4 research outputs found

    Robustness analysis of fractional order PID for an electrical aerial platform

    Get PDF
    This work was performed to objectively measure and assess the robustness and tracking performance of fractional order of proportional, integral and derivative (FOPID) controller as compared to the conventional PID control. In satellite research and development, the satellite undergoes numerous tests such as thermal, acoustic and vibration tests in the cleanroom environment. However, due to space limitation in the cleanroom and the sensitive components of the satellite, it requires vibration-free, smooth and precise motion when handling the satellite. In addition, measurement interference might occur due to cable routing during procedures or tasks performed by an operator. Unlike the previous work, the robustness analysis of FOPID controller was not systematically conducted. In this paper, the analysis took into account the actuator dynamics, and various tests were considered to measure the robustness of FOPID controller. The designed FOPID controller was implemented on the scissor-type lifting mechanism of motorized adjustable vertical platform (MAVeP) model, and its performance was compared with the traditional PID controller. A comprehensive verification using MATLAB and Solidworks was carried out to generate the model and conduct the analysis. Both controllers were initially tuned using Nichol-Ziegler technique, and the additional FOPID controller parameters was tuned using the Astrom-Hagglund method. From the simulation work, it was found that the FOPID controller’s tracking error was reduced between 10 % - 50 % for the disturbance rejection tests and reference to disturbance ratio (RDR) spectrum was higher as compared to PID. The analysis in this paper was predicted to be the main driver to implement FOPID controller in the complex system in the industry, especially for sensitive material handling and transportation such as satellite

    Global plant characterisation and distribution with evolution and climate

    Get PDF
    Since Arrhenius published seminal work in 1921, research interest in the description of plant traits and grouped characteristics of plant species has grown, underpinning diversity in trophic levels. Geographic exploration and diversity studies prior to and after 1921 culminated in biological, chemical and computer-simulated approaches describing rudiments of growth patterns within dynamic conditions of Earth. This thesis has two parts:- classical theory and multidisciplinary fusion to give mathematical strength to characterising plant species in space and time.Individual plant species occurrences are used to obtain a Species-Area Relationship. The use of both Boolean and logic-based mathematics is then integrated to describe classical methods and propose fuzzy logic control to predict species ordination. Having demonstrated a lack of significance between species and area for data modelled in this thesis a logic based approach is taken. Mamdani and T-S-K fuzzy system stability is verified by application to individual plant occurrences, validated by a multiple interfaced data portal. Quantitative mathematical models are differentiated with a genetic programming approach, enabling visualisation of multi-objective dispersal of plant strategies, plant metabolism and life-forms within the water-energy dynamic of a fixed time-scale scenario. The distributions of plant characteristics are functionally enriched through the use of Gaussian process models. A generic framework of a Geographic Information System is used to visualise distributions and it is noted that such systems can be used to assist in design and implementation of policies. The study has made use of field based data and the application of mathematic methods is shown to be appropriate and generative in the description of characteristics of plant species, with the aim of application of plant strategies, life-forms and photosynthetic types to a global framework. Novel application of fuzzy logic and related mathematic method to plant distribution and characteristics has been shown on a global scale. Quantification of the uncertainty gives novel insight through consequent trophic levels of biological systems, with great relevance to mathematic and geographic subject development. Informative value of Z matrices of plant distribution is increased substantiating sustainability and conservation policy value to ecosystems and human populations dependent upon them for their needs.Key words: sustainability, conservation policy, Boolean and logic-based, fuzzy logic, genetic programming, multi-objective dispersal, strategies, metabolism, life-forms

    Inferential active disturbance rejection control of distillation columns

    Get PDF
    PhD ThesisThe distillation column is an important processing unit in the chemical and oil refining industry. Distillation is the most widely employed separation method in the world’s oil plants, chemical and petrochemical industrial facilities. The main drawback of the technique is high energy consumption, which leads to high production costs. Therefore, distillation columns are required to be controlled close to the desired steady state conditions because of economic incentives. Most industrial distillation columns are currently controlled by conventional multi-loop controllers such as proportional-integral-derivative (PID) controllers, which have several shortcomings such as difficulty coping with sudden set-point jumps, complications due to the integral term (I), and performance degradation due to the effect of noise on the derivative term (D). The control of ill-conditioned and strongly non-linear plants such as high purity distillation needs advanced control schemes for high control performance. This thesis investigates the use of active disturbance rejection control (ADRC) for product composition control in distillation columns. To the author’s knowledge, there are few reported applications of ADRC in the chemical industry. Most ADRC applications are in electrical, robotics and others. Therefore, this research will be the first to apply the ADRC scheme in a common chemical processing unit, and can be considered as a first contribution of this research. Initially, both PI and ADRC schemes are developed and implemented on the Wood–Berry distillation column transfer function model, on a simulated binary distillation column based on a detailed mechanistic model, and on a simulated heat integrated distillation column (HIDiC) based on a detailed mechanistic model. Process reaction curve method and system identification tools are used to obtain the 2×2 multi-input multi-output (MIMO) transfer function of both binary and HIDiC for the purpose of PI tuning where the biggest log-modulus tuning (BLT) method is used. Then, the control performance of ADRC is compared to that of the traditional PI control in terms of set-point tracking and disturbance rejection. The simulation result clearly indicates that the ADRC gives better control performance than PI control in all three case studies. The long time delay associated with product composition analysers in distillation columns such as gas chromatography deteriorates the overall control performance of the ADRC scheme. v To overcome this issue an inferential ADRC scheme is proposed and can be considered as a second contribution of this research. The tray temperatures of distillation columns are used to estimate both the top and bottom product compositions that are difficult to measure on-line without a time delay. Due to the strong correlation that exists in the tray temperature data, principal component regression (PCR) and partial least square (PLS) are used to build the soft sensors, which are then integrated into the ADRC. In order to overcome control offsets caused by the discrepancy between soft sensor estimation and actual compositions measurement, an intermittent mean updating technique is used to correct both the PCR and PLS model predictions. Furthermore, no significant differences were observed from the simulation results in the prediction errors reported by both PCR and PLS. The proposed inferential ADRC scheme shows effective and promising results in dealing with non-linear systems with a large measurement delay, where the ADRC has the ability to accommodate both internal uncertainties and external disturbances by treating the impact from both factors as total disturbances that will then be estimated using the extended state observer (ESO) and cancelled out by the control law. The inferential ADRC control scheme provides tighter product composition control that will lead to reduced energy consumption and hence increase the distillation profitability. A binary distillation column for separating a methanol–water mixture and an HIDiC for separating a benzene–toluene mixture are used to verify the developed inferential ADRC control scheme.Petroleum Development of Oman (PDO) for their generous support and scholarshi
    corecore