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Abstract

Digital images are used everywhere in modern lifg mostly replace traditional photographs.
At the same time, due to the popularity of imaggimgl tools, digital images can be altered,
often leaving no obvious evidence. Thus, evaluaitimgge authenticity is indispensable. Im-
age forensic techniques are used to detect fomyeniedigital images in the absence of
embedded watermarks or signatures. Nevertheles® kmitimate or illegitimate image post-
processing operations can affect the quality offthensic results. Therefore, the reliability of
forensic technigues needs to be investigated. €hability is understood in this case as the

robustness against image post-processing operatidhe security against deliberated attacks.

In this work, we first develop a general test frarmek, which is used to assess the effec-
tiveness and security of image forensic techniqueder common conditions. We design
different evaluation metrics, image datasets, anwral different image post-processing op-
erations as a part of the framework.

Secondly, we build several image forensic toolebam selected algorithms for detecting
copy-move forgeries, re-sampling artifacts, and imaations in JPEG images. The effective-

ness and robustness of the tools are evaluatedihg the developed test framework.

Thirdly, for each selected technique, we develogeisd targeted attacks. The aim of tar-
geted attacks against a forensic technique is rfwve forensic evidence present in forged
images. Subsequently, by using the test framewadkilae targeted attacks, we can thoroughly
evaluate the security of the forensic technique.sihw that image forensic techniques are
often sensitive and can be defeated when theirittigts are publicly known. Finally, we de-
velop new forensic techniques which achieve higleeurity in comparison with state-of-the-

art forensic techniques.



Zusammenfassung

Digitale Bilder werden tberall im modernen Lebemvendet und ersetzen meist traditionelle
Fotografien. Dabei kdnnen digitale Bilder oft ohoffensichtlich Beweise mit Hilfe von

Bildverarbeitungwerkzeugen verandert werden. Désisaldie Uberpriifung der Authentizitét
von Bildern unverzichtbar. Bildforensische Techmikeerden verwendet, um Bildfalschungen
in Abwesenheit von eingebetteten digitalen Wassehiea oder Signaturen zu erkennen.
Dennoch kdnnen einige legitime oder illegitime Amaangen der Bildnachbearbeitung die
Qualitat der bildforensischen Ergebnisse beeinflnssDaher muss die Zuverlassigkeit
forensischer Techniken untersucht werden. Die déssigkeit wird in diesem Fall als die
Robustheit dieser gegen Operationen der Bildnachbitang oder als die Sicherheit gegen

zielgerichtete Angriffe verstanden.

In dieser Arbeit, entwickeln wir zunachst ein altggnes Testframework, welches
verwendet wird, um die Robustheit und Sicherheit @@ensischen Techniken unter
gemeinsamen Bedingungen zu messen. Wir entwerfertrikiele zur Auswertung,
Wahrnehmung, Bilddatenbank, und verschiedene Qpgeest der Bildnachbearbeitung als

Teil des Rahmenprogramms.

Zweitens erstellen wir mehrere forensische Werkeeagf Basis von ausgewahlten
forensischen Algorithmen zur Erkennung von Copy-Blogkopieren und verschieben)
Falschungen, Re-sampling der Bilder, und Manipoitegn in JPEG Bildern. Die Leistung und
Robustheit der forensische Werkzeuge werden mit damwickelten Testframework

ausgewertet.

Als Drittes, entwickeln wir fiir jede ausgewahltechirik mehrere zielgerichtete Angriffe.
Das Ziel zielgerichteter Angriffe ist es, forensiscBeweise in gefalschten Bildern zu
entfernen. AnschlieRend, kénnen wir mit Hilfe desstframeworks und der zielgerichteten
Angriffe die Sicherheit der forensischen Techniksorgfaltig prifen. Wir zeigen, dass
bildforensische Techniken oft anféllig sind undibgswerden kénnen wenn ihre Algorithmen
offentlich bekannt sind. Schlief3lich entwickeln wieue forensische Verfahren, die im

Vergleich mit modernsten forensischen Techniker &ihere Sicherheit erreichen.
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1 Introduction

1.1 Motivation

Photographs do not always tell the truth. In fte, first imagé forgeries appeared a long time
ago, probably several years after Joseph Nipceupsztithe first photograph in 1825. For ex-
ample, an iconic portrait of the US President AlaralLincoln taken around 1860 is actually a
forged image: the head of President Lincoln is cepi on the body of another person (see
Figure 1-1). However, in the early days of photpgsa it was not easy to create forged images
because making forgeries at that time requiredipgdhysical and chemical equipment and

skills.

Figure 1-1: Shown on the left is the forged image of the U8skent Abraham Lincoln,
which is a compositef the head of President Lincoln and a picturéhefbody of the southern
politician John Calhoun (on the right)

Nowadays, digital multimedia content (images, audideo, etc.) can easily be created,
stored, and transmitted. Digital images are uboygtin news, entertainment, science, finan-
cial documents, evidence in the court of law, Atcthe same time, since image editing tools
are popular, making forgeries in digital imagesais easy task. Even a novice can create a
forged image without leaving obvious evidence ttaat be recognized by human eyes. Thus,
the reliability of images became dubious and imagthentication emerged as an important
problem. There are many methods for digital imaggaentication, which can be divided into
two main approaches, namely active and passive. dimesfirst approach consists of image

watermarking methods and the second approach osritaage forensic methods.

! In this thesis, the word image refers to natural photographs taken by cameras, unless otherwise mentioned.
% Most photographs in this thesis are courtesy of Hany Farid and the Darmouth Image Science Group.
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Digital image watermarking is a popular method ifoage authentication, in which some
additional information (called watermark) need wdmbedded into an image during or after
its creation. During detection, the watermark carrdad and used for authentication. The ma-
jor drawback of this approach is that watermarksdn® be embedded in the image before
distribution. However, most cameras in the marlk®atadays are not equipped with the func-
tion for watermark embedding (and this situatiommdikely to change in the near future) [1].
Thus, developing image authentication methods whHmot rely on watermarks became an

urgent need.

Image forensics is a passive method in which narin&tion needs to be embedded prior to
distribution. There are three main directions foage forensics research. The first direction
identifies the sources of images, the second dbrechattempts to discriminate computer-
generated images from natural images, and the thiegttion, probably the most important
one, tackles the problem of forgery detection figitdl images [1]. Since the problem of im-
age forensics is very broad, our research focuse$omery detection in digital images.
Unfortunately, there is no universal technique ttaat detect every type of image forgery, thus
many different image forensic techniques have lpeposed, each of which comes with ad-
vantages and disadvantages. Therefore, the evaluztiforensic techniques for digital images

has become an important problem.

1.2 Research Questions and Contributions

The main question addressed in this thesis is:

How can we evaluate the effectiveness and securif/digital image forensic techniques?
To answer this question, several objectives haea behieved:

1. We developed a general test framework that allofedr &valuation of image forensic

techniques.

2. We built a number of image forensic techniques applied the test framework to

evaluate their effectiveness.

3. We designed targeted attacks against the selatimgki forensic techniques in order
to assess their security and their resistance stgattackers who aim at fooling the

forensic tools.

4. We developed several new image forensic technifpeslifferent types of image

tampering, which overcome some limitations of exgslgorithms.

1. Introduction 12



1.3 Thesis Organization
The rest of the thesis is organized as follows:

In Chapter 2 we introduce important approachesniage authentication, both active and
passive. In the active approach, we focus on invegtermarking, its requirements and appli-
cations. In the passive approach, we provide aeyuo¥ main directions of image forensics,
which aims at determining the source of imagesingjgishing synthetic images from real im-
ages, and finding manipulations in images. In g part of the chapter, we introduce the
converse problem of forensics, namely anti-forensihe goal of anti-forensics is to defeat
forensic techniques. Nevertheless, anti-forensiss lme used for assessment the security of
forensic techniques. In this chapter, we defineessvconcepts and terms, which we use in

subsequent parts of the thesis.

In Chapter 3 we design a general framework forweat&n image forensic technigues. We
define basic concepts and summarize the stepsreelqid assess forensic techniques. We de-
fine several metrics that allow to measure perforraaof forensic techniques. Most metrics
can be used for every technique, but some of thenswitable for a particular type of forensic

technique. In addition, several general attacksareeyed in this chapter.

In Chapter 4 we deal with copy-move forgery detectechniques. After studying existing
techniques, we select three well-known ones fofuat@mn and improvement. Some targeted
attacks are designed for each technique in ordasgess the security. The evaluation results of
the techniques are obtained by applying the framlewbChapter 3. Consequently, we design

a new copy-move forgery detection technique. Chiapte based on the papers:

= H.C. Nguyen, S. Katzenbeisser, "Security of Copy®ld-orgery Detection Tech-
niques”. In36" International Conference on Acoustics, Speech Sigdal Processing
(ICASSP 2011)EEE Press, 2011.

= H.C. Nguyen, S. Katzenbeisser, "Detection of Copy® Forgery in Digital Images
Using Radon Transformation and Phase Correlation®” International Conference
on Intelligent Information Hiding and Multimediadgdial Processing (IIH-MSP 2012)
IEEE Press, 2012.

Chapter 5 deals with image re-sampling detectiohelVmaking forgeries, an image or a
part of it is often resized or rotated. These gadmé&ransforms involve a re-sampling step,
which leaves detectable artifacts. Therefore, diggdraces of re-sampling became an impor-
tant method to judge the authenticity of digitakhies. Similar to Chapter 4, we first survey

state-of-the-art techniques for re-sampling detectind select three widely used techniques

1. Introduction 13



for evaluation within our test framework. Lastlynaw technique for re-sampling detection is

proposed. Chapter 5 is based on the papers:

= H.C. Nguyen, S. Katzenbeisser, "Performance andu®obss Analysis for some Re-
sampling Detection Techniques in Digital Images'10" International Workshop on
Digital Forensic and Watermarking (IWDW 2018pringer LNCS 7128, 2012.

= H.C. Nguyen, S. Katzenbeisser, "Robust Re-samiibetgction in Digital Images". In
13" International Conference on Communications and tivhgldia Security (CMS
2012) Springer LNCS 7394, 2012.

Chapter 6 works with images compressed in JPEGdbrihen creating a forged JPEG
image, it has to be loaded into a photo editingvsrte, manipulated and then re-saved as
JPEG. Therefore, detecting double JPEG compressesignificant step to authenticate JPEG
images. However, when an image is cropped befa@mpression, detectable artifacts intro-
duced by the JPEG compression algorithm will likbly destroyed. Thus, techniques for
detection of cropped double JPEG compression adeutk In this chapter, we evaluate tech-
niques for detecting double JPEG and cropped dalRE5 compression. Lastly, we design a
new technique to detect double JPEG compressedsragn if they were resized before the

second compression. Chapter 6 is based on the:paper

= H.C. Nguyen, S. Katzenbeisser, "Detecting Resizeddr JPEG Compressed Images
— Using Support Vector Machine". 4" International Conference on Communica-
tions and Multimedia Security (CMS 201Springer LNCS 8099, 2013.

Chapter 7 concludes the thesis. The contributidribeothesis are highlighted, the benefits

of this work are elaborated, and an outlook foufetresearch is given.
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2 Preliminaries

In this chapter, we briefly introduce image waterkireg, image forensics, and anti-forensics.
Watermarking is a method for digital image protctand authentication. This method re-
quires to actively embed a watermark into imagesmge forensics is a passive method, so it
does not require any embedded information in imdgeswuthentication. The authenticity of
an image can usually be determined based on teetaet of alterations of intrinsic properties
of images. Anti-forensics is a method to disguikgitimate manipulations in images in order
to deceive forensic techniques. Research on amgitfics helps us to thoroughly understand

the security of forensic techniques.

2.1 Digital Image Watermarking

Cryptography is the most commonly used method fotegtion digital data. Encrypted data
can be protected and it is only accessible afterygéion. Nevertheless, cryptography is not
suitable for some applications such as multimedita dlistribution, where data needs to be

protected and traced even if it must be availabkbé clear [2].

Digital watermarking is a method to hide some wataks into digital multimedia data
(called cover data or host data), usually in a iy not easily be recognized by a human ob-
server. The output of the watermarking scheme tenvaarked data. After the embedding, the
watermark can be detected or extracted from themweairked data. The process of adding a
watermark into the cover data is known as waterneankedding (Figure 2-1) and the con-
verse process is known as watermark deteariomatermark extraction (Figure 2-2). In order
to strengthen the security, watermarking schemeallysuse a secret key [2]. If the detection
process needs the original image, it is called olorxd watermarking. Otherwise, it is called
blind watermarking. Since blind watermarking is thest applicable, the term watermarking

often implies to blind watermarking.

Watermark —;

Watermark Watermaked
Embedding data

Key —T

Figure 2-1: Watermark embedding process.

Cover data —Pp
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Original data—m — — — —

A 4
Watermarked Watermark Extracted
data Detection watermark

Figure 2-2: Watermark detection process.

Digital image watermarking has many applicatioree(Section 2.1.2), so different water-
marking methods have been proposed. These methedstegorized into three main types:
robust watermarking, fragile watermarking, and séagile watermarking. They are briefly

described as follows:

Robust watermarking: In this type, the most important requirement fatevmarks is robust-
ness against unintentional or malicious content ipudations. Robust watermarking is
probably the most important type of watermarking &ris widely used in copyright manage-

ment and digital content distribution.

Fragile watermarking: In contrast to robust watermarking, fragile watarks have only lim-
ited robustness to a certain set of modificatidimss type of watermarking is mostly applied to

detect alterations of the watermarked image aundes for content authentication.

Semi-fragile watermarking: Since fragile watermarks are easily destroyedryyimage ma-
nipulation, the incidental distortion by common ppscessing operations can damage the
watermark and render the image inauthentic. SeagH& watermarks are based on the image
content instead of its digital representation. Thalight modifications caused by common im-
age processing like mild JPEG compression, filgerand contrast enhancement are accepted,
meanwhile other manipulations which change the emamntent, like object addition, deletion

and replacement can be revealed [3].

2.1.1 Requirements

There are some requirements that a watermarkirtgrayseeds to satisfy. The importance of a
requirement of a watermarking system always dependbe application. Nevertheless, some
requirements are usually considered in watermarkjstems: imperceptibility, robustness and

security.

Imperceptibility: This is one of the most important requirementswatermarking systems:

the watermarked content should be kept similahéoariginal content. In other words, the em-
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bedded watermarks should not create any unwantddcrcausing visual quality degrada-

tion.

Robustness: This requirement means that the watermark caneotemoved or destroyed
without visually degrading the content. The impoda of this requirement is highly depends

on the application.

Security: This is the ability to resist against deliberasgthcks. It should be difficult for an

adversary to remove or destroy a watermark withloeitknowledge of the secret key even if
the watermarking algorithm is publicly known. Fabust watermarking, any attempts to re-
move or destroy a watermark will severely degrédmevisual quality of the image. For fragile

watermarks, such attempts will destroy the autbatiin information [3].

2.1.2 Applications

Digital watermarking has many applications in diiet areas. Several applications of water-

marking are listed in brief as follows [2]:

Copyright protection: This is probably the most important applicationimmbge watermark-
ing. The embedded watermark can be recovered fronimage and used to verify the
authentication or ownership of the image. This @ptibn requires very high robustness: the
watermark must not be destroyed, and in case matermarks have been embedded, no am-

biguity on the first inserted mark can be tolerated

Copy protection: Digital content can carry watermarks consistingopy information. This
system is very useful for digital content distribut For example, there were proposals to
augment the DVD standard with copy informationfsat &a disc can be read by a DVD player

but no copies can be made.

Content authentication: The objective of this application is to detect iifiodtions of digital
content. For authentication applications, a sceddltagile watermark is embedded which will
be destroyed once the content is modified. It sthdod noted that fragile watermarking re-

quires the lowest level of robustness among akipteswatermarking applications.

Fingerprinting: While in copyright protection, the same watermarlembedded into every
copy; in fingerprinting, different copies carry wanarks. The watermarks in fingerprinting

encode information on the legitimacy of a recipieh& copy instead of the source of the data.
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2.2 Digital Image Forensics

The drawback of digital watermarking is that it W®wonly for the images where a watermark
was embedded at the time of recording. Image farens a passive method, which can be
used to detect image tampering without using aneelsddd watermark or any type of finger-
print. Image forensics is based on the assumpliahalthough digital forgeries may leave no

obvious evidence, they may alter intrinsic statstf an image.

Image tampering has a long history and many exanpfeimage tampering became
known. For example, in a photograph made in ci@@51 General Francis P. Blair was added
into the original photograph (Figure 2-3a). Dudhe influence of photographs, they are often
doctored because of political motives. Another exans shown in Figure 2-3b, where Po Ku
had been removed from the left most position ofdtiginal photograph, after he fell out of

favor with Mao Tse Tung [4].

Image tamperings do not only appear in politicd, dlso in many areas of everyday life.
For example, image doctoring or retouching can dmngegularly on billboards, advertise-
ments and magazine covers. There is no generaivhd® a modification must be considered
an image tampering and it highly depends on apphiea. A slight doctoring or retouching is
usually acceptable for most entertainment magazk@sexample, the biceps of tennis player
Andy Roddick were conspicuously enlarged on thecao¥fMen’s Fithessnagazine (Figure 2-
4a). He commented that he was “pretty sure I'masdit as thdlen's Fitnesscover suggests”,
but a spokesman fdvlen’s Fitnesssaid “We wouldn’t comment on any type of produmtis-

sue. And | don’t see what the big issue is herg” [4

A little modification may be not a big issue in naames such dglan’s Fitnessor Star, but
it may be a more serious problem in scientific j@ls likeNatureor Science On the cover of
Naturein August 2007 appeared three autonomous airdi@tsg atmospheric measurement.
However, the top and the bottom aircrafts have eend to be copied and pasted (Figure 2-
4b). After it was exposed, the editors had to pitiiet following clarification: “The cover cap-

tion should have made it clear that this was a agmtApologies” [4].

2. Preliminaries 18



(b)

Figure 2-3: (a) Circa 1865: shown on the left is the forgbotpgraph after General Francis
P. Blair was added at the rightmost position armshon right is the original photograph; (b)
1936: shown on the left is the forged photograpéraémoving Po Ku and shown on the right
is the original photograph.

Image tampering is much more critical if it occimsan image depicting scientific results.
The Korean scientist Hwang Woo Suk has laid clanatset of human-cloning patents, re-
ceived a scientific excellence award, and publighedy papers. However, it became to know
that in at least two of his papers published injtivenal Sciencehave been fabricated [5]. Mis-
souri University professor Michael Roberts and athiars published a paper (Cdx2 Gene
Expression and Trophectoderm Lineage Specificdtiamouse Embryos) in the journ&ici-
ence Contrary to conventional wisdom, the publisheseeech showed evidence that the first
two cells of mouse embryos possess markers thataiedfrom a very early period whether
they will grow into a fetus or placenta. Howevar,iavestigation uncovered that accompany-
ing images (Figure 2-4c) of the paper were doctofée authors had to withdraw the paper

and explain their actions before a scientific cottewi[4].
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Figure 2-4: (a) 2007: the retouched photograph of RoddicMan’s FithessMagazine; (b)
2007: a copy-move forged picture on the coveNafure (c) 2007: manipulated result of the
group of professor Michael Roberts in a paper jghkel in the journal dcience
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Figure 2-5: 2011: banned advertisements by the ASA of (a) SBhrTurlington, (b) Julia
Roberts and (c) Natalie Portmann.

Although not all areas require accuracy like iresce, manipulations in images can affect
their perception. In 2011, the British AdvertisiBtandards Authority (ASA) banned two ads
by cosmetics company L'Oreal due to excessive oftioyg. The first was an ad for Maybelline
featuring Christy Turlington (Figure 2-5a) promatia product called “The Eraser”. The sec-
ond was an ad for Lancome featuring Julia Robé&igufe 2-5b), which claimed to “recreate
the aura of perfect skin.” In making their judgmemt the Lancome ad, the ASA stated that
they “could not conclude that the ad image acclydtastrated what effect the product could
achieve, and that the image had not been exagddgteligital post production techniques”
[4]. In 2012 the ASA has banned another advertisgrfrem appearing in any UK markets.
The ad of Dior, featuring Natalie Portman (Figur6c2 was cited for being manipulated and

Dior has agreed to withdraw this ad [6].
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Along with forgery detection, other directions imdge forensics, namely source identifica-
tion and identification of synthetic images havetaddressed in the scientific literature [1],

[7]. In the following, we briefly review the mainrdctions in image forensics.

2.2.1 Image Source ldentification

The main goal of image source identification isdentify the digital image acquisition device
(mostly the digital camera) or their charactersstfbrand, model, etc.). Although some infor-
mation on the acquisition device can be extraatech the image header file, this information

can easily be modified or removed, therefore, itnce reliably be used for the forensic pur-

pose [1].
Image
Scene Sensor _>lnterCl(?l:tion »| Post- |y Storage/
P processing Display

Lens Filters CFA
Figure 2-6: The pipeline for image capturing in digital cantera

Digital cameras consist of a lens system, filt@wslor Filter Array (CFA), imaging sensor,
and a digital image processor (Figure 2-6) [8]. M/kaking a picture with a digital camera, the
light reflecting the object runs through the leneéshe camera. After passing the lenses, the
light goes through a set of filters, which are useaontrol the visible parts of the spectrum
and reduce aliasing. The main part of a digital @ams the imaging sensor, consisting of an
array of photodiode elements, or pixels, which eshlight to analog signals. The signals are
then converted to the digital domain and subseduendcessed by the digital image proces-
sor. Digital cameras deploy Charge-Coupled DevicE§) or Complimentary Metal-Oxide
Semiconductor (CMOS) as imaging sensors. Sensetspate sensitive only to the brightness
of light, thus producing a monochromatic output.pfoduce a color image, a CFA is used in
front of the sensor so that each pixel recorddligte intensity of a single color. The output
from the sensor is a mosaic of red, green, andikeds of different intensities. The measured
color values are passed to the component of digitaje processing, which applies several

operations in order to produce a visual pleasaagar1], [9].

Each processing step may leave detectable artifabtsh are caused by specific character-
istics of the corresponding components. Among tteem the distortions of the lens, CFA
interpolation, the imperfection of the imaging sema&nd artifacts of the color processing al-

gorithms [1]. Some techniques extract specific Uezd in images and then use them in
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classifiers in order to discriminate cameras. Banegple, the authors in [10] extract 34 fea-
tures to fingerprint camera models and [11] use$ed@8ures of color, image quality, wavelet
domain. Choi et al. [12] propose the lens radiatattion as a fingerprint to find the source
camera. The choice of CFA and the details of thA @Eerpolation are the most pronounced
variations among different camera models [1]. Savechniques based on the features of CFA
interpolation have been developed [13-15]. Geratltal. [16] propose matching of CCD
pixels and use them to determine the source carBeraor noise is mainly due to the imper-
fection of the imaging sensor resulting in slighifedence between the captured scene and the
image acquired by the camera [17]. The dominatomgponent of sensor pattern noise is the
Photo-Response Non-Uniformity (PRNU), because ef¢bnsor manufacturing process, sili-
cone inhomogeneities, and thermal noise [7]. Ineortb identify source camera, many
techniques rely on PRNU have been developed [18A2B8gxtension of sensor-based camera
identification to images corrected for lens distortis introduced in [24]. The PRNU noise
features and CFA interpolation artifacts can batjpiused for detecting source type and cam-

era model [25].

2.2.2 ldentification of Synthetic Images

With the development of image processing and coempiision, computer-generated images
can be created that are very similar to naturatqgraphs. For example, a computer-generated
image of a famous Korean actress (Song Hye Ky&ated by Indonesian artist Max Edwin
Wahyudi, is shown in Figure 2-7. To create thisgmehe used a combination of digital sculpt-
ing, design application Pixelogic Zbrush and aniomatmodelling software Autodesk 3DS
Max [26]. The goal of this forensic direction isdiscriminate natural photographs from syn-

thetic images.

Figure 2-7: A computer generated picture of Song Hye Kyo.
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The main idea of most of the existing work aimingdentifying synthetic images are to
extract significant features from natural imaged aomputer-generated images and use ma-
chine learning techniques for classification. Tlene the most crucial difference between the
techniques lies in the feature selection procegs.and Farid [27] use higher order statistics of
wavelet transformation coefficients to design feadu These features can be used to train a
SVM-based classifier. Ng et al. [28] designed 1&&tdires, which are based on identifying the
distinctive characteristic of computer-generatedges and natural images. The authors in [29]
proposed a method, in which the features are adaddirom characteristic functions of wavelet
coefficients histograms. One can also exploit #t that most real photographs are taken by
digital cameras, which leave specific artifacts itha not exist in computer generated images.
Thus, Dehnie et al. [30] proposed a method to oiisnate synthetic images from digital cam-
era images. Dirik et al. [31] extended the approath30] to include CFA interpolation
artifacts.

2.2.3 Forgery Detection for Digital Images

Forgery detection is probably the most importaobf@m of digital image forensics. Although
many image manipulation methods have been proptised is no unique technique capable
of detecting every forged image. We briefly revigiite of the art forgery detection techniques

in some main categories, mostly following [32]:

Pixel-based methodsSince pixels are basic elements of digital imageslyzing pixel-level
correlations can expose an image tampering. Copyert@r cloning) is a common method for
image tampering in order to conceal an object énitage. To detect this forgery, many tech-
niques have been proposed. Most of existing copyenfiorgery detection techniques relies on
analyzing the specific features of image blocksictvtare extracted by using different algo-
rithms, such as DCT transform [18], DWT transfor@8]f FMT transform [34], and PCA

analysis [35]. We will discuss this forgery typennore detail in Chapter 4.

Another common forgery is composition, where twarmre images are spliced. The au-
thors of [36], [37] show that splicing disrupts lhigrder Fourier statistics, which can be used

to detect this forgery.

To create a convincing forged image, the image®portions are usually resized or ro-
tated. These geometric transforms require re-sagplvhich consists of an interpolation step.
Interpolation creates specific artifacts, which t@nuncovered through analyzing the correla-
tions of neighboring pixels [38], [39] or computitige second derivatives of the image [40],

[41]. We will discuss this forgery type in more @ieétn Chapter 5.
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Format-based methods:Most cameras encode images in the JPEG formatder ¢o create

a forged image, the JPEG image is loaded into agiimg editor and it is re-saved as JPEG
after modification have been performed. Thus, thrgdd JPEG image exhibits artifacts of
double JPEG compression, which can be uncoverezsbime techniques [42][43]. It is noted

that if the JPEG image has been cropped beforsg¢bend compression, the corresponding
JPEG blocking grids in the first compression andh@ second compression are no longer
aligned, so the aforementioned do not work. To aetas type of forgery, some more robust
techniques have been proposed [44-46]. We willudisdechniques to detect forgeries in

JPEG images in more detail in Chapter 6.

Camera-based methodsAs presented in Section 2.2.1, digital camerasegrepped several

components. Each of them may leave detectablaettifwhich are caused by specific charac-
teristics of the corresponding components. Thdaats can be applied to determine camera
source as well as image integrity. The CFA intempoh leaves forensic artifacts that can be
used for detecting image manipulations [47-49]. &atiner camera artifacts can be used as

evidence of tampering, such as chromatic aberrgd@hand sensor noise [51].

Physics-based methodsThere are some techniques for estimating diffepeoperties in the
lighting environment under which a person or areocbjas photographed. Thus, differences
in lighting across the image can be used as tangewidence [52], [53]. The lighting of a
scene in practice can be complex due to differeattipns of the lights. A method to estimate a
low-parameter representation of such complex lighgénvironments is described in [54]. Be-

sides, inconsistencies in shadows can be usedrfgrdring detection [55], [56].

Geometry-based methodsThe principal point is the projection of the cameenter onto the
image plane, so it is moved proportionally wherobject is translated in the image [32]. The
authors of [57] use the inconsistencies in theggpad point across an image as evidence of
tampering. The discrepancies in motion blur in iesmd$pave been used for detecting spliced
images [58].

2.3 Digital Image Anti-Forensics

Anti-forensics is a method allowing to mislead fwie analysis of digital images. This
method is usually used to assess the reliabilitipnsic methods, especially in the presence
of an adversary that wants to influence the resuthe forensic algorithm. Anti-forensics is

also known as counter-forensics [59].
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2.3.1 Effectiveness and Security of Forensic Techniques

While the effectivenessf a digital image forensic technique is the dideccapacity of the
technique in case no legitimate or illegitimateackt has been applied to forged images, the
robustnes®f a digital image forensic technique is its reilidy even if legitimate image post-
processing is performed [59]. Most forensic techagyin the literature are tested with some
common post-processing operations such as JPEGressin and Gaussian noise addition in
order to measure their reliability. The authors[@d] show that the common manipulations
allow to judge the reliability of the forensic tentues only on an average. In fact, based on
the knowledge of a forensic technique, which arstiygublished, adversaries can design de-

liberated attacks in order to defeat the technique.

The securityof a digital image forensic technique is defingdits reliability to detect for-
geries even in case intentionally concealed iliegite post-processing has been applied to
forged images [59]. In other words, security is ahdity to withstand anti-forensics. Thus, the
security of an image forensic technique can beuavatl by examining its resistance against

targeted attacks.

In the next section, we briefly introduce severgi-forensic techniques, which are used to

assess the security of different forensic techrique

2.3.2 Anti-Forensic Techniques

At present, only a few anti-forensic techniquesehbgen proposed. One of the earliest digital
image anti-forensic techniques was introduced ®)}.[he technique has successfully de-
stroyed the traces of re-sampling, which are calse@nage resizing or rotation. To hide
fingerprints left by image re-sampling, a set afyéded attacks have also been proposed in
[61]. Some other anti-forensic techniques try t@méothe PRNU noise of camera sensor left in
images [62] and to artificially synthesize CFA fatts [63]. Stamm et al. [64], [65] proposed
methods to remove quantization artifacts from til&Txoefficients of JPEG compressed im-
ages and from the wavelet coefficients of wavedstddl compression schemes such as Set
Partitioning in Hierarchical Trees (SPIHT) and Emitbed Zero-tree Wavelet (EZW).

While anti-forensics can defeat forensic technigusssne anti-forensic operations may
leave detectable evidence of their own. Detectiagess of anti-forensic operations can un-
cover the presence deliberated attacks as webklagdimprove forensic techniques. Since the
median filter is used in some anti-forensic techeg)[60], [61], detecting traces of median
filtering can uncover the evidence of possibleckitg66]. The authors of [67] show that how

such anti-forensic techniques [64], [65] affect Wiwual quality of JPEG images.
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3 A Framework for Evaluation of Image Forgery Detecton

3.1 Introduction

Many forgery detection techniques for digital imadeave been proposed in the literature.
Therefore, there is a need to evaluate forgeryctletetechniques in a controlled environment
in order to assess their performance. The purpbseatuation is two-fold. Firstly, it provides

either a qualitative or a quantitative method adlesating a technique. Secondly, it allows to
compare different techniques under similar crit¢si@]. So far, most existing detection tech-
niques were only tested independently, it is dittito reproduce their experimental results and
compare the techniques to each other. Thereformder to test detection techniques in an ef-
ficient and comparable way, we propose a geneaahdwork that uses common evaluation

conditions of image datasets, evaluation metried,atacks.

As mentioned in Chapter 2, there are two main aqgres for image authentication: the ac-
tive approach using watermarking techniques [2] ted passive approach involving image
forensic techniques [32]. For the evaluation of emaiarking techniques, several standard
frameworks or benchmarking systems have been pedpsisch as Stirmark [69], Checkmark
[70], and Optimark [71], etc. In these systems,wagermarking technique under test is used
to embed watermarks into several host images. Tajermequirement of embedded water-
marks is to remain detectable even if the waterptiknages have been altered. To measure
this robustness, different manipulations are appiewatermarked images before they are fed
into the detector. The output of watermark detectarsed to evaluate the effectiveness and
robustness of the analyzed technique. In ordeibtai reliable results, one should perform
multiple trials with different watermarks and imagef various sizes and contents. When
building benchmarking systems, the essential compisrare evaluation metrics and the set of
image manipulations or possible attacks [72]. Apamant problem in the evaluation of wa-
termarking techniques is to assess the perceptualityy of an image that has been
watermarked or attacked. There is a tradeoff betvike watermark embedding strength and
the visual quality of the image. Since there isunoversal metric for evaluation of perceptual
quality, different metrics are usually considenedhe benchmarking systems. The Peak Signal

to Noise Ratio (PSNR) is one of the most populatricefor perceptual quality evaluation.

In the field of image forensics, each forgery ditectechnique is usually assessed inde-
pendently. Some authors have tried to compare titmetechniques of the same type [73-77].

The authors of [73] evaluate three copy-move forghatection technigques based on the Dis-
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crete Cosine Transform (DCT), Principal Componenalisis (PCA), and the Fourier-Mellin
Transform (FMT). They test the robustness of tlvbriggues against common image manipu-
lations such as JPEG compression, rotation anéhgcdlhe effectiveness and robustness of
some re-sampling detection techniques have bedypzadain [74]. The effectiveness and ro-
bustness of several copy-move forgery detectiohnigaes were measured in [75], [77] and
some DCT-based forgery detection techniques weatuated in [76]. All mentioned works
used empirical methods to test a group of techsiguéhe same category under the same con-
dition. However, they did not propose an evaluaticmmework that other people can

subsequently use.

In this chapter, we describe a general frameworlet@luating the effectiveness and secu-
rity of image forgery detection techniques. To #sl, we introduce the attack models and the
infrastructure of the evaluation system. In additive design a test tool in order to support the
evaluation in practice. With the framework, all Bzad techniques can be tested under the
same condition, which therefore allows fair compamns. The framework will be used for

evaluating the selected forensic techniques; ieant shown in the next chapters.

3.2 The Proposed Framework

3.2.1 Framework Infrastructure and Evaluation Process

The main goal of the proposed framework is to eirgly evaluate the effectiveness and se-
curity of image forgery detection techniques ur@erommon condition. In forgery detection
techniques, the input is the to-be-tested imagetia@autput is a decision indicating whether
the image is forged. Subsequently, in the frameviarievaluation of detection techniques, the
input is the tested technique and the output isvatuation report describing the effectiveness
and security of the techniques. The common infuatitre and evaluation process of the pro-
posed framework are shown in Figure 3-1. The ifugsure consists of several components
of evaluation metrics, possible attacks, and imd@gsets. These components are necessary
for the process of testing a detection techniquethay will be briefly described in the next

sections.
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Figure 3-1: The infrastructure of the proposed framework.

As mentioned in Section 2.3.1, the security of raffigic technique can be evaluated by as-

sessing the resistance of the technique agairstéar attacks. There are two attack models for

forensic techniques:

= Blind attack model: In this model, the adversary does not know tigerithm of the

detection technique; he sees the forensic techraqueblack box. Thus, the technique

can only be attacked by using common image maripak With respect to evaluating

the security of a forensic technique, these attacksiot enough to gain a reliable secu-

rity evaluation.

= Non-blind attack model: In this model, the adversary knows the forenfgorhm in

detail, so he can design targeted attacks agdiesethnique. Since the adversary can

utilize knowledge of the forensic technique, tHiswas tests under more stringent con-

ditions. In fact, most existing image forensic aitions are published in the literature;

the non-blind attack model is thus more realistid applicable.

The evaluation process of the framework is showmane detail in Figure 3-2. To evaluate

the effectiveness of a forensic technique, theatiere processes are applied to a dataset of

forged images. A forged image is created by mafdngeries to an original image. Since there

are many types of forgeries, many different dataséforged images need to be created. The

security of a technique is assessed by applyingl¢hection processes to datasets of attacked

images. An attacked image is created by applyirgetad attacks to a forged image. An attack

against a forensic technique is considered suadd$she technique detects the attacked im-

age as original.
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Figure 3-2: The evaluation process of the framework for assessof forensic techniques.

3.2.2 Performance Evaluation Metrics

A performance metric is a meaningful and computat#asure used for quantitatively evaluat-
ing the performance of any forgery detection teghai[68]. In this section, we first revisit the
common metrics ofrue positive rateandfalse positive rateThen we define some metrics
which are designed for a specific type of forgench as theorrectness rateand theincor-

rectness rate

The outcome of a forensic technique is binary:egithositive (predicting that the image is
forged) or negative (predicting that the imageriginal). The test results for each image may
or may not match the actual status of the imagasTe can considérue positiveswhere a
forged image is correctly identified as forgeffise positiveswhere an original image is in-
correctly identified as forgedrue negativeswhere an original image is correctly identifiesd a

original, andfalse negativesvhere a forged image is incorrectly identifiecbaginal.
The true positive ratélf’PR)and the false positive raEPR)are defined as

TpR=_ TP
TP+FN

FP

FPR=—
TN + FP

whereTP, TN, FP, FN are the number of true positives, true negatifadse positives and false

negatives respectively.

The detection ratds the fraction of the number of images detectetbeged and the total

number of testing images. In a test with a datakatl forged images, the true positive rate is
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equal to the detection rate. Similarly, in the tegh a dataset containing only original images,
thefalse positive ratés computed as the fraction of the number of aafjimages which have

been detected as forged and the total number tirigemages.

While the detection rate and false positive rate ganeral metrics, some other evaluation
metrics are only suitable for a certain forgeryety@opy-move forgery is a very popular prob-
lem in image forensics, where an image is judgefb@ged if there are two similar regions in
the image. Typically, these algorithms are ablalémtify the copied regions pretty accurately.
However, the detection algorithm may produce falssitives when the detected results are,
for example, parts of homogeneous image regionproduce errors when estimating the
forged regions. In order to evaluate the accutdaetection techniques, we use the so-called

correctness ratewhich described as follows.

Assuming thaD; and D, are the copied parts in the tested imdgeandR; are the two
similar image regions which were detected by therfsic technique. The accuracy of the

technique based dpy, D,, Ry, andR; is evaluated by computing a met@as follows:

_|Rin Dy +|R; n Dy |

C
[SARYIsH

Assuming that the number of testing imagesliand the number of images correctly de-

tected as forged Nc, thecorrectness rate (CR3$ defined as:

Consequently, thimcorrectness rate (ICR} defined as:

ICR= Nc— Nf ,
N

whereNf denotes the number of images detected as forged.

3.2.3 Perceptual Evaluation Metrics

To assess the security of a detection technigéfeyeht attacks against the technique must be
used. At the same time, the attacks usually degitzgl@erceptual quality of the attacked im-
ages. A good attack not only deceives the detet#iomnique, but it creates as little impact to
image visual quality as possible. For examples ilnacceptable if an attack deceives a foren-
sic technigue but also distorts images so much ttimatattack can be easily recognized by
human eyes. There is usually a tradeoff betweerstiiemgth of an attack and the perceptual

quality of attacked images. For a fair benchmarkihgmage forensics, the perceptual quality
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loss due to an attack is an important issue thatldhbe considered. Although there are many
metrics for the evaluation of image visual qualitgne of them is universal. Therefore, in this
section, we review common metrics which take tliects of the Human Visual System (HVS)

into account; some of them will be used for peraaptiuality evaluation in next chapters.

One of the most popular perceptual quality metfdecsdigital images is the Mean Square
Error (MSE). The MSE is the mean of the squaredreralues across the entire image be-
tween an image and its manipulated versidd (of the same size d¥1xN) and it can be
defined as follows:

1 Sy, .
MSE=—=> > (G ) =K (L D)
i=1 j=1

The Signal to Noise Ratio (SNR) is defined as tbwgr ratio between a signal (meaning-
ful information) and noise (unwanted signal). Timietric is useful to quantify how much noise
is contained in an image. The larger the SNR is,bibtter the quality of the manipulated im-

age. The SNR can be computed as follows:

M N
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SNR=10log;,
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A more popular (and widely-used) version of the SiHRhe Peak Signal to Noise Ratio
(PSNR). The PSNR s the ratio between the maximassiple power of a signal (or the peak
value of the input image, callddAX) and the power of corrupting noise that affecesfttdel-
ity of its representation. In gray-scale imagesewthe pixels are represented using 8 bits per

sample MAX = 255. The PSNR can be calculated based on the sigere error as follows:

MAX?

PSNR=10log,o| ——— | .
MSE

The SNR and PSNR are usually measured in deciBgl idthough these metrics are very

popular and simple to calculate, they are not advegrrelated to human vision [78]. Thus,

better methods for image perceptual quality evadnabave been proposed. Wang et al. [79]
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proposed an improved approach called Structurall&ity Index Metric (SSIM). It is based
on the fact that the HVS is highly adapted for &eting structural information. Another ap-
proach is the Weighted Peak Signal to Noise R&MB$NR) first introduced in [80]. Based on
the fact that the human eyes are less sensitirttifications in textured areas than in smooth
areas, the WPSNR uses an additional parameteddhkeNoise Visibility Function (NVF),
which is a texture masking function. The WPSNR wofimage can be calculated as follows
[80]:
WPSNRleIoglO{L'ZZJ .
MSE* NVF

The NVF uses a Gaussian model to estimate how rraxthre exists in any area of an im-
age. For flat regions, the NVF is close to 1; fdges or textured regions, the NVF is close to
0. Thus, for smooth images, WPSNR approximatelyakxqto PSNR, but for highly textured
image, WPSNR is higher than PSNR. The function Y& pixel (i, j) is given as:

1

NVF(i-j)zm ,

where o(i, j ) denotes the local variance in a window of size{D)x(2.+1) centered around

the pixel with coordinate (i, j) ané is a tuning parameter dependent on the imagelddad

variance is computed as:

2 o1 N L iy T 2
)= gy 2 DOk D)=LD)

with

- .1 S S,
x(|,J)——(2L+1)2k;u;x(wk,”l).

The tuning parameter is given as:

Um ax

2
where oy,

is the maximum local variance for a given imagd Bnis an experimentally de-

termined parameter that ranges from 50 to 100.

The value of NVF for an image of sik#&N can be computed as the normalization of the

noise visibility function of every image pixel:
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MN i=1 j=1
In our framework, we use both metrics PSNR and WR3d perceptual quality evalua-

tion (the first metric due to its popularity ancthecond metric due to its better correlation to

human vision).

3.2.4 Possible Attacks

As mentioned in Section 3.2.1, attacks can be ifledsas blind and non-blind. In the former
case, the detection algorithm is not known to ttiacker, so the technique can only be at-
tacked by general image manipulations. In the lathse, targeted attacks can be designed to
defeat a certain detection technique. In other wongthin a benchmark tool we can consider

general attacks and targeted attacks.

General attacks consist of common image procesgirgations which may destroy foren-
sic evidence and are applicable to any forensid. tSome popular operations such as
geometric transformations, JPEG compression, ang$&n noise addition are usually con-
sidered in this category. Targeted attacks areifsqaly tailored towards a particular detection
technique. Since targeted attacks are closelyegbat the technique which they affect, we will
discuss them in more detail in the following chaptdén this section, we list important image
manipulations which are implemented as generathkdtan our framework. Some of them have
already been used in the watermarking benchmagiiatgms of Stirmark [69] and Checkmark

[70]. Various common attacks are described in lagebellows:

A. Geometric transformations

= Rotation: Rotating the whole image or a part of it withraadl angle. This operation is
not easily recognized for a human observer, baait affect the position of forensic

evidence in the image.

= Rotation and cropping: Rotating the whole image and then cropping awicéangular

part from the rotated image which belongs to thegital image.

= Rotation, cropping and rescaling Rotating the whole image, cropping out a rectan-
gular part from the rotated image which belongth®original, and then rescaling the

cropped part to the same size of the original image

= Scaling This attack can be divided into two groups: naifarm scaling and uniform

scaling. Non-uniform scaling uses different factorborizontal and vertical directions.
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Under uniform scaling, the scaling factor in horital and vertical are identical. In ex-

periments, one often uses uniform scaling.

= Cropping: Cropping a small number of pixels from the edgegnages. This manipu-
lation is not easily visually recognized, but itnche an effective attack, especially

against techniques which work by detecting imageklihg artifacts.

B. Image Enhancing

= Mean filtering: is a simple filtering method used for image srhod. It is often used

to reduce noise in images.

= Median filtering : is a popular filtering method to reduce noiseniages. It is often

better than the mean filter since it preservesulisigtails in images.

= Histogram modification: is a method for adjusting image intensities thate con-

trast of images.
= Gamma correctiornt This is used to enhance images or adapt imagessplay.

C. Noise addition Typically, additive white Gaussian noise is addedthe whole image

(globally) or to a part (locally).

D. JPEG compression This is very popular lossy compression, whichue$ invisible de-
tails in images. It is usually considered as anartgnt attack against many forensic
techniques. The degree of compression can be adjastd there is a tradeoff between the

compression factor and image quality.

To make convincing forgeries, several differentelits can be combined. For example,
cropping can be combined with other operations sisctescaling to retain the size of the im-
age. Rotation and scaling alone are sometimesnuatgh to defeat a detector and are used in

combination with JPEG compression [81].

3.2.5 Image Datasets

To empirically evaluate the effectiveness and sgcaf a forensic technique, the technique is
tested on different types of images. In this sectwe introduce a method to create the neces-
sary datasets of forged images and attacked im&getly, a dataset of uncompressed original
images forms the basis of our test; we choose aseabf original images from the Uncom-
pressed Color Image Database (UCID) [82]. This sttaonsists of 1338 uncompressed
images, including photos of natural scenes andctdhjeoth indoor and outdoor. Besides, the

UCID dataset is widely-used, free and can easilgdxenloaded from the Internet. A database
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consisting of original single JPEG compressed imagereated by compressed the uncom-

pressed original dataset with different qualitytéas.

Following the proposed evaluation process, in otdeavaluate the effectiveness of a tech-
nique, we have to run tests on datasets of fongedjés. Since there are many forgery types,
we prepared different forged datasets respectivedyged datasets are created by applying
some forgery manipulations to the dataset of oaigimages and some of them are listed as

follows:

= Copy-move copy a random part of the original image and mivi®@ another non-
overlapping position in the same image. Since e a&nd location of the copied parts
can affect the detection result, we use both sguanel non-squared regions of various

sizes when creating forgeries.

= Re-sampling apply geometric transformations (e.g. up-sampldayvn-sampling, rota-

tion etc.) with different factors to original imag order to create re-sampled images.

= Double JPEG compressiondouble JPEG compressed images are created byirappl
JPEG compression with different quality factors omare time to a single JPEG com-

pressed image.

3.2.6 The Test Tool

In this section, we briefly introduce a test toakbd on the proposed framework in order to
assess forgery detection techniques. The main parpbthis tool is to support the evaluation
of forensic techniques in practice. To this end,degeloped a set of Matlab functions, which
are divided into three main groups: 1) attack fiomst, 2) functions for creating datasets of

forged images and attacked images and 3) testiunsct

The tool stimulates the detection process of anficetechnique on different image data-
sets. It applies a series of tests to differentgendatasets of forged images and attacked
images. Each test is accomplished by applying #gtection function to an image. The names
of the image datasets to be used are parametanzadprofile, specified by users. Subse-
quently, the detection results of the forensic mémhe on the analyzed datasets are obtained
from a report file. In order to accomplish an ewdilon of a forensic technique by using this
tool, users need to provide the detection functammfigure the profile of image datasets and

run the test functions.
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Note that most forensic techniques use predefinexsholds, which influence the detection
results. In our approach, the analyzed technigaesat be changed by the test tool. The tool
works only with hard decision detectors, which gatea binary output whether the detected
image is forged or original. In order to get safcidions as well as showing the mutual rela-
tionship between different parameters, users cgndifferent thresholds and apply the

framework to several versions of the forensic témpia

3.3 Summary

In this chapter, we proposed a test frameworkHeravaluation of digital image forgery detec-
tion techniques. With the framework, the techniquas be assessed by using common
metrics, datasets and attacks in order to meabgie éffectiveness and security. Since the
techniques were tested under the same conditiey,dan be compared in a fair manner. We
built a test tool to support the evaluation procafsenage forgery detection techniques easily

and automatically.

3. A Framework for Evaluation of Image Forgery Dntieen 37



3. A Framework for Evaluation of Image Forgery Dntieen

38



4 Security of Copy-Move Forgery Detection Techniques

4.1 Introduction

In this chapter we first survey techniques for copyve forgery detection techniques for digi-

tal images and propose a method to evaluate thei$@uss several widely-used techniques,
implement them and evaluate them by using thefrtastework proposed in Chapter 3. Subse-
quently, experimental results allow assessing ffeetéveness, robustness, security, and image
perceptual quality of the considered techniquesrdter to evaluate the security of these tech-
niques, we design different targeted attacks agaash of them. Finally, we propose a new
technique, which has higher robustness against smmamon attacks, such as rotation or

Gaussian noise addition.

Figure 4-1: Shown on the left is the copy-moved image and shomwthe right is the original
image.

Detection of copy-move forgeries is a popular imégensic problem, for which many fo-
rensic techniques have been developed. The pugiaseopy-move forgery is mostly to hide
an important object of an image by covering it vatipart copied from another region within
the same image. When it is done skillfully, it iffidult to detect by human eyes. Moreover,
because the copied parts come from the same imaa®, important statistical properties of
the copied parts are similar to the rest of thegienand thus it will be difficult to detect forger-
ies by using methods that look for incompatibisitia statistical measures in different parts of
the image [18]. An example of this forgery can bersin Figure 4-1, which shows the image
of an Iranian missile test that appeared on that fpage of many newspapers. However, it was
revealed later that the second missile from thiet ngas copied and moved from the third mis-

sile in order to conceal the fact that a missilérenground did not fire.
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Many techniques for copy-move forgery detectionehbeen proposed in the literature. In
order to detect duplicated regions in an imagemple approach is performing an exhaustive
search, in which the image is compared with itsutarly shifted versions. Since that would
examine every possible pair of image regions, tié¢hod is computationally very demanding
[18]. Most existing techniques for copy-move fosgeietection follow a more efficient ap-
proach based on small fixed-sized overlapping imblgeks. The detection process of this
approach is presented in Figure 4-2. The analymeje is firstly divided into overlapping
blocks. Specific features of each block are extdat a succinct way in order to reduce com-
putational complexity as well as increase robustnasthe techniques. Although it is not
required, most techniques use a subsequent saipgin order to reduce the complexity for
matching similar regions. To this end, the featwkeach block are usually vectorized, then
these vectors are sorted and all pairs of contigu@etors are examined in order to identify
similar blocks. Finally, to judge if the image isrded, in the matching step, one searches for

two groups of connected blocks so that every plagimilar blocks has the same distance in

the image.
_——— Sorti — — — =
| »| Sorting v
N Divide lr.lto N Feature N .
Image overlapping extraction Matching
blocks

Figure 4-2: The general scheme for detecting copy-move forgemigligital images.

The most distinguishing property of various copyvedorgery detection algorithms is the
employed extracted features. The feature extractiethods of most existing detection tech-
niques can be categorized into four main groupshrigues based on frequency
transformation, dimensionality reduction, momemtd eolor features [75]. The features can be
obtained from the frequency domain by using thecii® Cosine Transform (DCT) [18], Dis-
crete Wavelet Transform (DWT) [83] or Fourier-Mallirransform (FMT) [34]. In order to
reduce dimensions of block features, the techniguf85] uses the Principal Component
Analysis (PCA) while the technique in [84] uses dsilar Value Decomposition (SVD). A
typical technique based on color features is pregos [85]. Some techniques are based on

moments, such as [86] uses blur moments and [&8] Zisrnike moments.

An important problem in copy-move forgery detectisrio find a robust representation for
the image blocks, so that duplicated blocks canddatified even after modifications have
been applied to the forged image [73]. The authof88] proposed rotation-invariant features

by using log-polar transform. Another rotation-inaat selection method called Same Affine
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Transformation Selection (SATS) is presented if.[8@me other special feature descriptions
such as the Scale Invariant Features TransformT{S80] and Speed-Up Robust Feature
(SURF) [91] have been employed as well. Several-Blsed techniques for copy-move for-
gery detection have been proposed by Huang €92, Pan and Lyu [93], and Amerini et al.

[94]. The authors in [95] applied SURF featurethieir technique.

Since many copy-move forgery detection techniques lbeen proposed, it is important to
evaluate and compare them. There are some existinks that compare different detection
schemes. The authors of [73] evaluated effectivea@sl robustness against some geometric
transformation of three techniques based on DCT, R8A [35] and FMT [34]. They used
only a few images in their test and performed nusty and perceptual quality evaluation.
The work in [75] presents a common pipeline forycaomve forgery detection and performs a
comparative study on a number of detection teclesqihe authors introduce a benchmark
database for evaluation of copy-move forgery deirdechniques. They tested the robustness
of the techniques only against two geometric tramsétions (scaling and rotation), and a per-

ceptual quality measurement is also not included.

4.2 Effectiveness Analysis

4.2.1 Implementation of Detection Techniques

A major obstacle when evaluating detection techesgs that their implementations are often
not available. Therefore, we first implemented cielé algorithms based on the short descrip-
tions in the papers [18], [35], [85]. In this sectj we briefly review these techniques and give
some notes on the implementation. All techniqudisviothe general scheme for copy-move
forgery detection presented in Figure 4-2. Firdtiie analyzedMxN image is divided into
overlapping blocks of sizBxB pixels, resulting in NI-B+1)x(N-B+1) image blocks. Next,
the characteristic features of every overlappiracklare extracted, and then the features are
vectorized. Finally, these vectors are sorted tayiaphically in order to identify similar

blocks.

Fridrich et al. [18] used several low quantizedyérency DCT coefficients for feature ex-
traction. There is no specific information on thember of DCT coefficients given in the
paper. In our implementation of [18], we use onkylewest DCT coefficients in each block.
In the lossy JPEG compression process, higher qednDCT coefficients will be eliminated,
therefore, the extracted features in [18] are etgokto be robust against JPEG compression. In

order to prevent too many false matches, the asitbb[18] used a large block siZé,= 16.
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They also computed a new 16x16 quantization tahsmd on the 8x8 standard quantization

table and an experimental formula.

Similarly to the technique of Fridrich et al. [1&ut instead of using DCT, Popescu and
Farid [35] performed PCA for every overlapping 8rtage block to produce a short represen-
tation; truncation of the PCA basis reduces thebrmof dimensions [35]. This representation
is also known to be robust to minor variationshe tmage due to additive noise and lossy

compression.

Luo et al. [85] proposes a method to use featuased on the information in color chan-
nels. Following the method, in each image bloclq twoups of features are calculated: 1) the
first three featuresc(, ¢, &) are the averages of red, green, blue componespectively; and
2) The Y channel (Y = 0.299R + 0.587G + 0.114Bjiisded into 2 equal parts in 4 directions,
then the last four features are compuigd: sum(parl) / (sum(parf + sum(par)), wherei
ranges over the image partition depicted in FigiB Since we use gray-scale images in our
experiments and in order to use the same dataght®tiver considered techniques, we modi-
fied the algorithm [85] to deal with gray-scale mea. Most details of the algorithm are
preserved, except the transition from three cdhanoels to only one channel. That may be the
reason that our experimental results of the madliieheme are not fully comparable to the

original paper [85].

‘ 1 1
5 2

Figure 4-3: Image regions used in the method by Luo et al..[85]

An image is declared to be as forged if there a@ groups of connected blocks, where
each block in a group has a corresponding simitzgkbin the other group, and every pair of
similar blocks has the same spatial distance inntfagie. To reduce false matches, an image is
considered as forged if and only if the number iofilar pairs is greater than a predefined
threshold. Larger values of the threshold may c#lusealgorithm to miss some not-so-closely
matching blocks, while too small values increadsefpositives [18]. In each technique, this

threshold is usually determined through experiments

All forensic techniques are based on some preditimesholds. Although we tried to fol-
low exactly the original papers, the thresholdstluf analyzed techniques were adjusted
slightly to get optimal results with our datasef(¢he detection rate of forged dataset is high

while obtaining low false positive). In our expednt we select the thresholds for all tested
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techniques so that the detection rate is larger #%446 in a test with the datasets of forged im-

ages and the false positive rate is lower than B% st with the dataset of original images.

4.2.2 Effectiveness Analysis of Detection Techniques

We apply the test framework to empirically evalutite three schemes [18], [35], [85]. We
create different datasets of original images, fdripages and attacked images following the
framework of Chapter 3. As original images we rantjoselected 200 uncompressed images
from [82] and then converted them to gray-scalee dhtaset of forged images is created by
randomly copying a part in each original image amaling it to another position of the same
image. The copied parts can be square or non-sgmatiee first case, we set the size of the
copied parts to 64x64 pixels. In the second caserder to make it easier for automatic tests,
all copied parts are created in the same way bydak each image a square region of size
64x64, but eliminating the two small square paftsipe 12x12 in its upper-left and bottom-
right corners. Experimental results are shown ibld&-1 and Table 4-2. In general, all ana-
lyzed techniques can detect forgeries with highueay. In the case of square copied parts, all
techniques work well with detection rates (DR) Hlighhan 95% and correctness rates (CR)
higher or equal to 94%, while the incorrectnesssdlCR) are very low. For non-square parts,
there are no significant differences in compariothe previous case, except [18] which has a
lower CR The truncating and rounding processes of theniqak [18] are the causes for its
lower detection rate; however, these processes fiemore robust against some post-

processing operations.

Fridrich et al.| Popescuand Luo etal.

[18] Farid [35] [85]
DR 95.5% 100% 99.5%
CR 94.0% 99.5% 99.0%
ICR 1.5% 0.5% 0.5%

Table 4-1: Detection rates, correctness rates and incorrectagss while evaluating forged

images where copied parts are square.

Fridrich et al.| Popescu and Luo et al.
[18] Farid [35] [85]
DR 94.5% 100% 100%
CR 80.0% 99.5% 99.0%
ICR 14.5% 0.5% 1.0%

Table 4-2: Detection rates, correctness rates and incorrestiagss while evaluating forged

dataset where copied parts are non-square.
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4.3 Robustness and Security Analysis

In the papers [18], [35], [85], the authors madmeaobustness tests, but did not perform any
security evaluation. In this section, we analyze thbustness as well as the security of the
above techniques under identical conditions. Rolmsst can be assessed by applying the de-
tection techniques to a set of forged images, whicerwent post-processing operations.
Several different post-processing operations wisted in Section 3.2.4. Furthermore, we also

design dedicated attacks in order to evaluatedbergy of the detection techniques.

At the beginning, we tested the robustness ofdhbrtiques under Gaussian noise addition
of various SNR of 24, 29, and 40 dB. The experimkerdgsults are shown in Table 4-3. Al-
though [18] did not show any robustness test, esiistindicate that the DCT-based technique
is extremely robust against Gaussian noise addiliba techniques of Popescu and Farid [35]

and Luo et al. [85] show less robustness.

The robustness against JPEG compression with eliffeuality factors (QF) of 40, 60, and
90 is shown in Table 4-4. Since [18] is a DCT-batghnique, it is mostly robust against
JPEG compression with correctness rates about 8@86,in the case of a low quality factor of
40. The technique of Popescu and Farid [35] issquaibust only in the case of a high compres-
sion quality factor. The pixel-based technique [B&% very high false positive rate and it is

mostly defeated with a correctness rate of onlg4l.5

Lastly, we examined the robustness against imagéoo with the angles of 1, 2, and 3 de-
grees (Table 4-5). Although [18] seems not so rbhgainst rotation, with correctness rates of
about 60% in the tested cases, it is the best #meichnalyzed techniques. The PCA-based
technique of Popescu and Farid [35] is not verysblagainst geometric transformations, be-
cause the re-sampling operations in the transfeomagirocess affect the eigenvalues. The
modified technique of Luo et al. [85] is based axepvalues in the spatial domain, so it is

highly sensitive to any geometric transformation.

Fridrich et al. [18] | Popescu and Farid [35] Luo et al. [85]
SNR DR CR DR CR DR CR
24dB | 83.5% 80.5% 15.0% 15.0% 0% 0%
29dB | 92.5% 91.0% 46.5% 46.5% 0% 0%
40dB | 94.5% 93.0% 89.0% 89.0% 1% 0%

Table 4-3: Detection rates and correctness rates after Gaussiae addition.
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Fridrich et al. [18]| Popescu and Farid [35] Luo et al. [85]
QF DR CR DR CR DR CR
40 90.0% 89.0% 43.5% 11.5% 32.0% 1.5%
60 93.0% | 92.0% 45.5% 16.0% 23.0% 1.5%
90 95.0% 93.5% 79.0% 78.0% 3.5% 1.5

Table 4-4:Detection rates and correctness rates after JPEPression.

Fridrich et al. [18] | Popescu and Farid [35] Luo et al. [85]
Angle DR CR DR CR DR CR
1° 62.5% 60.0% 25.0% 25.0% 1.5% 1.5%
2° 72.0% | 65.0% 33.0% 26.5% 1.0% 0%
3° 77.0% | 61.0% 63.0% 24.0% 2.0% 0%

Table 4-5: Detection rates and correctness rates after ratatio

After checking the robustness with respect to commuage processing operations, we report

results for some targeted attacks that use spetiéicacteristics of the detection techniques.

Attack 1: We considered a simple operation which is widelgeli;n watermarking. This as-
signs the least significant bit (LSB) of each piaalandom value in {0, 1}. The operation can
change every image pixel but the perceptual quahtthe image is mostly not affected. The
results (in Table 4-6) show that the DCT-basedriegle and PCA-based technique are robust
against this attack, while the color pixel-basechtéque by Luo et al. [85] is completely de-

feated.

Fridrich et al. [18] Popescu and Farid [35] Luo et al. [85]

DR

CR

DR

CR

DR

CR

94.5%

92.5%

89.0%

89.0%

1.0%

0%

Table 4-6: Detection rates and correctness rates after chauh@i.

Attack 2: This attack is a combination of simple geomet@msformations. Though geometric
transformations often distort images, they may ffiecéve against many copy-move forgery
detection methods. In this attack, a small porabthe image is cropped and subsequently the
cropped image is rescaled to its original size ndeo to hide trace of the transformations.
Given a forged image of sidxN, we cropS pixels so that the cropped image is the rectangle
part [S, S, M-S, N19f the forged image. Then the cropped image ssaked to the previous
size using bi-cubic interpolation. Through someeskpents on differen§ values, we found

that whenSis equal to 3, the attack is more powerful, defggthe techniques of Popescu and
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Farid and Luo et al. and affecting the techniquEradrich et al. in 50% of the cases (see Table
4-7).

Fridrich et al. [18] Popescu and Farid [35] Lu@kf85]
DR CR DR CR DR CR
50.0% 44.5% 5.5% 4.5% 4.0% 2.5%

Table 4-7: Detection rates and correctness rates in evatufaiocropping and rescaling.

Attack 3: Since the technique [18] is DCT-based, we consadiacks that directly modify
DCT coefficients. A possible attack works similar & watermarking scheme proposed by
Koch and Zhao [96] which operates on DCT coeffitderfrirstly, the image is divided into
overlapping blocks of size 16x16 pixels, and thaoheblock is transformed by DCT. We
choose two random DCT coefficients among the lowgStcoefficients. These two coeffi-
cients are swapped and a random small positive auitadded to one of them. At the end, all
DCT blocks are transformed back from the frequethmyain into the spatial space by the In-
verse Discrete Cosine Transform (IDCT). Experimemésults are shown in Table 4-8.
Although the DCT-based technique [18] is very ratagainst JPEG compression, it is not ro-
bust to this attack, because the attack directhdifies DCT coefficients. However, the
disadvantage of this attack is its low fidelitye(ithe quality of attacked images is reduced),

especially when the image has large homogeneoimnseg

Fridrich et al. [18] | Popescu and Farid [35] Luo et al. [85]
DR CR DR CR DR CR

42.5% 36.0% 92.5% 83.5% 9.0% 4.50/(0

Table 4-8: Detection rates and correctness rates after swgpC T coefficients.

Attack 4: Through the above tests, we found that skillfulrgetric transformation operations

can be very effective attacks against some of #teation techniques. Although a direct attack
on DCT coefficients can be effective against thehtéque of Fridrich et al., it resulted in

rather low fidelity. For these reasons, we choossleer alternative attack where we use crop-
ping, rescaling, and JPEG compression, insteadirettty manipulating DCT coefficients.

Firstly, the forged image is cropped by 3 pixelsd ahen the cropped image is JPEG com-
pressed two times with different qualities, 70 &t The image is then converted to the
original format and rescaled to the original sitke effectiveness of this attack is quite im-
pressive, while its fidelity is very high. Accordino the experimental result is shown in Table
4-9, only about 30% of forged images are detecyeld 8] and the other techniques are mostly

defeated.
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Fridrich et al. [18] Popescu and Farid [35] Lu@kf85]
DR CR DR CR DR CR
35.0% 31.0% 23.0% 3.5% 12.5% 0%

Table 4-9: Detection rates and correctness rates after thebication attack of cropping,
double JPEG compression and rescaling.

Visual quality degradation due to the attack igmaportant issue to be considered in order
to develop a good attack. Using the same imageselatawhich are used to evaluate the effec-
tiveness and security of the detection techniqwescalculate the PSNR and WPSNR between
forged images and their attacked versions. We tiakeaverage PSNR and WPSNR of every
pair images from the dataset of forged images hadiataset of attacked images. The results
are shown in Table 4-10, Table 4-11, and Table .4AltRAough geometric transformations usu-
ally degrade the visual quality, in the case ofpping with a small humber of pixels and
rescaling to the previous size, it is also diffictd realize the manipulations. Thus, our pro-

posed targeted attacks are still useful.

SNR PSNR WPSNR
24 dB 20.46 dB 33.41dB
29 dB 22.86 dB 36.42 dB
40 dB 28.41 dB 42.94 dB

Table 4-10:Visual quality evaluation of attacked images byiadaoise.

QF PSNR WPSNR
40 20.08 dB 33.06 dB
60 20.99 dB 34.35dB
90 24.63 dB 38.87 dB

Table 4-11:Visual quality evaluation of attacked images by GRiI®mpressing.

PSNR WPSNR
Swapping DCT coefficients 23.37dB  34.70 ¢B
Cropping and rescaling 14.79dB 24.74dB
Cropping, compressing and rescalir|||g 14.69dB 245

Table 4-12:Visual quality evaluation of several attacks.
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4.4 A New Technique for Copy-Move Forgery Detection

An important characteristic for detection technigjige to use a robust representation, so that
duplicated blocks can be identified from a forgedge even if the image was post-processed.
The technique of Fridrich et al. [18] can be robagdinst some image modifications, but can-

not resist more specific attacks as shown in tsiesection.

In this section, we design a new technique for emoye forgery detection. In the pro-
posed technique, we use the Radon transform foaakig block features and the phase
correlation for matching similar blocks. Throughr @valuation, we show that the proposed
technique is more robust against some image posepsing operations, such as rotation and
Gaussian noise addition, than the technique ofriEtidet al. [18]. We also realize that our
technique is more robust than [18] when in-procegsittacks are applied, i.e. where a part of

an image is rotated before it is moved to a difiepace in the image.

4.4.1 Radon Transformation and Phase Correlation
A. Radon Transformation

The Radon transformation computes projections ofnaage along the directions given by
various angles, as shown in Figure 4-4 (whidsethe perpendicular distance of a line from the
origin andd is the angle formed by the distance vector). Esalt of the Radon transforms of
an imagd(x, y),denoted ag(r, 8), and is the sum of the intensities of the pixelsach direc-

tion, i.e. a line integral. It is possible to exggehe Radon transformation as follows:

9(r.60) = R(f(xy)) = j j f(x,y)3(r — xcosd— ysind) dxdy
where we used the sifting property of ihgulse functio. This function reduces the double
integral to a projection beam in the directithat has a distanaefrom the center of the co-
ordinate system [97]. The Radon transformation dudosistness properties against rotation,
scaling, and translation (RST) operations [98]] [@%d it is also robust against additive noise
[100].
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Figure 4-4: The Radon transform &fx, y) projects follows a particular direction.

B. Phase Correlation
The phase correlation is a technique to measursitfi&rity of two images (or image blocks)

of the same size. To compute the maximum phaselation of two images, andl,, one per-

forms in following steps:
1. Apply the Fourier transforit on both images:
Fi=F (1),
Fo=F (1y).

2. Calculate the cross-power spectrum by element-wigdiplying the first resultF;

with the complex conjugate of the second reBulind normalizing this product:

R FuFs
FuFs

wherex” denote the complex conjugate of dmd is the complex magnitude rf

3. Obtain the normalized cross-correlation by applytmginverse Fourier transforf™

to the cross-power spectrum:
IR=‘F’1(R)‘ .

4. Compute the maximum of the phase correlation:

PC =max (IR) .
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The maximum phase correlatid?C infers the location of the peak of the relative
translation offset between the pair imageandl,, and can be used as a similarity cri-

terion.

4.4.2 The Proposed Technique

In this section, following the general scheme pnészkin Figure 4-2, we propose a new tech-
niqgue based on Radon transformation and phaselaiwre The technique consists of the

following steps (a detailed description is presemteAlgorithm 4-1).

Segmentation: Divide the MxN image to be tested into overlapping blocks. Thagenis
scanned from the upper left corner to the lowdntriprner, sliding &xB block over the im-
age. This results infM—B+1)x(N-B+1) blocks.

Feature extraction: For each block, apply the Radon transform in weidirections, which
are specified by a set of angles. The result is@ixwhere each column contains the projec-

tions with respect to predefined angle.

Sorting: Vectorize the transformed matrices of every blaok store each of them as a row in

a matrix. Subsequently, the rows are sorted lexagigjcally.

Matching: Compute the maximum phase correlation of two imilgeks, which are corre-
sponding to every pair of contiguous rows. Two kiare approximate if their maximum

phase correlation is larger than a predefined tinlds

Decision: If there are two groups of connected approximabeks, where every pair of ap-
proximate blocks has the same spatial distanceeirinbage and the number of blocks in each

group is larger than another predefined threshvatdrate the image as forged.

Algorithm 4-1: Improved technique for copy-move forgery detection

1. Input anMxN image.
2. |Initialize the parameters:
= B: fixed size of image block.
= @ setofangles(e.g. ={0, 1,2, ..., 179}).
= T;: maximum phase correlation threshold (range fram D).
= T, minimum offset threshold.

= Ts: threshold on the number of connected image blocks
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= C: aMxN matrix, which is initialized by zero.

3. Apply Radon transform for a set of angtet each overlappinBxB block, resulting

in a matrixR (each column of R is the Radon transform for drth@ angles ).

4. VectorizeR for each image block and store it as a row of &im&. Subsequently, the

number of rows 0§ corresponds to the same of the number of imagekélo

5. Sort the rows o in lexicographic order. Le§ denotes the rowof S; let b, denote
the block corresponding t§ (note that unlikeS ands,,, the blocksh andb., are

usually not adjacent); lek(, ;) denote the position of the blobtkin the image (top-

left corner).

6. For every pair of§ ands;

= Compute the maximum of phase correlation betweei thndbi,;, resulting
in PC.

= |f PG >T;then
If (% — %:1)* + (% — Wer)* > T2 then
U= K — %ea
V=i — Yl
C(u,v)=C(u,v) +1
End if
End if

7. If C(u, v)>Tsfor any pair @, V) then the image is judged as forged.

4.4.3 Experimental Results

In this section we evaluate our proposed techn{gated RTPC) and compare to the DCT-
based technique [18] (called DCT). We use the fraonke mentioned in Chapter 3 for this
purpose.

In the Radon transform, the more angles we usedsein terms of time and memory con-
sumption increases. In our experiments, we spgeijection directions by angles from 0° to
179° with a reasonable incremental step of 10°cfi@se a good threshold for the maximum

phase correlation, we test the RTPC technique wgargkimage datasets by using different
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values of the threshold{) of 0.7, 0.8 and 0.9. We found that once the tiolkekT, is fixed to

20, the detection rates in detecting the forgedgdtare always larger than 99%, but the false
positive rates in classifying original images a8&4l 12% and 5.5% respectively. Therefore, in

our experiments, we set the threshbld= 0.9. With the same parameters of the threshotd

20, the technique [18] has a detection rate of 9% detection of the forged dataset and a
false positive rate of 4.5% in detection of theyoral dataset. The results show that both tech-

niques work well in the absence of attacks.

Next, we test the techniques against some comntackatsuch as rotation and noise addi-
tion. The experimental results are presented iheT4id3 and Table 4-14. We realize that both
analyzed techniques are quite robust against ootatith the small angle of 1°. While the
technique [18] is not robust against rotation Wattger degrees, the RTPC technique is more
robust and can detect rotated images by 3° withatien rates larger than 70%. While [18]
seems robust against Gaussian noise addition atitytie SNR larger than 40 dB, the RTPC

technique is more robust against noise additianast cases.

Angle 1° 2° 3° 4°
DCT [18] | 94.0% | 65.0%| 41.59% 26.5%
RTPC 99.5%| 96.5% 71.0% 36.0%

Table 4-13:Detection rates for detecting rotated imadggs (L6).

SNR | 45dB| 40dB| 35dB 30dB
DCT [18]| 96.0% | 46.0%| 15.09%  5.0%
RTPC | 94.5%| 88.5% 67.5% 29.0%

Table 4-14:Detection rates for detecting forged images wittleadGaussian nois8 € 16).

Angle 1° 2° 3° 4°
DCT [18] | 36.0% | 23.5%| 20.5% 15.5%
RTPC 72.0%| 28.0% 25.0% 19.5%

Table 4-15:Detection rates for detecting copy-rotate-movedjesa = 16).

Additionally, we test the techniques with a simpleprocessing attack. The dataset of at-
tacked images is created by copying a random squemteof size of 64x64 pixels in each
image from the original dataset, rotating the cdgart with a small angle, and then pasting it

at another position of the same image. The expetmheesults are shown in Table 4-15. We
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can see that the technique [18] is not robust agdiis attack and the RTPC based technique

is rather robust only in the case of the smalltioteangle of 1°.

In order to keep the compatibility with the pap&8]| in the previous tests, we used an im-
age block size of 16x16 pixel8 & 16) for both tested techniques. However, in eomye
forgery detection, the block size can affect theeckon rates of the forensic techniques sig-
nificantly. Thus, we evaluate the techniques witbther block size of 8x8 pixel8 = 8). We
set the threshold, to 25 in order to keep the false positive of #xehnique at 4.5% while the
detection rate at 99.5%. Since the original teammigf [18] uses the block size of 16, some
thresholds of the technique [18] were adjustechat the false positive is lower than 5% and

the detection rate in the absence of any post-psitg or attack is about 99%.

The experimental results of the detection techriqubeenB = 8 in the tests of rotation,
Gaussian noise addition and an in-processing atieelshown in Table 4-16, 4-17, and 4-18.
We realize that by using a smaller block size 08 §xxels, the proposed technique is robust
against rotation with angles smaller than 4°, Ganssoise addition with SNR larger than 35
dB and the in-processing rotation with an angléfin comparison to [18], our technique is

more robust in all test cases.

Angle 1° 2° 3° 4°
DCT [18] | 91.0% | 52.5%| 34.59% 23.0%
RTPC 99.5%| 99.5% 79.0% 49.5%

Table 4-16:Detection rates for detecting rotated imades @).

SNR 45dB| 40dB| 35dB 30dB
DCT [18] | 35.0% | 3.5% 0% 0%
RTPC 92.0%| 89.0% 67.5% 25.0%

Table 4-17:Detection rates for detecting images with addedsSan noiseg = 8).

Angle 1° 2° 3° 4°
DCT [18] | 41.5% | 31.5%| 28.0% 19.5%
RTPC 82.0%| 47.59% 40.5% 23.0%

Table 4-18 Detection rates for detecting copy-rotated-moveages B = 8).
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4.5 Summary

Copy-move forgery detection is an important problarthe field of digital image forensics. In
this chapter we applied the proposed frameworkveduate the effectiveness, robustness and
security of three copy-move forgery detection téghes of Fridrich et al. [18], Popescu and
Farid [35] and Luo et al. [85]. The effectiveness @ecurity of the techniques were evaluated
by examination of their detection rates and comess rates in tests on forged images and at-
tacked images respectively. We designed some &argdtacks based on the analysis of the
characteristics of each technique and thereby seddheir security. We have shown that all
tested techniques can effectively be defeated theraimple signal processing techniques. It
is then possible to disguise a forged image aseatith Lastly in this chapter, we designed a
new technique for the detection of copy-move faegerThe technique uses the Radon trans-
form and phase correlation, resulting in more robasults in comparison with the baseline

technique [18] in the same test conditions.

4. Security of Copy-Move Forgery Detection Techesqu 54



5 Security of Re-sampling Detection Techniques

5.1 Introduction

In order to create convincing forged images, on&llg applies geometric transformations to
the images or to a part of them. Many geometrigsti@mations such as rotation and resizing
involve a re-sampling step, which may not be easglized by human eyes. Interpolation is
the central step of re-sampling in order to estanhbe value of a signal at intermediate posi-
tions of the original samples. This step is the t@gmooth the signal and create a visually
appealing image [101]. Since interpolation creafecific statistic artifacts in the re-sampled

images, detecting traces of re-sampling is a poyproach in the field of image forensics.

Many re-sampling detection techniques have beeposed, and they can be divided into
two main approaches. The first approach is basqutaticting the dependency of neighboring
image pixels [38], [102], [103]. The second applo&écbased on computing the variance of
the second derivatives of the analyzed image [4Q], [104]. To evaluate the effectiveness of
the techniques the authors of [38] used 200 uncesspd images as the original dataset, and
selected 50 images to create re-sampled versidtresniimber of testing images in [102] and
[103] is 200 and all of them have been used toywede-sampled images. The techniques in
[104] were tested with only one image, while in][48ed 114 images, and [41] used 40 im-
ages. To evaluate the robustness of a certainitpetyrthe authors usually apply several post-

processing operations to re-sampled images.

It is obviously difficult to judge which detectidachnique is better since they were evalu-
ated on different datasets under different testioigditions. To fill this gap, Uccheddu et al.
[105] proposed an experimental methodology andiegpi to evaluate and compare the two
re-sampling detection techniques of Kirchner andedlL03] and Mahdian and Saic [41]. In
the paper, the authors used a dataset of 200 invagiféerent categories; both analyzed tech-
niques were tested following the same methodolbgihe effectiveness test they considered

only re-scaled images and in the robustness tegtlithited their study to JPEG compression.

In this chapter, we study three well-known re-sangpbletection techniques of Gallagher
[40], Mahdian and Saic [41], and Popescu and Ha&j. Next, we apply the general test
framework of Chapter 3 to evaluate the effectivenasd robustness of the techniques. We
design some targeted attacks in order to defedethmiques. Consequently, we can assess the

security of the detection techniques.
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Lastly, we propose some improvements which enhaheerobustness despite post-

processing operations.

5.2 Effectiveness Analysis

5.2.1 Implementation of Detection Techniques

Since the implementation of re-sampling detectemhbiques are often not available, we first
implemented detection algorithms according to teecdption in published papers. In this sec-

tion, we review the techniques in [38], [40], [4ik]d give details on their implementations.

Gallagher realized that low-order interpolated algrintroduce periodicity in the variance
of their second derivatives with a period thatgsia to the re-sampling factor [40]. This ob-
servation can be used to detect whether an imagebban re-sampled. Specifically, the
periodicity is uncovered by computing the disciebeirier transform (DFT) of the second de-
rivatives of the analyzed signals. In image foresisihe signals are rows (or columns) of the

analyzed image.

Although Mahdian and Saic [41] proved more gengridilat the variance of tha” deriva-
tive of a re-sampled signal is also periodic, thesgd only the second derivative in their
experiments. This detection algorithm consistsheffollowing steps. Firstly, in a similar way
as [40], the second derivatives of the analyzedadigs calculated. Next, the Radon transfor-
mation (see Section 4.5.1) is employed to computgegtions of magnitudes of the second
derivatives along specified directions. The authapply this algorithm to every row (or col-
umn) of the examined image. The implementatiorhefdore part of the technique is available

on the website of the authors [106].

The algorithm of Popescu and Farid [38] is probabé/most widely used method. The au-
thors noted that there are linear dependenciesdeetweighboring image samples (pixels) in
re-sampled images. In order to determine theseelations, they employed the expecta-
tion/maximization (EM) algorithm [107] to estimattee linear correlation between each pixel
and its neighbors, eventually computing the prdiigof each sample being correlated to its
neighbors. To this end, the technique employs eatipredictor to approximate the value of
each samplg; as the weighted sum of its surroundigN samples. Thus, the residue of each

sampley; and its neighbors can be modeled as:

N
=Y~ Zakyi+k
K=—N
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The correlation probabilitg; of each sample is computed based on the predietionr;

which is modelled as a zero-mean Gaussian randaotble

p = 1 exp il
"o 20% )

The probability values of all samples of an imaggether form the probability matrix
(called p-map). The authors of [38] empirically houthat the p-map of a re-sampled image is
periodic and the periodicity becomes evident thiotige peaks in the frequency domain.
However, the values of the weightg ére usually not known in practice, so the p-maproatn
be computed directly. The authors of [38] use dmirset ofa for the estimation and then use
Weighted Least Squares (WLS) integrated into aatitee EM algorithm in order to optimize
the values of and estimate the correlation of neighboring sample

The detection results are transformed to the freggelomain in order to uncover interpo-
lation artifacts in the form of peaks. To quantifie performance of these techniques, we use a
threshold-based peak detector that reaches for heaeima (peaks) in the frequency domain.
Since there is a trade-off between the detectiom aad the false positive rate (FPR), the
threshold has been chosen carefully through expeertisn In tests with the framework pro-
posed in Chapter 3, we found that the techniqué&3adibgher [40] and Mahdian and Saic [41]
have a high FPR: when we adjust thresholds satlie@tdetection rates (in test the dataset of
forged images) are larger than 90%, their FPRg&t the dataset of original images) is lower
than 18%. At the same time, the detection rate38f [s larger than 90% while its FPR is
rather low (about 6%). As an effort to reduce tiRRFor the techniques in [40], [41] to below
10% by adjusting the thresholds which they usedfouad that their detection rates decreased
significantly, so we missed many forgeries. Thesogafor the higher FPR is that many false
positives were caused by strong textures. Sinceettieiques in [40], [41] are based on exam-
ining the second derivatives of images, strongutes produce periodic patterns in original

images, which yield peaks in the frequency specsumilar to re-sampled images.

5.2.2 Effectiveness Analysis of Detection Techniques

In this section, we apply the test framework toeasshe effectiveness of re-sampling detec-
tion techniques of Popescu and Farid [38], Galla¢gh@] and Mahdian and Saic [41]. Firstly,

we create a dataset of original images by randawilgcting 200 uncompressed images from
[82]. The images are then converted to gray-seaild,cropped to the size of 256x256 pixels.
We created different datasets of up-sampled, dawmped, and rotated images with different

factors. Since all of these techniques employstiaél methods, their effectiveness can be af-
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fected by the dataset in use. Thus, we also ewalbhat techniques on a dataset of 128x128

images and 256x256 images.

All re-sampled images are created from the origimage dataset by using timaresize
function of Matlab. We found that the techniques detect up-sampled images with scaling
factors are larger than 1.1 rather well. They depecfectly (with a detection rate of almost
100%) re-sampled images of size 128x128 pixels bgading factor larger than 1.3, and re-
sampled images of size 256x256 by a scaling fdatger than 1.2. Gallagher [40] showed
that in the special case of interpolation by adacf 2.0, there are no meaningful peaks pro-

duced in normalized frequency. This is confirmedhby experiments.

The experimental results for detecting up-sampiedges of size 128x128 and 256x256
pixels are presented in Figure 5-1 and Figure SiZce the techniques are based on statistical
methods, using larger images for testing, we appigrget stronger and more accurate detec-
tion results. In the same way of testing up-sampieahes, we tested down-sampled images
with different scaling factors from 0.4 to 0.9. \Wsalized that the detection rates of the tech-
niques in detecting down-sampled images are lowufEi 5-3). The reason is that down-
sampling causes loss of information, thereby limgjitthe detection capabilities of the statisti-
cal based detection techniques [38], [40], [41].

Following the tests with up-sampled and down-sathieages, we evaluate the detection
techniques on rotated images with different angMistotated images were created from the
dataset of 256x256 original image by using itheotate function of Matlab with bicubic in-
terpolation. In order to reject the black partshia corners of the rotated images, we crop the
image and keep only the center part of size 196xf%&ch rotated image for evaluation. We
realize that the technique [38] can detect rotatejes (with a rotation angle larger than 5
degrees) with a detection rate of about 80%, wihéetechniques based on investigating the

second derivatives of images [40], [41] are noustlagainst rotation (Figure 5-4).
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Figure 5-1: Detection rate for 128x128 up-sampled images.
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Figure 5-2: Detection rate for 256x256 up-sampled images.
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Figure 5-3: Detection rate for 256x256 down-sampled images.
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Figure 5-4: Detection rate for 256x256 rotated images.

5.3 Robustness and Security Analysis

5.3.1 Robustness Analysis

To make tampering more convincing, post-procesisirgpmmonly applied to re-sampled im-

ages. However, post-processing often worsens tieetioeness of detection techniques. In
order to assess the robustness of the techniquesnwloy different post-processing opera-
tions in the re-sampled images. We choose 200 myplsal images with the factor of 1.2,

where the detection rate was very high for all abered techniques. Specifically, the detec-
tion rates of the techniques for the up-sampledygsawith the scaling factor of 1.2 are larger
than 90% in the case of images with 256x256 piffétyure 5-2).

We applied some post-processing operations sudhaassian noise addition and JPEG
compression to the up-sampled images. The detecsuits after the post-processing are pre-
sented in Figure 5-5 and Figure 5-6. While the nespies of Popescu and Farid [38] and
Gallagher [40] are defeated in case of added Gawssiise with a SNR lower than 30 dB, the
techniqgue Mahdian and Saic [41] is more robusttédhniques are more robust against add-
ing Gaussian noise with higher SNR. The technieg® s sensitive to noise, but it is more
robust against JPEG compression than the techfijjeHowever, JPEG compression cre-
ates blocking artifacts, which introduce periodipabks, which are similar to the impact of
interpolation in the frequency domain. These peakste false positives in the detection re-
sults and thus the detection rates sometimes grearsely proportional to the quality factors
when detecting by using the technique [38].
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Figure 5-6: Detection rate for up-sampled images with postessing by JPEG compression
(solid lines and dash lines present results forx256 images and 128x128 images respec
tively).

In light of [60], we use median filtering as a ppsbcessing operation to the re-sampled
images. Although in the original papers [38], [4@]1], the authors have not considered me-
dian filtering, during our experiments, we identifyedian filtering as an effective attack
against several re-sampling detectors. Since trdiamdilter is nonlinear, it defeats well the
techniques based on the detection of local linegeddency [38]. The experimental results of
the techniques under test with re-sampled imageg@sented in Figure 5-7. In order to sat-
isfy the trade-off between the attack effectiveremsd the quality of the attacked images, we
suggest using Gaussian noise with SNR of 30 or anefiliering with a window size of 3 (see
Table 5-1). Although the techniques of Gallaghé [@nd Mahdian and Saic [41] seem more
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robust against some attacks than the techniquemdédeu and Farid [38], we noted that [40],
[41] have much higher FPR than [38] with the fixbtesholds we chose for tests.

We propose a new attack by using order-statidtarifig. The filter replaces each pixel in a
re-sampled image by the third largest value ofgixel among its north, east, south and west
neighbours. We use this filter to attack up-samjealges with a scale factor of 1.2. In Table
5-1, we show the efficiency of the attack agaihsttechniques [38], [40], [41]: it mostly de-

feats the technique of Popescu and Farid [38].
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Figure 5-7: Detection rates for up-sampled images with postg@ssing by median filtering
(solid lines and dashed lines present results36x256 images and 128x128 images).

A good attack not only reduces the detection ratetetection techniques, but also retains
image quality. To quantify this factor of an attaale compute the average difference between
pairs of re-sampled images (before the attack)atatked re-sampled images (after the at-
tack). The difference is measured by calculatirgRISNR: a higher PSNR normally indicates
that the attacked image is of higher quality. Ibl€a5-2 we show the average difference be-
tween re-sampled dataset (without any attack) &ndttacked versions. It should be noted
that, although median filtering is an effectiveaak to re-sampling detectors, it may leave spe-

cific evidence which can be detected and thus talieaxistence of the attack [66].

Gallagher | Mahdian and| Popescu and
[40] Saic [41] Farid [38]

Gaussian noise with SNR=30 26.0% 55.0% 14.0%
Median filter with size=3 30.5% 25.0% 5.5%
Order-statistic filter 71.0% 39.0% 4.0%

Table 5-1: Detection rates for up-sampled images after atbgaksing Gaussian noise, me-

dian filter, and order-statistic filter.
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Gaussian noiseé Median filter Order statistic
with SNR =30| with size =3 filter
23.3dB 18.4 dB 21.0dB

Table 5-2: Average PSNR between re-sampled images and attaglsinpled images.

The robustness of [38] was determined by applyiifierént countermeasures, such as
Gaussian noise addition and JPEG compression sampled images. Nevertheless, the au-
thors of [60] showed that the reliability of thehaique was still analyzed only on the surface.
Therefore, the authors proposed in [60] some tadyettacks against the technique [38]. The
first attack is based on nonlinear filtering, tlee@nd attack is based on the Sobel edge detec-
tor, and the third attack integrates both menticatatcks. In the next section, we design some
other rather simple but effective targeted attagiainst [38]. The first attack is based on mul-
tiple re-sampling by specific scales, the secotathtis based on hybrid median filtering, and
the third attack employs a combination of both. We the attacks to evaluate the security of

our improved technigue which we propose in Sechidn2.

5.3.2 Attack Based on Multiple Re-sampling

When an image is down-sampled by a factor of twoosample in the down-sampled image
can be written as a linear combination of its neabk [38]. Subsequently, traces of re-
sampling should not be noticed in theory. Henaegdeasign an attack to disguise a re-sampled
image by up-sampling by a factor of two and dowmsiang it by a factor of two, thus yield-

ing an image of the original size. We call the gsscattack by multiple re-sampling.

Figure 5-8 illustrates the detection process of [8Bich consists of testing images, their
corresponding p-maps and the Fourier transformhefg-maps. We realize that there is no
peak in the Fourier transformed p-map of the odbimage, but in the case of an up-sampled
image, its transformed p-map has remarkable pdd#t®ough the quality of the tested image
is not noticeably affected by the attack of mudipe-sampling, at the same time the peaks
have not been absolutely eliminated (i.e. the saxfere-sampling can still be uncovered by
the re-sampling detector). Using the detector 8f {81 a dataset of 200 up-sampled images by
a factor of 1.2, we obtained a detection rate df9@fter applying the attack to the up-

sampled images, the detection rate is reduced%o 84
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Figure 5-8: Shown in the top row is the original image, in thieldle row the same image up-

sampled by a scaling factor of 1.2, and in thedmttow the same up-sampled image, post-
processed by the attack of multiple re-samplingshE@w shows the image itself, its p-map

and the Fourier transform of the p-map.

5.3.3 Attack Based on Hybrid Median Filter

Since the technique [38] is based on detectinglitlependencies between neighboring sam-
ples, all kinds of nonlinear filters applied asastpprocessing step are candidate attacks [60].
The authors of [60] proposed a targeted attackdoasemedian filtering. While the attack is
successful to conceal traces of re-sampling, teealiquality of the attacked images suffers
from noticeable blurring. To overcome this drawhagske design a targeted attack which is
based on another nonlinear filter called hybrid imedilter [108]. The filter consists of three
steps, each being applied ttNaN sliding window N must be odd). In the first step we com-
pute the median of horizontal and vertical pixelaiNxN block (calledM,). In the second
step we compute the median of diagonal pixels éenltlock (calledM,). Finally, the filtered
pixel value is the median of the two median val(ds andM,) and the center pixel of the
block.

Figure 5-9 illustrates the detection results of] [&8 both kinds of nonlinear filters. We
found that the median filter destroyed most evigeatks in the transformed p-map, but it also
makes the image blurry. Conversely, the image legthdy the hybrid median filter is much
less blurred, but sometimes peaks are still rethidhen testing [38] on a dataset of 200 up-
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sampled images by a factor of 1.2, the detectitmisa99%. After applying the hybrid median

filter to the up-sampled images, the detection isatiegraded to 76%.

Figure 5-9: Shown in the top row is the up-sampled image attddky the 3x3 median filter
and in the bottom row the same up-sampled imagerosessed by a hybrid median filter
with N = 3. Again, we show the image, its p-map #ralFourier transform of the p-map.

5.3.4 Combination Attack

Although the proposed targeted attacks reducedpalility of detecting re-sampling, the de-
tection rates are still high. In order to desigmmare powerful attack, we use them in
combination: Firstly, the image is up-sampled bgcior of two, then down-sampled by a fac-
tor of two. The image is then anti-aliased in ortteremove aliasing artifacts of the down-

sampling process. Lastly, a hybrid median filtespplied to the image.

Figure 5-10 illustrates the detection results ofuprsampled image which has been ma-
nipulated by the combination attack. We see tHgpedks disappeared in the transformed p-
map, while the quality of the attacked image remaood. When we apply the combination
attack to a dataset of 200 up-sampled images lagtarfof 1.2, we found that the detection
rate of [38] is reduced impressively to 3%.

Figure 5-10: Detection results of the up-sampled image by arggdhctor of 1.2 and then
post-processed by the combination attack.
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5.4 A New Technique for Re-sampling Detection

5.4.1 Fast Re-sampling Detection

The core part of [38] is the EM algorithm used stiraate the probability of linear dependen-
cies between neighboring samples. The resultslifeamples in the analyzed image are used
to create the p-map. The remarkable peaks in thedfdransform of the p-map become evi-

dence to uncover traces of re-sampling and caedmgnized easily by a peak detector.

Kirchner [102] showed that it does not matter whatdiction weightsd«) are used in the
analysis, the linear prediction errors which detearthe p-map will always be periodic in
case of a re-sampled image. Thus, the author shtiveedhe rather complex and time con-
suming EM estimation is not compulsory. As a redudt presented a fast but still reliable re-
sampling detector that uses a pre-defined set afhigen. Kirchner [102] empirically found

one of the best preset filter coefficientéor computation of the prediction error as:

-025 05 -025
a= 05 0 05 | (Equation 5-1)
-025 05 -025
Although the values of prediction weights do ndéetf the periodicity of the p-map, differ-
ent sets of weights create different peak integsiih the p-map. For this reason, we call a p-
map computed based on some predefined weights @d@se-map (pp-map for short).
Through experiments, we found many times that usmgpredefined set ofin the algorithm
of [102], peaks can be recognized in the transfdrp@map, but using another set, peaks are
not evident (though the periodicity exists in thgorConsequently, the selected setoof
strongly affects the obtained outcomes. Whilstrttagor advantage of [102] versus [38] is by-
passing the EM estimation, we realize that thertiegle [38], where the intensities of the p-

map are correctly computed is more robust andhielia

5.4.2 The Proposed Technique

In this section, we introduce a re-sampling detectechnique which consists of three main
steps: 1) computing the pseudo probability mapr{ap), 2) applying the Radon transform to
the pp-map and 3) detecting strong peaks in theiétodomain of the pp-map. The detailed

steps of the detection process are presented orikign 5-1.

Probability Map Computation: The residue of a sample is computed following Eiguab-2
where the prediction weights are predefined in EHquab-1. The probability of a pixel being

correlated in the neighboring region is estimatadeld on the residue, modelled as a zero-
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mean Gaussian noise described in Equation 5-3.eT$teps compute the pp-map without us-

ing the EM algorithm as in [38].

Radon Transformation: Mahdian and Saic [41] improved the technique ofidggler [40] by
applying the Radon transform to the second devigatiof testing images. Accordingly, the
technique [41] can detect not only rescaled imdggsalso rotated images. The major draw-
back of [41] is its high false positive rate, esplg when applied to images which containing
strong textures. Inspired by the work of [41], weplg the Radon transform (see Section
4.4.1) to the pp-map of the image. To this endtljir the Radon transformation of the pp-map
Is computed for a set of predefined angles; thssilte in a set of projected vectors which are
arranged in a matrix. If the image has been re-fmanphe corresponding auto-covariance
matrix of the vectors exhibits a specific periogicBince our goal is to determine if an image
has been subject to geometric transformations osmesfon the strongest periodic patterns pre-
sent in the Fourier transform of the auto-covamaotthe projected vectors. We assume that
this technique works well for re-sampling detectibre to the periodicity of the pp-map of re-

sampled images shown in [102].

Peak Detection: After applying the Radon transform to the pp-mag, ebtain a spectrum

where critical peaks can easily be recognized.rAexample, Figure 5-11 shows the results of
applying the detector to an original image and-aampled image respectively. In order to
infer the detection results, we search for strosakp by computing the local maximums of the

spectrum and infer the positions of the peaks baseatlpredefined threshold.

. . b L
(a) (b)

Figure 5-11: (a) Detection results of an original image, whére peaks in the Fourier spec-
trum are not clear; (b) detection results of thesampled image by a scaling factor of 1.2,
where clear and strong peaks can easily be recadniz

5. Security of Re-sampling Detection Techniques 67



Algorithm 5-1: Improved technique for re-sampling detection.

1. Input an image of sizeMxN.
2. |Initialize the parameters:
= Chooser, 6
» Seta =[-0.25, 0.5, -0.25, 0.5, 0.5, -0.25, 0.5, -0.25]

1

" Set = max(y) — min(y)

= Compute the pseudo probability matrix (pp-map).

For each sample

r(i)= (Equation 5-2)

8
y() =D a(ky(i+k)
k=1

wherey(i + k) with k=1, 2,..., 8 denote 8 neighboring sampleg(df

1 -r(i)? _
p(')—amex 02 (Equation 5-3)
o ()
O =56+ b
End

3. Apply Radon transform following a set of anglkso the pp-maw; this result in a
matrix R, each column oRis a vectoR, of the Radon transform for one of the set of
angles.

4. ldentify the evidence of re-sampling by locating #trongest periodic patterns present

in the Fourier transformation of the auto-covar@ntevernyR,.

5.4.3 Experimental Results

Using the framework of Chapter 3, we tested thaniggie of [38] and our improved version
with different image datasets of original imagessampled images and attacked re-sampled
images. Firstly, we randomly collected 200 uncoreped images from [82], converted them
to gray-scale and cropped each of them to 256x2&8spin order to create a dataset of origi-
nal images. From the dataset of original imagescreated different datasets of up-sampled,

down-sampled, and rotated images by different facto
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For our test, we use the set of weightsds in Equation 5-1. This set is also used as the
initial weights in [38]. In both techniques, theesiof the neighborhood is set to 3. In order to
allow a fair comparison, we set the thresholdshed their detection rates in detecting up-
sampled images by a factor of 1.2 are larger tl2¥ 8nd their false positive rates when de-

tecting original images are lower than 5%.

As presented in Section 5.3, the median filter sérang attack against re-sampling detec-
tors based on linear dependencies between neigigo@amples. However, the major
disadvantage of this attack is blurring. Among tangeted attacks, the hybrid median filter
and the multiple re-sampling attack affects imagecgption quality less, but they seem not
strong enough. The combination attack is more pfulewhile still maintaining the image
quality. The detection rates can be seen in Tai8e Both techniques work well to detect
traces of re-sampling (with the detection rate93% and 83.5%) respectively and false posi-
tive rates below 5%. However, while the technique[38] is mostly defeated by the
combination attack with a detection rate down to, 8ur proposed technique is much more
robust, as the detection rate remains over 50%sé&prently, in this section, we use only the

combination attack in order to evaluate the segwofithe re-sampling detection techniques.

No Median Hybrid Multiple | Combina-
Attack filtering median resam- | tion attack
filtering pling
Popescu and Farid [38] 99.0% 1% 76.0% 849 3.0%
Proposed 83.5% 25% 68.5% 66% 54.5%

Table 5-3: Detection rates when applying different attacksigesampled images by a scaling
factor of 120%.

Next, we test both techniques with down-sampledgesaby different scaling factors. We
realized that the detection rates of both techriguedetecting down-sampled images are
rather low (Figure 5-12). The reason is that thevrdsampling causes loss of information,

thereby limiting the detection capacity.

We then evaluate the techniques with up-sampledj@sand rotated images as well as
their attacked versions. The attacked images aagen by applying the combination attack to
the re-sampled images. We found that both techsiga® detect up-sampled images by a
scaling factor larger than 5% rather well (see fFedr+13). The technique of [38] even detects
up-sampled images by a factor larger than 10% qityféwith a detection rate of nearly
100%). However, on the attacked images the detectite of [38] is decreased significantly.
This shows that [38] is not robust against thigesed attack. Although the proposed technique
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is not as powerful as [38] in detecting re-samphadges, it seems more robust against the
combination attack. A similar situation occurs whetated images are analyzed: both tech-
niques work quite well once images are rotated myaagle larger than 3° (Figure 5-14).
Although the proposed technique is little more wilthan [38], both of them are almost de-
feated by the combination attack.

100~

80
601
%

401

detection rate [%)]

200 &7 NG . N

01 5 10 30 50
downsampling [%)]

Figure 5-12: Detection rates for down-sampled images of our @sed technique (solid line),
and the approach of Popescu and Farid [38] (dasied

100— T T re

detection rate [%)]

upsampling [%]

Figure 5-13: Detection rates for up-sampled images (dashedistafor [38], solid-star line
for our proposed technique) and for attacked uppsednimages (dashed-circle line for [38],
solid-circle line for our proposed technique).
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Figure 5-14: Detection rates for rotated images (dashed-starfbin [38], solid-star line for
our proposed technique) and for attacked rotatexb@®s (dashed-circle line for [38], solid-
circle line for our proposed technique).

Due to using the Radon transform, our proposednigak is less sensitive to noise. To
confirm this, we test the techniques with up-samhpleages by a factor of 1.2 without any
post-processing operation and with Gaussian naid@i@an. The results are shown in Table 5-
4. While the detection rate of [38] is 99% in tesfth up-sampled images, it is totally de-
feated when the images are post-processed by a@dingsian noise by the SNR of 20 dB.

No Attack 20 dB 25dB 30dB 35dB

Popescu and Farid [38 99.0% 1.0% 10% 36% 62.5%
Proposed 83.5% 36.5% 68% 77% 79.0%

Table 5-4: Detection rates for up-sampled images by a fadt@0&o for and added Gaussian
noise with SNR of 20 dB, 25 dB, 30 dB, and 35 dB.

Add Noise Median Combination
SNR=25 dB| Filtering Attack

PSNR 21.20dB 20.29 dB 22.93 dB
WPSNR 34.30 dB 32.74 dB 36.13 dB

Table 5-5: Difference between re-sampled images and attaekedmpled images.

In order to quantify this aspect of an attack, wenpute the average difference between
pairs of re-sampled images (before the attack)atatked re-sampled images (after the at-
tack). The difference is measured by the PSNR BadMPSNR. A higher PSNR or WPSNR
usually indicates that the attacked image is ofidigquality. In Table 5-5, we show the aver-
age PSNR and WPSNR of 200 pairs of up-sampled isnélgye a factor of 1.2) and their

versions under different attacks of adding Gausamise (25 dB), median filtering and the
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combination attack. We found that the combinatittack maintains the best image quality

among the test cases.

5.5 Summary

Re-sampling is involved in many image processingratons. Thus, detecting traces of re-
sampling is an important problem in the field ofige forensics. In this chapter, we discussed
several re-sampling detection techniques [38],,[d]] and used the test framework of Chap-
ter 3 to evaluate the selected techniques. We miedigome targeted attacks against the
techniques in order to assess their security. Waddhat all analyzed techniques can be de-
feated by the combination attack. Lastly, we pregos new re-sampling detection technique
which offers better security in comparison withtate of the art technique of Popescu and
Farid [38].
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6 Forgery Detection in JPEG Images

6.1 Introduction

JPEG was proposed by the Joint Photographic Ex@edap as a compression standard for
continuous-tone still images, both gray-scale asldrcThe standard defines how an image is
compressed into a stream of bytes and decompraste@n image for display. The JPEG

standard is used in a number of image file fornsaish as EXIF (Exchangeable Image File
Format) or JFIF (JPEG File Interchange Format).@R&Emostly used in the form of lossy

compression, where the compression rate can bstadjurhe JPEG file format is popular be-
cause of its efficiency of storage. In fact, moaimeras in the market can export photos in

JPEG file format and most tools for image editingort it.

Due to the popularity of the JPEG format, forgeegedtion for JPEG images became es-
sential in digital image forensics. Although thare many ways of making forgeries in a JPEG
image, most share three main steps: 1) loadindRE& image which is compressed by a qual-
ity factor QF; to a photo editing software, 2) manipulating tmgge and 3) re-compressing it
as a JPEG file with quality factdpF,. Consequently, the re-saved image has been doubly
JPEG compressed. Note that double JPEG comprdssibed D-JPEG) is not always a signal
of malicious tampering: sometimes an image is megressed as JPEG with lower quality in
order to save storage space or the image is rels#ter legitimate modification. Neverthe-
less, detection of D-JPEG can provide an importaat for authentication of JPEG images

before further analysis [13].

Some authors [13], [42] found that whéX; is different fromQF,, periodic artifacts are
present in the histograms of the DCT coefficierft®@PEG images. This periodicity can be
recognized in the Fourier transform domain thropghks in the spectrum. Based on this spe-
cific property, Popescu [13] proposed a techniquedtect D-JPEG images. Lin et al. [110]
expanded the global approach of [13] by locatingpered regions in the images. Bianchi et
al. [111] developed an enhanced version of [1Hdding to an improvement of the accuracy
of the algorithm. Ye et al. [112] proposed a teghmito estimate the local JPEG compression
blocking artifacts by finding inconsistencies iretblocking artifacts. Some authors [113],
[114] showed that the distribution of the most figant digit of the DCT coefficients in JPEG
images follows the generalized Benford distributidhe distribution is very sensitive to the
double JPEG compression and consequently this gyopan be applied to detect D-JPEG

images. Farid [115] designed a technique to détegbart of a JPEG image was initially com-
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pressed at a lower quality than the rest of theggn&hen et al. [116] proposed a set of image

features, which have subsequently been evaluated3M based classifier.

The aforementioned techniques are based on thaatbestics of JPEG blocking artifacts;
therefore, they can be attacked by destroying the#facts. A popular attack is cropping: fo-
rensic techniques are usually defeated if the JPEAges are cropped before recompressing.
The reason is that the corresponding blocking goidke first compression and in the second
compression are no longer aligned. To overcomelithitation, some more robust techniques
have been proposed [44—46]. In [44] a blockingacticharacteristic matrix (BACM) is com-
puted to measure the symmetric representationeoblbcking artifacts introduced by JPEG
compression. Since the symmetry of the BACM of B@RPmage is destroyed after the image
is cropped, this artifact can be used as evideocaldtecting cropped double JPEG com-
pressed images. The authors in [45] model the dide@endency of the within-block pixels
(the pixels that do not lie on the border of 8x8ckk), compute the probability of the pixel
being linearly correlated to its neighboring ones &orm the map of the probabilities of all
pixels in the image. They convert the map to Fow@nain, extract several statistical features
from the different peak energy distribution and tise features to discriminate cropped D-
JPEG images from non-cropped D-JPEG images. A sitygtl reliable technique to detect the
presence of cropped double JPEG compression hasiftteeduced in [46]. This technique is
based on the observation that the DCT coefficiertsbit an integer periodicity if the DCT is
computed according to the grids of the primary caragion. Through experiments, the authors

showed that [46] outperforms other existing detectechniques for cropped D-JPEG images.

Although [44-46] work well for detecting croppedJPEG images, they will be defeated if
the JPEG images are resized before the second essipm step. Due to the effect of re-
sampling, the blocking artifacts will be broken.eTauthors of [117] demonstrated the influ-
ence of resizing on the detection results of [114]6]. There are a few techniques for
detecting resized double JPEG compressed (RD-JPEABesS, among them [103], [118]. The
authors of [103] apply a re-sampling detection teghe (which was originally designed for
use on uncompressed images) to JPEG images andahalw the JPEG compression affects
the detection output. A limitation of [103] is thi#$ detection rates are very low when the
JPEG quality factor of the first compression igdarthan the quality factor used in the second
compression. In addition, if the images are downgad before re-compression, the tech-
nique is mostly defeated. The technique of [118}aets neighboring joint density features
and applies Support Vector Machines for detectibgJREG images. Although the technique
works for both up-sampled images and down-sampledés, it is analyzed only by the qual-

ity factor of 75 and no information on the falsesipiwes is given. Bianchi and Piva [119]
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proposed an algorithm, which can be summarizedhbyessteps: 1) estimate the candidate re-
sizing factor; 2) for each candidate factor, un® image resizing operation and measure the
NLDP (near lattice distribution property); 3) ifehiesult is greater than a predefined threshold,
label the image as resized double JPEG compreBaetiermore, the technique [119] can es-
timate both the resize factor and the quality faab the first JPEG compression of the

analyzed image. The experimental results in [1h®j]sthat it surpasses [103] on the same test

condition, but similar to [103], it seems more idiffit to detect whei®F; is much larger than
QF..

In this chapter, first we introduce the problem d@tection of double JPEG compression
and then we apply the evaluation framework in Caaptto assess the effectiveness and secu-
rity of selected forensic techniques for JPEG insagae for doubly JPEG compressed images
[13] and one for cropped doubly JPEG compressedas@i6]. In order to measure the effec-
tiveness and security of the techniques, we dediifgrent targeted attacks. We show that the
evaluated techniques work quite well in the casattack is applied to the forged image, but
they are vulnerable and can easily be defeatedngles attacks. Lastly, we propose an im-
proved technique to detect RD-JPEG images. Thanigab reveals specific features of JPEG
images and RD-JPEG images by using a re-samplitegtde The extracted features are fed to

SVM-based classifiers in order to discriminate REEG images from JPEG images.

6.2 Double JPEG Compression

6.2.1 DCT-based Compression

In order to compress a color image (RGB) in the@R&rmat, firstly the image is transformed

from RGB into a luminance-chrominance color spat€HCr), which consists of one lumi-

nance channel (Y) and two chrominance channels T, The chrominance channels are
typically down-sampled by a factor of two and eablnnel is independently processed. The
process of JPEG compression consists of three stajpps of applying the Discrete Cosine
Transform (DCT), quantization and entropy codinmgyFe 6-1) [120]. The JPEG compression
of a single channel image (e.g. gray-scale imags)milar to the process of one channel of a

color image.
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Figure 6-1: JPEG encoding steps.

Discrete Cosine Transform (DCT) The image is divided into 8x8 non-overlappingdi®
and shifted from unsigned integers with range BB]2o signed integers with range [-128,
127]. Finally, the DCT is applied to every blocletLf(x,y) denote an 8x8 image block, the
two-dimensional Discrete Cosine Transform (DCT)haf block is computed as follows:

7 7

F(uv) = %C(U)C(v)zz f (x,y )cos

x=0 y=0

(2x + 1)u71c00(2y +Yvrr
16 o116

where u,vO{01..,7},
1

72

C(u), C(v=1 otherwise.

C(u), C(v)= foru,v=0 and

Quantization: Each coefficient in a DCT block is divided by aagtization factor specified in
of a quantization table and rounded to the neamessger. The purpose of this step is to achieve
compression by discarding information which is wisually significant. Since quantization is
a non-invertible operation, this step causes ldssformation each time an image is JPEG

compressed. The quantized coefficienfuatv)is computed as follows:

F(u,v)}

R (uv) =[ a(uy)

where K] denotes rounding of to the nearest integer ag¢L, v)is a quantization factor. The
quantization factor depends on the JPEG qualityofaand can be computed based on the

standard quantization table (see Appendix Al).

Entropy coding: This step achieves additional lossless compredsiencoding the quantized
DCT coefficients in a compact form based on thgitigtical characteristics. The JPEG pro-
posal specifies two entropy coding methods namelffrhiin coding and arithmetic coding.

This step is reversible and therefore does notaffee image quality.
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Decoding a JPEG image consists of performing simsitaps of encoding, but in reverse
order: entropy decoding, de-quantization and applyhe Inverse Discrete Cosine Transform
(IDCT) (Figure 6-2).

I I
I I
,.| Entropy De- | |
i "| Decoder Quantizer » IDCT |
I
Compressed : |
ImageData —————————— ———— — — — — — — _ Reconstructed
DCT-based Image
Decoder

Figure 6-2 DCT-based decoding steps.

Entropy decoding The compressed data is decoded in order to re¢bheequantized DCT

coefficients.

De-quantization: The quantized coefficients are multiplied by toeresponding quantization

factors.

Inverse Discrete Cosine Transform (IDCT) The IDCT of the de-quantized DCT coefficients

are computed to obtain the reconstructed imagekbibex,y) :

7

7
P )=, 3> CUL(F Gyko

J(2x+ Du”coo(zy +vir
4 u=0 v=0 ’

7 16 16

where u, v {01...7} ,

C(u), C(v)= 1 foru,v=0 and

J2
C(u),Cv)=1 otherwise.
Finally, the resultf' (x,y) is shifted back to the range [0, 255] in ordergoonstruct an 8x8

image block.

6.2.2 Double Quantization

In the JPEG compression process, the quantizatemis non-invertible and introduces spe-
cific artifacts that can be used in forensics. WhHendecoded image is compressed one more
time, a similar encoding and decoding process jdieghto the image. As a result, in a double

JPEG compressed image, the DCT coefficients caxpeessed as follows:
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= After the first compression, the DCT coefficidpfu, v) is divided by a quantization

factorgy(u, v)and rounded to the nearest integer:

Fl(u,v)z[ F(u,v)} .

q (uyv)

= After the first de-compression, the quantized coeffit is multiplied by the same

guantization step afy(u, v), resulting in a valueF' (u,v)that is slightly different from

Fi(u, v}

F'(u,v){ Fuv)
q (uv)

}q (uyv).

= After the second compression, the image is DCTstramed and the DCT coefficients

are quantized by another quantization fagiu, v}

E, (Uv) = F'(uv) | q(uyv)
2 q(uv) | g uv) |

Popescu [13] showed that the histogram of certdBT Roefficients in a double JPEG
compressed image is periodic and the periodicityisibly in the Fourier transform. The au-
thor proposed a technique uses these specific a@bastics in order to determine whether an
image has been double JPEG compressed. In theseetion, we describe the technique and

evaluate its effectiveness.

One can note that when an image is re-compresdédivd@ same quality of the first com-
pression, double quantization artifacts mostly db appear. Thus, the technique of Popescu
[13] does not work in this case. To overcome thabfem, Huang et al. [121] proposed a tech-
nique for detecting D-JPEG images when the first #v@ second quality factor are the same.
This technique is based on the observation thahwbeompressing a JPEG image over and
over again, the number of different quantized D@€fficients between the sequential two
versions will monotonically decrease in generalretfeough the first and the second quality
factors are the same. Subsequently, the authatsafirandomly perturbation ratio, which can

be used to discriminate single images from douBEG compressed images.

6.2.3 Detection of Double JPEG Compression

The technique of Popescu [13] is based on computiachistograms of low frequency DCT
coefficients of the image and detecting periodiifats. Since this technique is widely-used

for detecting double JPEG compressed images, vedlybreview and evaluate the technique
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before showing that the technique is not robustnatia simple attack (cropping). Through
experiments, we found that artifacts are most eatidethe histogram of DC coefficients. For

simplicity, we take into account only the DC coeffints of DCT blocks in our experiments.

The algorithm [13] to detect whether an image i3HEG compressed can be summarized

as follows:

1. Dividing the image into 8x8 non-overlapping blocks.

2. Applying the DCT to every block.

3. Taking the DC coefficient from every DCT block acoimputing the histogram of the
coefficients.

4. Computing the Fourier transform the histogram; radizing the histogram and looking

for strong peaks in the spectrum as evidence fobl@oJPEG compression.

Figure 6-3 shows the histogram of DCT coefficieatsa sample image and its Fourier
transform in the cases of single JPEG compressidrdauble JPEG compression. Apparently,
in the case a single compression, there are nagsypeaks in the Fourier transform, but the

peaks are obvious after a double compression ttzaep
In order to quantify the sensitivity and robustnekthis algorithm, we use a simple method

based on detection of strong peaks in the histogfadC coefficients instead of using a com-

plex method based on a parameterized Laplace nattla least square optimization as

advocated in [13].

e e e =T =t SNy
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Figure 6-3: (a) Histogram of DC coefficients of a sample imagel its Fourier transform
(image compressed by a factor of 70); (b) HistogmamDC coefficients and its Fourier
transform of an image which has been created byGJB&mpressing the image (a) by the

factor of 90.
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6.2.4 Experimental Results

In this section, we evaluate the double JPEG cossjpe detection algorithm of Popescu
[13] using the general test framework presente@hapter 3. Firstly, a dataset of original im-
ages was created by randomly choosing 200 nevepiassed images from the UCID image
database [82]; all selected images are convertgdapscale. Subsequently, datasets of JPEG
compressed images are formed by compressing thmarimages by different quality factors
QF; (QF, =50, 55, ..., 90, 95). Then each single JPEG cesgad image is re-compressed in
JPEG format using other quality fact@$, (QF, = 50, 55, ... , 90, 95) an@F,; # QF,. This
step creates a set of suitable double JPEG conegressges.

The detection rates of the technique in detectinPEG compressed images are shown in
Table 6-1 (the false positive rates of the techamiginen testing on the dataset of single JPEG
compressed images are lower than 20%). The techmaguks well wherQF; < QF, and the
difference betwee@F,; andQF; is large. WherQF; > QF, the detection rate of the technique

is rather low and whe@F, = QF,, there are no specific artifacts to be detected.

50 55 60 65 70 75 80 85 9( 9%
50 - 515 | 76.0| 86.5| 89.0 37.0 10C 99,0 100 100
55 | 27.5 - 29.0| 85.0f 935 685 955 100 100 100
60 | 37.0 | 285 - 575/ 780 63.0 766 995 100 100
65 | 405 | 435| 32.0 - 26.0 60.0 56.p 750 995 100
70 | 30.0 | 43.5| 40.5| 26.5 - 50.% 880 765 985 100
75 | 240 | 31.0| 34.0| 42.0 46.5 - 55,6 755 100 100
80 | 25.0 | 25.0| 275 245 450 255b . 575 34.0 57.5
85 | 245 | 235| 26.5| 240 240 25D 275 - 540 785
90 | 235 | 255| 240 240 240 24p 235 310 - 35.0
95 | 26.0 | 25.0| 23.0| 225 22% 23p 225 225 26.5 -

Table 6-1: Detection rates of [13] in detecting double JPE@pessed image®F; in rows
andQF; in columns) [%].
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6.3 Security Analysis

6.3.1 Security of Double JPEG Compression Detection

In this section, we evaluate the security of theect®on technique for D-JPEG compression
[13]. To this end, firstly, we apply a targetechakt that aims at removing the specific artifacts
in D-JPEG images.

Since the technique of [13] is based on the charnatts of JPEG blocking artifacts, an ef-
fective attack to the technique is cropping thegengusually by a few pixels to avoid being
exposed) before the second compression. After argpthe DCT blocks in the second com-
pression are not aligned any more with the cornedipg DCT blocks in the first compression.
As a result, the specific artifacts of double coegsion are likely destroyed. The author of
[13] mentioned this problem, however, but perfornmedexperimental evaluation to confirm
the fact.

To evaluate the security of the algorithm of [18BE cropping attack is applied while creat-
ing double JPEG compressed images. To this endl€é@PEG compressed images (by the
quality factors of 55, 70 and 85) are selected,eauh of them is cropped by a random number
of pixels. Finally, the images are re-compressetP&G by different quality factors in order to
create non-aligned double JPEG compressed imagesexXperimental results are shown in
Figure 6-4, Figure 6-5 and Figure 6-6. The resuitécate that the forensic technique works
well when no attack is applied but it is not robagainst cropping and is mostly defeated by
this attack.

80+

(=2}
o

detection rate [%]
iy
o

20+

Figure 6-4: Detection rates of the technique [13] for D-JPE@ges (solid line) and cropped
D-JPEG images (dashed line) for differ&tt, (QF, = 55).
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Figure 6-5: Detection rates of the technique [13] for D-JPE@ges (solid line) and cropped
D-JPEG images (dashed line) for differ&tt, (QF, = 70).
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Figure 6-6: Detection rates of the technique [13] for D-JPE@ges (solid line) and cropped
D-JPEG images (dashed line) for differ€it, (QF; = 85).

6.3.2 Cropped Double JPEG Compression Detection

Although cropping is a simple and effective to elttéo D-JPEG compression detection, this
operation leaves other types of evidence, whichlmnised to detect whether an image has
been cropped. Several authors have proposed tegmig detect cropped D-JPEG images,
among them [44] [45][46]. Through experiments, Blainand Piva [46] showed that their
technique outperforms other existing ones [44][4®]this section we revisit the technique of

Bianchi and Piva [46] and then apply the evaluaffamework to assess its effectiveness and
security.

The authors of [46] showed that, if an 8x8 blockTD€ applied to the JPEG image, there
are three possible cases: the grid is aligned théHast JPEG compression, the grid is aligned

with the first JPEG compression and the grid isatigsed with the two previous ones. The
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authors showed that when the block DCT grid isr@dywith the DCT grid of the last com-
pression or the first compression, the coefficl@atograms tend to be periodic. In theory, the
effect described above can be measured for evefly @@€fficient; however, through experi-
ments the authors observed that it is more evittetite case of DC coefficient. Based on this

observation, the authors proposed an algorithneteatl cropped D-JPEG images as follows:

1. Apply DCT to the test image with every possibldtsfij j) andi, j = {0, 1... 7} (when
i=0 andj=0, the block DCT grid is aligned with the DCT gaflthe last compression).

2. For each value of the shift, (), compute the histogram of DC coefficients of gver
block of the image. After that, the periodicitytbe histogram is evaluated by applying

the Fourier transform.

3. Compute the Integer Periodicity Map (IPM), whichfasmed by the proportion of the
magnitude of the periodicity of the histogram irpaticular shift to the sum of the

magnitude of the periodicity of all possible shifts

4. Compute the uniformity of each IPM by measuringnii:-entropy. Min-entropy is a
popular metric in statistics which characterizes fost probable occurrence of a ran-
dom variable. It is easy to verify that a high mimxropy corresponds to a mostly
uniform IPM, whereas an IPM with a high peak wi#l bharacterized by a low min-

entropy.

5. The presence of cropped D-JPEG is detected by iagpéy threshold detector to the
min-entropy of the IPM, measuring its uniformity.néh the min-entropy is smaller
than a suitable threshold, it is concluded as @ddp-JPEG.

6.3.3 Experimental Results

The technique [46] based on a specific artifact@nein cropped D-JPEG images. Apparently,
the artifact will be destroyed if the DCT coeffiots of a cropped D-JPEG image have been
altered. Several methods can be used for this parpguch as geometric transformation or
noise addition. In this work, we use rescaling lbiseathis operation affects visual quality less.
In particular, we rescale cropped images beforesém®nd compression. It is well known that

scaling is a popular attack which also used in sother situations [74], [117].

Similar to the previous tasks, we use the UCID sktt482] for experimental analysis.
Firstly, 200 images are chosen randomly from thdJ@ataset, and converted to gray-scale.
After that, JPEG compressed datasets are createdrbgressing the original images by dif-

ferent quality factorQF; (QF; = 50, 70, 85). Each single JPEG compressed insagepped
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randomly byi pixels horizontally ang pixel vertically (0<i, j <7) and then re-compressed in
JPEG format by another quality fact@Qi, (QF, = 50, 55, ..., 90, 95) anQF, # QF;. This
creates a dataset of cropped D-JPEG images. Ackattamage is created by cropping ran-
domly a single JPEG compressed image, rescalingrtage to the previous size and then re-
compressing the image in JPEG format with a diffeguality factorQF, (QF, = 50, 55, ...,
90, 95) andQF, # QF;. The technique [46] is evaluated on the croppetPBG images and
the attacked cropped D-JPEG images. The experiinesialts are shown in Figure 6-7, Fig-
ure 6-8 and Figure 6-9. The technique works wekm®@F, > QF, and the difference between

QF; andQF; is large. However, it is mostly defeated by thack.

detection rate [%)]

201

Figure 6-7: Detection rates of [46] in detecting cropped D-GPEnhages (solid lines) and
attacked cropped D-JPEG images (dashed line) fiereint QF, andQF; = 55.

100

detection rate [%)]

Figure 6-8: Detection rates of [46] in detecting cropped D-JPiatages (solid lines) and
attacked cropped D-JPEG images (dashed line) fiaréint QF, andQF;= 70.
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Figure 6-9: Detection rates of [46] in detecting cropped D-JPiEGges (solid lines) and
attacked cropped D-JPEG images (dashed line) fimreint QF, andQF; = 85.

6.4 A New Technique for Resized Double JPEG Compressiddetection

6.4.1 The Proposed Technique

When using [41] to detect re-sampling in both JRB&ges and RD-JPEG images, we empiri-
cally found that in the detection result of RD-JPiE{ages seems to have more peaks than that
of JPEG images (Figure 6-10). This is because étection result of a RD-JPEG image con-
tains not only the peaks introduced by JPEG commes but also the peaks due to re-
sampling. Nevertheless, the difference is not asregsy to recognize by human eyes. In addi-
tion, it is necessary to automatically classify BRBPEG images from JPEG images. To this end,
we first apply the technique [41] to JPEG images] then extract the values of maximal
peaks from the normalized Fourier spectrum. Theaete¢d features are subsequently fed to
SVM-based classifiers in order to discriminate REE=G images from JPEG images. Since

SVM is only a binary classifier, we use two apptuegto design SVM classifiers.

In the first approach, we design a single SVM dfessfor directly distinguishing JPEG
and RD-JPEG images, compressed by different qualityrs. To this end, the features of a set
of JPEG images and their re-sampled versions (theber of JPEG and re-sampled JPEG im-
ages are the same) are extracted for training a $\skifier. This approach is simple and
suitable for many situations in practice when wendb know the quality factors of the ana-
lyzed images. However, through experiments, refoite Section 6.4.2, we find that this

technique works well mostly wheF; is lower than th&F,.

The second approach is based on the idea that @Rilef a double JPEG compressed im-

age is usually not known to the analy@f, can be identified (we present a method to reveal
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the last quality factor of a JPEG image in Apperfily. Thus, instead of using a single classi-
fier for all, we design several different SVM cléigss which each distinguish JPEG and RD-
JPEG images for one specific valueQff,. Once the last quality factor of an analyzed JPEG
image is known, the corresponding classifier wéldpplied to it. The method to design a clas-
sifier for a particulaQF, is similar to the first approach: we first useea af JPEG images and
another set of RD-JPEG images (the numbers of ismageoth sets are the same and every
image is compressed I63F,) and then extract image features for training &MNassifier. In
other words, the last quality factor of a testedgmis first identified, and then the image will

be analyzed by the corresponding qualifier.

) Lhobl,

Figure 6-10: Shown on the left is the detection result of IREG image of Lena and on the
right the detection result of the RD-JPEG versibthe same image.

6.4.2 Experimental Results

First, we randomly choose 200 uncompressed imagesthe UCID image database [82]. We

create 5 datasets of JPEG images by compressingntmmpressed images with the quality

factors of 40, 50, 60, 70, and 80. The JPEG imagesubsequently resized by a scaling factor
of 1.2 and recompressed by different factors of5400,60, 70, and 80. As a result, we obtained
5 datasets of RD-JPEG images corresponding todstelet of JPEG images.

To test the first approach, we create a single S\Mdsifier by using two groups of JPEG
images and RD-JPEG images (with the scaling faatdt.2) for training. After the training
process we apply the classifier to test RD-JPEQégaln training, we consider two cases of
different quality factors: 1) 100 JPEG images casped by a quality factor of 50 and 100
RD-JPEG images re-compressed by a quality fact@édd®F, = 50,QF,= 70 and scaling fac-
tor = 1.2) and 2) 100 JPEG images compressed malitygfactor of 70 and 100 RD-JPEG
images re-compressed by a quality factor of @B.E 70, QF,= 80 and scaling factor = 1.2).
Analyzing the detection results (Table 6-2 and &abB), we found that the technique works
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well when detecting RD-JPEG images whéfg is smaller thaiQF,. Otherwise, whe@F; is
larger thanQF,, the detection rate is small. In our experimetits,false positive rates (com-
puted by testing the classifier on datasets of JRE&es which have been compressed by
different quality factors of 40, 50, 60, 70, and &be lower than 11% in the first case and

lower than 8% in the second case.

In a more realistic scenario, we test the techmcue the RD-JPEG images, which have
been resized with a different scaling factor thiam tactors are used in the training process.
The datasets are created in the same way as ab@ent the scaling factor 1.1 is used instead
of 1.2 (i.e.QF;=70, QF,=80 and scaling factor =1.1). Although the detettiesults (in Table
6-4) are clearly worse compare with Table 6-2 aabld 6-3, we found that the degradation is
not significant; therefore, the technique can piddiy work in case the scaling factor is un-

known.

In the second approach, we consider 5 differergcasrresponding to@F, of 40, 50, 60,
70, and 80. WheRQF; is 40, we organize the training images into twougs: a group of 100
JPEG images (the quality factor of 40) and theragheup of 100 RD-JPEG imagedK;= 50,
QF, = 40 and scaling factor = 1.2). The extracted festare used to train a SVM classifier
that can be used to detect RD-JPEG images comdrbgsbeQF; of 40. We repeat this proc-
ess for the other cases wh@, is 50, 60, 70, and 80. The detection results $tirtg RD-
JPEG datasets are presented in Table 6-5. We ddtie¢ following the second approach, the
technique works well even @F; is larger tharQF,. For example, whe@F; = 80 andQF; =
40, in the first approach, the detection resules @rly 10.5% or 24%, but in the second ap-
proach, it reaches 85.0%. The false positive ratedower than 10% (9%, 8%, 5%, 6% and
3% when testing JPEG images compressed by thetygtadtors of 40, 50, 60, 70, and 80 re-

spectively).

40 50 60 70 80
40 65.5%| 91.0% | 99.5%| 99.5% | 84.5%
50 52.5%| 80.0%| 97.0%| 99.0%| 87.0%
60 35.5%| 77.5%| 92.5% | 98.5%| 88.0%
70 19.5%| 67.5%| 87.0%| 99.0% | 84.0%
80 10.5%| 45.0%| 79.5%| 91.5%| 78.0%

Table 6-2: Detection results using a single SVM classifieaitting JPEG images compressed
by QF = 50 and RD-JPEG images re-compresse@bBy= 50,QF,= 70) for RD-JPEG images
by the scaling factor of 1.2 and by different gyalactors QF; in rows andQF; in columns).
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40 50 60 70 80
40 | 70.0%| 94.0%| 98.5%| 99.0% | 95.0%
50 | 62.0%]| 80.0%| 92.5%| 98.5% | 98.0%
60 | 48.0%| 76.0%| 87.5%| 96.5%| 99.0%
70 | 33.5%]| 68.0%| 83.0% | 93.5%| 99.0%
80 | 24.0%| 57.0%| 69.0%| 81.0% | 92.0%

Table 6-3: Detection results using a single SVM classifiesi(ting JPEG images compressed
by QF = 70 and RD-JPEG images re-compresse@By= 70,QF,= 80) for RD-JPEG images
by the scaling factor of 1.2 and by different qtyalactors QF; in rows andQF, in columns).

40 50 60 70 80
40 | 37.0%| 57.0%| 63.5%| 78.0% | 82.5%
50 | 37.0%]| 58.0%| 63.5%| 78.5% | 83.0%
60 | 26.0%| 48.0%| 66.5%| 77.5%| 87.0%
70 | 13.5%| 43.5%| 68.0%| 77.5%| 73.0%
80 | 10.5%]| 39.0%| 62.5%| 77.0% | 86.5%

Table 6-4: Detection results using a single SVM classifieai(ting JPEG images compressed
by QF=70 and RD-JPEG images re-compresse@By=70, QF,=80) for RD-JPEG images by
the scaling factor of 1.1 and by different quafagtors QF; in rows andQF; in columns).

40 50 60 70 80
40 | 95.0%| 91.5%| 89.5%| 99.0% | 98.0%
50 | 90.0%]| 90.0%| 88.5%| 98.5%| 99.5%
60 | 89.5%]| 91.0%| 97.5%| 98.0%| 100%
70 | 87.5%| 85.0%| 95.0%| 99.5%| 98.0%
80 | 85.0%| 80.0%| 96.0%| 100% | 99.0%

Table 6-5: Detection results using dedicated SVM classifier/RD-JPEG images (depending
on the quality factor of the second compressionjheyscaling factor of 1.2 and by different
quality factors QF, in rows andQF; in columns).
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Figure 6-11: Detection results for RD-JPEG images by differscaling factors when the
quality factor of the trained images and the testiges are the same.
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Figure 6-12: Detection results for RD-JPEG images by differscailing factors when the
quality factor of the trained images and the testges are different.

In order to assess the influence of scaling fastertest the proposed technique for detec-
tion of RD-JPEG images with various scaling factdise RD-JPEG images are created by
resizing JPEG images (firstly compresseddy) of different scaling factors (from 0.6 to 1.9)
and then they are recompressed (by a differenttgdiattor QF,). We consider three cases: 1)
QF=50 andQF,=70, 2)QF;=70 andQF,=80 and 3QF;=70 andQF,=50. We create different
datasets of JPEG images and RD-JPEG images aaglincase, the training and testing proc-
esses of the classifiers are conducted as deschéfule. The detection results in various
scaling factors are shown in Figure 6-11. Due tesing information in the down-sampling
process, the detection rates of the down-samplediésare very low. Detecting up-sampled
images is possible with much higher rates. In soases, the detection rates even reach about

100%. In this scenario, the test images are corspdewith the same quality factors as the
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training images (but with different scaling facforgve found that scaling factors affect the

detection results: typically the detection rateslt® increase.

Lastly, in a more realistic scenario, we apply thehnique trained by one image type
(QF=70, QF,=80, scaling factor = 1.2) to images with differgypes QF,=50 andQF,=70,
QF=70 andQF,=50, and scaling factor ranges from 0.6 to 1.9 @htection results are pre-
sented in Figure 6-12. Although the results detateo(compare with Figure 6-11), we found
that the degradation is not significant; therefdhe, technique can potentially work in a real

condition.

6.5 Summary

In this chapter, we designed a technique for diegcesized double JPEG compressed im-
ages. The technique is based on applying the relsandetector [41] to JPEG images, and
extracting features from strong peaks of the nomedl Fourier transformation. Then the ex-
tracted features are fed into a SVM-based classifierder to discriminate RD-JPEG images
from JPEG images. We propose two methods to deSigd classifiers: one single global
classifier and several classifiers depending ongthaity factor of the last compression. Al-
though the first approach is simple and easy tq tise second approach achieves higher
detection rates. In comparison with [103], our téghe has higher detection rates when the
quality factor of the first compression is largearn the quality factor of the last compression
and when detecting down-sampled double JPEG cosgmtdmages. We apply the technique
to test RD-JPEG images resized with different agalactors and found that the scaling factors

can affect the detection results.
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7 Conclusions and Future Work

In this thesis, we have addressed the securityigifatlimage forensic algorithms, which is

ability to withstand dedicated attacks that ainmaking an attacked image look authentic. In
order to measure the effectiveness and securitprehsic techniques, we developed a test
framework. The framework provides the necessamagtfucture and support tools, which al-
low evaluating forensic techniques in an automatg. Since forensic techniques in the same
category are tested in the same condition, thé&ctfeness and security can be fairly com-

pared to each other.

We implemented several image forensic techniqgusgdan published algorithms. For
each technique we designed different targetedlattand used them in the evaluation frame-
work. Targeted attacks against a forensic technédjogr analyzing the security of the forensic

techniques and providing more insight into the.us

Once a forensic algorithm is publicly known, anyefosic tool that is based on the algo-
rithm can be attacked. Therefore, developing facetechniques which offer a higher level
security is an urgent need. In this thesis, weghesl a number of new forensic techniques in
different categories of forgery detection. Throwgperiments, we showed that our techniques
are more robust against dedicated attacks in caosgmawith some state-of-the-art image fo-
rensic techniques. Obviously, adversaries can dpvedw attacks targeted our techniques and
potentially disable them. Although forensics andl-farensics seems to make a never-ending

game, research on security of forensic techniglessdeveloping more reliable techniques.

The purpose of attacks is to remove or destroyeewmid of forgeries in digital images, but
the attack itself can leave specific artifacts. §hdetecting such artifacts can reveal the pres-
ence of the attacks. Little work has been donehis direction up to now [60], [65], [122].
Along with the development of anti-forensic methoutsorder to thoroughly understand the
security of forensic techniques, countering antefisics should be investigated. This is one of
our future works. In addition, we will improve soroéthe algorithms presented in this work.
We will not only focus on individual attacks busalconsider more about the combination of
different attacks. We think carefully about forarssas a classification problem, which can be

solved by using different techniques, e.g. machkéaeing.
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Appendix

Al. Determining the Last Quality Factor of a JPEG mage

The compression ratios of JPEG images are cordrbifeghe quantization tables which used in
the compression process. In this thesis, we focusnages stored in the JPEG Interchange
File Format (JFIF). The JFIF is the most commordgdi format for JPEG data [123]. The

quantization table that was used to compress agdrnsastored in the JFIF header [124]. This
table (calledr's can be identified by using the JPEG Toolbox [125]

16 11 10 16 24 40 51 61]
12 12 14 19 26 58 60 55
14 13 16 24 40 57 69 56
14 17 22 29 51 87 80 62
18 22 37 56 68 109 103 77
24 35 55 64 81 104 113 92
49 64 78 87 103 121 120 101
72 92 95 98 112 100 103 99 |

Table 8-1: The standard quantization table

The most commonly used standard quantization tadnlespublished by the International
JPEG Group (IJG). Based on the standard tatide §éhown in Table 8-1, and the quality factor

(Q), the quantization table can be computed as fallow

500
S=¢0Q
200-2Q otherwise

< SIS0

if Q<50

Conversely, when the tabld® andTs are known, the approximate value of the qualittda

can be computed as follows [124]:

_THi)*100-50
S THi)

S
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LZOOZ_ S J if S'<100

Q' =
LMJ otherwise

SI

Note that the function to predict the quality factovolves integer computation on the
guantization tableTy) that introduces integer rounding errors, so thlele ofQ’ is closely to
Q. Following a suggestion in [124], then the computeality factor Q') should be off by one

or two.

For example, if we know the quality factQr= 80 andTh(1) = 16, therS = 40, therefore,
T91) = 6. Conversely, if we knowhb(1) = 16 andlg1) = 6, thenS'= 34.375, therefore' =
82.
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