6 research outputs found

    Further analysis of stability of uncertain neural networks with multiple time delays

    Get PDF
    This paper studies the robust stability of uncertain neural networks with multiple time delays with respect to the class of nondecreasing activation functions. By using the Lyapunov functional and homeomorphism mapping theorems, we derive a new delay-independent sufficient condition the existence, uniqueness, and global asymptotic stability of the equilibrium point for delayed neural networks with uncertain network parameters. The condition obtained for the robust stability establishes a matrix-norm relationship between the network parameters of the neural system, and therefore it can easily be verified. We also present some constructive numerical examples to compare the proposed result with results in the previously published corresponding literature. These comparative examples show that our new condition can be considered as an alternative result to the previous corresponding literature results as it defines a new set of network parameters ensuring the robust stability of delayed neural networks.Publisher's Versio

    Finite-Time Combination-Combination Synchronization for Hyperchaotic Systems

    Get PDF

    Dissipativity Analysis and Synthesis for a Class of Nonlinear Stochastic Impulsive Systems

    Get PDF
    The dissipativity analysis and control problems for a class of nonlinear stochastic impulsive systems (NSISs) are studied. The systems are subject to the nonlinear disturbance, stochastic disturbance, and impulsive effects, which often exist in a wide variety of industrial processes and the sources of instability. Our aim is to analyse the dissipativity and to design the state-feedback controller and impulsive controller based on the dissipativity such that the nonlinear stochastic impulsive systems are stochastic stable and strictly (Q,S,R)-dissipative. The sufficient conditions are obtained in terms of linear matrix inequality (LMI), and a numerical example with simulation is given to show the correctness of the derived results and the effectiveness of the proposed method

    Synchrony and bifurcations in coupled dynamical systems and effects of time delay

    Get PDF
    Dynamik auf Netzwerken ist ein mathematisches Feld, das in den letzten Jahrzehnten schnell gewachsen ist und Anwendungen in zahlreichen Disziplinen wie z.B. Physik, Biologie und Soziologie findet. Die Funktion vieler Netzwerke hĂ€ngt von der FĂ€higkeit ab, die Elemente des Netzwerkes zu synchronisieren. Mit anderen Worten, die Existenz und die transversale StabilitĂ€t der synchronen Mannigfaltigkeit sind zentrale Eigenschaften. Erst seit einigen Jahren wird versucht, den verwickelten Zusammenhang zwischen der Kopplungsstruktur und den StabilitĂ€tseigenschaften synchroner ZustĂ€nde zu verstehen. Genau das ist das zentrale Thema dieser Arbeit. ZunĂ€chst prĂ€sentiere ich erste Ergebnisse zur Klassifizierung der Kanten eines gerichteten Netzwerks bezĂŒglich ihrer Bedeutung fĂŒr die StabilitĂ€t des synchronen Zustands. Folgend untersuche ich ein komplexes Verzweigungsszenario in einem gerichteten Ring von Stuart-Landau Oszillatoren und zeige, dass das Szenario persistent ist, wenn dem Netzwerk eine schwach gewichtete Kante hinzugefĂŒgt wird. Daraufhin untersuche ich synchrone ZustĂ€nde in Ringen von Phasenoszillatoren die mit Zeitverzögerung gekoppelt sind. Ich bespreche die Koexistenz synchroner Lösungen und analysiere deren StabilitĂ€t und Verzweigungen. Weiter zeige ich, dass eine Zeitverschiebung genutzt werden kann, um Muster im Ring zu speichern und wiederzuerkennen. Diese Zeitverschiebung untersuche ich daraufhin fĂŒr beliebige Kopplungsstrukturen. Ich zeige, dass invariante Mannigfaltigkeiten des Flusses sowie ihre StabilitĂ€t unter der Zeitverschiebung erhalten bleiben. DarĂŒber hinaus bestimme ich die minimale Anzahl von Zeitverzögerungen, die gebraucht werden, um das System Ă€quivalent zu beschreiben. Schließlich untersuche ich das auffĂ€llige PhĂ€nomen eines nichtstetigen Übergangs zu SynchronizitĂ€t in Klassen großer Zufallsnetzwerke indem ich einen kĂŒrzlich eingefĂŒhrten Zugang zur Beschreibung großer Zufallsnetzwerke auf den Fall zeitverzögerter Kopplungen verallgemeinere.Since a couple of decades, dynamics on networks is a rapidly growing branch of mathematics with applications in various disciplines such as physics, biology or sociology. The functioning of many networks heavily relies on the ability to synchronize the network’s nodes. More precisely, the existence and the transverse stability of the synchronous manifold are essential properties. It was only in the last few years that people tried to understand the entangled relation between the coupling structure of a network, given by a (di-)graph, and the stability properties of synchronous states. This is the central theme of this dissertation. I first present results towards a classification of the links in a directed, diffusive network according to their impact on the stability of synchronization. Then I investigate a complex bifurcation scenario observed in a directed ring of Stuart-Landau oscillators. I show that under the addition of a single weak link, this scenario is persistent. Subsequently, I investigate synchronous patterns in a directed ring of phase oscillators coupled with time delay. I discuss the coexistence of multiple of synchronous solutions and investigate their stability and bifurcations. I apply these results by showing that a certain time-shift transformation can be used in order to employ the ring as a pattern recognition device. Next, I investigate the same time-shift transformation for arbitrary coupling structures in a very general setting. I show that invariant manifolds of the flow together with their stability properties are conserved under the time-shift transformation. Furthermore, I determine the minimal number of delays needed to equivalently describe the system’s dynamics. Finally, I investigate a peculiar phenomenon of non-continuous transition to synchrony observed in certain classes of large random networks, generalizing a recently introduced approach for the description of large random networks to the case of delayed couplings
    corecore