56,212 research outputs found

    Federated Embedded Systems – a review of the literature in related fields

    Get PDF
    This report is concerned with the vision of smart interconnected objects, a vision that has attracted much attention lately. In this paper, embedded, interconnected, open, and heterogeneous control systems are in focus, formally referred to as Federated Embedded Systems. To place FES into a context, a review of some related research directions is presented. This review includes such concepts as systems of systems, cyber-physical systems, ubiquitous computing, internet of things, and multi-agent systems. Interestingly, the reviewed fields seem to overlap with each other in an increasing number of ways

    Wireless industrial monitoring and control networks: the journey so far and the road ahead

    Get PDF
    While traditional wired communication technologies have played a crucial role in industrial monitoring and control networks over the past few decades, they are increasingly proving to be inadequate to meet the highly dynamic and stringent demands of today’s industrial applications, primarily due to the very rigid nature of wired infrastructures. Wireless technology, however, through its increased pervasiveness, has the potential to revolutionize the industry, not only by mitigating the problems faced by wired solutions, but also by introducing a completely new class of applications. While present day wireless technologies made some preliminary inroads in the monitoring domain, they still have severe limitations especially when real-time, reliable distributed control operations are concerned. This article provides the reader with an overview of existing wireless technologies commonly used in the monitoring and control industry. It highlights the pros and cons of each technology and assesses the degree to which each technology is able to meet the stringent demands of industrial monitoring and control networks. Additionally, it summarizes mechanisms proposed by academia, especially serving critical applications by addressing the real-time and reliability requirements of industrial process automation. The article also describes certain key research problems from the physical layer communication for sensor networks and the wireless networking perspective that have yet to be addressed to allow the successful use of wireless technologies in industrial monitoring and control networks

    Security for the Industrial IoT: The Case for Information-Centric Networking

    Full text link
    Industrial production plants traditionally include sensors for monitoring or documenting processes, and actuators for enabling corrective actions in cases of misconfigurations, failures, or dangerous events. With the advent of the IoT, embedded controllers link these `things' to local networks that often are of low power wireless kind, and are interconnected via gateways to some cloud from the global Internet. Inter-networked sensors and actuators in the industrial IoT form a critical subsystem while frequently operating under harsh conditions. It is currently under debate how to approach inter-networking of critical industrial components in a safe and secure manner. In this paper, we analyze the potentials of ICN for providing a secure and robust networking solution for constrained controllers in industrial safety systems. We showcase hazardous gas sensing in widespread industrial environments, such as refineries, and compare with IP-based approaches such as CoAP and MQTT. Our findings indicate that the content-centric security model, as well as enhanced DoS resistance are important arguments for deploying Information Centric Networking in a safety-critical industrial IoT. Evaluation of the crypto efforts on the RIOT operating system for content security reveal its feasibility for common deployment scenarios.Comment: To be published at IEEE WF-IoT 201

    Predictive voltage control of phase-controlled series-parallel resonant converter

    Get PDF

    Venting in the comparative study of flexural ultrasonic transducers to improve resilience at elevated environmental pressure levels

    Get PDF
    The classical form of a flexural ultrasonic transducer is a piezoelectric ceramic disc bonded to a circular metallic membrane. This ceramic induces vibration modes of the membrane for the generation and detection of ultrasound. The transducer has been popular for proximity sensing and metrology, particularly for industrial applications at ambient pressures around 1 bar. The classical flexural ultrasonic transducer is not designed for operation at elevated pressures, such as those associated with natural gas transportation or petrochemical processes. It is reliant on a rear seal which forms an internal air cavity, making the transducer susceptible to deformation through pressure imbalance. The application potential of the classical transducer is therefore severely limited. In this study, a venting strategy which balances the pressure between the internal transducer structure and the external environment is studied through experimental methods including electrical impedance analysis and pitch-catch ultrasound measurement. The vented transducer is compared with a commercial equivalent in air towards 90 bar. Venting is shown to be viable for a new generation of low cost and robust industrial ultrasonic transducers, suitable for operation at high environmental pressure levels

    Governance for sustainability: learning from VSM practice

    Get PDF
    Purpose – While there is some agreement on the usefulness of systems and complexity approaches to tackle the sustainability challenges facing the organisations and governments in the twenty-first century, less is clear regarding the way such approaches can inspire new ways of governance for sustainability. The purpose of this paper is to progress ongoing research using the Viable System Model (VSM) as a meta-language to facilitate long-term sustainability in business, communities and societies, using the “Methodology to support self-transformation”, by focusing on ways of learning about governance for sustainability. Design/methodology/approach – It summarises core self-governance challenges for long-term sustainability, and the organisational capabilities required to face them, at the “Framework for Assessing Sustainable Governance”. This tool is then used to analyse capabilities for governance for sustainability at three real situations where the mentioned Methodology inspired bottom up processes of self-organisation. It analyses the transformations decided from each organisation, in terms of capabilities for sustainable governance, using the suggested Framework. Findings – Core technical lessons learned from using the framework are discussed, include the usefulness of using a unified language and tool when studying governance for sustainability in differing types and scales of case study organisations. Research limitations/implications – As with other exploratory research, it reckons the convenience for further development and testing of the proposed tools to improve their reliability and robustness. Practical implications – A final conclusion suggests that the suggested tools offer a useful heuristic path to learn about governance for sustainability, from a VSM perspective; the learning from each organisational self-transformation regarding governance for sustainability is insightful for policy and strategy design and evaluation; in particular the possibility of comparing situations from different scales and types of organisations. Originality/value – There is very little coherence in the governance literature and the field of governance for sustainability is an emerging field. This piece of exploratory research is valuable as it presents an effective tool to learn about governance for sustainability, based in the “Methodology for Self-Transformation”; and offers reflexions on applications of the methodology and the tool, that contribute to clarify the meaning of governance for sustainability in practice, in organisations from different scales and types
    • …
    corecore