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sotto l’azzurro fitto

del cielo qualche uccello di mare se ne va;

né sosta mai: perché tutte le immagini portano scritto:

piú in lá!.

beneath the dense blue

sky, seabirds flash by, never

pausing, driven by images below:

”Farther, farther!”

(E. Montale, Maestrale, Ossi di seppia.)
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Chapter 1

An Introduction to Digital

Forensics

The use of scientific methods to gain probative facts in criminal investiga-

tions are referred to forensic sciences. This term has its etymologic roots in

the Latin word “forum”, which means “main square”, a public place where

various activities took place in Ancient Rome like politic discussions, meet-

ings and also public hearings.

It’s possible to subdivide all forensic sciences by their domain of evidence

(see Figure 1.1); classical (analog) forensics deals with physical evidence,

whereas digital forensics explore digital evidence.

In particular digital forensics science emerged in the last decade in re-

sponse to the escalation of crimes committed by the use of electronic devices

as an instrument used to commit a crime or as a repository of evidences

related to a crime. A first definition for digital forensics science is given in

2001 during the first Digital Forensic Workshop and, for the sake of com-

pleteness, it is quoted in the following :

“The use of scientifically derived and proven methods toward the preserva-

tion, collection, validation, identification, analysis, interpretation, documen-

tation and presentation of digital evidence derived from digital sources for

the purpose of facilitating or furthering the reconstruction of events found

to be criminal, or helping to anticipate unauthorized actions shown to be

disruptive to planned operations [3].”

The term digital evidence means “any probative information stored or

transmitted in digital form that a party to a court case may use at trial [4]”.

The use of digital evidence in the courts has increased in the past few
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decades allowing for example the use of e-mails, digital photographs, word

processing documents, instant message histories, internet browser histories,

databases, the contents of computer memory, Global Positioning System

tracks, and digital video or audio files. As with any evidence, the proponent

of digital evidence must lay the proper foundation of such digital evidence

and the courts sometimes require the authentication of the evidence called

“for a more comprehensive foundation”.

Anyways, the more comprehensive foundation remains good practice and

there are not any guidelines to follow nowadays. The American Law Reports

lists only a number of ways to establish the comprehensive foundation and in

the United Kingdom the admissibility of computer generated and electronic

evidence is governed by the Best Practice Guide drafted by the Association

of Chief Police Officers.

Figure 1.1: Digital forensics and Analog forensics.

Digital forensics science is divided into several sub-branches: computer

forensics, network forensics, database forensics, mobile device forensics and

recently multimedia forensics [5].

In computer forensics, forensic investigators want to extract probative

facts from the computers involved. Forensic investigators typically follow a

standard set of procedures: after physically isolating the computer in ques-

tion to make sure it cannot be accidentally contaminated, investigators make

a digital copy of the hard drive and all investigation is done on the digi-

tal copy. Investigators use a variety of techniques and proprietary forensic

applications to examine the hard drive copy, searching hidden folders and

unallocated disk space for copies of deleted, encrypted, or damaged files.
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Network forensics analyses network events in order to discover security

attacks and a forensic examination of a database may focus on identify-

ing transactions within a database system that indicate evidence of a fraud

(deleting some record in a database for example).

Mobile device forensics instead refers to digital evidence recovering from

a mobile device or any digital device that has both internal memory and

communication ability.

Finally multimedia forensics deals with digital representations of parts

of reality, such as images, videos or audio files captured from a digital cam-

era, a camcorder and so on. The main goal of multimedia forensics is to

demonstrate that such digital evidence can be use in a trial because is re-

liable and authentic or otherwise demonstrate the contrary. How this goal

is realized is described in detail in Chapter 2 where a deepened look into

multimedia forensics techniques is given. In the following a quick overview

of the problem is outlined focusing the attention on Image Forensics.

Photography lost its innocence many years ago and shortly after the first

commercially available analog camera was introduced, photographs were be-

ing manipulated and altered. For example the portrait of the U.S. President

Abraham Lincoln (around 1860) was a fake, having been created by splicing

together the head of Lincoln with the body of the politician John Calhoun

(Figure 1.2). Another example is reported in Figure 1.3 where in order to

create a more heroic portrait of Benito Mussolini, the horse handler has been

removed from the original photograph.

Figure 1.2: The 1860 portrait of President Abraham Lincoln on the left and the

politician John Calhoun on the right.
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Figure 1.3: The Benito Mussolini portrait (1942) with the original on the right.

With the advent of digital cameras, powerful personal computers, and

sophisticated photo-editing software, the manipulation of digital images is

becoming much more common. Digital images are everywhere: on the covers

of magazines, in newspapers, in courtrooms, and all over the internet but,

given the ease with which images can be manipulated, we need to know if

what we see is real or not. The tools for making forgeries have increased

in sophistication, bringing the ability to make forgeries to anyone in fact in

recent years, tampered images have affected science, law, politics, the media,

and business. The tools for detecting forgeries, on the other hand, are only

in the beginning of the development and there is a clear need for these tools

in particular in the forensic domain.

Recently, there have been numerous examples of tampered images in

newspapers and on magazine covers. Figure 1.4 and 1.5, for example, shows

covers from popular magazines where the images have been manipulated.

Figure 1.4: June 2010. This cover of The Economist shows the President Obama

on the Louisiana beach inspecting the oil spill. The original photo, shot by Reuters

photographer shows other two persons standing next to the President.
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(a) (b)

Figure 1.5: a) June 2010. The text “38. BFD.” was digitally added to the photo

of seven-time Tour de France champion, Lance Armstrong.

b) April 2005. The picture is a digital composite of two images of the actors Brad

Pitt and Angelina Jolie.

Another example is showed in Figure 1.6 where a war photographer doc-

tored a photograph that appeared on the cover of the Los Angeles Times in

2003, creating a picture from a composite of two images. The image in Fig-

ure 1.7) show an Iranian missile test appeared in 2008 on the front page of

many major newspapers. After the publication of this photo, it was revealed

that the second missile from the right was digitally added to the image in

order to conceal a missile on the ground that did not fire.

Another picture (Figure 1.8) shows Prime Minister Benjamin Netanyahu

(center left) and President Shimon Peres (center right) with members of the

Cabinet. The Israeli newspaper Yated Neeman digitally removed two female

Cabinet members from the photo and replaced them with male members.

Psicology studies show that people’s memories of events can be altered

by viewing doctored images and while some images might only tarnish the

public opinion of a celebrity (Figure 1.5), in politics (Figure 1.6, 1.7, 1.8) or

in science and law, tarnishing the public perception of images, could have

more serious implications. In 2007, Missouri University professor R. Michael

Roberts and co-authors retracted their paper (Cdx2 Gene Expression and

Trophectoderm Lineage Specification in Mouse Embryos) published in Sci-

ence journal after was revealed that images of the paper were doctored.
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Figure 1.6: 2003. On the top the digital composite of a soldier appeared on

the front page of the Los Angeles Times. On the bottom the original two source

images.

Figure 1.7: July 2008: Iranian missile test. On the left the tampered image and

on the right the orginal.

Sometimes could be useful in some scenario to prove not only the image

authenticity but also to know the origin of images presented as evidence. In

law, the Unites States of American Child Pornography Prevention Act of

1996 (CPPA) outlawed virtual child pornography, i.e., images that appear

to depict minors engaged in sexual acts but were created by computer. In

2002, the United States Supreme Court declared the CPPA to be in violation

of the First Amendment. Their decision was based on the fact that no chil-

dren are directly harmed in the production of virtual child pornography, and

therefore, such images are protected under the right to freedom of speech. A

side-effect of this is that people accused of child pornography can claim that

the images are computer-generated. Therefore in a child pornography case,
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Figure 1.8: April 2009: Prime Minister Benjamin Netanyahu (center left), Pres-

ident Shimon Peres (center right), along with members of the Cabinet in the orig-

inal image (up) and in the fake image (bottom).

one could prove that certain imagery has been obtained using a specific cam-

era and is not a computer-generated image relating the image to a suspect

camera. In the same manner as bullet scratches allow forensic examiners

to match a gun bullet to a particular barrel with reliability high enough to

be accepted in courts, a digital equivalent of bullet scratches should allow

reliable matching of a digital image to a digital camera.

Device identification could also be used when digital camcorders are used

by pirates in movie theaters to obtain copies of reasonable quality that are

subsequently sold on a black market and transcoded to low bit-rates for ille-

gal distribution over the Internet. Forensic methods capable of determining

that two clips came from the same camcorder or that two transcoded ver-

sions of one movie have a common source will obviously help investigators

draw connections between different entities or subjects and may become a

crucial piece of evidence in prosecuting the pirates.

Furthermore a forensic analysis could help the investigator to distinguish

between an original multimedia content and an illegal copy of it. Different

types of acquisition devices are involved in this scenario, from digital cam-

eras, scanners, cellphones, PDAs and camcorders till photorealistic images

or videos created with graphic rendering software. In all of these examples,
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the authenticity and reliability of images is an issue and there is a need for

solutions to address this problem.

1.1 Contributions

In this thesis, various subjects have been studied referring to source device

identification and image tampering detection. In particular four novel tech-

niques for Image Forensics will be presented in the following chpaters. For

each method, we describe the conditions under which it is applicable, give

a mathematical model, and bring experiments and results on real images to

validate the methodology. In the first technique, presented in Chapter 3, a

method to discern between digital camera and scanned images is exploited,

and in Chapter 4 an analysis of different denoising filters is carried on with

regard to source camera identification. In Chapter 5 the problem of group-

ing images belonging to a given set and coming from an unknown number

of cameras is faced. Then in Chapter 6 the problem of detecting if a feigned

image has been created is investigated; in particular, attention has been paid

to the case in which an area of an image is copied and then pasted onto an-

other zone to make a duplication or to cancel something that was awkward.

In Chapter 7 is briefly disccussed a new multimedia forensics topic regarding

the problem of ordering over time the outputs observed from a device (digital

camera). This problem is addressed as “temporal forensics”.



Chapter 2

Multimedia Forensics

Multimedia forensics can be defined as the science that tries, by only analysing

a particular digital asset, to give an assessment on such a content and to

extract information that can be useful to address and support an investiga-

tion linked to the scene represented in that specific digital document. The

basic idea behind multimedia forensics relies on the observation that both

the acquisition process and any post-processing operation leave a distinctive

imprint on the data, as a sort of digital fingerprint. The analysis of such

a fingerprint may permit to determine image/video origin and to establish

digital content authenticity.

Digital crime, together with constantly emerging software technologies, is

growing at a rate that far surpasses defensive measures. Sometimes a digital

image or a video may be found to be incontrovertible evidence of a crime

or of a malevolent action. By looking at a digital content as a digital clue,

Multimedia Forensic technologies are introducing a novel methodology for

supporting clue analysis and providing an aid for making a decision on a

crime. Multimedia forensic researcher community aimed so far at assisting

human investigators by giving instruments for the authentication and the

analysis of such clues. To better comprehend such issues let firstly introduce

some application scenarios. Let’s imagine a situation in which the action

itself of creating a digital content (e.g. a photograph) implies an illegal ac-

tion related to the content represented in the data (e.g. child pornography).

In such a case, tracing the acquisition device that took that digital asset,

can lead the judge to blame the owner of the ”guilty” device for that action.

Forensic techniques can help in establishing the origin/source of a digital me-

dia, making the ”incriminated” digital content a valid, silent witness in the

9
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court. A similar approach can be used in a different circumstance, in which a

forensic analysis can help the investigator to distinguish between an original

multimedia content and an illegal copy of it. Different types of acquisition

devices can be involved in this scenario, from digital cameras, scanners, cell-

phones, PDAs and camcorders till photorealistic images or videos created

with graphic rendering software. In this context, the possibility of identify-

ing how that digital document was created may allow to detect illegal copy

(e.g. digital cinema video recaptured by a camcorder). A more insidious

digital crime is the one that attempts to bias the public opinion through

the publication of tampered data. Motivations can spread from joking (e.g.

unconvincing loving couple), to changing the context of a situation in which

very important people are involved, or to exaggerating/debasing the grav-

ity of a disaster image. Image forensic techniques can give a support in

recognizing if, how and possibly where the picture has been forged.

Forensic tools work without any added information, the only features

that can be evaluated are the ones intrinsically tied to the digital content.

The basic idea behind multimedia forensic analysis relies on the observation

that both the acquisition process and any post-processing operation leave

a distinctive imprint on the data, as a sort of digital fingerprint. The esti-

mation of such fingerprints really suggests how to evaluate the digital clue,

turning it into an actual evidence.

It is the aim of this chapter to present the principles and the motivations

of digital forensics (i.e. concerning images and videos), and to describe the

main approaches proposed so far for facing the two basic questions: a) what

is the source of a digital content? b) is such a digital content authentic or

not? The chapter will be organized as it follows. The first section will intro-

duce the reader to the basics of multimedia forensics; the different approaches

for obtaining information from a digital content will be presented, as well

as the diverse type of digital data that can be usually analyzed; then, the

possible application scenarios that can benefit from forensic techniques will

be described and an overview over the intrinsic digital fingerprints will be

presented. The second and the third sections will be devoted to the analysis

of the principal techniques exploited respectively for identifying the acquisi-

tion device of digital images and videos, and for assessing the authenticity of

digital images. The fourth section will describe some counter-forensic tech-

nique applied to hide some modifications on the image in order to avoid the
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digital camera identification or a forgery identification.1

2.1 Multimedia forensics: principles and mo-

tivations

Multimedia forensics can be defined as the science that tries, by analysing a

digital asset, to give an assessment on such a content and to extract informa-

tion that can be useful to address and support an investigation linked to the

scene represented in that specific digital document. Multimedia forensics has

to be able to develop efficient instruments to deal with the disparate digital

devices that can generate images and, above all, with the different processing

tools that allows also an unskilled user to manipulate digital goods. Here-

after two basic approaches are introduced, then the various kinds of data that

multimedia forensic tools could have to face with are presented. After that,

some possible application scenarios where these technologies could be claim

to operate are described and finally a wide look to which are the possible

digital fingerprints to be searched for in a multimedia content is given.

2.1.1 Possible approaches

When digital images (videos) had to be protected or their authenticity ver-

ified or, furthermore, their provenance tracked, the solution generally was

to insert in the original data an embedded, usually unperceivable, informa-

tion that permitted afterwards to determine what was happened, in which

part of the content and, in particular application cases, by whom. This kind

of techniques that can be grouped under the name of digital watermarking

1citebarni, follow an “active” approach, that is it is necessary to operate on

the original document which has to be available from the beginning: this

requirement is almost always hard to be satisfied. Embedding a watermark

into an image, for instance, (see Figure 2.1) can be accomplished by applying

some specific slight modifications to the original document I according to

the information contained in the watermark W and ,often, to a private key

K ; after that the watermarked content IW is obtained.

1This survey has been published as book chapter in Handbook of Research on Compu-

tational Forensics, Digital Crime and Investigation: Methods and Solutions, IGI Global,

Hershey, PA, USA, November 2009.
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Figure 2.1: Watermark embedding phase (left) and watermark extraction (right).

If an assessment has to be performed to check if something has happened

on the watermarked image, the detection phase is carried out by passing it,

together with the private key K (if the algorithm is not blind the original

image is needed too), to the detector that give an answer by re-extracting

the watermark W or by comparing a verification parameter with a certain

threshold.

For sake of completeness, also the cryptographic approach should be in-

cluded within “active” method category. Such an approach uses digital sig-

nature for verifying author and time of signature and authenticating message

contents. A digital signature is achieved by calculating a digest of the digi-

tal data by means of a hash function and encrypting it with a private key;

such a signed digest is stored together with the image and can be used to

prove data integrity or to trace back to its origin. There are some intrinsic

weaknesses in this cryptographic approach. Firstly, the signal digest has

to be tied to the content itself, e.g. by defining a proper format, and this

makes impossible to use a different format, or to authenticate the data after

D/A conversion. Secondly, the digest changes as soon as any modification

is applied to the signal, making impossible to distinguish malicious versus

innocuous modifications. Finally, cryptographic authentication usually does

not allow a precise localization of tampering [6].
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It is easy to understand that such a-posteriori evaluation can not be

performed, for instance, on a common digital content obtained through the

Internet (e.g. a video posted on YouTube, an image published on a news-

paper web-site and so on). This kind of “active” technologies [7] can be

adopted to manage data in a specific application context where additional

information casting is feasible but are not able to deal with an open operative

environment in which only a detection step is possible.

On the contrary, in this situation a “passive” methodology would be

useful; with the term “passive” an approach which tries to make an assess-

ment only having the digital content at disposal is to be intended. It is

straightforward to realize that this kind of investigation is harder and has to

be founded on the thorough analysis of some intrinsic features that should

have/have not been present and are not/are now recognizable inside the ob-

served data [8]. For sake of clarity: when a photomontage, for instance, has

been performed to alter the content of a digital photo, to change the mean-

ing of the represented scene, some traces of this operation are left somehow

over the “new fake” image. These traces, although unperceivable, can result

in the modification of the image structure such as anomalous pixel values

(e.g. sequential interpolated values or strange continuous flat values) but

also in inconsistencies within the image content itself such as anomalies in

the illumination direction or in the presence of slight disproportionate ob-

ject size with respect to the whole context. These are only some examples

of the analysis approaches to be followed; further and deeper details will be

discussed in the next sections.

2.1.2 Kinds of digital evidence and their characteriza-

tion

Digital forensic tools are asked to recover crucial information by analysing

digital evidences; their intrinsic features related to the way these documents

have been created, stored and managed are important elements to be consid-

ered from the very first and, particularly, can determine which investigation

methodology is more appropriate.

Most of the digital data digital forensic has to deal with are images: a

three-channelled bi-dimensional array (single if grey level image) is all you

can get to try to give answers. First of all, if images have been originated

by a digital camera framing a real scene, it follows that its content, besides



2.1 Multimedia forensics: principles and motivations 14

presenting an intrinsic real structure, will contain all the imperfections and

alterations induced by the specific acquiring sensor and by the processing

block which generates the final stored file. As evidenced in Figure 2.2, when

an image is taken from real life, light is focused by the lenses on the camera

sensor which is a 2D array of CCD/CMOS which constitute the picture

elements (pixels). Such elements are hit by the photons and convert them

into voltage signals which are then sampled by an A/D converter.

Figure 2.2: Acquisition process in a photo camera.

Anyway before reaching the sensor, the rays from the scene are filtered

by the CFA (Colour Filter Array) which is a specific colour mosaic that

permits to each pixel to gather only one particular colour. The sensor out-

put is successively demosaicked (i.e. interpolated) to obtain all the three

colours for each pixel and then this signal undergoes additional processing

such as white balance, gamma correction, image enhancement and so on;

after that is stored to the camera memory in a customized format, although,

for commercial devices, JPEG format is usually preferred.

It is now easier to understand that the characteristics of each operation

and the properties of every element, from the framed scene to the final image

file, influence the digital data. In literature, in fact, there are techniques that

have investigated the presence of a specific CFA [9] within the image texture

to go back to the brand of the camera that had taken a certain photo and
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other methods which have proposed to study the JPEG quantization coeffi-

cients to verify if an image had undergone a second compression thus reveal-

ing a possible tampering [10]. On the other side, many are the approaches

based on the analysis of the anomalies left by the device over the image such

as scratches on the lenses, defective pixels, etc.. In particular, attention has

been paid to the sensor noise and among all, dark current, shot noise, ther-

mal noise and so on, PRNU noise (Photo Response Non-Uniformity) is one

of the most interesting for forensic applications. PRNU presence is induced

by intrinsic disconformities in the manufacturing process of silicon CCD/C-

MOSs [11]. Such a noise is a 2D systematic fingerprint which characterized

each single sensor, that is two cameras of the same brand and model will

leave two different traces on the digital contents they acquire. So it is not

properly a random noise because it is a deterministic bidimensional template

which is superimposed to each taken image.

However images, needing a forensic analysis, can be, not only still, but

may also be part of a video sequence; in this circumstance the data to be

controlled have a temporal dimension too that has to be taken into account

although most of the considerations made for digital photos regarding the

presence of PRNU noise pattern and the CFA related to the acquisition

phase, can be directly extended to the case of videos [12, 13]. It is anyway

fundamental to point out that the huge amount of available data can suffer

different kinds of manipulations with respect to static ones, in particular

frames can be skipped or interpolated and inserted to modify the meaning

and to alter the original duration of the sequence. Furthermore a clip, coming

from another recording but of similar content, could be added to the video

in a not-annoying manner to change the whole represented story. Forensic

analysis has to be concentrated on aspects such as inter-frame PRNU noise

correlation and MPEG-X re-coding.

Another kind of images that can constitute a digital evidence to be

checked, in addition to those ones acquired with a photo camera or with

a camcorder, might come from a scanning operation. This means that a

printed document (e.g. the cover of a magazine or a real-life photo) located

in a flatbed scanner has been illuminated row by row by a sliding mono-

dimensional sensor array to originate the digital data [14]. The final file

format is usually customizable but often is JPEG or PNG. In this case, due

to the diversity of the device and to the digitization process, other elements,

in addition to those already discussed for cameras, can be considered during
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the forensic analysis to highlight possible traces of digital asset misuse. For

instance, the presence over the image of a 1-D noise pattern, instead of a

bidimensional, could be an indicator of image origin and what’s more, the

direction (vertical or horizontal) of such mono-dimensional periodicity could

evidence which has been the scanning manner. Another interesting aspect

to control could be the existence of some pieces of dirt that were settled over

the scanner plate or of small scratches over the scanner glass that during

acquisition have become integral part of the image itself.

Finally it is worthy to spend some words on another type of images digital

forensic tools could have to face with: these are computer-generated images.

Many are the software that allow to create digital photorealistic pictures

that are undistinguishable with respect to those ones acquired by a camera

(http://area.autodesk.com/index.php/fakeorfoto). These systems offer the

possibility to build up a completely new image or to arrange a believable

photomontage merging parts of a real photo with elements synthetically

generated. To do this as much actual as possible various are the instruments

that are usable and the superimposition of artificial noise is only one of the

shrewdness a skilled user could put in practice to develop his fake content.

The basic idea to be followed when dealing with this kind of images is to

extract significant features which give an indication of the intrinsic realism

of the image.

2.1.3 Application scenarios

It is now interesting to consider which can be the possible application sce-

narios for digital forensic technologies and which could be the questions they

can give answers to. Though in literature many have been the fields where

digital forensic tools were call to operate, two are the basic categories of

usage: “identification of the source” and “detection of forgeries”, these two

aspects will be debated in detail in the following sections of this chapter.

With the term “identification of the source” it is intended the forensic

procedure to determine which is the origin where the digital image comes

from. In particular, it is good to split this issue into two sub-cases. In the

first sub-case the aim is to recognize which is the device that has produced

that digital asset, that is if the digital content has been generated by a photo-

camera (video-camera), by a scanner or was computer-generated. To achieve

this target, though different approaches exist, the basic ideas are to search
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over the digital image for traces of the specific acquisition process and for the

presence/absence of realistic characteristics within the digital data, this last

mainly for distinguishing a computer generated image. On the other side,

the second sub-case concerns with the individuation, within a certain set of

devices, of which one has created that image. For example, taken a group

of photo-cameras (scanners or video-cameras) try to discern which camera

(brand and model) has taken that picture. Usually to perform this purpose

is necessary to previously extract some information featuring each apparatus

and this is done by constructing a sort of identifying fingerprint through the

analysis of a certain number of digital contents (training set) produced by

that device. Well-known procedures are based on SVM (Support Vector

Machine) or on noise pattern correlation.

The second principal application scenario for digital forensic is the “de-

tection of forgeries”; in this case it is required to establish if a certain image

is authentic or has been artificially created by means of a manipulation to

change its content. The aim of this modification could be very disparate

ranging from commercial applications like to make an untrue journalistic

scoop or to realize a pseudo-realistic advertisement clip, to some others much

more crucial ones such as to alter the judgement in a trial where the image

has been accepted as digital evidence or to produce satellite photos to assess

that nuclear arms are stocked in a certain territory. Anyway it is important

to point out that one of the main hurdles to this kind of analysis is the

dimension of the forged part with respect to the whole image size. On the

contrary, it is not to underestimate that a mimicking action often has to lead

to a substantial alteration of the meaning of the represented scene and this

is not always achievable with the exchange of a few pixels.

2.1.4 Intrinsic digital fingerprints

Even if forensic technologies are usually applied for different purposes (as

previously described), actually it is possible to evidence how a common ap-

proach is followed by almost all the forensic algorithms proposed so far,

regardless of their application for source identification or tampering detec-

tion. In particular, digital forensics is based on the idea that inherent traces

(like digital fingerprints) are left behind in a digital media during both the

creation phase and any other successively process [15]. By resorting only

on the analyzed data, without any previously embedded information (pas-
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sive approach) and without the knowledge of the related original data (blind

method), forensic techniques capture a set of intrinsic information carried out

by the digital asset by means of different analysis methods, i.e. statistical,

geometric, etc.

Several kinds of digital fingerprints are taken into account for the forensic

analysis, a possible classification of such fingerprints can be made by dividing

them in three categories: digital traces left by the in-camera processing and

those left by the out-camera processing and the fingerprints related to the

features of the framed scene. In particular it is to be intended:

1. in-camera fingerprints: each component in a digital acquisition device

modifies the input and leaves intrinsic fingerprints in the final output,

due to the specific optical system, color sensor and camera software;

furthermore, images and in particular natural images, have general

characteristics, regardless of the content, such as inherent noise or be-

haviour of the luminance or statistical properties that can be seen as

inherent fingerprint;

2. out-camera fingerprints: each processing applied to digital media mod-

ifies their properties (e.g. statistical, geometrical, etc.) leaving peculiar

traces accordingly to the processing itself.

Let us note that previous fingerprints are independent off the content of

the analysed data: e.g. the trace left by a given camera is the same even

if different subjects have been acquired. On the contrary there is a third

fingerprint category considering features related to the content of the image

itself, namely:

1. scene fingerprints: the world, the photo coming from, has specific prop-

erties depending on the content, like lighting properties, which charac-

terize the reproduced scene.

After choosing the specific fingerprint, generally the procedure is to select

some properties of the considered fingerprint, to explore relative parameters,

and to make a decision basing on either classification or estimation proce-

dures. In particular, in the case of source identification these traces are

usually extracted and then compared with a dataset of possible fingerprints

specific for each kind/model/brand of acquisition devices, in order to link
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the digital data to the corresponding source. On the other hand, according

to the purpose of forgery detection, the idea is to detect non-uniformity or

breaking of such fingerprints within the considered data; specifically, the me-

dia is usually block wise analysed and for each block the chosen fingerprints

or, better, their properties or parameters, are extracted and compared each

other. It is obvious that for the source identification only the first category

of traces, the in-camera fingerprints, will be taken into account, whereas for

integrity verification all the three categories can be exploited.

Next sections will be devoted to the two main purposes digital forensics

is exploited for: acquisition device identification and integrity verification;

what kind of digital fingerprint is taken into account and how it is used for the

specific aim will be debated for providing a general overview of the principal

approaches followed by multimedia forensics. In particular, in the next sec-

tion, focused on the source identification, the so-called in-camera fingerprints

are deeply analysed and their characteristics exploited for acquiring infor-

mation about data origin. While the successive section focuses on tampering

detection, by starting from the specific application of in-camera fingerprints

to such a task and then the usage of the other two kinds of fingerprints

(out-camera fingerprints and scene fingerprints) is debated.

2.2 Techniques for acquisition device identi-

fication

Techniques for device identification are focused on assessing digital data ori-

gin (images or videos). In particular two are the main aspects to be studied:

the first one is to understand which kind of device has generated those digi-

tal data (e.g. a scanner, a cell-phone, a digital camera, a camcorder or they

are computer-generated) and the second one is to succeed in determining

the specific camera or scanner that has acquired such a content, recognizing

model and brand (Figure 2.3).

Digital images, can be stored in a variety of formats, such as JPEG,

GIF, PNG, TIFF, and the format can be as informative as the image. For

example JPEG files contain a well-defined feature set that includes metadata,

quantization tables for image compression and lossy compressed data. The

metadata describe the source of the image, usually includes the camera type,

resolution, focus settings, and other features [16]. Besides when RAW format
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Figure 2.3: The source identification problem.

is used, the camera creates a header file which contains all of the camera

settings, including (depending on the camera) sharpening level, contrast and

saturation settings, colour temperature / white balance, and so on. The

image is not changed by these settings, they are simply tagged onto the raw

image data.

Although such metadata provide a significant amount of information it

has some limitations: they can be edited, deleted and false information about

the camera type and settings can be inserted. So it is important to provide a

reliable source identification regardless of the type of metadata information

; such passive approach will be explored in the following.

This section will be dedicated to the analysis of the principal solutions

exploited for identifying the acquisition device of digital images and videos

exploring the general structure and sequence of stages of image formation

pipeline, grounding on the physics and operations of the device under ex-

amination. These techniques aim at analysing those operations in order to

find a fingerprint for the device (the so called in-camera fingerprints) in term

of the presence of an identifying mark due to the color filter array (CFA)

interpolation, sensor imperfections and lens aberration, In this section tech-

niques based on the extraction, from images belonging to different categories

(e.g. scanned images, photos, video etc.), of some robust intrinsic features

that are typical of a particular devices classes will be explored. Generally

these features can be used to train a classifier (e.g. SVM); when training is
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performed and whether features grant a good characterization, the system

is able to classify the digital asset. Hereafter, it will be shown how all these

techniques do not work only for digital cameras but also for scanner and

camcorder identification and also to distinguish between a photographic and

a computer graphic image.

2.2.1 Color Filter Array and Demosaicking

In digital cameras with single imaging sensors (the most diffuse on the mar-

ket) the Color Filter Array (CFA) covers the CCD sensor. Several patterns

exist for the filter array (see Figure 2.4), the most common array is the Bayer

CFA. Since the CFA allows only one color to be measured at each pixel this

means that the camera must estimate the missing two color values at each

pixel, this estimation process is known as “demosaicking”.

Figure 2.4: Examples of CFA patterns.

There are several commonly used algorithms for color interpolation and

each manufacturer employs a specific algorithm for this purpose. Given

an output image I, the techniques for acquisition device identification are

focused on finding the color filter array pattern and the color interpolation

algorithm employed in internal processing blocks of a digital camera that

acquired image I.

One well-known approach [9] assumes to know the CFA used in a digital

camera based on the fact that most of commercial cameras use RGB type of

CFA with a periodicity of 2x2.
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The image I after the CFA sampling becomes:

Is =

{

I (x, y, c) , if t (x, y) = c

0,otherwise
(2.1)

where t(x,y) is the CFA pattern and c (colour) can be R, G and B.

Then the intermediate pixel values, corresponding to the points where

Is (x, y, c) = 0 in (2.1) are interpolated using its neighboring pixel values.

The digital forensic method proposed in [9] , for every CFA pattern t in a

search space, estimates the color interpolation coefficients in different types

of texture of the image (smooth, horizontal gradient and vertical gradient

image regions) through a linear approximation.

Using the final camera output I and the assumed sample pattern t, it is

possible to identify the set of locations in each color channel of I that are ac-

quired directly from the sensor array. The remaining pixels are interpolated

with a set of linear equations in terms of the colors of the pixel captured

directly in each types of region. Then the algorithm reconstructs the input

image I using the corresponding coefficients in each regions to obtain esti-

mated final output image Îfor all the CFA patterns in the search space. At

this point the CFA pattern that minimizes error between I and Îis found by

computing a weighted sum of the errors of the three color channels.

The color interpolation coefficients estimated from an image and the pro-

posed CFA can be used as features to identify the camera brand utilized to

capture the digital image. So a support vector machine (SVM) classifier is

trained and then used to identify the interpolation method concerning dif-

ferent digital camera brands. The camera model is more difficult to detect

because the color interpolation coefficients are quite similar among camera

models and hence it is likely that the manufacturer uses similar kinds of

interpolation methods. Furthermore, others limitations to the method ex-

ist: only RGB CFA is considered and then this technique does not permit

to distinguishing Super CCD cameras because those digital cameras do not

employ a square CFA pattern; moreover there is a misclassification around

the smooth regions of the image, in fact similar techniques, such as bicubic

interpolation, around smooth region in almost all commercial cameras are

used.

As explained before, at each pixel location of a CFA interpolated color

image, a single color sample is captured by the camera sensor, while the

other two colors are estimated from neighboring ones. As a result, a subset
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of samples, within a color channel, is correlated to their neighboring samples.

This form of correlation is expressed by the linear model:

f (x, y) =
N
∑

u,v=−N

αu,vf (x+ u, y + v) (2.2)

In the above equation, αu,v are the coefficients of the model parameters

and N is the number of correlated pixel. Since the color filters in a CFA are

typically arranged in a periodic pattern (see again Figure 4), then a periodic

correlation is introduced.

The probability maps of the observed data obtained from the Expectation

Maximization (EM) algorithm can be employed to detect if a color image is

the result of a CFA interpolation algorithm and the linear coefficients, αu,v,

returned by the EM algorithm, can be used to distinguish between different

CFA interpolation techniques [17, 18].

When observed in the frequency domain, these probability maps yield to

peaks at different frequencies with varying magnitudes indicating the struc-

ture of correlation between the spatial samples. Then a classifier is designed

on the basis of the two sets of features: the set of weighting coefficients ob-

tained from an image, and the peak locations and magnitudes in frequency

spectrum.

This method does not work in case of cameras of the same model, because

they share the same CFA filter and interpolation algorithm, and also for

compressed image or modified image (gamma corrected, smoothed) because

these artefacts suppress and remove the spatial correlation between the pixels

due to CFA interpolation.

2.2.2 Imaging Sensor Imperfections

This class of approaches for source matching aims at identifying and ex-

tracting systematic errors due to imaging sensor, which appear on all images

acquired by the sensor in a way independent by the scene content.

There are several sources of imperfections and noise that influence the

image acquisition process [19]. When the imaging sensor takes a picture of

an absolutely evenly lit scene, the resulting digital image will still exhibit

small changes in intensity among individual pixels.

These errors include sensor’s pixel defects and pattern noise this last

has two major components, namely, fixed pattern noise and photo response
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non-uniformity noise (PRNU).

The defective pixels can be used for camera identification as described in

[20]. This type of noise, generated by hot or dead pixels, is typically more

prevalent in cheap cameras and can be visualized by averaging multiple im-

ages from the same camera. However, many cameras post-processing remove

these types of noise, then this technique cannot always be used.

So, for a reliable camera identification, the idea is to estimate the pattern

noise.

The fixed pattern noise (FPN) refers to pixel-to-pixel differences when

the sensor array is not exposed to light (so called dark current) and also

depends on exposure and temperature. The FPN is used for source camera

identification in [21] but it is an additive noise and some middle to high-

end consumer cameras suppress this noise by subtracting a dark frame from

every image they take. On the basis of this consideration, photo-response

non-uniformity noise (PRNU), that is the dominant part of the pattern noise

in natural images, is usually searched for. The most important component of

PRNU is the pixel non-uniformity (PNU), which is defined as different sen-

sitivity of pixels to light. The PNU is caused by stochastic inhomogenities

present in silicon wafers and other imperfections originated during the sensor

manufacturing process. As such, it is not dependent on ambient tempera-

ture and appears to be stable over time. Light refraction on dust particles,

optical surfaces and properties of the camera optics, which also contribute to

the PRNU noise, are generally low spatial frequency components not charac-

terizing the sensor and therefore not usable for source identification. Finally

the noise component to be estimated and to be used as intrinsic character-

istic of the sensor (fingerprint) is the PNU. It is also possible to suppress

this kind of noise using a process called flat fielding [19], in which the pixel

values are first corrected for the additive FPN and then divided by a flat field

frame obtained by averaging images of a uniformly lit scene, but consumer

digital cameras do not flat-field their images because it is difficult to achieve

a uniform sensor illumination inside the camera.

To continue the discussion, it’s necessary to give a mathematical model

of image acquisition process. The digitized output of the sensor l can be

expressed in the following form (before any other camera processing occurs):

l = k(s+ p) + r + d (2.3)

where s is the signal if no other noise sources exist, p is the random shot
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noise, r is the additive random noise (represented by the read-out noise, etc.)

and d is the dark current.

The factor k is close to 1 and captures the PRNU noise, which is a

multiplicative noise.

Because details about the processing are not always easily available (they

are hard-wired or proprietary), generally is needed to use a simplified model

that captures various elements of typical in-camera processing. A more ac-

curate model tailored to a specific camera would likely produce more reliable

camera identification results at the cost of increased complexity.

The simplify sensor output model described in [22] results in the following

vector form:

l = σγ · [(1 + Γ)Υ + Π]γ + θq (2.4)

In Equation 2.4, Y is the incident light intensity on the sensor, σ is

the color channel gain and γ is the gamma correction factor (typically, γ ò

0.45). The gain factor σ adjusts the pixel intensity level according to the

sensitivity of the pixel in the red, green, and blue spectral bands to obtain

the correct white balance. The multiplicative factor Γ is a zero-mean noise-

like signal responsible for PRNU. Finally, Π is a combination of the other

noise sources including the dark current, shot noise, and read-out noise, and

θqis the quantization noise.

Assuming that either the camera that took the image is available to the

forensic analyst or at least some other (non-tampered) images taken by the

camera are available, the PRNU term Γ, can be estimated from a set of

N images taken by the camera. To improve the SNR between the PRNU

term and observed data l, a host signal rejection is performed by subtracting

(pixel by pixel) the denoised version (ld) of l, who can be obtained by using

a denoising filter usually implemented through wavelet based algorithm [1].

Z = l − ld (2.5)

Since the image content is significantly suppressed in the noise residual

Z, the PRNU can be better estimate from Z than from l, so Z is designated

as the reference pattern and serves as an intrinsic signature of the camera.

To identify the source camera, the noise pattern from an image is correlated

with the known reference patterns from a set of cameras. The camera corre-

sponding to the reference pattern giving maximum correlation is chosen to
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be the source camera that acquired that image.

This type of approach is used also for video source identification [12]

by estimating the PRNU from a video segment and then calculating the

correlation with the reference pattern from a different segment of a video

clip. The method described above shows poor performance when digital

image are cropped, scaled or digital magnified so an improved method for

source camera identification based on joint estimation and detection of the

camera photo response non uniformity has been developed in [23]. The

detector is obtained using the generalized likelihood ratio test and has the

form of a cross-correlation maximized over the parameters of the geometrical

transform.

With regard to the identification between synthetic image and photo-

graphic image a method is described in [24], based on the observation that

in computer generated images occurs a lack of the sensor’s pattern noise

artefacts due to the software generation of the image.

Furthermore a technique based on PRNU estimation, for classification of

scanned and non-scanned images, is outlined in [14, 25], based on the differ-

ence in the dimension of the sensor array (scanner sensor is a one dimensional

sensor array, see previous section). This technique extracts a row reference

noise pattern from a single scanned image by averaging the extracted noise

(via denoising) over all rows and then a procedure like [22, 26] is used, based

on the computation of correlation between the scanner reference pattern and

the noise pattern from an image.

2.2.3 Lens Aberration

Due to the design and manufacturing process, lenses produce different kinds

of aberrations in images. Generally two of them are investigated to solve

the problem of source device identification: lens radial distortion [27] and

chromatic aberration [28].

To reduce manufacturing cost, most of digital cameras are equipped with

lenses having almost spherical surfaces that introduce radial distortions.

The radial distortion causes straight lines in the object space rendered

as curved lines on camera sensor and it occurs when there is a change in

transverse magnificationMtwith increasing distance from the optical axis.

The degree and the order of compensation of such a distortion vary from

one manufacturer to another or even in different camera models by the same



2.2 Techniques for acquisition device identification 27

manufacturer. As a result, lenses from different cameras leave unique im-

prints on the captured pictures.

The lens radial distortion can be written as:

ru = rd + k1r
3
d + k2r

5
d (2.6)

whereru andrd are the undistorted radius and distorted radius respectively.

The radius is the radial distance
√
x2 + y2of a point (x, y) from the center of

distortion (the centre of an image). The goal in the method proposed in [27]

is to find the distortion parameters k1andk2 that constitute the fingerprint

to identify source camera following the Devernay’s straight line method.

However this method fails if there are no straight lines in the image

and also if two cameras of the same model are compared. Besides it is

also possible to operate a software correction in order to correct the radial

distortion on an image.

The second type of aberration investigated to solve the source identi-

fication problem is the chromatic aberration. Chromatic aberration is the

phenomenon where light of different wavelenghts fail to converge at the same

position of the focal plane. There are two kind of chromatic aberration: lon-

gitudinal aberration that causes different wavelenghts to focus at different

distances from the lens, while lateral aberration is attributed at different

positions on the sensor. In both cases, chromatic aberration leads to various

forms of color imperfections in the image. Only lateral chromatic aberra-

tion is taken into consideration in the method described in [28] for source

identification. Chromatic aberration causes misalignment between the RGB

channels so the task is to estimate the distorted parameters to compensate

for the distortion maximizing the mutual information among the color chan-

nels. Then these parameters are used in [28] to identify source cell phone

through the use of a SVM classifier.

2.2.4 Others Approaches

There are other approaches for source identification using a set of suitable

digital data intrinsic features designed to classify a device model. These

features can be statistical, geometrical and color features.

In [29] a set of features are calculated, they are composed by suitably

chosen image quality metrics (IQM) evaluated between an input image and

its filtered version using a low-pass Gaussian filter, and integrated with color
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features (deviation from gray, inter-band correlation, gamma factor), and

wavelet coefficient statistics. These features are used to construct multi-class

classifier with images coming from different cameras, but it is demonstrated

that this approach does not work well with cameras with similar CCD and

it requires images of the same content and resolution.

Another group of selected features is based on the assumption that pro-

prietary CFA interpolation algorithm leaves correlations across adjacent bit-

planes of an image. Binary similarity measures (BSM) are metrics used to

measure such a similarity. In [30] the authors differentiate between cell-phone

camera models by using BSM features in conjunction with IQM features. In

the approach described in [31], High-Order Wavelet Statistic (HOWS) fea-

tures are added to the features used in [30] to distinguish among various

brands of cell-phone cameras.

Other techniques exist to solve the classification problem between syn-

thetic and “real” images. The method in [32] proposes a wavelet based sta-

tistical model to extract features from the characteristic functions of wavelet

coefficient histograms. The previous approach is then extended in [33] by

proposing new features to detect the use of Bayer color filter array during

demosaicking [17, 18]. These features are incorporated with the features in

[34] that capture the statistical regularities of natural images in terms of

statistics of four level discrete wavelet transform coefficients.

A new set of features is taken into account for scanner identification in

[35] because, generally, features are extracted without specifically taking the

scanning process into consideration. The same features, with the addition

of color interpolation coefficients, are proposed to identify images produced

by cameras, cell-phone, scanners and computer graphics [36]. These features

have been chosen in particular to distinguish camera form scanner because

the CCD line sensor in a scanner consists of three lines for each color (red,

green, blue), so in a scanner acquisition process no color interpolation is

needed.

Another set of features has been built in [25] for classifying scanner,

computer generated and digital camera due to the physical characteristic of

the image sensor. In fact for a scanner, the fixed component of the noise

should be nearly identical for all the rows of a scanned image due to mono

dimensional image sensor, and for the same reason should be different for

all the columns. Then the statistics of row correlation will differ from those

of column correlation. Row correlation is defined as the correlation of each
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row of the image with the estimated row reference pattern calculated as

average of the noise of the reference image over all rows. So the first order

statistics (mean, median, mode, maximum and minimum) and the higher

order statistics (variance, kurtosis and skewness) of the row correlation and

column correlation are used to generate the features vector for each image

and also a measure of similarity among the rows or columns of the reference

pattern noise are considered (Khanna, 2007 b) to design a SVM classifier.

2.3 Techniques for assessing image integrity

Information integrity is fundamental in a trial: a verdict must be returned

after considering a set of evidences and the authenticity of such proofs should

be assured before making a decision. On one hand witnesses and their as-

sertions constitute a type of evidence; on the other hand, concrete objects,

e.g. a weapon, represent another type of proof, so to speak “real” evidence.

In this latter category can be included all the information belonging to the

crime scene, and such information have been often captured and stored by

means of pictures. If pictures are just representative of the real world, then

they can be considered as authentic evidences. But, it is clear that the ad-

vent of digital pictures and relative ease of digital image processing makes

today this authenticity uncertain. In this scenario, an efficient assessment of

the integrity of digital information, and in particular of digital images, plays

a central role.

But, what does integrity mean? In a strong sense, the image must be only

the outcome of an acquisition of a real world scene, without any successively

processing; in a wide sense, the image must accordingly represent a real world

scene and even if some processing has been probably applied, the “meaning”

of the scene must not be altered.

Once evidence passes from the real world of three dimensional objects to a

digital image, we lose the origin of information and we can not trust any

more what we are seeing, even if the content is advertised as real. Several

image processing tools are nowadays easily usable for almost everybody; let

only consider that Adobe PhotoShop is already licensed to many millions of

users worldwide. With such programs, a great deal of operations is allowed

to affect digital photographic files: person images can be moved in different

contexts; objects can be deleted from scenes; particular details can be cloned

within the photograph; computer graphic objects can be added to the real
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scene. All these manipulations become more and more sophisticated thus

making the alteration virtually imperceptible; furthermore, establishing the

authenticity of images is a key point for being able to use digital images as

critical evidence.

Digital forensics assume that images are intrinsically characterized by spe-

cific pattern due to the creation process and to any other process suffered

after image creation. To properly individuate possible modifications, the im-

age forensic approach considers that such intrinsic fingerprints inside images

are distinguishable due to the different applied image processing, or that the

original traces have been altered due to a tampering, thus losing their uni-

formity. So, different digital fingerprints are taken into account and studying

their characteristics it is possible to verify if an image has undergone some

tampering and even detect the suffered processing. Referring to the wide

sense meaning of integrity (i.e. the digital photograph is a congruous rep-

resentation of the captured “real” world), a lot of processing non-affecting

the semantic (e.g. JPEG compression or recompression, brightness adjust-

ment, gamma correction, etc.) can be erroneously revealed as tampering.

Therefore, detection of image alteration does not necessarily prove malicious

tampering, but surely questions about the content of the image and helps

for further analysis.

In the following, we are going to discuss the technological approaches pro-

posed in literature so far for verifying digital image authenticity; this discus-

sion is structured again according to the classification of digital fingerprints

previously introduced in this chapter where the three kinds of traces are cat-

egorized: in-camera fingerprints (described for their exploitation in source

identification), out-camera fingerprints and scene fingerprints. Specifically,

in the first and third case, forensic techniques search for some breaking or in-

consistencies of such traces, whereas in the second case fingerprints are used

for identifying a specific processing. As already mentioned, detection of im-

age processing does not necessarily prove malicious tampering, but surely

proves that some manipulation occurred after image creation.

Because of the great variety of existing methodologies devoted to this

purpose, we have decided to provide only some hints of each analyzed tech-

nique, to allow the interested reader to get useful information and to possibly

deepen his study by following the bibliographic references.
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2.3.1 In-camera fingerprint breaking

Basically, the acquisition process is analysed and peculiarities left by some

component of the chain are considered as intrinsic fingerprints (in-camera

fingerprints) that characterize the kind or even the model or brand of acqui-

sition devices. In particular, in the previous section three main components

(namely color filter array, sensors and lens) are considered with their related

fingerprints, that are:

1. the Color Filter Array (CFA) and its related demosaicking process;

2. the sensor imperfection and its related pattern noise;

3. the lens aberration and its related chromatic aberration.

On the basis of the previous analysis, we now consider how the traces left

by such components can be exploited for tampering detection.

In the case of CFA the correlations between pixels introduced by the spe-

cific algorithm for the color interpolation are analysed in order to verify if

these properties are broken in certain areas, thus revealing possible tamper-

ing [37, 15]. The works in [38, 11] propose a method to detect the camera

pattern noise present in a given image: the inconsistency of camera pattern

noise in some regions of digital image reveals the non integrity of the con-

tent; the proposed approach requires either the camera which produced the

image or a set of images produced by the same camera, thus making such

an algorithm non blind. Regarding the lens aberration, in [39] the authors

consider in particular the chromatic aberration that leads to various forms of

color imperfections in the image: when these alterations fail to be consistent

across the image, a tampering can be supposed to be happened.

Besides the above mentioned fingerprints, there are other in-camera traces

that have been used for integrity verification. Basically, also for such algo-

rithms a block-based analysis is computed for evidencing the coherence/in-

coherence of the extracted parameters on the whole image.

The image irradiance (light energy incident on the image sensors) is related to

the image intensity (the final output image) by a non-linear camera response

function (CRF ), that is a characteristic of each camera. The estimation of

the CRF on different regions of the analysed image and the evaluation of

consistency/inconsistency between such estimated CRFs, provides a good



2.3 Techniques for assessing image integrity 32

method for deciding if the image is likely to be authentic or spliced [40, 41,

42].

The last step of the acquisition process is usually a JPEG compression to

reduce storage space of the output image. Such a compression leaves unique

fingerprints due to the particular quantization matrix used by the specific

camera, and serves as a “fragile watermark” enabling the detection of changes

within the image. In [43] authors propose to detect possible manipulations by

investigating the compatibility of 8×8 pixel blocks with a given quantization

matrix; whereas in [44] an algorithm is developed for automatically locating

the tampered regions.

The discrepancy in the signal-to-noise ratio (SNR) across the image can

also be considered as a sign for possible tampering. Digital images have an

inherent amount of noise introduced either by the imaging process or digital

compression, and such a noise is typically uniform across the entire image. If

two images with different noise levels are spliced together, or if small amounts

of noise are locally added to conceal traces of tampering, hence changes in

the SNR across the image can be used as evidence of tampering [8].

A different in-camera fingerprint regards the luminance non-linearity, intro-

duced during the acquisition chain in order to improve the perceptual quality

of the output digital images; parameters of this non-linearity are dynami-

cally chosen and depend on the camera and the scene, but they are typically

constant on the image. The presence of several distinct non-linearities across

an image can reveal the non integrity of the content. In [8] it is described

how luminance non-linearities introduce specific correlations in the Fourier

domain, and how these correlations can be estimated and used for tampering

detection.

Finally, another approach proposed in [45] consider that the camera lens of-

ten have an optical low-pass property for the purpose of anti-aliasing; hence,

when an image is spliced onto another, it is likely that sharp edges are intro-

duced into the tampered content, and that such edge transitions invalidate

the low-pass behaviour. Some parameters, representing the optical low-pass

property, are extracted by means of statistical methods and are used for

image integrity verification.

2.3.2 Out-camera processing identification

A class of forensic algorithms have been proposed for identifying some pro-
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cessing applied after image creation, to reveal possible tampering operations.

Firstly, for generating convincing digital image forgeries, it is often necessary

to resize, rotate, stretch some portions of the manipulated images, thus lead-

ing to apply a final resampling step. Although a resampling process does not

typically leave perceivable artefacts, it anyway introduces specific periodic

correlations between image pixels. For instance, when the image is upsam-

pled, some of the pixel values are directly obtained from the smaller version

of the image, and the remaining pixels are interpolated and, thus, they ap-

pear highly correlated with its neighbors. The authors in [46] show how to

detect a discrete approximation of the applied resampling rate in an image

region. The approach relies on the detection of the introduced correlation

patterns; since each pattern (based on the probability of each signal sample

to be correlated to its neighboring samples) is not in a biunique relation with

a resampling rate, the matching could not be uniquely identified. Another

method for detecting interpolation has been proposed in [47], where authors

observe a periodicity in the variance function of the interpolated signal. Au-

thors in [48] analytically describe the periodic properties of an interpolated

signal as well as its derivatives, thus providing also a theoretical support for

the methods in [46] and [47]. The method allows the direct estimation of

the resampling parameters such as the scaling factors, rotation angles and

skewing factors.

Another fundamental processing to be considered is compression. Image

tampering usually requires to make use of common photo-editing software:

original images, often stored in JPEG format, are manipulated by the editing

tools and then they are re-saved using again the JPEG format; hence the

resulting tampered images have been wholly or in part, double compressed.

While double compression does not necessarily prove malicious tampering,

it raises suspicions that the image may be not authentic; as a matter of

fact, double JPEG identification has acquired special attention in digital

forensic literature, as it may serve as an useful forensics clue. Double JPEG

compression often introduces specific correlations between the discrete co-

sine transform (DCT) coefficients of image blocks that are not present in

single compressed images. These correlations can be detected and quantified

by analyzing the double quantization effect of two JPEG compressions with

different quality factors. Such effect is identified in the exhibition of periodic

peaks and valleys in the histograms of the DCT coefficients. Not only the

presence of a double compression can be estimated but also the compression
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quality that have been used [10, 8] as well as the specific doctored parts [44].

On the other hand, the works in [49] and [50] exploit the JPEG “blocki-

ness” artefacts in order to detect a double compression. The authors in [49]

evaluate the Blocking Artefact Characteristic Matrix (BACM) of an image

which exhibits a symmetrical shape and regularity for a single JPEG com-

pression; they show how this regularity can be destroyed by a successively

non aligned compression. Fan [50] proposes a method to determine whether

a non compressed image has been previously JPEG compressed, and further

to estimate which quantization matrix has been used. The original intention

of such an approach was the removal of JPEG artefacts; however, it can serve

as an image forensic tool by also revealing the presence of a double JPEG

compression. The method assumes that if there is no compression the pixel

differences across blocks should be similar to those within blocks (thus non

showing any blockiness artefacts) while they should be different due to block

artefacts if the image has been compressed. Finally, in [51] it is also found

that the distribution of the first digit of the JPEG DCT coefficients can be

used to distinguish a singly JPEG compressed image from a double com-

pressed one. A single compressed image is characterized by a distribution

of its DCT coefficients that follows the Benford’s law distribution; whereas,

as soon as another compression is applied, the coefficients do not follow this

law anymore.

One of the main common image tampering is splicing. It is defined as a

simple joining of portions coming from two or more different images. In

[52] some image features, particularly sensitive to splicing operations, have

been extracted and used for designing a classifier. A different technique for

detecting splicing searches for the presence of abrupt discontinuities in the

image [53]. Several other techniques estimate the camera response function

from different regions of an image to detect splicing and possibly other ma-

nipulations [42, 8]. The authors in [54] observe that the spliced image may

be characterized by a number of sharp transitions such as lines, edges and

corners; hence, they found a parameter as a sensitive measure of these sharp

transitions, and used it for splicing detection.

Another common tampering is object removal: an image region containing

objects that have to be erased, is replaced by another region of the same im-

age. This type of operation is called copy-move or region-duplication. Since

there is similar information (e.g. texture, noise and color) inside the same im-

age, it is hard to identify these forgeries via visual inspection. Furthermore,
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several post-processing (such as adding noise, blurring, lossy compression)

may be performed on such tampered images, thus making the detection of

forgery significantly harder. Works in [55, 49, 56] are all based on block

matching: firstly, the image is divided into small blocks and some features

are extracted for each block; then, by comparing such features for different

blocks, it is possible to identify duplicated regions.

Several works in the tampering detection literature try to define the proper-

ties of a manipulated image in terms of the distortions it goes through, and

using such analysis to present methods for detecting manipulated images.

In doing so, some works assume that creating a tampered image involves a

series of processing operations; they propose identifying such manipulations

by extracting certain salient features that would help distinguish such tam-

pering from authentic data. Image manipulations, such as contrast changes,

gamma correction, and other image nonlinearities have been modeled and

used to identify them [57]. More generally, in [58], image operations, such as

resampling, JPEG compression, and adding of noise, are modeled as linear

operators and estimated by linear image deconvolution. In the frequency do-

main a “natural” signal has weak higher-order statistical correlations. The

authors in [59] observed that “un-natural” correlations are introduced if this

signal is passed through a non-linearity (which would almost surely occur in

the creation of a forgery).

2.3.3 Scene characteristic inconsistencies

Some works have proposed to use as fingerprints the light properties directly

derived from the scene. In particular, Johnson and Farid base their works

on the idea that splicing together different images (that are the acquisition

of different scenes) means likely to create a new content where light incon-

sistencies are present.

In [60, 61] the authors consider to estimate the direction of the light source,

both in a simplified case [60] and in complex lighting environments [61]: if

the image is supposed to be a composition of more images, hence the lighting

direction is computed more than once in different positions of the image; by

comparing such directions it is possible to verify whether inconsistencies are

present thus revealing the suffered digital tampering.

Lighting direction can be also estimated by considering that the light source

produces specular highlights on the eyes of people present in the scene. Au-
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thors in [62] propose to compute the direction of a light source by analyzing

the different highlights within an image, and by detecting inconsistencies

in lighting they are able to reveal possible tampering in some part of the

content. Furthermore authors evidence how it would be possible to measure

from highlights also the shape and the color of the light source (besides its

location), and how these parameters could help in exposing digital forgeries.

By considering specific images where eyes are present , in [63] it is shown

how to estimate the camera’s principal point (i.e. the projection of the cam-

era center onto the image plane) from the analysis of person’s eyes within

an image. Such a principal point depends on intrinsic and extrinsic camera

parameters and it is proposed to be adopted as a fingerprint, whose incon-

sistency across an image can be used as evidence of tampering.

2.4 Counter-Forensics

The question of trustworthiness of digital image forensic arises because most

pubblications still lack rigorous discussions of robustness against counter-

feiters. Forensic methods might benefit from research on countermeasures in

a similar way as reasoning about attacks in multimedia security in general

is useful to improve security. In this sense attacks on image forensic algo-

rithms can be understood as schemes to sistematically mislead the detection

methods. In general, such attacks can be assigned to one of the following

three objectives: the camouflage of malicious post-processing or tampering

of an image, the suppression of correct image origin identification and fur-

thermore the forgery of image origin. Only few papers are presented on this

topic, because research on this theme is only in its infancy. In [64, 65, 66] the

authors described how to deceive two very important and useful algorithm

the resampling detector proposed by Popescu and Farid [46] and the digital

camera identification method by Fridrich and Goljan [38]. Another interest-

ing work is presented by Fridrich et al. [67] where a methods is developed to

reveal counter-forensic activities in which an attacker estimates the camera

fingerprint from a set of images and pastes it onto an image from a different

camera with the intent to introduce a false alarm and frame an innocent

victim.



Chapter 3

Distinguishing between camera

and scanned images

Distinguishing the kind of sensor which has acquired a digital image could be

crucial in many scenarios where digital forensic techniques are called to give

answers. In this chapter a new methodology which permits to determine if a

digital photo has been taken by a camera or has been scanned by a scanner is

proposed. Such a technique exploits the specific geometrical features of the

sensor pattern noise introduced by the sensor in both cases and by resorting

to a frequency analysis can infer if a periodicity is present and consequently

which is the origin of the digital content. Experimental results are presented

to support the theoretical framework.1

The chapter lay-out is the following: Section 3.1 introduces a character-

ization of the sensor pattern noise and the periodicity is discussed, in Sec-

tion 3.2 the proposed methodology is presented and in Section 3.3 describes

thresholds selection based on ROC curves. In Section 3.4 some experimental

results are brought to support theoretical thesis.

3.1 Sensor pattern noise characterization

PRNU (Photo Response Non-Uniformity) noise is quite well-known as being

an effective instrument for sensor identification because it is deterministically

1This work has been published in the International Journal of Digital Crime and Foren-

sics (IJDCF), Volume 2, Number 1, Jan-Mar 2010 and also has obtained the best paper

award in the International Conference e-Forensics, Adelaide, South Australia, 2009.

37
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generated over each digital image it acquires. Such a noise is therefore an

intrinsic characteristic of that specific sensor. The extraction of this noise is

usually accomplished by denoising filters [1] and information it contains are

used to assess something on the sensor characteristics. If we focus our atten-

tion on the acquisition process, it is easy to comprehend that when a photo

is taken by a digital camera, basically a PRNU with a bi-dimensional struc-

ture is superimposed to it; on the contrary, when a digital image is created

by means of a scanning operation the sensor array which slides over the to-

be-acquired asset located on the scanner plate leaves its mono-dimensional

fingerprint row by row during scanning. So in the last case, it is expected

that a certain periodicity of the 1-D noise signal is evidenced along the scan-

ning direction. This behavior should be absent in the camera case and this

difference can be investigated to discern between images coming from the

two different kinds of device. Being R(i, j) with 1 ≤ i ≤ N and 1 ≤ j ≤ M ,

the noise extracted by the scanned image of size N × M , and assuming i

(row) as scanning direction, it can, at least ideally, be expected that all the

rows are equal (see Equation 7.2).

R(i, j) = R(k, j) ∀ 1 ≤ j ≤ M, 1 ≤ i, k ≤ N (3.1)

So if a 1-D signal, S of N ×M samples, is constructed by concatenating

all the rows, it happens that S is a periodical signal of period M (Equation

7.3).

S = [R(1, 1), · · · , R(1,M), · · · , R(N, 1), · · · , R(N,M)] (3.2)

It is also worthy to point out that if the 1-D signal is mounted along

columns direction (i.e. this would be right assuming that j is the scanning

direction), S is not periodical anymore, but it is constituted by diverse con-

stant steps each of length M . A periodical signal such as S, represented in

Equation 7.3, contains a number of repetitions equal to N and therefore will

have basically a frequency spectrum made by equispaced spikes. Such spikes

will be spaced of (N × M)/M = N and will be weighted by the spectrum

of the basic replica of the signal. So most of the energy of such a signal is

located in these spikes. Obviously this is what should happen, in practice

the 1-D signal will be corrupted and its periodical structure altered. Con-

sequently the spectral spikes will be reduced and their magnitude partially

spread over the other frequencies. If it is still possible to individuate such
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peaks, it will be simple to distinguish between a scanned image and a digital

photo.

3.2 The proposed methodology

According to the idea presented in Section 3.1, let us describe in detail which

is the proposed methodology to achieve that aim. The to-be-checked image

I (size N ×M) is denoise filtered [1] obtaining Id which is subtracted to the

initial image to extract the sensor pattern noise R (see Equation 3.3).

R = I − Id (3.3)

To improve the possible presence of the deterministic contribution due

to the 1-D PRNU pattern noise, R is divided into non-overlapping stripes

(both horizontally and vertically, because both possible scanning directions

have to be taken into account) and then all the different rows (columns)

belonging to a stripe are averaged according to Equation 3.4 where L is the

width of the stripe.

Rr(k) =
1

L

L
∑

i=1

R[i+ (k − 1)L] 1 ≤ k ≤ N/L (3.4)

After that two new noise images, named bar codes, respectively Rr (size

N/L × M) and Rc (size N × M/L), have been obtained; Rr and Rc have

the same number of samples. If an image has been scanned in the row

direction, for instance, it is expected that Rr will be composed by equal

(ideally) rows, on the other side such a characterization can not be expected

in the column direction for Rc and, above all, for an image coming from a

digital camera (both directions): this circumstance is presented in Figure

5.1. Bar codes are then used to create the mono-dimensional signal by

concatenating respectively rows of Rr and columns of Rc and then periodicity

is checked. Sometimes to reduce randomness a low pass filtering operation

(usually a median filter) is applied to bar codes, along the rows and the

columns separately, before constructing 1-D signals.

For the sake of clarity, let us call Sr and Sc the two mono-dimensional

signal, obtained as previously described, from Rr and Rc respectively. DFT

(Discrete Fourier Transform) is applied to both these signals and the mag-

nitude of the coefficients is considered. After that a selection is carried out
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Figure 3.1: Bar codes of size N/L×M (scanning direction = row): camera image

(top), scanned image (center) and ideal bar code for a scanned image (bottom).

on the basis of the following criterion: amplitude values above a threshold

T1 (see Equation 3.5 where α is a weighting factor usually set to 0.4) and

at the same time located in the expected positions within the spectrum (see

Section 3.1) are taken.

T1 = α ∗max(max(abs(DFT (Sr))), max(abs(DFT (Sc)))) (3.5)

In the end all the values satisfying the previous selection criterion are

added, separately for row and column cases, yielding to two energy factors,

Fr and Fc respectively and their ratio RATIO = Fr/Fc is computed. If the

digital image has been scanned in the row direction, a high value of RATIO

is expected (if the scanning direction has been along columns RATIO will

be very small), otherwise if the image has been taken by a digital camera the

two energy factors should be comparable and a value of RATIO around one

is foreseen. Doing so it is possible not only distinguishing between images

coming from a scanner or from a camera but, in the scanner case, determining

the scanning direction. To improve robustness, this technique is applied to

all the three image channels (R, G, B) and three energy contributions are

collected in each factor Fr and Fc.

3.3 Analysis of thresholds through ROC curves

As seen in Section 3, the threshold T1, that is used to evaluate energy of

DFT of signals Sr and Sc, depends upon α parameter, besides there is an-

other threshold T2, for the RATIO value, that makes possible to distinguish

between images taken from scanners or digital cameras. Proper choice of

these two parameters is a key problem to adequately control discrimination.

To find optimal value for T1 and T2, is possible to use ROC (Receive Operat-
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ing Characteristic or Relative Operating Characteristic) Curve. To introduce

ROC Curve is necessary to define two new parameters:

1. Se (Sensitivity): the fraction of images taken from a scanner correctly

identified as such.

2. Sp (Specificity): the fraction of images taken from a digital camera

that are correctly identified as such.
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Figure 3.2: Roc Curves.

Finding optimal thresholds is not limited to the statistical minimization

of wrong classification, but it is also related to the minimization of the FRR

(False Rejection Rate) for scanner images or digital camera images. ROC

Curve permits to analyze more values of the thresholds to determine which

obtains the best results. The ROC Curves analysis is performed through

the function that binds the probability of True Positive to recognize scanned

images (Se) and the probability to obtain a False Positive (1 − Sp). The

relationship between these parameters can be represented by plotting Se on

the y-axis and (1 − Sp) on the x-axis (see Figure 3.2). A single confusion
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Camera Scanner

Camera Sp 1− Sp

Scanner 1− Se Se

Table 3.1: Confusion matrix.

matrix (see Table ??) thus produces a single point in ROC space. A ROC

curve is formed from a sequence of such points, including (0,0) and (1,1).

To determine the best value of α for T1 is necessary to plot multiple ROC

curves for a certain range of T2. To get results for ROC curves a training-set

composed by 380 images taken from different scanners and 380 images taken

from different digital cameras, diverse from the images of test-set used in

Section 5 for the experimental tests, have been provided. The training-set

has been tested by selecting for T2 three values (0.1, 0.15, 0.2) and for each

of this thresholds, the parameter α ranges in [0.1, 0.9] with steps of 0.1. This

determines the ROC curves in Figure 2.

The area under a ROC curve (AUC) quantifies the overall ability of the

test to discriminate between scanner and digital camera images. A truly

useless test (no better to identify true positive than flipping a coin) has a

relative area of 0.5. A perfect test (one that has zero false positive and zero

false negative) has a relative area of 1. Real tests will present after that an

area between these two values. As it can be noticed, the greater AUC is

obtained with T2 equal to 0.2

Next step is to analyze the single ROC Curve (see Figure 3.3). A point

in ROC space dominates another one if it has a higher true positive rate and

a lower false positive rate. So the best value for α is the closest point to

(0,1); in this case, it is achieved for α equal to 0.4.

Finally on the basis of such an analysis, in the experimental tests, the

values of parameters have been set to α = 0.4 and T2 = 0.2 respectively.

3.4 Experimental results

Experimental tests have been carried out to support the theoretical frame-

work. Digital images coming from 4 different scanners (Epson Expression

XL 10000 2400x4200 dpi, HP Scanjet 8300 4800x4800 dpi, HP Deskjet F4180

1200x2400 dpi, Brother DCP 7010 600x2.400 dpi) and from 7 commer-

cial cameras (Canon DIGITAL IXUS i ZOOM, Nikon COOLPIX L12, Fuji
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Figure 3.3: The selected ROC Curve.

Finepix F10, HP Photosmart C935, Nikon D80, Samsung VP-MS11, Sony

DSC-P200) have been acquired in TIFF and JPEG format. Because of the

diverse size of the contents, the analysis have been done by dividing them

into images of fixed dimension N ×M (1024× 768). Obtained results have

confirmed theoretical assumptions as it can be seen in Figure 5.2 (a) where

RATIO values are plotted and a separate clustering is observed (for sake

of clarity when RATIO was over 1 the inverse was taken, due to this, in-

formation about scanning direction is lost). In Figure 5.2 (b), only scanned

images, correctly detected, are figured: in this case inversion of RATIO has

not been done and, to make visualization easier, high values are saturated

at 6. It is simply to distinguish the two different scanning directions indi-

viduated by high and low values of RATIO; in particular it is interesting

to note the left and the right side of the plot related to column scanning

direction and the central part related to row direction. In Figure 5.3 the sta-

tistical distribution of RATIO for 1000 camera images (a) and 1000 scanned

ones (b) are pictured where, in this case, higher values have been saturated

at 50; a strong concentration is evidenced on the tails of the graph for the

scanner case. Finally, a massive test has been carried out on a data set of
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Figure 3.4: Energy RATIO for 200 scanned (circle) and 200 camera (cross)

images (a). Energy RATIO only for 950 scanned images, correctly detected:

scanning directions are evidenced (b).

2000 images (half scanned images and half photos) by setting a threshold at

0.2 with RATIO normalized between 0 and 1 (as done for Figure 5.2 (a)):

percentages are presented in the rows of Table 3.2 (left). In Table 3.2 (right)

percentages related to the scanning directions in the scanner successful cases

(85.35% of Table 3.2 left) are reported.
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(a) (b)

Figure 3.5: Statistical distribution of RATIO: camera (a) and scanned images

(b).

Camera Scanner

Camera 89.74% 10.26%

Scanner 14.65% 85.35%

Row Column

Row 100.00% 0.00%

Column 0.00% 100.00%

Table 3.2: Confusion matrix for scanned and camera images over a data set

of 2000 images (left) and scanning direction recovery for scanner correct answers

(right).

3.4.1 Detecting cut-and-paste forgeries

In this subsection results concerning authenticity verification against cut-

and-paste tampering are presented.

Figure 3.6: (Left) Original scanned and (Right) forged image.

The cut-and-paste tampering method (also known as splicing) consists
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of joining image parts, which come from different images, that might be

captured by using different devices. In the case when the tampered images

were created by joining a digital camera picture with a scanned image, or

viceversa, the proposed algorithm can also be used to identify such forgeries.

In addition to this it is also possible to identify another type of forgery attack,

such as joining parts of two digital scanner images with different scanning

direction. An example is shown in Figure 3.6, where it has been created a

tampered picture by inserting a part of a digital camera image coming from

a Nikon E4600 within an original scanned image (HP Deskjet F4180, 600

dpi) of size 2380× 3550.

To identify the tampered region of the picture, the image is controlled,

according to the proposed technique, by dividing it into investigation blocks

of size 384 × 512, starting from the top-left corner. 36 sub-images are ob-

tained which almost covers the whole image (a second check could be done

by starting from the bottom-right corner) and the factor RATIO in each

block is calculated. Since the original image has been scanned along column

direction, it is expected that the Energy RATIO of each block will be very

small (almost zero). Whereas a RATIO with values over 0.2, indicating

that some parts come from a camera, are foreseen in the tampered region

(RATIO inversion is performed as explained in sub-section 3.4). In Figure

3.7 (a) and (b), the RATIO values of each block for the original image and

for the tampered one are shown respectively: each bar of the 3D graph cor-

responds at one of the 36 blocks composing the image. Blocks with higher

values than the decision threshold T2 set to 0.2 are evidenced as tampered

blocks in the modified area. Plenty of experiments were performed, creating

different tampering images with different sizes of the forged areas: the tech-

nique is able to identify a forged patch that involves the 7% (on average) of

the original image. Besides, the percentage ratio between the tampered area

and the block size, used for investigation, should be around 40%.
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(a)

(b)

Figure 3.7: The RATIO values of the original image (a) and of the tampered

one (b), shown in the Figure 3.6.



Chapter 4

Analysis of denoising filters in

source camera identification

Identification of the source that has generated a digital content is consid-

ered one of the main open issues in multimedia forensics community. The

extraction of photo-response non-uniformity (PRNU) noise has been so far

indicated as a mean to identify sensor fingerprint. Such a fingerprint can be

estimated from multiple images taken by the same camera by means of a

denoising filtering

In this chapter a theoretical and experimental comparative analysis of

different wavelet denoising filters to estimate the PRNU in order to solve the

digital camera identification problem is presented. Two denoising filters are

used operating in the wavelet domain and based on different noise models.

The first is the filter proposed in [1] and used in [11] and the second filter is a

MMSE filter operating in the undecimated wavelet domain [2]. Introducing

this kind of filter we make an assumption that the digital camera noise is

considered as dependent on the sensed signal, while using the filter described

in [1] a signal-independent noise model is supposed.

The filter in [2] is used for the first time in the digital forensic domain to

solve the problem of source camera identification, generally it is adopted for

speckle and film-grain noise removal in coherent radiation imaging systems

including ultrasound, infrared and laser imaging and synthetic aperture radar

(SAR).

The paper layout is the following: in Section 4.1 the two denoising filters

are introduced, in Section 4.2 we describe the digital camera sensor output

model that will be used to derive the estimation of PRNU and the noise

48
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models for the two filters will be discussed. Some experimental results are

presented to evaluate the denoising filters performances in Section 4.3.1

4.1 Denoising Filters

According to PRNU methodology, it is crucial to analyze the type of denois-

ing filter to be used for the extraction of such a noise. In this work we have

decided to evaluate two denoising filters described in detail hereafter: a spa-

tially adaptive statistical modelling of wavelet coefficients filter [1] (Mihcak’s

Filter) and a MMSE filter operating in the undecimated wavelet domain [2]

(Argenti’s Filter). The first one adopts a simple additive noise model, on

the contrary the second one is based on a signal dependent noise model.

For sake of completeness a simple low-pass filter in the wavelets domain

(LP Filter) has been considered too, to provide a performance lower bound

during the experimental tests. In this case, after a 4 level Discrete Wavelets

Transform (DWT), all the detail coefficients are set to zero and the Inverse

Discrete Wavelets Transform (IDWT) is performed to reconstruct the de-

noised image. The extreme simplicity of this filter is inversely proportional

to its accuracy, because setting to zero the coefficients of detail equally re-

moves noise and details that are part of the content of the image. Therefore,

the results obtained when we used this filter are presumably coarser.

4.1.1 Mihcak’s Filter [1]

This filter is based on a spatially adaptive statistical modelling of wavelet

coefficients; such noisy coefficients G(k) are considered as the addition of the

noise-free image X(k) (a locally stationary i.i.d. signal with zero mean) and

the noise component n(k) (a stationary white Gaussian noise with known

variance σ2
n). The target is to retrieve the original image coefficients as

well as possible from the noisy observation. By using a local Wiener filter

(Equation (4.1)) we obtain an estimate of the denoised image in the wavelet

domain and then apply the IDWT (Inverse DWT).

X̂(k) =
σ2
x(k)

σ2
x(k) + σ2

n

G(k) (4.1)

1This work has been published in International Journal of Digital Crime and Forensics

(IJDCF), Volume 2, Number 2.
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However, we can not use the true signal variance σ2
x(k) since it is unknown,

but only an estimate σ̂2
x(k) achieved by previously using a MAP (Maximum

A-posteriori Probability) approach on noisy wavelet coefficients.

4.1.2 Argenti’s Filter [2]

Unlike the filter seen before this filter is based on a signal-dependent noise

model (see Equation 4.2):

I = Io + [Io]
α ·U +W, (4.2)

where I and Io represent the noisy and noise-free images respectively, whileU

states for a stationary zero-mean uncorrelated random process independent

of Io and W takes into account of electronics noise (zero-mean white and

gaussian). The term α is the exponent that rules the dependence of noise

from the signal. It is a parametric model which meets different situations

of acquisition [68]. The parameters to be estimated are: α, σ2
U which is the

variance of U and σ2
W which is the variance of electronic noise W, that can

simply be estimated from black image area. The denoising method is based

on MMSE filtering in undecimated wavelet domain: after the estimation

of the parameters α and σ2
U in the spatial domain, the undecimated wavelet

transform of the image is computed and then a MMSE filtering in this domain

is applied according to the supplied parameters. IDWT to reconstruct the

estimated noise-free image is finally performed.

The estimation of α and σU

As described above two are the parameters to be estimated in the noise

model (Equation (4.2)): α and σ2
U . In [69] has been proposed an iterative

algorithm to estimate these parameters which utilizes an adaptive filter (a

MMSE noise filter in the spatial domain). After simple calculation [69], it is

possible to derive the relationship among σ̃I , the image I and σU expressed

in Equation (4.3) which is valid on homogeneous pixels:

log[σ̃I] = α · log{E[I]}+ log(σu). (4.3)

So on homogeneous pixels, the ensemble statistics of I are aligned along a

straight line having α as a slope and log(σU) as intercept. At each step of the

algorithm, the α and σU estimate are substituted in the MMSE spatial filter
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in order to obtain the noise free image on which the homogeneous pixels are

selected through an homogeneity equation described in detail in [69]. On

these homogeneous pixels a log scatter plot is computed, the regression line

is estimated and then the α and σU are found.

4.2 Digital Camera Sensor Output Model

Digital camera acquisition process is well-known as being composed by dif-

ferent processes such as signal quantization, white balance, color and gamma

correction, filtering and usually JPEG compression. This variety of effects,

together with the diversities due to the specific kind of camera, determine

that a precise modelling is difficult to be achieved. In [11] a quite complete

model, which takes into account most of the components relevant for forensic

task, is introduced. Such a model is reported in Equation (4.4), where I is

the 2-D sensor output (noisy image), g and γ are the gain factor and the

gamma correction respectively, and Y is the 2-D incident light:

I = gγ· [(1 +K)Y +Λ]γ +Θq. (4.4)

The term that is useful for the forensic analysis is K which represents a

zero-mean noise-like signal that is the PRNU (Photo Response Non-Uniformity)

(i.e. the 2-D sensor fingerprint deterministically superimposed to each taken

digital image), while Θq is the quantization noise and Λ takes into account

a combination of different noise sources.

According to the discussion presented in [11], this expression can be sim-

plified to get to a more concise representation (see Equation (4.5)), where Io
is the noise-free sensor output, K1 = K · γ is basically considered again as

the PRNU and Θ is an ensemble of independent random noise components.

I = Io + Io ·K1 +Θ (4.5)

This expression points out an additive-multiplicative relation between

the signal without noise and the noise terms. An estimate Îo = FM(I) of the

denoised image Io is usually obtained by a wavelet-based denoising filter FM

[1], though such a filter is built on an additive noise model as explained in

Section 4.1.1. It is immediate to comprehend that Equation (4.2) coincides

with Equation (4.5) (U and W are the same of K1 and of Θ respectively)

except for the term α (|α| ≤ 1) which determines signal-dependency. When α
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Filter Type n. Nikon E4600 Samsung MS11 Olympus FE120 Sony S650 Nikon L12 Concord 2000

Low Pass

30 -1.714 0.735 -0.234 0.778 0.262 67.969

31 0.083 -0.160 0.469 -0.056 -0.265 83.186

32 -1.007 0.593 -0.254 0.090 0.147 67.926

33 -0.722 -0.522 0.411 -0.158 -0.456 39.619

34 -1.815 0.700 0.322 0.883 1.037 43.593

35 0.613 -1.261 -0.028 -0.340 -0.444 68.18

36 -0.280 0.292 -0.539 0.294 -0.229 69.173

37 0.477 0.016 0.347 -0.082 0.341 99.602

38 0.416 -0.013 -0.001 -0.239 0.481 63.028

Mihcak

30 1.210 -0.487 0.365 0.173 -1.997 101.070

31 -0.370 -1.152 0.263 -0.880 -1.157 98.416

32 0.190 0.923 0.171 0.619 0.043 100.710

33 -1.486 1.226 -0.524 0.595 0.026 74.502

34 1.154 -0.621 0.031 1.368 0.449 70.787

35 0.288 -0.594 0.917 -0.645 0.440 105.400

36 0.166 0.470 -0.736 0.001 -0.064 102.320

37 0.219 0.946 -0.048 0.185 0.736 145.380

38 0.525 0.948 -0.282 0.679 0.996 92.319

Argenti

30 0.884 -0.469 0.026 0.334 -0.471 111.530

31 -3.362 -4.128 3.466 -1.883 -1.879 111.290

32 0.046 1.355 -1.608 1.026 0.787 102.050

33 -0.591 -0.238 -0.547 -0.162 -0.959 84.691

34 1.292 -0.762 -0.549 -1.179 -0.720 79.884

35 0.174 -0.423 0.252 -0.421 -0.577 113.380

36 -0.046 -1.253 -0.212 -1.235 -0.060 105.320

37 1.291 0.051 -0.839 1.217 -0.629 143.020

38 1.556 0.216 -1.395 0.889 1.211 96.836

Table 4.1: Correlation values (values are to be scaled by 10−3) for a selection of

9 test images (30 to 38) from a Concord 2000 digital camera calculated with the

fingerprints of 6 cameras (Concord 2000 included).

is equal to 1 for purely multiplicative noise the two models are identical. On

the basis of this consideration, it is interesting to analyze how this difference

in modelling can influence filtering and consequently PRNU detection.

The two digital filters FM and FA will yield two estimates FM (I) and

FA(I), and when are tested against signal-dependent generated noisy images,

results achieved in denoising operation are generally superior with FA filter

(e.g. 2 or 3 dB of PSNR improvement), as expected. This witnesses the

goodness of the Argenti’s filter when the noise model is exactly matched.

When the noise-free image is obtained, the PRNU noise is computed, at

least in a rough approach, by subtracting from the noisy image the denoised

one. The more accurate the denoised image estimate, the more reliable the

fingerprint extraction so high relevence is given to the kind denoising filter

used. The sensor fingerprint N is obtained, as indicated in Equation (4.6),
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by suppressing the scene content:

N = I− Îo. (4.6)

Successively a refinement of the fingerprint is carried out by averaging

the results got over a set of M training images (usually M is around 50).

This operation yields to delete different noise components that are present

on the acquired images but which are not systematic like PRNU.

LP Mihcak Argenti

Camera t (10−3) FRR t (10−3) FRR t (10−3) FRR

Nikon E4600 3.0 3x10−2 3.0 8.11x10−3 9.3 8.11x10−3

Samsung MS11 15.5 2x10−2 4.6 1.8x10−10 9.9 8x10−12

Olympus FE120 4.2 2.8x10−2 2.6 1.2x10−2 9.9 8x10−4

Sony S650 4.9 2.6x10−2 2.0 3.1x10−3 7.7 1.8x10−2

Nikon L12 5.6 1.1810−1 4.1 8.8x10−3 8.4 9.4x10−3

Canon DI50 5.7 5.210−1 4.2 4.5x10−2 7.7 4.7x10−2

Nikon D40x 2.1 1.7610−1 2.4 7x10−3 4.8 1.5x10−2

Canon Diiz 7.7 2.7210−1 4.5 9.3x10−2 5.2 5.7x10−2

HP PSC935 4.6 4.510−1 4.1 1.9x10−10 5.0 7x10−2

Concord 2000 3.3 1.3x10−2 3.7 5x10−4 5.8 9x10−4

Table 4.2: Thresholds t and FRR for all 10 cameras with a FAR=10−3 for the

three different denoising filters.

4.3 Experimental results

In the first part of this section the denoising filters performances are discussed

in relation with the digital camera identification. In the second part of this

section experimental measures of the model parameters associated to the

Argenti’s filter are reported and analyzed.

4.3.1 Denoising filters performances

In this section experimental results for digital camera identification, carried

out to compare the three filters (LP, Mihcak and Argenti) used to estimate

the PRNU noise are collected and analyzed. The data set is composed by

images coming from 10 digital cameras of various brand and model taken by

generic users in different kinds of settings. We have created the fingerprint
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for each camera in the data set, averaging residual noises from 40 images; the

remaining photos have composed the test-set (approximately 250 images for

each camera). For each camera we obtained three fingerprints, one for each

denoising filter under investigation. The correlation between each fingeprint

and the residual noises of the test images is performed.

In Table 4.1 a numerical example of the correlation values for a selection

of images from a Concord 2000 is shown. Each fingerprint calculated for the

Nikon E4600, Samsung MS11 etc., through the three filters under examina-

tion (Low Pass, Mihcak and Argenti) is compared with the residual noise of

a selection of Concord 2000 test images (from 30 to 38). It is worth to point

out that the correlation values in the last column of the Table 4.1 have the

higher values, so the images taken by the Concord 2000 are correctly identi-

fied as belonging to Concord 2000 digital camera. Moreover it is interesting

to observe that higher values of the last column are encountered when the

correlation is made between the fingerprint and the PRNU noise residual

calculated with the Argenti filter (see the lower part of the Table 4.1).

To decide if an image has been acquired or not by a specific camera we in-

troduced a statistical threshold for the correlation value. To calculate the

threshold we used the Neyman-Pearson approach based on two parameters:

the False Acceptance Ratio (FAR) and False Rejection Ratio (FRR).

The FAR establishes a limit to the number of cases in which an image is

wrongly identified as related to a given fingerprint. The FRR is the rate

that indicates the number of images that, though related to the given finger-

print, are not recognized as such. With this method we set an a priori FAR

and we found the threshold that minimize FRR. We suppose that the distri-

bution of the correlation between the fingerprint of the camera C0 and the

noise residuals coming from images taken by different cameras is Generalized

Gaussian (see Equation (4.7)).

f(x; δ, β, µ) =
1

2δΓ(1 + 1/β)
e−( |x−µ|

δ
)β (4.7)

In Figure 4.1 the distribution of correlation between the Nikon D40x with

noise residual from a selection of images taken by the others cameras in the

database (except the Nikon D40x) is shown. It is possible to fit the data with

a Generalized Gaussian distribution centered close to zero. Furthermore, the

standard deviation is bigger in the Low Pass filter case and decrease in the

other two filters. So it’s possible to consider the standard deviation as a
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(a) Low Pass

(b) Mihcak

(c) Argenti

Figure 4.1: Distribution of the correlation values between Nikon D40x finger-

print with residual noises taken by a random selection of 300 images belonging to

different cameras. The continuous line is the Generalized Gaussian fitting.

performance marker of the three filter, and it is possible to presume that

Argenti’s and Mihcak’s filter will show better results. The method of mo-
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ments [22] is used to estimate the parameters of Equation (4.7) and then we

calculate the cumulative density function of f(x; δ, β, µ) over all the cam-

eras at disposal, except C0. By using the Neyman-Pearson approach we

determine the threshold by minimizing the probability of rejection, given an

upper bound on the FAR = 10−3. In Table 4.2 the decision thresholds and

the FRR computed for each denoising filter relatively to the 10 test cameras

are shown.

The LP filter has the worst behavior as obviously expected. The other two

filters showed a comparable behavior; in fact in most cases the value of FRR

has the same order of magnitude though Argenti’s filter has a significative

lower FRR for Samsung MS11 and Olympus FE120. However Argenti’s filter

does not exhibit a considerable improvement in the results of camera identifi-

cation compared to Mihcak’s filter. According to our analysis, this is mainly

due to the sensibility of the filter itself to the reliability of the parameters

estimation (see Section 4.3.2). In fact we noted, by acting on noisy images

generated by introducing a speckle noise, that filter performances drastically

decreased, when an uncorrect estimation was done, specifically for the pa-

rameter α.

In Figure 5.4 the correlation values for images from a Olympus FE120 with

5 fingerprints of various cameras are pictured. The distributions of the cor-

relation values in all the three cases are always well separated; in fact the

higher values are those related to the correlation between the noise residual

of the Olympus FE120 images and its fingerprint. In the Mihcak and Argenti

filter cases (Figure 5.4 (b),(c)) the two classes are better clustered than in

Figure 5.4 (a). This result confirms that using a denoising filter adequate at

the noise model there is an improvement in the performance of the camera

identification method.

4.3.2 About α and σU estimate in the Argenti’s filter

The Argenti’s filter proposes, as said in Section 4.1.2, an iterative estimate

of α and σU in the parametric noise model (Equation (4.2)). So some tests

to check the reliability of such estimation have been performed. We consider

a noise free computer generated image (Figure 4.3), then we corrupted this

image with a noise in order to achieve a SNR = 3dB, driven by the param-

eters α and σU . Then using the estimation algorithm proposed in 4.1.2 we

obtained the α̂ and σ̂U estimated values. In Table 4.3 the results of this test
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are listed: in the first and the second columns there are the actual α and σU

values while in the third and the forth there are the corresponding estimated

values obtained by implementing the algorithm proposed in [69]. In general

the estimate of each couple of value (α, σU) seems to be consistent with the

real ones.

α σU α̂ σ̂U

-0.80 1340.66 -0.77 1187.47

-0.70 885.20 -0.66 751.36

-0.60 578.87 -0.55 461.65

-0.50 375.11 -0.45 298.65

-0.40 241.01 -0.35 188.70

-0.30 153.63 -0.25 121.34

-0.20 97.22 -0.16 80.27

-0.10 61.12 -0.08 54.00

0.00 38.19 0.01 36.31

0.10 23.74 0.09 24.70

0.20 14.68 0.17 16.78

0.30 9.04 0.24 11.67

0.40 5.55 0.32 7.84

0.50 3.39 0.40 5.35

0.60 2.07 0.48 3.57

0.70 1.25 0.57 2.36

0.80 0.76 0.65 1.54

Table 4.3: The real α and σU and their estimate α̂ and σ̂U over different mea-

sures.

Furthermore we considered the estimate of these parameters in relation

to the correlation value obtained from the fingerprint and the residual noise

when the Argenti’s denoising filter is used. We calculated the first estimate

(α1 and σ1
U) of the parameters for each photo taken by a certain camera C.

We computed new α and σU values calculated in the range of [-50%,

+50%] from the initial value (121 values are considered in total). Then
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we calculated the residual noises for each of the 121 couples and then the

correlation of them with the fingerprint of the camera C is measured. In the

majority of the observed cases the correlation value does not improve using

the 121 values of α and σU instead the initial one. In Figure 4.4 an example

of this situation for Nikon E4600 is presented. The values of (α, σU ) in the

(x, y) axes, and in z axes the value of the correlation are reported. The higher

value of correlation is in the central point of the graph (x = 0, y = 0) that

corresponds at the initial estimate of the two parameters. According to these

observations we used the first estimate of the α and σU parameters for the

computation of the PRNU noise. So it is necessary to find a new technique

to estimate α and σU parameters in order to improve their reliability.
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(a) Low Pass

(b) Mihcak

(c) Argenti

Figure 4.2: Correlation values of residual noises (values are to be scaled by

10−3) of 20 images coming from an Olympus FE120 with 5 fingerprints. Legend:

+ Nikon E4600, ◦ Samsung MS11, ∗ Olympus FE120, × Sony S650, � Nikon L12
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Figure 4.3: A computer graphics image “Room”.

Figure 4.4: Trend of the correlation values with respect to (α, σU ) for a Nikon

E4600.



Chapter 5

Fast Image Clustering of

Unknown Source Images

Succeeding in determining information about the origin of a digital image

is a basic issue of multimedia forensics. It is easy to understand that in

many application scenarios information at disposal are very limited; this

is the case when, given a set of N images, we want to establish if they

belong to M different cameras where M is less or, at most, equal to N,

without having any knowledge about the source cameras. In this paper

a new technique which aims at blindly clustering a given set of N digital

images is presented. Such a technique is based on a pre-existing one [70] and

improves it both in terms of error probability and of computational efficiency.

The system is able, in an unsupervised and fast manner, to group photos

without any initial information about their membership. Sensor pattern

noise is extracted by each image as reference and the successive classification

is performed by means of a hierarchical clustering procedure. Experimental

results have been carried out to verify theoretical expectations and to witness

the improvements with respect to the other technique. Tests have also been

done in different operative circumstances (e.g. asymmetric distribution of

the images within each cluster), obtaining satisfactory results.1

The chapter is organized as it follows: Section 5.1 describes the PRNU

enhancer, while Section 6.2.2 presents the new clustering procedure; in Sec-

tion 5.3 experimental results are presented.

1This work has been presented in the International Workshop on Information Forensics

and Security, Seattle, 2010.
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5.1 PRNU Enhancer

Since Photo Response Non-Uniformity (PRNU) is part of the high-frequency

components of the image’s signal, it can be used the model in Equation (5.1),

in order to extract the noise n from an image I:

n = I − F (I) (5.1)

where F , is a wavelet-based denoising filter [71] that filters out the sensor

pattern noise of the image.

However, not all the high-frequency components of an image are responsi-

ble for the sensor pattern noise: in fact, scene details also contribute to these

components and their magnitude is generally greater than that of PRNU

[72, 73]. So the noise n should be cleaned from scene details to improve

the system performance. This task becomes extremely critical when we take

only a small block of the image into account: on the one part a small block

helps by reducing the computational time, on the other part it can lose a lot

of information. In the work presented in [72] it has been developed a func-

tion that aims to filter out scene details, based on the following idea: scene

details contribute to the very strong signal components, so the stronger a

signal component (in n), the more it should be attenuated. According to

this consideration, a new kind of enhancer has been developed. The noise-

enhancing function gives bigger weighting factors to the weak components

of n in the DWT domain, and viceversa, and it is described by the formulae

in Equation (5.2):

ne =























0 n(i, j) < −α

− cos(n(i,j)π
2α

) −α ≤ n(i, j) ≤ 0

cos(n(i,j)π
2α

) 0 < n(i, j) ≤ α

0 n(i, j) > α

(5.2)

where α is a parameter that represents the cut-value between the PRNU

components and the scene details (see Figure 5.1).

The selection of the parameter α has been achieved by means of a set

of source camera identification experiments. On a set of 1200 photos, taken

from 6 different cameras (i.e. 200 for each), small blocks of 128 × 128 pix-

els cropped from the original photos were used to evaluate the performance

when varying the parameter α in order to get the best one. Six reference PR-
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Figure 5.1: Enhancement function

NUs were generated by calculating the average of the noises extracted from

50 photos taken by each digital camera, without applying any enhancing

function. Then, these fingerprints were used to classify a test-set (made by

600 photos, 100 from each camera, different from those used for the reference

PRNUs) by simply calculating the correlation between the current noise (ex-

tracted with the use of the enhancing function) and each of the six reference

PRNUs and deeming the image as taken by the camera corresponding to the

maximum of the correlation values. The best classification performance was

achieved with α ∈ [0.05, 0.0575] with 504/600 correct classifications, corre-

sponding to an 84% percentage (see Figure 5.2) though the trend is stable

starting from α = 0.04.

The performance of this test without the use of an enhancing function is

only 215/600 (35.8%): that’s what it is expected from the previous consid-

erations.

5.2 Fast Unsupervised Clustering

The aim of this method is to quickly classify a generic group of photos taken

by different cameras, in a completely unsupervised mode. Starting from the

method proposed in [70], it has been attempted to improve performance in

terms of computation speed and accuracy estimation. To do this a different

clustering algorithm based on hierarchical clustering has been introduced

[74]. Hierarchical clustering outputs a hierarchy of clusters which may be



5.2 Fast Unsupervised Clustering 64

0 0.02 0.04 0.06 0.08 0.1 0.12
40%

45%

50%

55%

60%

65%

70%

75%

80%

85%

90%

alpha

T
ru

e 
P

os
iti

ve
 R

at
e

Figure 5.2: TPR vs α factor

represented by a tree-like two-dimensional structure known as dendrogram,

which illustrates the fusions (agglomerative clustering or bottom-up) or di-

visions (divisive clustering or top-down) made at each successive stage of

analysis: the root of the dendrogram is a single cluster containing all the

elements, and the leaves correspond to the individual elements. Agglomer-

ative hierarchical clustering procedure, that has been used, over a set of N

data produces a series of partitions of the data P0, . . . , PN−1: the first P0

consists of N single object clusters, while the last PN−1 consists of a sin-

gle group containing all the N elements. So the procedure merge pairs of

clusters at each step until all clusters have been merged into a single one

that contains all the data; in other words, the actual number of clusters K

ranges from N to 1. Any valid metric may be used as a measure of similar-

ity between pairs of elements: since it was facing the problem of clustering

a set of images (more precisely, the noises extracted from them and then

enhanced), the best choice is the correlation measure. The choice of which

clusters to merge at each step is determined by a linkage criterion, which is

a function of the pairwise distances (correlations in our case) between the

noises. Several experiments have been done over various linkage criterion

and it was found that the “average linkage method” is the more appropriate

for the issue that has been examined. The average linkage method estab-

lishes that the distance (or similarity) between two clusters is the average of

all the distances (or similarities) between pairs of elements, taken each from

the respective cluster. So the similarity H(A,B) between the two clusters A
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and B is calculated according to Equation (5.3):

H(A,B) =
1

‖A‖ ‖B‖
∑

ni∈A,nj∈B

corr(ni, nj) (5.3)

where corr(ni, nj) is the normalized correlation (Equation (5.4)):

corr(ni, nj) =
(ni − n̄i)(nj − n̄j)

‖ni − n̄i‖ ‖nj − n̄j‖
(5.4)

while ‖A‖ and ‖B‖ are the cardinalities of the considered clusters. It

is worthy to say that H will be a symmetric matrix with ones on the main

diagonal, whose elements H(k, l) represent the similarity between clusters

k and l. The initial matrix H is a N × N matrix that contains the sim-

ple correlations among the noises n1, . . . , nN , then it is updated by deleting

rows/columns related to the clusters that have been merged by adding rows/-

columns related to the new merged cluster and by recalculating the similarity

values between the new cluster and all the remaining ones.

Hierarchical clustering does not require a pre-specified number of clusters.

However, in this application we want a partition of disjoint clusters just as

in flat clustering: in this case, the hierarchy needs to be cut at some point.

Different criteria can be used to determine the cutting point: the criterion

based on the silhouette coefficient has been used. The use of silhouette coeffi-

cient combines both the measures of cohesion (inside clusters) and separation

(among clusters). For each noise ni, the coefficient si is simply calculated as

in Equation (5.5):

si = bi − ai (5.5)

• ai (cohesion): the average correlation of ni to all other noises in the

same cluster.

• bi (separation): the average correlation of ni to all other noises in

each of the other clusters, taking the average value with respect to all

clusters.

For instance, a very negative value of si means that the separation value

bi is highly negative and the cohesion (ai) is very positive: this indicates

that what has been merged is really correlated. So the procedure aims at

the smallest possible value of the silhouette coefficient to achieve a good
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clustering. We apply this calculation at each loop of the algorithm and at

every noise in the data we are examining: more precisely, at the iteration q it

is calculated a global measure of the silhouette coefficient SCq (see Equation

(5.6)) by averaging the coefficients related to each noise that belong to a

certain cluster and taking the average value with respect to all the current

K-clusters.

SCq =
1

N

N
∑

i=1

si (5.6)

Then it is found the minimum coefficient over the N − 1 obtained and

the corresponding index q∗ is chosen as the iteration that has to be taken as

the last to be executed. According to this, clustering should be done again

with the found stop condition; however it has been used a shrewdness to

save execution time that consists in saving at each loop the current partition

Pq, and then selecting the optimal clustering by simply using the partition

Pq∗. Here is the pseudo-code of the algorithm adopted:

1. Initialization: K ⇐ N , calculate similarity matrix H ∈ R
N×N

2. Loop over q ⇐ 1 to N − 1

(a) Search for the pair of clusters 〈U, V 〉 that match the greatest

similarity

(b) Delete fromH the rows and the columns referred to clusters 〈U, V 〉
(c) Update H by calculating the new similarity values between the

new cluster Z ⇐ 〈U, V 〉 and the remaining clusters

(d) K ⇐ K − 1

(e) Calculate the silhouette coefficient SCq

(f) Save the current partition Pq

3. Calculate the minimum value of the silhouette coefficients: q∗ ⇐ minq(SCq)

4. Get the optimal partition by selecting the one relative to the iteration

q∗, that is the partition Pq∗ .

At the end of the clustering procedure, the number of clusters M is obtained,

that is supposed to be exactly the real number of devices which generated
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the given N images of the training set. For each of the obtained M clus-

ters, a reference noise is calculated (as the centroid of the cluster) simply

by averaging all the noises belonging to that cluster. The centroids of the

clusters provided by the mentioned procedure are then used as the trained

classifier to group the images belonging to the test set. The classification

is very simple: it consists on comparing the similarity of the current image

(taken from the test set) to each of the centroids, and then classify the image

to the cluster whose centroid is that which provides the greatest similarity.

TPR vs Size 128 x 128 128 x 256 256 x 256 256 x 512 512 x 512 1024 x 1024 1536 x 2048

Proposed method no enhancer 24.1% 27.3% 24.3% 26.3% 26.5% 38.9% 98.5%

Proposed method with enhancer 51.7% 79.3% 87.3% 96.3% 98.0% 98.7% 99.8%

Method in [70] 52.3% 80.0% 87.7% 96.1% 97.3% 98.8% NA

Table 5.1: Training phase (or clustering phase): TPR (True Positive Rate) for

the proposed method (with and without enhancer) and for the method presented

in [70].

Time vs Size 128 x 128 128 x 256 256 x 256 256 x 512 512 x 512 1024 x 1024 1536 x 2048

Proposed method with enhancer 876 1053 1108 1146 1452 3166 5104

Method in [70] 16183 16200 16284 16437 12215 13896 Not tested

Table 5.2: Training phase: comparison between the proposed method and the

method in [70] in terms of execution time (in seconds). The test has been run on

Intel Q6600 quad core, 4Gb RAM, Linux os.

5.3 Experiments

To verify the performances of the presented blind clustering procedure the

system has been tested on a dataset populated by 1200 photos at different

resolutions (from 3MP to 12MP) taken by six cameras in different time

period (200 photos for each camera), here are the cameras: Canon EOS400D

(10MP), Canon Digital Ixus i zoom (5MP), Canon Digital Ixus II (3MP),

Panasonic DMC-FX12 (7MP), Sony DMC-LZ5 (6MP), FujiFilm FinePix J20

(12MP).

Various experiments have been carried out in different operative condi-

tions:
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(a)

(b)

Figure 5.3: Training phase (clustering) (a) and test phase (b) performances.

• image blocks of different sizes, from 128× 128 to 1536× 2048 pixels;

• using or not a PRNU enhancer;

• training set and test set with a symmetric or an asymmetric distribu-

tion of the images within each cluster.

In the first experiment, it has been used a uniform distribution of the

images (same number of images for every cameras) both for the training set
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and for the test set. The dimension of the training set was of 300 images

(50 pictures per camera), while the dimension of the test set was of 600

(100 pictures per camera). Furthermore, not to get misleading evaluation of

performances, overlapping between the two data-set has been avoided. Then

the TPR (True Positive Rate) and the processing time for the proposed

algorithm (with and without enhancer) are compared with the method in

[70]. The TPR related to the training phase (or clustering phase) obtained

by varying the image block dimension is reported in Table 5.1. The TPR

achieved for the proposed algorithm (with enhancer) (second row in Table

5.1) and for the algorithm in [70] (third row in Table 5.1) are comparable

for all image block sizes but in our algorithm is possible to reach higher

image block resolution and therefore better TPR (last column in Table 5.1).

This is due to the fact that our method performs better in term of time

execution as reported in Table 5.2 (about 14 minutes against more than 4

hours for the smaller block size in the first column of Table 5.2). After that,

a testing phase has been carried out in order to evaluate the performances of

the proposed method and the results are shown in Figure 5.3b. The results

are comparable in term of TPR to the results obtained during the training

phase (or clustering phase) as reported in Figure 5.3a. It is possible to point

out that using enhancer becomes less important when image block of higher

resolution are taken in account, that is when approaching the actual image

resolution. In the second experiment, the robustness of our algorithm with

respect to a non uniform data set has been tested and a comparison with the

algorithm in [70] has been made. Five different groups have been created for

the training set while the test set is the same as before. For each group the

difference for the number of pictures belonging to each camera is increased,

as we can see in Table 5.3.

Group Cam 1 Cam 2 Cam 3 Cam 4 Cam 5 Cam 6

A 55 45 55 45 55 45

B 60 40 60 40 60 40

C 70 30 70 30 70 30

D 80 20 80 20 80 20

E 90 10 90 10 90 10

Table 5.3: Non uniform data set distribution.



5.3 Experiments 70

In Table 5.4 the TPR for training and test phase related to the proposed

method is reported and in Table 5.5 the results obtained for the method in

[70] are shown.

TPR vs Size A B C D E

1024x1024 95.2% 92.0% 84.8% 76.8% 68.4%

512x512 89.3% 87.6% 80.0% 71.0% 56.0%

256x256 82.1% 76.7% 75.3% 66.5% 53.0%

(a)

TPR vs Size A B C D E

1024x1024 97.8% 96.3% 94.7% 91.2% 86.5%

512x512 93.3% 91.0% 87.6% 84.9% 82.6%

256x256 89.8% 84.4% 82.5% 73.1% 61.1%

(b)

Table 5.4: The TPR in the training (a) and testing (b) phase for the proposed

method.

TPR vs Size A B C D E

512x512 89.7% 87.3% 79.0% 69.3% 49.7%

256x256 81.9% 77.4% 74.9% 66.5% 46.3%

(a)

TPR vs Size A B C D E

512x512 94.0% 91.6% 86.6% 79.8% 56.2%

256x256 89.8% 83.9% 81.6% 72.1% 50.9%

(b)

Table 5.5: The TPR in the training (a) and testing (b) phase for the method in

[70].

The two algorithms have similar performances related to the group A, B

and C, while the new algorithm shows better performances especially for non
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uniform datasets (groups D, E). Furthermore, with the proposed algorithm

is possible to evaluate the performance for the image block resolution 1024×
1024 achieving a TPR of 86.5% even for the group E. This kind of experiment

is hardly feasible for the algorithm in [70] due to its high computational time

as shown in Table 5.2.



Chapter 6

A SIFT-based forensic method

for copy-move attack detection

The other main multimedia forensics topic is about image tampering detec-

tion [75], assessing the authenticity or not of a digital image. Information

integrity is fundamental in a trial but it is clear that the advent of digital

pictures and relative ease of digital image processing makes today this au-

thenticity uncertain. Examples of this problem that recently appeared in

several newspapers and TV news, are given in Figure 6.1 and in Figure 6.2.

Figure 6.1: An example of image tampering appeared on press in July 2008. The

feigned image (on the left) shows four Iranian missiles but only three of them are

real (image on the right).

Modifying a digital image, to change the meaning of what is represented

in it, could be crucial when it is used in a court of law, where images are pre-

sented as basic evidences to influence the judgement.Furthermore, it would

be interesting, once established that something has happened, to understand

what: if an object or a person has been covered, if a part of the image has

been cloned, if something has been copied from another image or, even more,

if a combination of these processes have been carried out. In particular, when

72
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Figure 6.2: A close look at this picture shows that many elements of this picture

are cloned over and over.

an attacker creates his feigned image by cloning an area of the image onto an-

other zone (copy-move attack) to cancel something that was awkward, he is

often obliged to apply a geometric transformation to satisfactorily achieve his

aim. In this paper this issue is investigated, individuating if the copy-move

tampering has taken place and estimating the parameters of the transforma-

tion occurred (i.e. horizontal and vertical translation, scaling factors, rota-

tion angle). On the basis of the work proposed in [76], a new methodology

which answers to this requirement is presented hereafter. Such a technique

is based on Scale Invariant Features Transform (SIFT) [77] algorithm, which

is used to robustly detect and describe clusters of points belonging to cloned

areas. Successively, these points are exploited to reconstruct the parameters

of the occurred geometric transformation. The proposed technique has also

been tested against splicing attack, that is when an image block is duplicated

onto another different image. In fact, in a context where the source image

is available (e.g. the forensic analyst has to check a suspect dataset which

contains both the source and the destination image) this methodology can

still be applied.

The chapter is structured as follows: in Section 6.1 related works regard-

ing copy-move forgery detection techniques are presented and SIFT tech-

nique is introduced. In Section 6.2 the proposed method is discussed in
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its three main stages and experimental results on forgery detection perfor-

mances and on applied transformation parameters estimation are presented

in Section 6.3.1

Figure 6.3: Overview of the proposed system. SIFT matched pairs and clusters.

6.1 SIFT Features for Image Forensics

One of the most common image manipulations is to clone (copy and paste)

portions of the image to conceal a person or an object in the pictured scene.

When this is done with care and retouch tools are used, it can be difficult to

detect cloning visually. Moreover since the copied parts are from the same

images some components (e.g noise and color) will be compatible with the

rest of the image and thus will not be detectable using methods that look

for incompatibilities in statistical measures in different parts of the image

[78, 79]. Furthermore, since the cloned regions can be of any shape and loca-

tion, it is computationally impossible to search all possible image locations

and sizes with an exhaustive search as pointed out in [55]. The problem

of copy-move forgery detection has been faced by proposing different ap-

proaches each of these based on the same concept: a copy-move forgery

introduces a correlation between the original image area and the pasted one.

Several methods search this dependence dividing the image into overlapping

blocks and then applying a feature extraction process in order to represent

the image blocks by using a low dimensional representation. For example

in [49] the the averages of red, green and blue components respectively are

chosen as three features together with other four computed on overlapping

blocks by calculating the energy distribution of luminance along four differ-

1This work has been presented in the International Conference in Acoustic Speech and

Signal Processing, Dallas TX, USA, 2010.
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ent directions. In [80] the features are represented by the SVD (Singular

Value Decomposition) performed on low-frequency coefficients of the block-

based DWT (Discrete Wavelet Transform). The authors in [48] propose a

block representation by blur invariants. Their specific aim is to find features

invariant to the presence of blur artifacts that a falsifier can apply to make

detection of forgery more difficult. Then they used PCA (Principal Compo-

nent Analysis) to reduce the number of features and a k-tree to identify the

interested regions. In [81] authors present a technique to detect cloning when

the copied part has been modified using two specific tools, the Photoshop

healing brush and the Poisson cloning. Others two algorithms [55] and [56]

based on using low dimensional representation of blocks and fast sorting to

improve efficiency have been developed to detect copy-move image regions.

In particular, the authors in [55] apply a discrete cosine transform (DCT) to

the block. Duplicated regions are then detected by lexicographically sorting

the DCT block coefficients and grouping similar blocks with the same spatial

offset in the image. While in [56] the authors apply a principal component

analysis (PCA) on image blocks to yield a reduced-dimension representation.

Duplicated regions are again detected by lexicographically sorting and group-

ing all of the image blocks. A related approach is the method in [82] where

a Fourier Mellin Transform is applied on each block. A forgery decision is

made when there are more then a given number of blocks that are connected

to each other and the distance between block pairs is the same. To create a

convincing forgery, it is often necessary to resize, rotate, or stretch portions

of an image. For example, when creating a composition of two objects, one

object may have to be resized to match the relative heights. This process

requires re-sampling of the original image introducing specific periodic cor-

relations between neighboring pixels. The presence of these correlations due

to the re-sampling can be used to detect that something happened to the

image [83] but not to detect the specific manipulation.

So a good copy-move forgery detection should be robust to some types of

transformations as rotation and scaling and also to some manipulations in-

cluding JPEG compression, Gaussian noise addition and gamma correction.

Most of the existing methods do not deal with all these manipulations and

are often computationally prohibitive. In particular the method in [56] is not

able to detect scaling or rotation transformation, whereas with the methods

in [55] and [82] only small variations in rotation and scaling are identifiable

as reported in [84]. The authors in [85] make an attempt to overcome this
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problem solving copy-move identification when only rotation of the copied

area takes place by using the Zernike moments. This issue is also discussed

in [86] where rotation transformation and JPEG compression and Gaussian

noise manipulations are analyzed to understand how they could affect the

copy-move detection. Authors in [87] instead propose a method to detect

duplicated and transformed regions through the use of a block description

invariant to reflection and rotation such as the log-polar block representa-

tion summed along its angle axis. Finally a comparison among some of

copy-move methods described above has been reported in [88] evaluating

the performance of each methods with and without geometric transforma-

tion applied to the copied patch.

Nowadays visual local features (e.g SIFT Scale Invariant Features Trans-

form) have been widely used for the particular tasks of image retrieval and

object detection and recognition, due to their robustness to several geometri-

cal transformations (e.g. rotation and scaling), occlusions and clutter. More

recently few attempts have been done to apply this kind of features also in

the digital forensics domain; just as an example, SIFT features have been

used for fingerprint detection [89] and shoeprint image retrieval [90].

Two preliminary works on copy-move forgery detection based on SIFT fea-

tures has been recently proposed by Huang et al. [91] and Pan et al. [92],

they report experimental results only on a few example images and they

do not provide any estimation of the parameters of the forgery transforma-

tion. In this scenario is placed the proposed method that on the basis of

our previous work in [76] is able to detect and then estimate the geometrical

transformation occurred in a copy-move forgery.

6.1.1 Review on SIFT method

In particular the methods based on visual local features typically start with

a detection step, in which interest points are localized, then robust local de-

scriptors are built so as to be invariant with respect to orientation, scale and

affine transformations. Mikolajczyk and Schmid provide a comprehensive

analysis of several local descriptors in [93] while local affine region detectors

are surveyed in [94]. Their work confirm that Scale Invariant Features Trans-

form (SIFT) [77] are a good solution because of their high performance and

relatively low computational cost. This method can be roughly summerized

as the following four steps: i) scale-space extrema detection; ii) keypoint
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localization; iii) assignment of one (or more) canonical orientation; iv) gen-

eration of keypoint descriptors.

In other words, given an input image, SIFT features are detected at dif-

ferent scales by using a scale-space representation implemented as an image

pyramid. The pyramid levels are obtained by Gaussian smoothing and sub-

sampling of the image resolution while interest points are selected as local

extrema (min/max) in the scale-space. These keypoints, also referred as

xi, are extracted by applying a computable approximation of the Laplacian

of Gaussian (LoG). In particular, the SIFT algorithm approximates LoG

by iteratively computing the difference between two nearby scales in the

scale-space. This idea is referred to as the Difference of Gaussians (DoG)

approach.

In order to guarantee invariance to rotations, the algorithm assigns to

each keypoint a canonical orientation o. To determine this orientation, a

gradient orientation histogram is computed in the neighborhood of the key-

point. The basic idea is to assign a consistent canonical orientation to each

keypoint, based on local image properties (computed at the level of the im-

age pyramid where the keypoint was detected). The keypoint descriptor can

be represented relatively to this orientation and therefore achieve robustness

to image rotation.

Once these keypoints are detected, and canonical orientations are as-

signed, SIFT descriptors are computed at their locations in both image plane

and scale-space. Each descriptor consists in a histogram S of 128 elements,

obtained from a 16 × 16 pixels area around the corresponding keypoint.

This area is selected using the coordinates (x, y) of the keypoint as the cen-

ter and its canonical orientation as the origin axis. The contribution of each

pixel is obtained by calculating image gradient magnitude and orientation in

scale-space and the histogram is computed as the local statistics of gradient

orientations (considering 8 bins) in 4× 4 sub-patches.

Summarizing the above, given an image I, this procedure ends with a

list of N keypoints each of which is completely described by the following

informations:

xi = {x, y, σ, o,S}, (6.1)

where (x, y) are the coordinates in the image plane, σ is the scale of the

keypoint (related to the level of the image-pyramid used to compute the de-

scriptor), o is the canonical orientation (used to achieve rotation invariance)

and S is the final SIFT descriptor.
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6.2 The proposed method

The proposed approach is based on SIFT technology to extract robust fea-

tures which can allow to discover if a part of an image was copy-moved

and furthermore which geometrical transformation was applied. In fact, the

copied part has basically the same appearance of the original one, thus key-

points extracted in the forged region will be quite similar to the originals.

Therefore matching among SIFT features can be adopted for the task to de-

termine a possible tampering. A simple schematization of the three steps the

whole system is based on is shown in Figure 6.3: the first phase consists of

SIFT features extraction and keypoint matching, the second one is devoted

to cluster such keypoints and assess forgeries detection, and the third one is

in charge to estimate the occurred geometric transformation, if a tampering

has been individuated.

6.2.1 SIFT features extraction and keypoints match-

ing

Given a to-be-checked image, a set of keypoints X = {x1, . . . ,xn} with

their SIFT descriptors {S1, . . . ,Sn} is extracted (see sub-section 6.1.1). A

matching operation is performed in the SIFT space among Si vectors of each

keypoint to identify similar local patches in the image. The best candidate

match for each keypoint xi is found by identifying its nearest neighbor from

the other n−1 keypoints, which is the keypoint with the minimum Euclidean

distance in the SIFT space. In order to decide for a matching between

two keypoints (i.e. “are these two descriptors the same or not?”), simply

evaluating the distance between two descriptors with respect to a global

threshold does not perform well. This is due to the high-dimensionality of the

feature space (128) in which some descriptors are much more discriminative

than others [77]. We can obtain a more effective measure by using the ratio

between the distance of the closest neighbor to that of the second-closest one,

and comparing it with a threshold. For seek of clarity, given a keypoint we

define a similarity vector D = {d1, d2, . . . , dn−1} that represents the sorted

euclidean distances with respect to the other descriptors. The keypoint is

matched only if the constraint in Equation 6.2 is satisfied:

d1
d2

< T (6.2)
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the threshold T is usually fixed to 0.6 (this choice is suggested in [77]).

By iterating on each keypoint belonging to X, we can obtain the set of

matched points. All the matched keypoints are held, instead isolated ones

are discarded and no more considered in the forensic analysis (see the second

test image from left in Figure 6.3): already at this stage a draft idea of the

authenticity of the image is provided. But it can happen that images, really

containing areas with very similar texture, can yield to matched keypoints

that might induce false alarms: the following two steps of the proposed

methodology tries to reduce this possibility. On the other side, it is worthy to

point out that can occur the case where no matched keypoints are obtained,

mainly because, unfortunately, salient features are not revealed in the forged

patch (e.g. when an object is hidden with a flat patch): anyway this is a

very well-known open issue in SIFT-related scientific literature.

6.2.2 Clustering and forgeries detection

To identify possible cloned areas, an agglomerative hierarchical clustering

[95] is performed on spatial locations of the matched points. Hierarchical

clustering creates a hierarchy of clusters which may be represented in a tree

structure. The algorithm starts by assigning each keypoint to a cluster; af-

ter that it computes all the reciprocal spatial distances among clusters, finds

the closest pair of clusters and then merges them into a single cluster. Such

computation is iteratively repeated till a final merging situation is achieved.

The way such final merging can be accomplished is basically conditioned

both by the linkage method adopted and by the threshold used to stop clus-

ters’ grouping. Several linkage methods exist in literature and experimental

tests to evaluate their performances and to estimate the cut-off threshold

Th have been carried out (see subsection 6.3.1 for a detailed description of

such experiments). In particular, three different linkage methods, briefly de-

scribed in the following, have been taken into account: Single, Centroid and

Ward’s linkage. Given two clusters P and Q containing nP and nQ objects

respectively and indicated with xPi and xPj the ith and the jth object re-

spectively in the clusters P and Q, the diverse linkage method operates as

it follows:

• Single linkage uses the smallest euclidean distance between objects in
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the two clusters:

dist(P,Q) = min(‖xPi,xQj‖2), i = [1, nP ], j = [1, nQ].

• Centroid linkage uses the euclidean distance between the centroids of

the two clusters:

dist(P,Q) = ‖xP − xQ‖2
where

xP =
1

nP

nP
∑

i=1

xPi and xQ =
1

nQ

nQ
∑

i=1

xQi.

• Ward’s linkage evaluates the increment/decrement in the “error sum

of squares” (ESS) after merging the two clusters into a single one with

respect to case of the two separated clusters:

ESS(P ) =

nP
∑

i=1

|xPi − xP |2

∆dist(P,Q) = ESS(PQ)− [ESS(P ) + ESS(Q)]

where xP is the centroid again and PQ indicates the combined cluster.

According to the adopted linkage method, a specific tree structure is ob-

tained. In addition to this, the proper choice of the threshold Th to deter-

mine where to cut the tree and consequently which is the final number of

clusters is crucial. The parameter which is utilized to be compared with

Th is the “inconsistency coefficient” (IC) which characterizes each clustering

operation; the higher the value of this coefficient, the less similar the objects

connected by the link, thus when it exceeds the threshold Th clustering stops.

IC takes basically into account the average distance among clusters and does

not allow to join clusters spatially too far at that level of hierarchy. It is

easy to understand that an appropriate assumption of Th hardly influences

tampering detection performances. At the end of clustering procedure, how-

ever clusters which do not contain a significant number (more than three)

of matched keypoints are eliminated. On this basis, to optimize detection

performances and consequently to the carried out experimental tests (see

again subsection 6.3.1), it has been established to consider that an image

has been altered by a copy-move attack, if the method detects two (or more)

clusters with at least three pairs of matched points that link a cluster to
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another one. This aspect has been investigated and this assumption grants

a good trade-off between the need to provide a low false alarm rate and the

necessity to deal with flat duplicated regions.

6.2.3 Geometric transformation estimation

When an image has been classified as non-authentic, the proposed method

allows to determine which is the geometrical transformation occurred be-

tween the original area and its copy-moved version. Let the matched point

coordinates be, for the two areas, x̃i = (x, y, 1)T and x̃′

i = (x′, y′, 1)T respec-

tively, their geometric relationships can be defined by an affine homography

which is represented by a 3× 3 matrix H as:





x′

y′

1



 = H





x

y

1



 (6.3)

This matrix can be computed by resorting at three matched points at least.

In particular, we determine H by using Maximum Likelihood estimation of

the homography [96]. This method seeks homography H and pairs of per-

fectly matched points x̂i and x̂′

i that minimizes the total error function as in

Equation 6.4:

∑

i

[

d(xi, x̂i)
2 + d(x′

i, x̂
′

i)
2
]

subject to x̂′

i = Hx̂i ∀i. (6.4)

However mismatched points (outliers) can severely disturb the estimated

homography. For this purpose we perform the previous estimation by ap-

plying the RANdom SAmple Consensus algorithm (RANSAC) [97]. Such

algorithm randomly selects a set (in our case three pairs of points) from

the matched points and estimates the homography H , then all the remained

points are transformed according to H and compared in terms of distance

with respect to their corresponding matched ones. If this distance is under

or above a certain threshold β, they are catalogued as inliers or outliers

respectively. After a pre-defined number Niter of iterations, the estimated

transformation which is associated with the higher number of inliers is cho-

sen. In our experimental tests, Niter has been set to 1000 and the threshold

β to 0.05; this is due to the fact that we used a standard method of normal-

ization of the data for homography estimation. The points are translated so
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that their centroid is at the origin and then they are scaled so that the aver-

age distance from the origin is equal to
√
2. This transformation is applied

to both of the two areas xi and x′

i independently.

Once the affine homography is found, rotation and scaling transforma-

tions can be computed by its decomposition, while translation can be deter-

mined by considering the centroids of the two matched clusters. In particular,

H can be represented as:

H =

[

A t

0T 1

]

where A =

[

a11 a12
a21 a22

]

. (6.5)

The matrix A is the composition of rotation and non-isotropic scaling

transformations. In fact, it can always be decomposed as

A = R(θ)(R(−Φ)SR(Φ)) (6.6)

where R(θ) and R(Φ) are rotations by θ and Φ respectively, and S = diag(s1, s2)

is a diagonal matrix for the scaling transformation. Hence, the A defines the

concatenation of a rotation by Φ, a scaling by s1 and s2 respectively in

the rotated x and y directions; a rotation back by −Φ; and finally another

rotation by θ. This decomposition is computed directly by the SVD (Sin-

gular Value Decomposition). In fact, the matrix A can be also rewritten as:

A = USVT = (UVT)(VSVT) = R(θ)(R(−Φ)SR(Φ)) since U and V are orthogonal

matrices.

6.3 Experimental results

In this Section some of the experimental results carried out to evaluate the

proposed methodology are provided. In particular, two are the main kinds

of the tests: firstly, on a small dataset named DB220, a benchmarking of the

technique is done to properly set the operative threshold Th and to compare

it with other methods known in literature; secondly, on a larger dataset

named DB2000, a complete evaluation is carried out by testing the system

against different types of modifications.

Both datasets are composed by images with different contents coming

from the Columbia photographic images repository [98] and from a personal

collection. The first dataset DB220 is composed by 220 images: 110 are

tampered images and 110 are originals. The images resolution varies from
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722 × 480 to 800 × 600 pixels and the size of the forged patch covers, on

the average, 1.2% of the whole image. The images have been tampered by

coping and pasting an image part of different dimension over another area

of the same photo by applying diverse transformations (see hereafter). The

second dataset DB2000 is composed by 2000 photos of 2048 × 1536 pixels

(3M pixels) and the forgery is, on the average, 1.12% of the whole image: so

it is again quite small and similar to the DB200 dataset case. This aspect is

very crucial because the cloned patch size drastically influences the perfor-

mances of the SIFT search, obviously the greater the cloned area the higher

the number of possible SIFT keypoints. Furthermore, to reproduce as much

as possible a practical situation, the number of original and altered images

belonging to the DB2000 dataset is not the same: 1300 original images and

700 tampered images have been taken. The forged images are obtained, in

both the datasets, by randomly selecting (both as location and as dimen-

sion) an image area (squared or rectangular) and copy-pasting it over the

image after having applied a number of different attacks such as translation,

rotation, scale (symmetric/asymmetric) or a combination of them. Table

6.1 and Table 6.2 summarize the geometric transformations for the applied

attacks for the first DB220 dataset (10 attacks, from A to J in Table 6.1)

and for the second DB2000 (14 attacks, from a to o in Table 6.2) respec-

tively. In particular, for each attack, is reported the rotation θ expressed

in degrees and the scaling factors sx, sy applied to the x and y axis of the

cloned image part (e.g. in the attack G, the x and y axes are scaled by 30%,

and no rotation is performed).

Attack θ ° sx sy

A 0 1 1

B 10 1 1

C 20 1 1

D 30 1 1

E 40 1 1

Attack θ ° sx sy

F 0 1.2 1.2

G 0 1.3 1.3

H 0 1.4 1.2

I 10 1.2 1.2

J 20 1.4 1.2

Table 6.1: The 10 different combinations of geometric transformations applied

to the original patch for the DB220 dataset.



6.3 Experimental results 84

Attack θ ° sx sy

a 0 1 1

b 0 0.5 0.5

c 0 0.7 0.7

d 0 1.2 1.2

e 0 1.6 1.6

f 0 2 2

g 0 1.6 1.2

Attack θ ° sx sy

h 0 1.2 1.6

i 5 1 1

j 30 1 1

l 70 1 1

m 90 1 1

n 40 1.1 1.6

o 30 0.7 0.9

Table 6.2: The 14 different combinations of geometric transformations applied

to the original patch for the DB2000 dataset.

6.3.1 Threshold settings for forgeries detection

As said before, in this subsection, first of all, the proposed method is analyzed

to determine the best settings for the cut-off threshold Th introduced in

Section 6.2.2 according to the chosen linkage method. Such values will be

set up for the successive phase of experiments and comparisons. To address

this problem, the following experiment has been set-up applying a 4 -fold

cross-validation process: from the database of 220 images (DB220), 165, that

is 3/4 of the image set, (82 tampered and 83 original) have been randomly

chosen to perform a training to find the best threshold Th for each of the

three considered linkage methods (Single, Centroid, Ward’s); the remaining

55 images (1/4 of the whole set) have been used in a successive testing

phase to evaluate detection performances of the proposed technique. During

training, the threshold Th ranged in the interval [0.8, 3] with steps of 0.2. The

experiment was repeated 4 times, by cyclically exchanging the four image

sub-sets belonging to the training (3 sub-sets) and to the testing set (1 sub-

set), and the results have been averaged. Detection performances have been

measured in terms of True Positive Rate (TPR) and False Positive Rate

(FPR), where TPR is the fraction of tampered images correctly identified

as such and FPR is the fraction of original images that are not correctly

identified as such, that is:

• TPR = images detected as forged being really forged

forged images

• FPR = images detected as forged being instead original

original images
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Again we underline that has been assumed to consider that an image has

been altered by a copy-move attack, if the method detects two (or more)

clusters with at least three pairs of matched points that link a cluster to

another one (as debated in subsection 6.2.2).

In Table 6.3, for each linkage method, the TPR and the FPR obtained

during the training phase are reported with respect to the threshold Th which

varies in the established range.

Single Centroid Ward’s

Th FPR(%) TPR(%) FPR(%) TPR(%) FPR(%) TPR(%)

0.8 2.729 41.827 1.822 23.626 0.911 10.906

1 5.455 70.001 4.547 56.373 3.636 32.739

1.2 8.180 89.994 7.273 90 7.273 82.714

1.4 8.180 95.456 8.180 95.456 7.273 90.905

1.6 8.180 98.185 7.273 97.274 8.180 97.274

1.8 7.269 96.360 8.180 98.182 9.088 99.089

2 6.362 91.820 7.269 95.456 9.088 100

2.2 5.451 82.721 5.451 92.723 8.177 100

2.4 4.544 63.639 4.544 84.536 7.269 96.364

2.6 2.726 48.185 2.729 70.897 7.273 89.998

2.8 0.911 22.726 1.822 46.360 3.640 78.170

3 0.911 15.461 0.911 18.179 3.640 61.813

Table 6.3: Training phase: TPR and FPR values (in percentage) for each metric

with respect to Th.

The goal was to minimize the FPR while maintaining a very high TPR;

as it can be seen FPR is almost always very low, on the contrary TPR is

very variable, so the optimal threshold Th has been chosen, as evidenced

in Table 6.3, for the maximum value of TPR that means 1.6 for the Single

linkage method, 1.8 for the Centroid and 2.2 for the Ward’s linkage. Finally,

on the basis of such analysis, the test phase has been launched for the best

metrics by using the Th previously obtained in the training phase. The final

detection results, again averaged on the 4 repetitions, are reported in Table

6.4. These results show that the proposed method performs satisfactorily

providing a low FPR though maintaining an high rate of correct tampering

detection basically for all the used linkage method, though Ward’s metric

seems to be slightly better. It is possible to conclude that the choice of



6.3 Experimental results 86

linkage method is not so fundamental while Th setting is crucial.

Single Centroid Ward’s

FPR (%) 8.16 8.16 8

TPR (%) 98.21 98.17 100

Table 6.4: Test phase on DB220 dataset: detection results in terms of FPR and

TPR.

Furthermore, for the cases of correctly detected forged images, the esti-

mation of the geometric transformation parameters which bring the original

patch onto the forged one has also been computed. The Mean Absolute Er-

ror (MAE) between each of the true values of the transformation parameters

and the estimated ones, again averaged on all the images (correctly detected

as forged) of the 4 repetitions are reported in Table 6.5.

MAE (tx) MAE (ty) MAE (θ) MAE (sx) MAE (sy)

4.04 2.48 0.94 0.021 0.015

Table 6.5: Transformation parameters estimation errors for the DB220 (Single

linkage method with Th = 1.6, as previously underlined other metrics give similar

performances). The values tx and ty are expressed in pixels while θ in degrees.

A tx t̂x |e| ty t̂y |e| θ θ̂ |e| sx ŝx |e| sy ŝy |e|
A 304 304.02 0.02 80.5 81.01 0.51 0 0.040 0.040 1 1.004 0.004 1 0.998 0.002

B 304 305.20 1.20 80.5 82.42 1.92 10 9.963 0.037 1 1.001 0.001 1 0.999 0.001

C 304 305.55 1.55 80.5 82.64 2.14 20 20.009 0.009 1 1.006 0.006 1 0.998 0.002

D 304 305.04 1.04 80.5 82.49 1.99 30 30.092 0.092 1 1.002 0.002 1 0.998 0.002

E 304 306.08 2,08 80.5 78.43 2.07 40 39.932 0.067 1 1.007 0.007 1 1.004 0.004

F 304 304.88 0.88 80.5 80.41 0.09 0 0.080 0.080 1.2 1.202 0.002 1.2 1.198 0.002

G 304 305.07 1.07 80.5 79.87 0.63 0 0.108 0.108 1.3 1.304 0.004 1.3 1.303 0.003

H 304 305.78 1.78 80.5 80.18 0.32 0 0.037 0.037 1.4 1.403 0.003 1.2 1.206 0.006

I 304 305.23 1.23 80.5 81.76 1.26 10 9.910 0.090 1.2 1.203 0.003 1.2 1.201 0.001

J 304 305.02 1.02 80.5 80.82 0.32 20 20.067 0.067 1.4 1.404 0.004 1.2 1.198 0.002

Table 6.6: Transformation parameters estimation on image Cars. The values tx
and ty are expressed in pixels while θ in degrees.

Results show an high degree of precision in the estimate of the various

parameters of the affine transformation. In addition to this, in Table 6.6,

as example, for one of the test image belonging to the DB220, named Cars

(see Figure 6.4 top-left corner), each transformation parameter (the original
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value applied to the patch, the estimated one and the absolute error (|e|)) is
reported in detail. It can be observed how reliable the estimate is, specifically

for the scale parameters and also for an asymmetric scaling combined with

a rotation.

Qualitative evaluation

Hereafter, some experimental results on images where a copy-move attack

has been performed by taking into account the context are reported. In this

case the patch is selected according to the specific goal to be achieved and,

above all, transformed by paying attention to perfectly conceal the occurred

modification. Alterations are not recognizable at least at a first rough watch

and a forensic tool could help in investigation action. In Figure 6.4, six of

these specific cases are pictured by presenting the tampered image and the

corresponding one where SIFT matches, extracted by the proposed method,

are highlighted. It is interesting to point out how the cloned patches are

individuated; the case of a multiple cloning, as evidenced in the top-right

corner where the goose is copy-moved twice (different scale factor have been

applied), is well managed too. In particular, it is worthy to notice how the

technique still works though the number of keypoints is reduced when the

goose (top-left) is also down-scaled. Another interesting situation concerns

the individuation of a cloned patch for the image named Dune (middle of

third and fourth rows) where, though the duplicated area is quite flat, the

method is able to detect a sufficient number of matched keypoints. On the

contrary, an opposite case is registered for the image named Santorini (right

of third and fourth rows), where a very high amount of matched keypoints is

obtained; now the cloned block is very textured and though it has undergone

a geometrical transformation to be properly adapted to the context, the SIFT

algorithm is so robust not to be disturbed.

Copy-move methods comparison

The proposed approach has been compared with the implementations both

of the method presented in [55], based on DCT (Discrete Cosine Transform),
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Figure 6.4: Some examples of tampered images are pictured in the first and the

third rows, the corresponding detection results are reported in the second and in

the forth rows.
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and of the technique introduced in [56], based on PCA (Principal Component

Analysis), (both have been briefly described in Section 6.1). The input

parameters required by the two methods are set as it follows: b = 16 (number

of pixels per block), Nn = 5 (number of neighborhood rows to search in the

lexicographically sorted matrix), Nf = 1000 (threshold for the minimum

frequency) and Nd = 22 (threshold to determine a duplicated block). These

parameters are used in both the algorithms, while e = 0.01 (fraction of

the ignored variance along the principle axes after PCA is computed) and

Q = 256 (number of the quantization bins) are only used for the method

in [15]. For the proposed technique the Ward’s linkage with a threshold

Th = 2.2 has been assumed. The experimental test has been launched over

the whole DB220 image database by using a machine Intel Q6600 quad core,

4Gb RAM, linux os and the FPR, TPR and the processing time have been

evaluated. Table 6.7 shows the detection performances and the processing

time on average (in seconds) for an image relatively to each methodology.

Method FPR (%) TPR (%) time

[55] 84 89 294.69

[56] 86 87 70.97

Proposed 8 100 4.94

Table 6.7: TPR, FPR values (%) and processing time (one image averagely) for

each method.

The results point out that the proposed method performs better with

respect to the others methods; in fact the processing time (per image) is on

average about 5 seconds, whereas the other two take more than 1 minute

and almost 5 minutes respectively. Furthermore DCT and PCA methods,

though presenting an acceptable TPR, fail when a decision about original

images is required (high FPR values in Table 6.7). Anyway this is basically

due to the incapacity of such methods to properly deal with cases where a

geometrical transformation which is not just a translation is applied to the

copy-moved patch. For the specific case of simple patch translation FPR is

0% for all the three methods.
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6.3.2 Test on a large dataset

In this Section, experimental results obtained on a larger dataset, named

DB2000, to verify the behavior of the proposed technique are presented; de-

tection performances and geometric transformation parameters estimation

are investigated as well. Furthermore some tests to check the robustness

of the method against usual operations such as JPEG compression or noise

addition, an image can undergo, have been carried out; such kinds of pro-

cessing have been considered as applied both to the whole forged image and

only to the altered image patch.

Single Centroid Ward’s

Th FPR(%) TPR(%) FPR(%) TPR(%) FPR(%) TPR(%)

0,8 3,41 51,86 1,69 32,29 0,54 11,43

1 5,56 70,19 4,92 62,43 3 51,29

1,2 10,28 89,95 10,31 87,43 9,54 83,86

1,4 10,95 91,24 12,15 90,14 11,62 88,43

1,6 10,97 93 13,23 93,57 13,15 93,14

1,8 9,46 91 12,46 93,43 14,54 93,86

2 7,46 84,43 11,23 92,29 13,85 93,86

2,2 4,79 72,38 9,00 89,43 11,62 93,43

2,4 2,72 54,43 6,46 78,43 9,85 91,29

2,6 1,00 29,14 3,23 62,86 8,46 87,71

2,8 0,21 19,86 1,23 40,86 5,62 79,43

3 0,08 12,86 0,38 23,29 3,38 67,43

Table 6.8: Training phase on DB2000 dataset: TPR and FPR values (in per-

centage) for each metric with respect to Th.

The dataset DB2000 is composed, as already said, by 2000 images (JPEG

quality factor equal to 100) subdivided in 1300 originals and 700 tampered

images. The tampered images have been created by using 50 images under-

gone to 14 different transformations (see Table 6.2). First of all, we have

tried to set up again an experiment for the determination of the best thresh-

old Th, according to the three linkage methods, as done in subsection 6.3.1

for the DB220; this has been made to further check if the established thresh-

olds were correct. To do that 1500 images are used for the training phase

(975 original and 525 tampered) and the remaining 500 (325 original and
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175 tampered) are used for the test phase; a 4-fold repetitions test has been

carried out and, as before, averaged results are listed in Table 6.8. It can be

observed that a similar behavior to that obtained with DB220 is registered

and, above all, that the values chosen in subsection 6.3.1 for Th (1.6 for

Single, 1.8 for Centroid and 2.2 for Ward’s) still grant about the higher per-

formances in terms of TPR and FPR. After this, the test phase is launched

by setting such values for Th and in Table 6.9 the detection rates are reported

demonstrating both the effectiveness of the proposed method which achieves

a TPR around 93% for all the three metrics and its robustness obtaining

again performances very coherent to those presented in Table 6.8 for these

fixed thresholds.

Single Centroid Ward’s

FPR (%) 10.99 12.45 11.61

TPR (%) 92.99 93.23 93.42

Table 6.9: Test phase on DB2000 dataset: detection results in terms of FPR and

TPR obtained with Th = 1.6, Th = 1.8 and Th = 2.2 for the three linkage methods

respectively.

Going into detail, in Figure 6.5 the number of errors for each attack

is listed with regard to tampered images not detected as such. The most

critical attacks seem to be the f (θ = 0°, sx = 2 and sy = 2) and the n

(θ = 40°, sx = 1.1 and sy = 1.6) which increase twice the patch dimension

and apply a 40 degrees rotation combined with a consistent variation on

scale respectively. The histogram in Figure 6.5 shows that these two kinds

of attacks generate everyone around the 30% of the total errors.

In Table 6.10 are then reported the estimate errors for the geometric

transformation parameters averaged on all the 500 test images. The Mean

Absolute Error (MAE) still remains small enough although the transforma-

tions applied to the images in this circumstance for DB2000 dataset are more

challenging with respect to the case of DB220 dataset.

MAE(tx) MAE(ty) MAE(θ) MAE(sx) MAE(sy)

22.49 8.49 1.55 0.27 0.2

Table 6.10: Transformation parameters estimation errors. The values tx and ty
are expressed in pixels while θ in degrees.
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Figure 6.5: Error analysis of tampered images mis-detection for each different

attack (in percentage).

JPEG compression and noise addition

The proposed methodology has also been tested in terms of detection perfor-

mances from a robustness point of view; in particular, the impact of JPEG

compression and then of noise addition on all the 2000 images of the DB2000

dataset has been investigated. In the first experiment all the images which

were originally in the JPEG format (quality factor of 100), have been com-

pressed in JPEG format with a decreasing quality factor of 75, 50, 40 and

20. In Table 6.11 (top) the FPR and TPR (Ward’s linkage method with

Th = 2.2) for all the diverse JPEG quality factors are presented; it can be

seen that FPR is practically stable while the TPR tends to slightly diminish

when image quality decreases. In the second experiment, in the same way

as before, the images of DB2000 dataset are distorted by adding a Gaussian

noise obtaining different final decreasing signal-noise-ratios (SNR) of 50, 40,

30 and 20 db, that is noisy images are obtained by adding white Gaussian

noise to the image with a JPEG quality factor of 100. In Table 6.11 (bot-

tom), obtained results are shown and it can be noticed that the TPR is over

90% till a SNR of 30 dB while FPR is again quite stable, though it seems to

even improve.
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JPEG quality FPR TPR

100 11.61 93.42

75 12.07 93.42

50 11.15 93.16

40 11.38 92.14

20 10.46 87.15

SNR (dB) FPR TPR

50 11.46 93.71

40 11.69 94.14

30 11.46 92.00

20 8.15 82.42

Table 6.11: Detection performances against JPEG compression (top) and noise

addition (bottom)

.

JPEG compression, noise addition, gamma correction on copied

patch

The duplicated patch are often modified by applying some further processing

such as brightness/contrast adjustment, gamma correction, noise addition

and so on, in order to adjust the patch with respect to the image area where

it has to be located. So to explore this scenario the following experiment

has been made. Starting from 10 original images, a block is randomly (as

explained before) selected for each of them and 4 geometric transformations

(a, d, j and o from Table 6.2) are applied to every of these patches. Fur-

thermore, before pasting them, 4 different gamma corrections with values

[2.2, 1.4, 0.7, 0.45] are applied to each single block. Finally, 160 tampered

images are obtained. In the same way, the final stage of gamma correction

is firstly substituted by JPEG compression with different quality factors [75,

50, 40, 20] and secondly by Gaussian noise addition with SNR (dB) equal

to 50, 40, 30, 20. For every case, 160 fake images have been created. So

for each of the three situations (gamma correction, JPEG compression and

noise addition), a dataset composed by 160 fake images and by 350 original

ones randomly taken from the DB2000 database is built. Hereafter, in Table

6.12, performances in terms of TPR and FPR are reported.

These experiments show that the proposed method maintains its level
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Kind of processing FPR TPR

Gamma correction 9.23 99.37

JPEG 11.38 100.00

SNR (dB) 12.00 100.00

Table 6.12: Detection performances against gamma correction, JPEG compres-

sion and noise addition applied to the duplicated and geometrically transformed

patch.

of accuracy though some diverse kinds of post-processing are applied to the

duplicated patch in addition to a geometric transformation, to adapt it to

the image context where it is pasted.

Image splicing

Though the proposed technique has been presented to operate in a copy-

move attack scenario, it can also be utilized in a context where a splicing

operation has occurred. With the term splicing attack is intended that a

part of an image is grabbed and, possibly after having been adapted (geo-

metric transformed and/or enhanced), pasted onto another one to build a

new fake image. In most of the cases only the final fake photo is available to

the forensic analyst for inspection, the source one is often undeterminable;

because of this, the SIFT matching procedure, which is the core of the pro-

posed method could not take place and would seem that there is no room

for it in such circumstance. Anyway this is not always true in practice! In

fact, often, the analyst is required to give an assessment over a dataset of

images for example belonging to a specific person under judgement, or that

have been found in a hard disk or a pen drive, and so on. In this operative

scenario, it can happen that the source image used to create a fraudulent

content belongs to the image collection at disposal. It is easy to understand

that the proposed method can be adopted again to determine both if within

the to-be-checked collection there is a false image containing an ”external”

patch and, above all, where it comes from. It is interesting to highlight

that succeeding in detecting such link could help investigation activities.

To prove that the proposed technique can be used in such a scenario the

following experimental test has been set up.
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Figure 6.6: Examples of correct detection of splicing attack.
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Figure 6.7: An example of wrong detection of splicing attack.

A subset of 100 images (96 original and 4 tampered with) taken from a

private collection with size of 800×600 pixels has been selected. In particular,

the 4 fake images have been created by pasting a patch that was cut from

another image belonging to the other original 96. The proposed technique

has been launched to analyze all the possible pairs of photos (n·(n−1)
2

=
100·99

2
= 4950) within the dataset looking for duplicated areas. To allow to

the presented algorithm to perform as it is the pair of images to be checked

are considered as a single image with a double number of columns (size equal

to N × 2M); due to this fact, the detection threshold Th has been moved

up to 3.4 (it was 2.2 in the previous experimental tests of this Section) for

the Ward’s linkage method which was chosen for this specific experiment.

In Table 6.13 performances on FPR and TPR are reported.

Splicing attack FPR (%) TPR (%)

0.04 100.00

Table 6.13: Detection performances against splicing attack (in percentage).

The method is able to correctly reveal all the four fake pairs as expected

determining a link between the possible original image and the forged one,

though it can not distinguish the source from the destination as well-known

if other tools are not adopted. The procedure also detect as suspected two

other innocent couples of images incurring in false alarms. In Figure 6.6 the

four cases of splicing attack detection are pictured, while in Figure 6.7 one

of the false alarm is illustrated. In this last circumstance, it is immediate to

understand that the error is induced by the presence of the same objects (the

posters over the wall of the wooden box) in both the photos taken in the same

real context. However this could be the actual situation that might happen in
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practical scenario (e.g. establishing possible relations among photos acquired

in similar environments).



Chapter 7

Temporal forensics

In a number of forensic applications could be not sufficient to identify the

imaging device but could be useful providing a temporal localization of the

image. For example, consider a situation where a digital camera changed

ownership and some images are found to be associated with illicit content.

In this situation an estimate of the time when the images with illicit content

were captured can help the investigation to establish a connection between

the camera and the owner.

In order to capture the temporal characteristics of a multimedia device it is

necessary model the temporal evolution of the sensor device considering the

following sensor output model:

Y = I + IK + θ (7.1)

In the model Y is the output from the sensor, I is the input, IK is the

term responsible for the PRNU and θ is a collection of all the others sensor

noise. According to information avalaible in literature, the PRNU factor

is quite stable in time so it is suitable for camera identification (2.2.2) but

not for determining an approximate age of images. In the model (7.1) other

systematic sensor artifacts exist, they are called Fixed Pattern Noise (FPN)

that evolve in time and could be potentially used for this task. In particular

defects in the FPN are the following:

• Stuck pixel. This type of pixel is always on and it is independent of

the incident light, exposure, and other camera settings, and is usually

easily visible in photographs (Figure 7.1). This means that any given

pixel will stay red, blue or green, and will not change when attempting
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to display an image. y = c, where c is a constant independent of

exposure time or light intensity.

• Partially Stuck pixel. y = I[p] + c. The response of pixel p is offset by

a constant when compared to a properly working pixel.

• Hot pixel. Hot pixels are defects due to leakage of electrons. Their out-

put increases with the exposure in time, temperature and ISO settings.

y = I[p] +D[p]τ + c where τ is the exposure time and D[p] represents

the effect of dark current integrated at the output of that particular

pixel.

(a) (b)

Figure 7.1: A stuck pixel.

In particular pixel defects (Figure 7.2) occur randomly in an image and

independently of each other. The main cause of new defects is the environ-

mental stress and primarily cosmic ray radiation. In fact the pixels change

faster at high altitudes or during airplane trips where cosmic radiation is

stronger. Furthermore once defect occurs it becomes a permanent part of

the sensor.

7.1 Identification of defective pixels

The first task to accomplish in order to temporally localize images in time

is the identification of defective pixels. Then a mathematical model is ex-

ploited and the temporal information is extracted from the image and the

localization is accomplished. It’s worth to point out that in the following
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Figure 7.2: Defective pixels.

only some cues are given to solve the problem because the argument is still

under investigation.

In general fully stuck or partially stuck pixels are extracted through lab-

oratory calibration considering RAW data and subjecting the camera to

uniform illumination at increasing intensities with short exposure duration.

Hot pixels are revealed, instead, subjecting the camera to darkfield calibra-

tion, under no illumination. These tests repeated after few months revealed

additional hot and stuck pixels in the defects map of a digital camera sensor

while the behaviour of the initial defects remained about the same. In [99] is

proposed a defect tracing algorithm that utilizes Bayesian statistics to auto-

matically detect the presence and absence of defects by searching through an

image set. At the beginning of the defect detection, the detector is provided

with the defect map which specifies the i,j location of the pixel defects as

explained before.

In image forensics, it is very rare to operate in a supervised environment

so it’s impossible to create a defects maps of a digital camera sensor because

the camera could not be available or in other case there is not enough time

to build a defects maps (sometimes months). On the other side , due to the

argument complexity, has been analysed only a particular scenario of the
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Figure 7.3: The scenario.

problem assuming a preordered image set available to the analyst and the

objective is to localize one image respect to the others (Figure 7.3).

On the basis of the paper in [99], it is possible to determine the presence

of candidate defects (especially hot pixel) in the following manner. A good

pixel will measure the amount of incident light that strikes the pixel. The

output of a defective pixel from each image capture is simplified to Equation

7.2, where I[p] represents the incident light at the pixel, and the others

components can be treated as a dark offset denoted by ∆.

y = I[p] + ∆ (7.2)

To determine the presence of defects, we first interpolate everywhere in

the image to estimate the expected pixel value base on its neighbors values.

Then, we compare each pixel’s actual value with the interpolated value to

find if the deviation is caused by the presence of a defect, or is the result

of an interpolation error. Let z denote the interpolated pixel value and y

denote the actual pixel output value.

Then, the error is computed as e = y − z, and the function pE(e) is the

Probability Distribution Function (PDF) of the interpolation error over the

whole image (it will differ from one image to another). When y is the output

of a good pixel, the error is due to interpolation error and should be approx-

imately zero with a good interpolation scheme. On the other hand, if y is a

hot pixel, the error will be approximately ∆.
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Figure 7.4: Bayer Pattern.

Most image sensors use a Color Filter Array (CFA) (most CFAs use the

Bayer pattern) such that each pixel only captures one of three color chan-

nels: red, green, or blue.

The demosaicing algorithm is applied to the color matrix to recover the two

missing color channels at each pixel. Because most demosaicing algorithms

require interpolation to recover the missing channels, the presence of defects

will contribute a false estimate to the interpolation.

For this study, will model the demosaicing algorithm with the simple bilinear

interpolation using the filter masks shown in Figure 7.4. Each interpolation

will replace the missing channel by the average of the 4 nearest neighboring

pixels from the same color channel.

At this point we select from PDF of the interpolation error over the whole

image the pixel value for which

pE(e) > abs(m) + 2 ∗ sigma (7.3)

where m and sigma are respectively the PDF average and the standard

deviation.

After that the selected pixel are sorted by error value and the first k

elements with bigger error value will be taken in account.

This selection procedure is applied to multiple images belonging to the

first part of the set (older images) and the last part of the set (newer images).

Through a voting procedure a set of defective pixel is selected for each group

and then two set of pixels are compared and the presence of the same pixel

is evidenced. Furthermore the same pixels are deleted and then the others

are selected as defective pixels changing in time.

Another method has been studied to identifying defective pixel, in particular

stuck pixels. The luminance variation of each pixel in the image has been

considered. Give a certain pixel (i, j) the luminance is a mono-dimensional

signal in time I(i, j, t). Applying the DFT to the mono-dimensional signal

we should obtain no frequency variation if the pixel under observation is a
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stuck pixel since the stuck pixel gives the same output for each image under

all illuminations.

After identifying defective pixel with both of these technique the idea is to

implement a maximum likelihood estimator of FPN in order to describe,

given a set of images, the evolution in time of each pixel from no defective

to defective pixel. Then it could be possible to place an image in a sequence

knowing the behaviour of each pixel in time. 1

1This is a preliminary work done in collaboration with the Professor J. Fridrich at the

Binghamton University (USA) during the exchange PhD visiting program from April to

October 2010.
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Conclusion and Open Issue

Nowadays, digital visual data have gained high relevance in nearly every

aspect of our life and represent one of the main source of information that

can bias common opinion. In particular scenarios, such as the forensic one,

visual information can be used as possible evidence in a trial thus influencing

the final verdict. In such a situation, it is fundamental to know the origin

and the history of such data in order to be assured that opinion coming from

such information has not been manipulated. In the last years, a new science,

referred as multimedia forensics, has been proposed aiming at providing in-

formation on a digital asset, by means of the analysis of intrinsic fingerprints

that characterize the data during its life. In particular, the analysis of these

patterns may lead to identify image and video origin and to establish data

integrity.

In this thesis, principles and motivations of digital forensics have been

discussed and new methods in Image Forensics have been presented. All

the proposed techniques can be sketched as a forensic tool that extracts,

from the considered data, some digital fingerprints, and that, by exploring

some properties of such patterns, is able to make a decision based on either

classification or estimation procedure. In particular, the output of such a

tool can provide information on the acquisition device that has produced

the visual content as well as on the possible suffered tampering.

The research community is showing an increasing interest for such tech-

nologies thus leading to new exciting challenges for the solution of many

open issues in the next future.

One of these for example is to create a common framework for multi-

media forensics because many of the existing digital forensic techniques are
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bright and groundbreaking but none of them by itself offers a stand alone

solution for the considered problem (i.e. the source identification and the

verification of information integrity). Furthermore, the user intervention is

often desirable for validating the final results: for example, let us consider

the estimation of image tampering, that without any user intervention is

quite impossible, since even if an out camera processing is detected, often

only a human interpreter can decide if the purpose of the modification is

malicious or not.

The validation of digital forensic approaches for integrity verification,

seems to be missing of a common framework, regarding both image databases

and performance measures, such as accuracy, robustness, security.

An image database is fundamental for the evaluation of a proposed al-

gorithm; furthermore, a common dataset provides an unified platform for

the research community to compare various algorithms. Actually, several

datasets are available for the research community [98], but there are some

open issues that call for a benchmark dataset. For instance, the experiments

involving the camera characteristics require a dataset of images acquired by

a diverse models of camera, at various acquisition settings. Furthermore, in

order to facilitate the evaluation of the image forgery detection techniques

using the images produced by the state-of-the-art image forgery creation

techniques, a dataset of these images would be necessary. Therefore, further

effort on producing and standardizing the additional benchmark dataset is

needed.

A different analysis on performances of forensic algorithms comes from

the security point of view. By increasing the possible solutions for forgery

identification, also malevolent people, aiming at modifying digital content,

increase their attention for overcoming detection of tampering processing.

Hence, deepened the analysis of forensic algorithms from the security point

of view would be an interesting open issue to be addressed in the future.

Another future trend to be considered is the improvement of the use

of image source imperfections as fingerprint to solve the problem of source

identification. Review of the modern literature on this argument shows that

good experimental results are obtained but reliable identification seems im-

possible if all the acquisition process and post-processing steps are not taken

into account, so further investigations are necessary. Future research should

focus on definition of new model for the acquisition process in order to better

estimate the anomalies left by intrinsic disconformities in the manufacturing



106

process of silicon sensor of a camera. Since this fingerprint is not a random

noise but a deterministic template, which is superimposed to each taken im-

age, should be necessary to define and use new denoising filters that grant

the suppression of the image content and take into account the different kind

of sensor device.

Another interesting topic to investigate is the “temporal forensic”, de-

scribed in Section 7), not yet completely addressed by scientific community.
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