samples. 

The detection results are transformed to the frequency domain in order to uncover interpo-

lation artifacts in the form of peaks. To quantify the performance of these techniques, we use a 

threshold-based peak detector that reaches for local maxima (peaks) in the frequency domain. 

Since there is a trade-off between the detection rate and the false positive rate (FPR), the 

threshold has been chosen carefully through experiments. In tests with the framework pro-

posed in Chapter 3, we found that the techniques of Gallagher [40] and Mahdian and Saic [41] 

have a high FPR: when we adjust thresholds so that their detection rates (in test the dataset of 

forged images) are larger than 90%, their FPR (in test the dataset of original images) is lower 

than 18%. At the same time, the detection rate of [38] is larger than 90% while its FPR is 

rather low (about 6%). As an effort to reduce the FPR for the techniques in [40], [41] to below 

10% by adjusting the thresholds which they used, we found that their detection rates decreased 

significantly, so we missed many forgeries. The reason for the higher FPR is that many false 

positives were caused by strong textures. Since the techniques in [40], [41] are based on exam-

ining the second derivatives of images, strong textures produce periodic patterns in original 

images, which yield peaks in the frequency spectrum similar to re-sampled images.  

5.2.2 Effectiveness Analysis of Detection Techniques 

In this section, we apply the test framework to assess the effectiveness of re-sampling detec-

tion techniques of Popescu and Farid [38], Gallagher [40] and Mahdian and Saic [41]. Firstly, 

we create a dataset of original images by randomly collecting 200 uncompressed images from 

[82]. The images are then converted to gray-scale, and cropped to the size of 256×256 pixels. 

We created different datasets of up-sampled, down-sampled, and rotated images with different 

factors. Since all of these techniques employ statistical methods, their effectiveness can be af-
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fected by the dataset in use. Thus, we also evaluate the techniques on a dataset of 128×128 

images and 256×256 images. 

All re-sampled images are created from the original image dataset by using the imresize 

function of Matlab. We found that the techniques can detect up-sampled images with scaling 

factors are larger than 1.1 rather well. They detect perfectly (with a detection rate of almost 

100%) re-sampled images of size 128×128 pixels by a scaling factor larger than 1.3, and re-

sampled images of size 256×256 by a scaling factor larger than 1.2. Gallagher [40] showed 

that in the special case of interpolation by a factor of 2.0, there are no meaningful peaks pro-

duced in normalized frequency. This is confirmed by our experiments. 

The experimental results for detecting up-sampled images of size 128×128 and 256×256 

pixels are presented in Figure 5-1 and Figure 5-2. Since the techniques are based on statistical 

methods, using larger images for testing, we apparently get stronger and more accurate detec-

tion results. In the same way of testing up-sampled images, we tested down-sampled images 

with different scaling factors from 0.4 to 0.9. We realized that the detection rates of the tech-

niques in detecting down-sampled images are low (Figure 5-3). The reason is that down-

sampling causes loss of information, thereby limiting the detection capabilities of the statisti-

cal based detection techniques [38], [40], [41]. 

Following the tests with up-sampled and down-sampled images, we evaluate the detection 

techniques on rotated images with different angles. All rotated images were created from the 

dataset of 256×256 original image by using the imrotate function of Matlab with bicubic in-

terpolation. In order to reject the black parts in the corners of the rotated images, we crop the 

image and keep only the center part of size 196×196 of each rotated image for evaluation. We 

realize that the technique [38] can detect rotated images (with a rotation angle larger than 5 

degrees) with a detection rate of about 80%, while the techniques based on investigating the 

second derivatives of images [40], [41] are not robust against rotation (Figure 5-4). 
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Figure 5-1: Detection rate for 128×128 up-sampled images. 
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Figure 5-2: Detection rate for 256×256 up-sampled images. 
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Figure 5-3: Detection rate for 256×256 down-sampled images. 
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Figure 5-4: Detection rate for 256×256 rotated images. 

5.3 Robustness and Security Analysis 

5.3.1 Robustness Analysis 

To make tampering more convincing, post-processing is commonly applied to re-sampled im-

ages. However, post-processing often worsens the effectiveness of detection techniques. In 

order to assess the robustness of the techniques, we employ different post-processing opera-

tions in the re-sampled images. We choose 200 up-sampled images with the factor of 1.2, 

where the detection rate was very high for all considered techniques. Specifically, the detec-

tion rates of the techniques for the up-sampled images with the scaling factor of 1.2 are larger 

than 90% in the case of images with 256×256 pixels (Figure 5-2). 

We applied some post-processing operations such as Gaussian noise addition and JPEG 

compression to the up-sampled images. The detection results after the post-processing are pre-

sented in Figure 5-5 and Figure 5-6. While the techniques of Popescu and Farid [38] and 

Gallagher [40] are defeated in case of added Gaussian noise with a SNR lower than 30 dB, the 

technique Mahdian and Saic [41] is more robust. All techniques are more robust against add-

ing Gaussian noise with higher SNR. The technique [40] is sensitive to noise, but it is more 

robust against JPEG compression than the technique [41]. However, JPEG compression cre-

ates blocking artifacts, which introduce periodical peaks, which are similar to the impact of 

interpolation in the frequency domain. These peaks create false positives in the detection re-

sults and thus the detection rates sometimes grow inversely proportional to the quality factors 

when detecting by using the technique [38]. 
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Figure 5-5: Detection rate for up-sampled images with post-processing by adding Gaussian 
noise (solid lines and dashed lines present results for 256×256 images and 128×128 images 
respectively). 
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Figure 5-6: Detection rate for up-sampled images with post-processing by JPEG compression 
(solid lines and dash lines present results for 256×256 images and 128×128 images respec-
tively). 

In light of [60], we use median filtering as a post-processing operation to the re-sampled 

images. Although in the original papers [38], [40], [41], the authors have not considered me-

dian filtering, during our experiments, we identify median filtering as an effective attack 

against several re-sampling detectors. Since the median filter is nonlinear, it defeats well the 

techniques based on the detection of local linear dependency [38]. The experimental results of 

the techniques under test with re-sampled images are presented in Figure 5-7. In order to sat-

isfy the trade-off between the attack effectiveness and the quality of the attacked images, we 

suggest using Gaussian noise with SNR of 30 or median filtering with a window size of 3 (see 

Table 5-1). Although the techniques of Gallagher [40] and Mahdian and Saic [41] seem more 
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robust against some attacks than the technique of Popescu and Farid [38], we noted that [40], 

[41] have much higher FPR than [38] with the fixed thresholds we chose for tests.  

We propose a new attack by using order-statistic filtering. The filter replaces each pixel in a 

re-sampled image by the third largest value of the pixel among its north, east, south and west 

neighbours. We use this filter to attack up-sampled images with a scale factor of 1.2. In Table 

5-1, we show the efficiency of the attack against the techniques [38], [40], [41]: it mostly de-

feats the technique of Popescu and Farid [38]. 
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Figure  5-7: Detection rates for up-sampled images with post-processing by median filtering 
(solid lines and dashed lines present results for 256×256 images and 128×128 images). 

A good attack not only reduces the detection rates of detection techniques, but also retains 

image quality. To quantify this factor of an attack, we compute the average difference between 

pairs of re-sampled images (before the attack) and attacked re-sampled images (after the at-

tack). The difference is measured by calculating the PSNR: a higher PSNR normally indicates 

that the attacked image is of higher quality. In Table 5-2 we show the average difference be-

tween re-sampled dataset (without any attack) and its attacked versions. It should be noted 

that, although median filtering is an effective attack to re-sampling detectors, it may leave spe-

cific evidence which can be detected and thus reveal the existence of the attack [66]. 

 Gallagher  
[40] 

Mahdian and 
Saic [41] 

Popescu and 
Farid [38] 

Gaussian noise with SNR=30 26.0% 55.0% 14.0% 

Median filter with size=3 30.5% 25.0% 5.5% 

Order-statistic filter 71.0% 39.0% 4.0% 

Table 5-1: Detection rates for up-sampled images after attack by using Gaussian noise, me-
dian filter, and order-statistic filter. 
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Gaussian noise 
with SNR = 30 

Median filter 
with size = 3 

Order statistic 
filter 

23.3 dB 18.4 dB 21.0 dB 

Table 5-2: Average PSNR between re-sampled images and attacked re-sampled images. 

The robustness of [38] was determined by applying different countermeasures, such as 

Gaussian noise addition and JPEG compression to re-sampled images. Nevertheless, the au-

thors of [60] showed that the reliability of the technique was still analyzed only on the surface. 

Therefore, the authors proposed in [60] some targeted attacks against the technique [38]. The 

first attack is based on nonlinear filtering, the second attack is based on the Sobel edge detec-

tor, and the third attack integrates both mentioned attacks. In the next section, we design some 

other rather simple but effective targeted attacks against [38]. The first attack is based on mul-

tiple re-sampling by specific scales, the second attack is based on hybrid median filtering, and 

the third attack employs a combination of both. We use the attacks to evaluate the security of 

our improved technique which we propose in Section 5.4.2. 

5.3.2 Attack Based on Multiple Re-sampling 

When an image is down-sampled by a factor of two, no sample in the down-sampled image 

can be written as a linear combination of its neighbors [38]. Subsequently, traces of re-

sampling should not be noticed in theory.  Hence, we design an attack to disguise a re-sampled 

image by up-sampling by a factor of two and down-sampling it by a factor of two, thus yield-

ing an image of the original size. We call the process attack by multiple re-sampling. 

Figure 5-8 illustrates the detection process of [38] which consists of testing images, their 

corresponding p-maps and the Fourier transform of the p-maps. We realize that there is no 

peak in the Fourier transformed p-map of the original image, but in the case of an up-sampled 

image, its transformed p-map has remarkable peaks. Although the quality of the tested image 

is not noticeably affected by the attack of multiple re-sampling, at the same time the peaks 

have not been absolutely eliminated (i.e. the traces of re-sampling can still be uncovered by 

the re-sampling detector). Using the detector of [38] on a dataset of 200 up-sampled images by 

a factor of 1.2, we obtained a detection rate of 99%. After applying the attack to the up-

sampled images, the detection rate is reduced to 84%. 
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Figure 5-8: Shown in the top row is the original image, in the middle row the same image up-
sampled by a scaling factor of 1.2, and in the bottom row the same up-sampled image, post-
processed by the attack of multiple re-sampling. Each row shows the image itself, its p-map 
and the Fourier transform of the p-map. 

5.3.3 Attack Based on Hybrid Median Filter 

Since the technique [38] is based on detecting linear dependencies between neighboring sam-

ples, all kinds of nonlinear filters applied as a post-processing step are candidate attacks [60]. 

The authors of [60] proposed a targeted attack based on median filtering. While the attack is 

successful to conceal traces of re-sampling, the visual quality of the attacked images suffers 

from noticeable blurring. To overcome this drawback, we design a targeted attack which is 

based on another nonlinear filter called hybrid median filter [108]. The filter consists of three 

steps, each being applied to a N×N sliding window (N must be odd). In the first step we com-

pute the median of horizontal and vertical pixels in a N×N block (called M1). In the second 

step we compute the median of diagonal pixels in the block (called M2). Finally, the filtered 

pixel value is the median of the two median values (M1 and M2) and the center pixel of the 

block.  

Figure 5-9 illustrates the detection results of [38] for both kinds of nonlinear filters. We 

found that the median filter destroyed most evident peaks in the transformed p-map, but it also 

makes the image blurry. Conversely, the image attacked by the hybrid median filter is much 

less blurred, but sometimes peaks are still retained. When testing [38] on a dataset of 200 up-
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sampled images by a factor of 1.2, the detection rate is 99%. After applying the hybrid median 

filter to the up-sampled images, the detection rate is degraded to 76%. 

       

       

Figure 5-9: Shown in the top row is the up-sampled image attacked by the 3×3 median filter 
and in the bottom row the same up-sampled image post-processed by a hybrid median filter 
with N = 3. Again, we show the image, its p-map and the Fourier transform of the p-map. 

5.3.4 Combination Attack 

Although the proposed targeted attacks reduce the capability of detecting re-sampling, the de-

tection rates are still high. In order to design a more powerful attack, we use them in 

combination: Firstly, the image is up-sampled by a factor of two, then down-sampled by a fac-

tor of two. The image is then anti-aliased in order to remove aliasing artifacts of the down-

sampling process. Lastly, a hybrid median filter is applied to the image.      

Figure 5-10 illustrates the detection results of an up-sampled image which has been ma-

nipulated by the combination attack. We see that all peaks disappeared in the transformed p-

map, while the quality of the attacked image remains good. When we apply the combination 

attack to a dataset of 200 up-sampled images by a factor of 1.2, we found that the detection 

rate of [38] is reduced impressively to 3%. 

       

Figure 5-10: Detection results of the up-sampled image by a scaling factor of 1.2 and then 
post-processed by the combination attack. 
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5.4 A New Technique for Re-sampling Detection 

5.4.1 Fast Re-sampling Detection 

The core part of [38] is the EM algorithm used to estimate the probability of linear dependen-

cies between neighboring samples. The results for all samples in the analyzed image are used 

to create the p-map. The remarkable peaks in the Fourier transform of the p-map become evi-

dence to uncover traces of re-sampling and can be recognized easily by a peak detector.  

Kirchner [102] showed that it does not matter what prediction weights (α) are used in the 

analysis, the linear prediction errors which determine the p-map will always be periodic in 

case of a re-sampled image. Thus, the author showed that the rather complex and time con-

suming EM estimation is not compulsory. As a result, he presented a fast but still reliable re-

sampling detector that uses a pre-defined set of weights α. Kirchner [102] empirically found 

one of the best preset filter coefficients α for computation of the prediction error as: 
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.            (Equation 5-1) 

Although the values of prediction weights do not affect the periodicity of the p-map, differ-

ent sets of weights create different peak intensities in the p-map. For this reason, we call a p-

map computed based on some predefined weights a pseudo p-map (pp-map for short). 

Through experiments, we found many times that using one predefined set of α in the algorithm 

of [102], peaks can be recognized in the transformed pp-map, but using another set, peaks are 

not evident (though the periodicity exists in theory). Consequently, the selected set of α 

strongly affects the obtained outcomes. Whilst the major advantage of [102] versus [38] is by-

passing the EM estimation, we realize that the technique [38], where the intensities of the p-

map are correctly computed is more robust and reliable.                  

5.4.2 The Proposed Technique 

In this section, we introduce a re-sampling detection technique which consists of three main 

steps: 1) computing the pseudo probability map (pp-map), 2) applying the Radon transform to 

the pp-map and 3) detecting strong peaks in the Fourier domain of the pp-map. The detailed 

steps of the detection process are presented in Algorithm 5-1. 

Probability Map Computation: The residue of a sample is computed following Equation 5-2 

where the prediction weights are predefined in Equation 5-1. The probability of a pixel being 

correlated in the neighboring region is estimated based on the residue, modelled as a zero-
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mean Gaussian noise described in Equation 5-3. These steps compute the pp-map without us-

ing the EM algorithm as in [38].  

Radon Transformation: Mahdian and Saic [41] improved the technique of Gallagher [40] by 

applying the Radon transform to the second derivatives of testing images. Accordingly, the 

technique [41] can detect not only rescaled images but also rotated images. The major draw-

back of [41] is its high false positive rate, especially when applied to images which containing 

strong textures. Inspired by the work of [41], we apply the Radon transform (see Section 

4.4.1) to the pp-map of the image. To this end, firstly, the Radon transformation of the pp-map 

is computed for a set of predefined angles; this results in a set of projected vectors which are 

arranged in a matrix. If the image has been re-sampled, the corresponding auto-covariance 

matrix of the vectors exhibits a specific periodicity. Since our goal is to determine if an image 

has been subject to geometric transformations, we focus on the strongest periodic patterns pre-

sent in the Fourier transform of the auto-covariance of the projected vectors. We assume that 

this technique works well for re-sampling detection due to the periodicity of the pp-map of re-

sampled images shown in [102]. 

Peak Detection: After applying the Radon transform to the pp-map, we obtain a spectrum 

where critical peaks can easily be recognized. As an example, Figure 5-11 shows the results of 

applying the detector to an original image and a re-sampled image respectively. In order to 

infer the detection results, we search for strong peaks by computing the local maximums of the 

spectrum and infer the positions of the peaks based on a predefined threshold. 

                          

           
                                        (a)                                                            (b)                 

Figure 5-11: (a) Detection results of an original image, where the peaks in the Fourier spec-
trum are not clear; (b) detection results of the up-sampled image by a scaling factor of 1.2, 
where clear and strong peaks can easily be recognized. 
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Algorithm 5-1:  Improved technique for re-sampling detection. 

1. Input an image y of size M×N. 

2. Initialize the parameters: 

� Choose σ, θ 

� Set α = [-0.25, 0.5, -0.25, 0.5, 0.5, -0.25, 0.5, -0.25] 

� Set
)min()max(

1
0 yy

p
−

=  

� Compute the pseudo probability matrix (pp-map).   

For each sample i 
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+−=
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kiykiyir α           (Equation 5-2) 

         where: y(i + k) with k = 1, 2,…, 8 denote 8 neighboring samples of y(i). 
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       End 

3. Apply Radon transform following a set of angles θ to the pp-map w; this result in a 

matrix R, each column of R is a vector Rp of the Radon transform for one of the set of 

angles θ. 

4. Identify the evidence of re-sampling by locating the strongest periodic patterns present 

in the Fourier transformation of the auto-covariance of every Rp. 

 

 

5.4.3 Experimental Results 

Using the framework of Chapter 3, we tested the technique of  [38] and our improved version 

with different image datasets of original images, re-sampled images and attacked re-sampled 

images. Firstly, we randomly collected 200 uncompressed images from [82], converted them 

to gray-scale and cropped each of them to 256×256 pixels in order to create a dataset of origi-

nal images. From the dataset of original images, we created different datasets of up-sampled, 

down-sampled, and rotated images by different factors. 
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For our test, we use the set of weights (α) as in Equation 5-1. This set is also used as the 

initial weights in [38]. In both techniques, the size of the neighborhood is set to 3. In order to 

allow a fair comparison, we set the thresholds so that their detection rates in detecting up-

sampled images by a factor of 1.2 are larger than 80% and their false positive rates when de-

tecting original images are lower than 5%. 

As presented in Section 5.3, the median filter is a strong attack against re-sampling detec-

tors based on linear dependencies between neighboring samples. However, the major 

disadvantage of this attack is blurring. Among our targeted attacks, the hybrid median filter 

and the multiple re-sampling attack affects image perception quality less, but they seem not 

strong enough. The combination attack is more powerful, while still maintaining the image 

quality. The detection rates can be seen in Table 5-3. Both techniques work well to detect 

traces of re-sampling (with the detection rates of 99% and 83.5%) respectively and false posi-

tive rates below 5%. However, while the technique of [38] is mostly defeated by the 

combination attack with a detection rate down to 3%, our proposed technique is much more 

robust, as the detection rate remains over 50%. Consequently, in this section, we use only the 

combination attack in order to evaluate the security of the re-sampling detection techniques. 

 No  
Attack 

Median 
filtering 

Hybrid 
median 
filtering 

Multiple 
resam-
pling 

Combina-
tion attack 

Popescu and Farid [38]  99.0% 1% 76.0% 84% 3.0% 

Proposed 83.5% 25% 68.5% 66% 54.5% 

Table 5-3: Detection rates when applying different attacks to up-sampled images by a scaling 
factor of 120%. 

Next, we test both techniques with down-sampled images by different scaling factors. We 

realized that the detection rates of both techniques in detecting down-sampled images are 

rather low (Figure 5-12). The reason is that the down-sampling causes loss of information, 

thereby limiting the detection capacity. 

We then evaluate the techniques with up-sampled images and rotated images as well as 

their attacked versions. The attacked images are created by applying the combination attack to 

the re-sampled images. We found that both techniques can detect up-sampled images by a 

scaling factor larger than 5% rather well (see Figure 5-13). The technique of [38] even detects 

up-sampled images by a factor larger than 10% perfectly (with a detection rate of nearly 

100%). However, on the attacked images the detection rate of [38] is decreased significantly. 

This shows that [38] is not robust against this targeted attack. Although the proposed technique 



 

 

 

5. Security of Re-sampling Detection Techniques                                                                     70 

is not as powerful as [38] in detecting re-sampled images, it seems more robust against the 

combination attack. A similar situation occurs when rotated images are analyzed: both tech-

niques work quite well once images are rotated by an angle larger than 3° (Figure 5-14). 

Although the proposed technique is little more robust than [38], both of them are almost de-

feated by the combination attack. 
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Figure 5-12: Detection rates for down-sampled images of our proposed technique (solid line), 
and the approach of Popescu and Farid [38] (dashed line). 
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Figure 5-13: Detection rates for up-sampled images (dashed-star line for [38], solid-star line 
for our proposed technique) and for attacked up-sampled images (dashed-circle line for [38], 
solid-circle line for our proposed technique). 
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Figure 5-14: Detection rates for rotated images (dashed-star line for [38], solid-star line for 
our proposed technique) and for attacked rotated images (dashed-circle line for [38], solid-
circle line for our proposed technique). 

Due to using the Radon transform, our proposed technique is less sensitive to noise. To 

confirm this, we test the techniques with up-sampled images by a factor of 1.2 without any 

post-processing operation and with Gaussian noise addition. The results are shown in Table 5-

4. While the detection rate of [38] is 99% in tests with up-sampled images, it is totally de-

feated when the images are post-processed by adding Gaussian noise by the SNR of 20 dB. 

 No Attack 20 dB 25 dB 30 dB 35 dB 

Popescu and Farid [38] 99.0% 1.0% 10% 36% 62.5% 

Proposed 83.5% 36.5% 68% 77% 79.0% 

Table 5-4: Detection rates for up-sampled images by a factor of 20% for and added Gaussian 
noise with SNR of 20 dB, 25 dB, 30 dB, and 35 dB. 

 Add Noise  
SNR=25 dB 

Median  
Filtering 

Combination 
Attack 

PSNR 21.20 dB 20.29 dB 22.93 dB 

WPSNR 34.30 dB 32.74 dB 36.13 dB 

Table 5-5: Difference between re-sampled images and attacked re-sampled images. 

In order to quantify this aspect of an attack, we compute the average difference between 

pairs of re-sampled images (before the attack) and attacked re-sampled images (after the at-

tack). The difference is measured by the PSNR and the WPSNR. A higher PSNR or WPSNR 

usually indicates that the attacked image is of higher quality. In Table 5-5, we show the aver-

age PSNR and WPSNR of 200 pairs of up-sampled images (by a factor of 1.2) and their 

versions under different attacks of adding Gaussian noise (25 dB), median filtering and the 
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combination attack. We found that the combination attack maintains the best image quality 

among the test cases. 

5.5 Summary 

Re-sampling is involved in many image processing operations. Thus, detecting traces of re-

sampling is an important problem in the field of image forensics. In this chapter, we discussed 

several re-sampling detection techniques [38], [40], [41] and used the test framework of Chap-

ter 3 to evaluate the selected techniques. We designed some targeted attacks against the 

techniques in order to assess their security. We found that all analyzed techniques can be de-

feated by the combination attack. Lastly, we proposed a new re-sampling detection technique 

which offers better security in comparison with a state of the art technique of Popescu and 

Farid [38]. 
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6 Forgery Detection in JPEG Images 

6.1  Introduction 

JPEG was proposed by the Joint Photographic Experts Group as a compression standard for 

continuous-tone still images, both gray-scale and color. The standard defines how an image is 

compressed into a stream of bytes and decompressed into an image for display. The JPEG 

standard is used in a number of image file formats such as EXIF (Exchangeable Image File 

Format) or JFIF (JPEG File Interchange Format). JPEG is mostly used in the form of lossy 

compression, where the compression rate can be adjusted. The JPEG file format is popular be-

cause of its efficiency of storage. In fact, most cameras in the market can export photos in 

JPEG file format and most tools for image editing support it.  

Due to the popularity of the JPEG format, forgery detection for JPEG images became es-

sential in digital image forensics. Although there are many ways of making forgeries in a JPEG 

image, most share three main steps: 1) loading the JPEG image which is compressed by a qual-

ity factor QF1 to a photo editing software, 2) manipulating this image and 3) re-compressing it 

as a JPEG file with quality factor QF2. Consequently, the re-saved image has been doubly 

JPEG compressed. Note that double JPEG compression (called D-JPEG) is not always a signal 

of malicious tampering: sometimes an image is re-compressed as JPEG with lower quality in 

order to save storage space or the image is re-saved after legitimate modification. Neverthe-

less, detection of D-JPEG can provide an important tool for authentication of JPEG images 

before further analysis [13].  

Some authors [13], [42] found that when QF1 is different from QF2, periodic artifacts are 

present in the histograms of the DCT coefficients of D-JPEG images. This periodicity can be 

recognized in the Fourier transform domain through peaks in the spectrum. Based on this spe-

cific property, Popescu [13] proposed a technique to detect D-JPEG images. Lin et al. [110] 

expanded the global approach of [13] by locating tampered regions in the images. Bianchi et 

al. [111] developed an enhanced version of [110], leading to an improvement of the accuracy 

of the algorithm. Ye et al. [112] proposed a technique to estimate the local JPEG compression 

blocking artifacts by finding inconsistencies in the blocking artifacts. Some authors [113], 

[114] showed that the distribution of the most significant digit of the DCT coefficients in JPEG 

images follows the generalized Benford distribution. The distribution is very sensitive to the 

double JPEG compression and consequently this property can be applied to detect D-JPEG 

images. Farid [115] designed a technique to detect if a part of a JPEG image was initially com-
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pressed at a lower quality than the rest of the image. Chen et al. [116] proposed a set of image 

features, which have subsequently been evaluated by a SVM based classifier. 

The aforementioned techniques are based on the characteristics of JPEG blocking artifacts; 

therefore, they can be attacked by destroying these artifacts. A popular attack is cropping: fo-

rensic techniques are usually defeated if the JPEG images are cropped before recompressing. 

The reason is that the corresponding blocking grids of the first compression and in the second 

compression are no longer aligned. To overcome this limitation, some more robust techniques 

have been proposed [44–46]. In [44] a blocking artifact characteristic matrix (BACM) is com-

puted to measure the symmetric representation of the blocking artifacts introduced by JPEG 

compression. Since the symmetry of the BACM of a JPEG image is destroyed after the image 

is cropped, this artifact can be used as evidence for detecting cropped double JPEG com-

pressed images. The authors in [45] model the linear dependency of the within-block pixels 

(the pixels that do not lie on the border of 8×8 blocks), compute the probability of the pixel 

being linearly correlated to its neighboring ones and form the map of the probabilities of all 

pixels in the image. They convert the map to Fourier domain, extract several statistical features 

from the different peak energy distribution and use the features to discriminate cropped D-

JPEG images from non-cropped D-JPEG images. A simple yet reliable technique to detect the 

presence of cropped double JPEG compression has been introduced in [46]. This technique is 

based on the observation that the DCT coefficients exhibit an integer periodicity if the DCT is 

computed according to the grids of the primary compression. Through experiments, the authors 

showed that [46] outperforms other existing detection techniques for cropped D-JPEG images.  

Although [44–46] work well for detecting cropped D-JPEG images, they will be defeated if 

the JPEG images are resized before the second compression step. Due to the effect of re-

sampling, the blocking artifacts will be broken. The authors of [117] demonstrated the influ-

ence of resizing on the detection results of [114], [116]. There are a few techniques for 

detecting resized double JPEG compressed (RD-JPEG) images, among them [103], [118]. The 

authors of [103] apply a re-sampling detection technique (which was originally designed for 

use on uncompressed images) to JPEG images and analyze how the JPEG compression affects 

the detection output. A limitation of [103] is that its detection rates are very low when the 

JPEG quality factor of the first compression is larger than the quality factor used in the second 

compression. In addition, if the images are down-sampled before re-compression, the tech-

nique is mostly defeated. The technique of [118] extracts neighboring joint density features 

and applies Support Vector Machines for detecting RD-JPEG images. Although the technique 

works for both up-sampled images and down-sampled images, it is analyzed only by the qual-

ity factor of 75 and no information on the false positives is given. Bianchi and Piva [119] 



 

 

 

6. Security of Forgery Detection for JPEG Images                                                                   75 

proposed an algorithm, which can be summarized by some steps: 1) estimate the candidate re-

sizing factor; 2) for each candidate factor, undo the image resizing operation and measure the 

NLDP (near lattice distribution property); 3) if the result is greater than a predefined threshold, 

label the image as resized double JPEG compressed. Furthermore, the technique [119] can es-

timate both the resize factor and the quality factor of the first JPEG compression of the 

analyzed image. The experimental results in [119] show that it surpasses [103] on the same test 

condition, but similar to [103], it seems more difficult to detect when QF1 is much larger than 

QF2.  

In this chapter, first we introduce the problem for detection of double JPEG compression 

and then we apply the evaluation framework in Chapter 3 to assess the effectiveness and secu-

rity of selected forensic techniques for JPEG images: one for doubly JPEG compressed images 

[13] and one for cropped doubly JPEG compressed images [46]. In order to measure the effec-

tiveness and security of the techniques, we design different targeted attacks. We show that the 

evaluated techniques work quite well in the case no attack is applied to the forged image, but 

they are vulnerable and can easily be defeated by simple attacks. Lastly, we propose an im-

proved technique to detect RD-JPEG images. The technique reveals specific features of JPEG 

images and RD-JPEG images by using a re-sampling detector. The extracted features are fed to 

SVM-based classifiers in order to discriminate RD-JPEG images from JPEG images. 

6.2 Double JPEG Compression  

6.2.1 DCT-based Compression  

In order to compress a color image (RGB) in the JPEG format, firstly the image is transformed 

from RGB into a luminance-chrominance color space (YCbCr), which consists of one lumi-

nance channel (Y) and two chrominance channels (Cb, Cr). The chrominance channels are 

typically down-sampled by a factor of two and each channel is independently processed. The 

process of JPEG compression consists of three main steps of applying the Discrete Cosine 

Transform (DCT), quantization and entropy coding (Figure 6-1) [120]. The JPEG compression 

of a single channel image (e.g. gray-scale image) is similar to the process of one channel of a 

color image.  
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Figure 6-1: JPEG encoding steps. 

Discrete Cosine Transform (DCT): The image is divided into 8×8 non-overlapping blocks 

and shifted from unsigned integers with range [0, 255] to signed integers with range [-128, 

127]. Finally, the DCT is applied to every block. Let )y,x(f  denote an 8×8 image block, the 

two-dimensional Discrete Cosine Transform (DCT) of the block is computed as follows: 
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1
 for u, v = 0  and 

  C(u), C(v) = 1  otherwise. 

Quantization: Each coefficient in a DCT block is divided by a quantization factor specified in 

of a quantization table and rounded to the nearest integer. The purpose of this step is to achieve 

compression by discarding information which is not visually significant. Since quantization is 

a non-invertible operation, this step causes loss of information each time an image is JPEG 

compressed. The quantized coefficient at (u, v) is computed as follows: 
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where [X] denotes rounding of X to the nearest integer and q(u, v) is a quantization factor. The 

quantization factor depends on the JPEG quality factor and can be computed based on the 

standard quantization table (see Appendix A1). 

Entropy coding: This step achieves additional lossless compression by encoding the quantized 

DCT coefficients in a compact form based on their statistical characteristics. The JPEG pro-

posal specifies two entropy coding methods namely Huffman coding and arithmetic coding. 

This step is reversible and therefore does not affect the image quality. 
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Decoding a JPEG image consists of performing similar steps of encoding, but in reverse 

order: entropy decoding, de-quantization and applying the Inverse Discrete Cosine Transform 

(IDCT) (Figure 6-2). 

 

Figure 6-2: DCT-based decoding steps. 

Entropy decoding: The compressed data is decoded in order to recover the quantized DCT 

coefficients.  

De-quantization: The quantized coefficients are multiplied by the corresponding quantization 

factors.   

Inverse Discrete Cosine Transform (IDCT): The IDCT of the de-quantized DCT coefficients 

are computed to obtain the reconstructed image block )y,x('f : 
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where u, v }7,...,1,0{∈  , 

   C(u), C(v) = 
2

1
  for u, v = 0  and 

C(u), C(v) = 1   otherwise. 

Finally, the result )y,x('f is shifted back to the range [0, 255] in order to reconstruct an 8×8 

image block. 

6.2.2 Double Quantization 

In the JPEG compression process, the quantization step is non-invertible and introduces spe-

cific artifacts that can be used in forensics. When the decoded image is compressed one more 

time, a similar encoding and decoding process is applied to the image. As a result, in a double 

JPEG compressed image, the DCT coefficients can be expressed as follows: 
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� After the first compression, the DCT coefficient F(u, v) is divided by a quantization 

factor q1(u, v) and rounded to the nearest integer:  
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� After the first de-compression, the quantized coefficient is multiplied by the same 

quantization step of q1(u, v), resulting in a value )v,u('F that is slightly different from 

F1(u, v):   
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� After the second compression, the image is DCT transformed and the DCT coefficients 

are quantized by another quantization factor q2(u, v): 




















=

)v,u(q

)v,u(q

)v,u(q

)v,u('F
)v,u(F

2

1

1
2  . 

Popescu [13] showed that the histogram of certain DCT coefficients in a double JPEG 

compressed image is periodic and the periodicity is visibly in the Fourier transform. The au-

thor proposed a technique uses these specific characteristics in order to determine whether an 

image has been double JPEG compressed. In the next section, we describe the technique and 

evaluate its effectiveness.  

One can note that when an image is re-compressed with the same quality of the first com-

pression, double quantization artifacts mostly do not appear. Thus, the technique of Popescu 

[13] does not work in this case. To overcome this problem, Huang et al. [121] proposed a tech-

nique for detecting D-JPEG images when the first and the second quality factor are the same. 

This technique is based on the observation that when re-compressing a JPEG image over and 

over again, the number of different quantized DCT coefficients between the sequential two 

versions will monotonically decrease in general even though the first and the second quality 

factors are the same. Subsequently, the authors find a randomly perturbation ratio, which can 

be used to discriminate single images from double JPEG compressed images. 

6.2.3 Detection of Double JPEG Compression 

The technique of Popescu [13] is based on computing the histograms of low frequency DCT 

coefficients of the image and detecting periodic artifacts. Since this technique is widely-used 

for detecting double JPEG compressed images, we briefly review and evaluate the technique 
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before showing that the technique is not robust against a simple attack (cropping).  Through 

experiments, we found that artifacts are most evident in the histogram of DC coefficients. For 

simplicity, we take into account only the DC coefficients of DCT blocks in our experiments.  

The algorithm [13] to detect whether an image is D-JPEG compressed can be summarized 

as follows:  

1. Dividing the image into 8×8 non-overlapping blocks. 

2. Applying the DCT to every block. 

3. Taking the DC coefficient from every DCT block and computing the histogram of the 

coefficients. 

4. Computing the Fourier transform the histogram; normalizing the histogram and looking 

for strong peaks in the spectrum as evidence for double JPEG compression.  

Figure 6-3 shows the histogram of DCT coefficients of a sample image and its Fourier 

transform in the cases of single JPEG compression and double JPEG compression. Apparently, 

in the case a single compression, there are no strong peaks in the Fourier transform, but the 

peaks are obvious after a double compression took place. 

In order to quantify the sensitivity and robustness of this algorithm, we use a simple method 

based on detection of strong peaks in the histogram of DC coefficients instead of using a com-

plex method based on a parameterized Laplace model and a least square optimization as 

advocated in [13]. 

 

(a) 

 

(b) 

Figure 6-3: (a) Histogram of DC coefficients of a sample image and its Fourier transform 
(image compressed by a factor of 70); (b) Histogram of DC coefficients and its Fourier 
transform of an image which has been created by JPEG compressing the image (a) by the 
factor of 90. 
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6.2.4 Experimental Results     

In this section, we evaluate the double JPEG compression detection algorithm of Popescu 

[13] using the general test framework presented in Chapter 3. Firstly, a dataset of original im-

ages was created by randomly choosing 200 never-compressed images from the UCID image 

database [82]; all selected images are converted to gray-scale. Subsequently, datasets of JPEG 

compressed images are formed by compressing the original images by different quality factors 

QF1 (QF1 = 50, 55, … , 90, 95). Then each single JPEG compressed image is re-compressed in 

JPEG format using other quality factors QF2 (QF2 = 50, 55, … , 90, 95) and QF1 ≠ QF2. This 

step creates a set of suitable double JPEG compressed images.  

The detection rates of the technique in detecting D-JPEG compressed images are shown in 

Table 6-1 (the false positive rates of the technique when testing on the dataset of single JPEG 

compressed images are lower than 20%). The technique works well when QF1 < QF2 and the 

difference between QF1 and QF2 is large. When QF1 > QF2 the detection rate of the technique 

is rather low and when QF1 = QF2, there are no specific artifacts to be detected. 

 50 55 60 65 70 75 80 85 90 95 

50 - 51.5 76.0 86.5 89.0 37.0 100 99.0 100 100 

55 27.5 - 29.0 85.0 93.5 68.5 95.5 100 100 100 

60 37.0 28.5 - 57.5 78.0 63.0 76.5 99.5 100 100 

65 40.5 43.5 32.0 - 26.0 60.0 56.5 75.0 99.5 100 

70 30.0 43.5 40.5 26.5 - 50.5 88.0 76.5 98.5 100 

75 24.0 31.0 34.0 42.0 46.5 - 55.5 75.5 100 100 

80 25.0 25.0 27.5 24.5 45.0 25.5 - 57.5 34.0 57.5 

85 24.5 23.5 26.5 24.0 24.0 25.0 27.5 - 54.0 78.5 

90 23.5 25.5 24.0 24.0 24.0 24.0 23.5 31.0 - 35.0 

95 26.0 25.0 23.0 22.5 22.5 23.5 22.5 22.5 26.5 - 

Table 6-1: Detection rates of [13] in detecting double JPEG compressed images (QF1 in rows 
and QF2 in columns) [%]. 
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6.3 Security Analysis 

6.3.1 Security of Double JPEG Compression Detection 

In this section, we evaluate the security of the detection technique for D-JPEG compression 

[13]. To this end, firstly, we apply a targeted attack that aims at removing the specific artifacts 

in D-JPEG images.  

Since the technique of [13] is based on the characteristics of JPEG blocking artifacts, an ef-

fective attack to the technique is cropping the image (usually by a few pixels to avoid being 

exposed) before the second compression. After cropping, the DCT blocks in the second com-

pression are not aligned any more with the corresponding DCT blocks in the first compression. 

As a result, the specific artifacts of double compression are likely destroyed. The author of 

[13] mentioned this problem, however, but performed no experimental evaluation to confirm 

the fact. 

To evaluate the security of the algorithm of [13], the cropping attack is applied while creat-

ing double JPEG compressed images. To this end, double JPEG compressed images (by the 

quality factors of 55, 70 and 85) are selected, and each of them is cropped by a random number 

of pixels. Finally, the images are re-compressed as JPEG by different quality factors in order to 

create non-aligned double JPEG compressed images. Our experimental results are shown in 

Figure 6-4, Figure 6-5 and Figure 6-6. The results indicate that the forensic technique works 

well when no attack is applied but it is not robust against cropping and is mostly defeated by 

this attack. 

50 55 60 65 70 75 80 85 90 95
0

20

40

60

80

100

QF
2

de
te

ct
io

n 
ra

te
 [%

]

 

 

 

Figure 6-4: Detection rates of the technique [13] for D-JPEG images (solid line) and cropped 
D-JPEG images (dashed line) for different QF2 (QF1 = 55). 
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Figure 6-5: Detection rates of the technique [13] for D-JPEG images (solid line) and cropped 
D-JPEG images (dashed line) for different QF2 (QF1 = 70). 
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Figure 6-6: Detection rates of the technique [13] for D-JPEG images (solid line) and cropped 
D-JPEG images (dashed line) for different QF2 (QF1 = 85). 

6.3.2 Cropped Double JPEG Compression Detection 

Although cropping is a simple and effective to attack to D-JPEG compression detection, this 

operation leaves other types of evidence, which can be used to detect whether an image has 

been cropped. Several authors have proposed techniques to detect cropped D-JPEG images, 

among them [44] [45][46]. Through experiments, Bianchi and Piva [46] showed that their 

technique outperforms other existing ones [44][45]. In this section we revisit the technique of 

Bianchi and Piva [46] and then apply the evaluation framework to assess its effectiveness and 

security.  

The authors of [46] showed that, if an 8×8 block DCT is applied to the JPEG image, there 

are three possible cases: the grid is aligned with the last JPEG compression, the grid is aligned 

with the first JPEG compression and the grid is misaligned with the two previous ones. The 
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authors showed that when the block DCT grid is aligned with the DCT grid of the last com-

pression or the first compression, the coefficient histograms tend to be periodic. In theory, the 

effect described above can be measured for every DCT coefficient; however, through experi-

ments the authors observed that it is more evident in the case of DC coefficient. Based on this 

observation, the authors proposed an algorithm to detect cropped D-JPEG images as follows: 

1. Apply DCT to the test image with every possible shift (i, j) and i, j = {0, 1… 7} (when 

i=0 and j=0, the block DCT grid is aligned with the DCT grid of the last compression).  

2. For each value of the shift (i, j), compute the histogram of DC coefficients of every 

block of the image. After that, the periodicity of the histogram is evaluated by applying 

the Fourier transform.  

3. Compute the Integer Periodicity Map (IPM), which is formed by the proportion of the 

magnitude of the periodicity of the histogram in a particular shift to the sum of the 

magnitude of the periodicity of all possible shifts.  

4. Compute the uniformity of each IPM by measuring its min-entropy. Min-entropy is a 

popular metric in statistics which characterizes the most probable occurrence of a ran-

dom variable. It is easy to verify that a high min-entropy corresponds to a mostly 

uniform IPM, whereas an IPM with a high peak will be characterized by a low min-

entropy. 

5. The presence of cropped D-JPEG is detected by applying a threshold detector to the 

min-entropy of the IPM, measuring its uniformity. When the min-entropy is smaller 

than a suitable threshold, it is concluded as cropped D-JPEG.  

6.3.3 Experimental Results 

The technique [46] based on a specific artifact present in cropped D-JPEG images. Apparently, 

the artifact will be destroyed if the DCT coefficients of a cropped D-JPEG image have been 

altered. Several methods can be used for this purpose, such as geometric transformation or 

noise addition. In this work, we use rescaling because this operation affects visual quality less. 

In particular, we rescale cropped images before the second compression. It is well known that 

scaling is a popular attack which also used in some other situations [74], [117].  

Similar to the previous tasks, we use the UCID dataset [82] for experimental analysis. 

Firstly, 200 images are chosen randomly from the UCID dataset, and converted to gray-scale. 

After that, JPEG compressed datasets are created by compressing the original images by dif-

ferent quality factors QF1 (QF1 = 50, 70, 85). Each single JPEG compressed image is cropped 
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randomly by i pixels horizontally and j pixel vertically ( 7,0 ≤≤ ji ) and then re-compressed in 

JPEG format by another quality factor QF2 (QF2 = 50, 55, …, 90, 95) and QF2 ≠ QF1. This 

creates a dataset of cropped D-JPEG images. An attacked image is created by cropping ran-

domly a single JPEG compressed image, rescaling the image to the previous size and then re-

compressing the image in JPEG format with a different quality factor QF2 (QF2 = 50, 55, …, 

90, 95) and QF2 ≠ QF1. The technique [46] is evaluated on the cropped D-JPEG images and 

the attacked cropped D-JPEG images. The experimental results are shown in Figure 6-7, Fig-

ure 6-8 and Figure 6-9. The technique works well when QF2 > QF1 and the difference between 

QF1 and QF2 is large. However, it is mostly defeated by the attack. 
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Figure 6-7: Detection rates of [46] in detecting cropped D-JPEG images (solid lines) and 
attacked cropped D-JPEG images (dashed line) for different QF2  and QF1 = 55. 
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Figure 6-8: Detection rates of [46] in detecting cropped D-JPEG images (solid lines) and 
attacked cropped D-JPEG images (dashed line) for different QF2  and QF1 = 70. 



 

 

 

6. Security of Forgery Detection for JPEG Images                                                                   85 

50 55 60 65 70 75 80 85 90 95
0

20

40

60

80

100

QF
2

de
te

ct
io

n 
ra

te
 [%

]

 

Figure 6-9: Detection rates of [46] in detecting cropped D-JPEG images (solid lines) and 
attacked cropped D-JPEG images (dashed line) for different QF2  and QF1 = 85. 

6.4 A New Technique for Resized Double JPEG Compression Detection 

6.4.1 The Proposed Technique 

When using [41] to detect re-sampling in both JPEG images and RD-JPEG images, we empiri-

cally found that in the detection result of RD-JPEG images seems to have more peaks than that 

of JPEG images (Figure 6-10). This is because the detection result of a RD-JPEG image con-

tains not only the peaks introduced by JPEG compression, but also the peaks due to re-

sampling. Nevertheless, the difference is not always easy to recognize by human eyes. In addi-

tion, it is necessary to automatically classify RD-JPEG images from JPEG images. To this end, 

we first apply the technique [41] to JPEG images, and then extract the values of maximal 

peaks from the normalized Fourier spectrum. The extracted features are subsequently fed to 

SVM-based classifiers in order to discriminate RD-JPEG images from JPEG images. Since 

SVM is only a binary classifier, we use two approaches to design SVM classifiers.  

In the first approach, we design a single SVM classifier for directly distinguishing JPEG 

and RD-JPEG images, compressed by different quality factors. To this end, the features of a set 

of JPEG images and their re-sampled versions (the number of JPEG and re-sampled JPEG im-

ages are the same) are extracted for training a SVM classifier. This approach is simple and 

suitable for many situations in practice when we do not know the quality factors of the ana-

lyzed images. However, through experiments, reported in Section 6.4.2, we find that this 

technique works well mostly when QF1 is lower than the QF2.  

The second approach is based on the idea that while QF1 of a double JPEG compressed im-

age is usually not known to the analyst, QF2 can be identified (we present a method to reveal 
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the last quality factor of a JPEG image in Appendix A1). Thus, instead of using a single classi-

fier for all, we design several different SVM classifiers which each distinguish JPEG and RD-

JPEG images for one specific value of QF2. Once the last quality factor of an analyzed JPEG 

image is known, the corresponding classifier will be applied to it. The method to design a clas-

sifier for a particular QF2 is similar to the first approach: we first use a set of JPEG images and 

another set of RD-JPEG images (the numbers of images in both sets are the same and every 

image is compressed by QF2) and then extract image features for training a SVM classifier. In 

other words, the last quality factor of a tested image is first identified, and then the image will 

be analyzed by the corresponding qualifier. 

    

Figure 6-10: Shown on the left  is the detection result of the JPEG image of Lena and on the 
right  the detection result of the RD-JPEG version of the same image. 

6.4.2 Experimental Results 

First, we randomly choose 200 uncompressed images from the UCID image database [82]. We 

create 5 datasets of JPEG images by compressing the uncompressed images with the quality 

factors of 40, 50, 60, 70, and 80. The JPEG images are subsequently resized by a scaling factor 

of 1.2 and recompressed by different factors of 40, 50, 60, 70, and 80. As a result, we obtained 

5 datasets of RD-JPEG images corresponding to each dataset of JPEG images. 

To test the first approach, we create a single SVM classifier by using two groups of JPEG 

images and RD-JPEG images (with the scaling factor of 1.2) for training. After the training 

process we apply the classifier to test RD-JPEG images. In training, we consider two cases of 

different quality factors: 1) 100 JPEG images compressed by a quality factor of 50 and 100 

RD-JPEG images re-compressed by a quality factor of 70 (QF1 = 50, QF2 = 70 and scaling fac-

tor = 1.2) and 2) 100 JPEG images compressed by a quality factor of 70 and 100 RD-JPEG 

images re-compressed by a quality factor of 80 (QF1 = 70, QF2 = 80 and scaling factor = 1.2). 

Analyzing the detection results (Table 6-2 and Table 6-3), we found that the technique works 
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well when detecting RD-JPEG images where QF1 is smaller than QF2. Otherwise, when QF1 is 

larger than QF2, the detection rate is small. In our experiments, the false positive rates (com-

puted by testing the classifier on datasets of JPEG images which have been compressed by 

different quality factors of 40, 50, 60, 70, and 80) are lower than 11% in the first case and 

lower than 8% in the second case.  

In a more realistic scenario, we test the techniques on the RD-JPEG images, which have 

been resized with a different scaling factor than the factors are used in the training process. 

The datasets are created in the same way as above, except the scaling factor 1.1 is used instead 

of 1.2 (i.e. QF1=70, QF2=80 and scaling factor =1.1). Although the detection results (in Table 

6-4) are clearly worse compare with Table 6-2 and Table 6-3, we found that the degradation is 

not significant; therefore, the technique can potentially work in case the scaling factor is un-

known. 

In the second approach, we consider 5 different cases corresponding to a QF2 of 40, 50, 60, 

70, and 80. When QF2 is 40, we organize the training images into two groups: a group of 100 

JPEG images (the quality factor of 40) and the other group of 100 RD-JPEG images (QF1= 50, 

QF2 = 40 and scaling factor = 1.2). The extracted features are used to train a SVM classifier 

that can be used to detect RD-JPEG images compressed by the QF2 of 40. We repeat this proc-

ess for the other cases when QF2 is 50, 60, 70, and 80. The detection results in testing RD-

JPEG datasets are presented in Table 6-5. We noticed that following the second approach, the 

technique works well even if QF1 is larger than QF2. For example, when QF1 = 80 and QF2 = 

40, in the first approach, the detection results are only 10.5% or 24%, but in the second ap-

proach, it reaches 85.0%. The false positive rates are lower than 10% (9%, 8%, 5%, 6% and 

3% when testing JPEG images compressed by the quality factors of 40, 50, 60, 70, and 80 re-

spectively). 

 40 50 60 70 80 

40 65.5% 91.0% 99.5% 99.5% 84.5% 

50 52.5% 80.0% 97.0% 99.0% 87.0% 

60 35.5% 77.5% 92.5% 98.5% 88.0% 

70 19.5% 67.5% 87.0% 99.0% 84.0% 

80 10.5% 45.0% 79.5% 91.5% 78.0% 

Table 6-2: Detection results using a single SVM classifier (training JPEG images compressed 
by QF = 50 and RD-JPEG images re-compressed by QF1 = 50, QF2 = 70) for RD-JPEG images 
by the scaling factor of 1.2 and by different quality factors (QF1 in rows and QF2 in columns). 
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 40 50 60 70 80 

40 70.0% 94.0% 98.5% 99.0% 95.0% 

50 62.0% 80.0% 92.5% 98.5% 98.0% 

60 48.0% 76.0% 87.5% 96.5% 99.0% 

70 33.5% 68.0% 83.0% 93.5% 99.0% 

80 24.0% 57.0% 69.0% 81.0% 92.0% 

Table 6-3: Detection results using a single SVM classifier (training JPEG images compressed 
by QF = 70 and RD-JPEG images re-compressed by QF1 = 70, QF2 = 80) for RD-JPEG images 
by the scaling factor of 1.2 and by different quality factors (QF1 in rows and QF2 in columns). 

 40 50 60 70 80 

40 37.0% 57.0% 63.5% 78.0% 82.5% 

50 37.0% 58.0% 63.5% 78.5% 83.0% 

60 26.0% 48.0% 66.5% 77.5% 87.0% 

70 13.5% 43.5% 68.0% 77.5% 73.0% 

80 10.5% 39.0% 62.5% 77.0% 86.5% 

Table 6-4: Detection results using a single SVM classifier (training JPEG images compressed 
by QF=70 and RD-JPEG images re-compressed by QF1=70, QF2=80) for RD-JPEG images by 
the scaling factor of 1.1 and by different quality factors (QF1 in rows and QF2 in columns). 

 

 40 50 60 70 80 

40 95.0% 91.5% 89.5% 99.0% 98.0% 

50 90.0% 90.0% 88.5% 98.5% 99.5% 

60 89.5% 91.0% 97.5% 98.0% 100% 

70 87.5% 85.0% 95.0% 99.5% 98.0% 

80 85.0% 80.0% 96.0% 100% 99.0% 

Table 6-5: Detection results using dedicated SVM classifiers for RD-JPEG images (depending 
on the quality factor of the second compression) by the scaling factor of 1.2 and by different 
quality factors (QF1 in rows and QF2 in columns). 
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Figure 6-11: Detection results for RD-JPEG images by different scaling factors when the 
quality factor of the trained images and the test images are the same. 
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Figure 6-12: Detection results for RD-JPEG images by different scaling factors when the 
quality factor of the trained images and the test images are different. 

In order to assess the influence of scaling factor, we test the proposed technique for detec-

tion of RD-JPEG images with various scaling factors. The RD-JPEG images are created by 

resizing JPEG images (firstly compressed by QF1) of different scaling factors (from 0.6 to 1.9) 

and then they are recompressed (by a different quality factor QF2). We consider three cases: 1) 

QF1=50 and QF2=70, 2) QF1=70 and QF2=80 and 3) QF1=70 and QF2=50. We create different 

datasets of JPEG images and RD-JPEG images and in each case, the training and testing proc-

esses of the classifiers are conducted as described before. The detection results in various 

scaling factors are shown in Figure 6-11. Due to missing information in the down-sampling 

process, the detection rates of the down-sampled images are very low. Detecting up-sampled 

images is possible with much higher rates. In some cases, the detection rates even reach about 

100%. In this scenario, the test images are compressed with the same quality factors as the 
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training images (but with different scaling factors). We found that scaling factors affect the 

detection results: typically the detection rates tend to increase.  

Lastly, in a more realistic scenario, we apply the technique trained by one image type 

(QF1=70, QF2=80, scaling factor = 1.2) to images with different types (QF1=50 and QF2=70, 

QF1=70 and QF2=50, and scaling factor ranges from 0.6 to 1.9). The detection results are pre-

sented in Figure 6-12. Although the results deteriorate (compare with Figure 6-11), we found 

that the degradation is not significant; therefore, the technique can potentially work in a real 

condition.   

6.5 Summary 

In this chapter, we designed a technique for detecting resized double JPEG compressed im-

ages. The technique is based on applying the re-sampling detector [41] to JPEG images, and 

extracting features from strong peaks of the normalized Fourier transformation. Then the ex-

tracted features are fed into a SVM-based classifier in order to discriminate RD-JPEG images 

from JPEG images. We propose two methods to design SVM classifiers: one single global 

classifier and several classifiers depending on the quality factor of the last compression. Al-

though the first approach is simple and easy to use, the second approach achieves higher 

detection rates. In comparison with [103], our technique has higher detection rates when the 

quality factor of the first compression is larger than the quality factor of the last compression 

and when detecting down-sampled double JPEG compressed images. We apply the technique 

to test RD-JPEG images resized with different scaling factors and found that the scaling factors 

can affect the detection results.  
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7 Conclusions and Future Work 

In this thesis, we have addressed the security of digital image forensic algorithms, which is 

ability to withstand dedicated attacks that aim at making an attacked image look authentic. In 

order to measure the effectiveness and security of forensic techniques, we developed a test 

framework. The framework provides the necessary infrastructure and support tools, which al-

low evaluating forensic techniques in an automatic way. Since forensic techniques in the same 

category are tested in the same condition, their effectiveness and security can be fairly com-

pared to each other. 

We implemented several image forensic techniques based on published algorithms. For 

each technique we designed different targeted attacks and used them in the evaluation frame-

work. Targeted attacks against a forensic technique allow analyzing the security of the forensic 

techniques and providing more insight into their use. 

Once a forensic algorithm is publicly known, any forensic tool that is based on the algo-

rithm can be attacked. Therefore, developing forensic techniques which offer a higher level 

security is an urgent need. In this thesis, we designed a number of new forensic techniques in 

different categories of forgery detection. Through experiments, we showed that our techniques 

are more robust against dedicated attacks in comparison with some state-of-the-art image fo-

rensic techniques. Obviously, adversaries can develop new attacks targeted our techniques and 

potentially disable them. Although forensics and anti-forensics seems to make a never-ending 

game, research on security of forensic techniques allows developing more reliable techniques. 

The purpose of attacks is to remove or destroy evidence of forgeries in digital images, but 

the attack itself can leave specific artifacts. Thus, detecting such artifacts can reveal the pres-

ence of the attacks. Little work has been done in this direction up to now [60], [65], [122]. 

Along with the development of anti-forensic methods, in order to thoroughly understand the 

security of forensic techniques, countering anti-forensics should be investigated. This is one of 

our future works. In addition, we will improve some of the algorithms presented in this work. 

We will not only focus on individual attacks but also consider more about the combination of 

different attacks. We think carefully about forensics as a classification problem, which can be 

solved by using different techniques, e.g. machine learning. 
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Appendix 

A1. Determining the Last Quality Factor of a JPEG Image 

The compression ratios of JPEG images are controlled by the quantization tables which used in 

the compression process. In this thesis, we focus on images stored in the JPEG Interchange 

File Format (JFIF). The JFIF is the most commonly used format for JPEG data [123]. The 

quantization table that was used to compress an image is stored in the JFIF header [124]. This 

table (called Ts) can be identified by using the JPEG Toolbox [125]. 
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Table 8-1: The standard quantization table 

The most commonly used standard quantization tables are published by the International 

JPEG Group (IJG). Based on the standard table (Tb), shown in Table 8-1, and the quality factor 

(Q), the quantization table can be computed as follows: 
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Conversely, when the tables Tb and Ts are known, the approximate value of the quality factor 

can be computed as follows [124]: 
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Note that the function to predict the quality factor involves integer computation on the 

quantization table (Ts) that introduces integer rounding errors, so the value of Q’ is closely to 

Q. Following a suggestion in [124], then the computed quality factor (Q') should be off by one 

or two.  

For example, if we know the quality factor Q = 80 and Tb(1) = 16, then S = 40, therefore, 

Ts(1) = 6. Conversely, if we know Tb(1) = 16 and Ts(1) = 6, then S' = 34.375, therefore, Q' = 

82. 
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