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ABSTRACT 

Since Arrhenius published seminal work in 1921, research interest in the description of plant traits 

and grouped characteristics of plant species has grown, underpinning diversity in trophic levels. 

Geographic exploration and diversity studies prior to and after 1921 culminated in biological, 

chemical and computer-simulated approaches describing rudiments of growth patterns within 

dynamic conditions of Earth. This thesis has two parts:- classical theory and multidisciplinary 

fusion to give mathematical strength to characterising plant species in space and time. 

Individual plant species occurrences are used to obtain a Species-Area Relationship. The use of 

both Boolean and logic-based mathematics is then integrated to describe classical methods and 

propose fuzzy logic control to predict species ordination. Having demonstrated a lack of 

significance between species and area for data modelled in this thesis a logic based approach is 

taken. Mamdani and T-S-K fuzzy system stability is verified by application to individual plant 

occurrences, validated by a multiple interfaced data portal.  

Quantitative mathematical models are differentiated with a genetic programming approach, 

enabling visualisation of multi-objective dispersal of plant strategies, plant metabolism and life-

forms within the water-energy dynamic of a fixed time-scale scenario. The distributions of plant 

characteristics are functionally enriched through the use of Gaussian process models. A generic 

framework of a Geographic Information System is used to visualise distributions and it is noted 

that such systems can be used to assist in design and implementation of policies.     

The study has made use of field based data and the application of mathematic methods is shown to 

be appropriate and generative in the description of characteristics of plant species, with the aim of 

application of plant strategies, life-forms and photosynthetic types to a global framework. Novel 

application of fuzzy logic and related mathematic method to plant distribution and characteristics 

has been shown on a global scale. Quantification of the uncertainty gives novel insight through 

consequent trophic levels of biological systems, with great relevance to mathematic and geographic 

subject development.  Informative value of Z matrices of plant distribution is increased 

substantiating sustainability and conservation policy value to ecosystems and human populations 

dependent upon them for their needs. 

Key words: sustainability, conservation policy, Boolean and logic-based, fuzzy logic, genetic 

programming, multi-objective dispersal, strategies, metabolism, life-forms.
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CHAPTER 1 

Introduction 

 

 

 

 

 

 

 

 

1.1 Motivations 

 

Plant characterisation is a multi-disciplinary subject, there being classical/historical and 

modern approaches to the main subject area. Areas of relevance are plant exploration, bio-

geographic and species distribution patterns, qualitative vegetation description, metabolic 

pathways, and plant life-history based strategies. Globally there are ambiguities in 

distribution of species and their functional groups, as many traits of the species and the 

conditions in which they exist exhibit uncertainties in structural and conditional relations 

in time and space.  

Species exist in trophic levels and the main motivation of this study is to describe the 

parameters and external forces acting on species of the primary producing level. Using an 

engineering based technique, stable and robust control systems are crucial to the modelling  
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of any systems elements. Modelling plant species elements and distribution using 

engineering based techniques may reduce uncertainties and enable inferences clarifying the 

importance of plant species in trophic systems and provide structure more prone to analysis 

and prediction than previous methods. Although modelling species on a global level seems 

impossible as there are too many uncertainties and parameters, this study presents a 

simplified model of the global earth system with mathematical, biological and 

geographical foundation (Furze et al., 2013d). In considering the applications of this study 

the author would primarily like to underline that plants are one of the main kingdoms of 

life. They are primary producers and their importance therefore filters through every level 

of research and life existing on the planet by the same principle of trophic levels within 

ecosystems (Kreft et al., 2008; Wright, 1983). Measuring the impact of the global 

characterisation of plants, therefore, may be seen to be an asymptotic exercise. However, 

the following provide some of the benefits in research terms: expanding the knowledge 

base of plant science and furthering demographic studies of areas previously only studied 

from pure numeric estimation with a more systematic foundation. Modelling forwards 

(with experimental use of different scenarios of climatic data) enables an accurate 

prediction of plant distribution with climate change to further add to environmental 

models. Using fuzzy logic in this way reduces error, which may be present in methods 

previously used (Kreft and Jetz, 2007), and further specifies novel categories of plant 

distribution patterns. 

In the design of control systems with structural uncertainties, variable parameters and 

dynamic relations the designer usually tries to minimise the perturbations with the use of a 

detailed mathematical model combined with solid statements of a historical and scientific 

nature in order to form certainties. One approach for this kind of non-linear control design 

is the use of differential methods in order to form closed loop systems. Control algorithms 

and generative mathematic method are key in the description of evolving and dynamic 

conditions in which species and their external influences are based. Such methods 

constantly monitor the relevant data patterns and change the numerical distributions by 

integrating an intuitive nature with a residual knowledge base. 

Species distribution and elements of plant characterisation have been described using 

qualitative bio-geographic methods (MacArthur and Wilson, 1967) and quantitative 

scientific methods (Kraft et al., 2008; Massant et al., 2010). Attempts have been made to  
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present summaries of data within geographic information systems. However the use of 

sophisticated control theory has not been employed.  

The motivation for the research work for this thesis is to characterise primary producing 

elements (plants) of trophic systems thereby revealing keys to sustainability and stability 

of ecological networks within a dynamic system; to define characters of plants under the 

principal descriptors of plant life history strategy (Grime et al., 1995), life-form (Raunkier, 

1934) and metabolic pathway. The author was further motivated to produce a modelling 

framework to determine the numerical distribution of the above within time and space, in 

order to understand and better respond to increasing human, biotic and abiotic pressures 

imposed on  plant species.  

It is the author’s belief that uniting engineering based mathematic technique with bio-

geographic methods reduces uncertainty and provides a predictive ability, which may 

facilitate policy formation at a national and international level. Additionally, the author 

recognises that interdisciplinary unification of mathematic, scientific and qualitative 

methods provides a synergistic function, which generates evolution of knowledge bases 

related to the component disciplines.  

  

1.2 Outline of the thesis 

 

This thesis contains eight chapters. Chapter 1 introduces the thesis. The main body of the 

thesis can be classified into two parts. The first part includes Chapters 2-4, which 

concentrate on theoretical studies and classical approaches. The second part includes 

Chapters 5-7, which each have particular focus dealing with the application of fuzzy logic 

control to describe species patterns, stochastic methods defining life history based 

strategies / life form / metabolism and geographic information system structural capability 

in order to answer research questions and to thereby inform policy formation. Chapter 8 

concludes the thesis. The thesis outline is itemized as follows: 

Chapter 1. The introduction and outline of the thesis. 
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Chapter 2. The literature survey covers classical methods of plant characterisation, 

scientific categorisation and background of control theory to deal with the diverse nature of 

plant elements offering examples of different approaches. 

Chapter 3. The essential knowledge and principal methodology related to the research 

work of this thesis is set out, and some clarification and conceptual definition is given. 

Chapter 4. The classical species area relationship is applied in context and description of 

plant distributions in global locations are given. The deficiency of this approach is shown 

in statistical terms, substantiating the use of subsequent mathematic technique. 

Chapter 5. Fuzzy logic control algorithms are constructed to provide information rich 

modelling of plant species variation, relevant variables are minimised and the stability of 

the algorithms is verified and validated using large scale experimental data. 

Chapter 6. The adaptive fuzzy logic control brought about by Chapter 4 and implemented 

in Chapter 5 is further developed through stochastic processes, which may be used to 

model uncertainty within the utopia plane of primary producers. 

Chapter 7. The application of fuzzy logic and hybrid genetic programming to construct 

geographic information systems is detailed and research questions of life history strategies, 

life-forms and metabolism are answered. Further, the process of geographic information 

system design is used to inform ecological sustainability and policy formation. 

Chapter 8. Research questions are revisited, future research work is proposed and 

conclusions are drawn. 
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1.3 Contributions 

 

The main contributions of this thesis are summarised as follows: 

 

 Subject to a comprehensive literature survey in the research area, concepts and 

definitions of the related subjects are revisited and resolved with critical justifications 

and revisions to improve the descriptions and examples from a novel perspective. 

 

 Classical, qualitative methodology is elucidated in multiple locations and is subjected 

to statistical testing to underline the necessity for quantitative analysis, original use of 

Mamdani and Takagi-Sugeno-Kang rule bases are explained and optimisation methods 

detailed in order to cater for multiple categories of plant elements on a global scale. 

 

 Novel adaptive neural fuzzy logic control systems are designed for named locations 

and the rule bases are minimised to increase efficiency. Following numerical 

simulation and categorisation using validated global climatic data, the fuzzy logic 

schemes are tested in alternative locations in order to illustrate the robustness. 

 

 Control systems are simulated to combine detailed description of high-resolution bio-

geographic data with genetic methods enabling original predictive function within the 

hyper-plane of primary producers. ANFIS and hybrid GA are suggested to inform 

geographic information systems. 

 

 The structural basis of Geographic Information Systems (GIS) is used to query 

dynamic global modelling of plant characteristics, including life-forms and 

metabolism. Original inferential relations to ecological network stability and 

recommendations to national policy formation securing sustainability are made. 
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1.4 Research Questions 

Research questions addressed in this thesis were: 

 RQ. 1. Is it possible to predict the global occurrence of plant species and if so, what 

is the most efficient form of prediction? (Addressed in Chapters 4 and 5). 

 

 RQ. 2. How can the trade off between accuracy and interpretability of predictive 

models be balanced? (Addressed in Chapter 5). 

 

 RQ. 3. What sub-groups of plant characters should we differentiate to give 

adequate informative value to different subject areas in terms of plant 

characterisation? (Addressed in Chapter 6). 

 

 RQ. 4. How are functional groups of plants distributed a) mathematically, b) 

geographically? (Addressed in Chapter 6 and 7). 

 

 

 RQ. 5. Can we make predictions of climatic conditions using the occurrence of 

plant species and if so, how? (Addressed in Chapter 7). 

 

 RQ. 6. Given that we can develop geographic information systems of plant 

characters with a refined mathematical basis, what further conclusions for 

conservation and sustainability policy formation may be made? (Addressed in 

Chapter 7). 

 

 RQ. 7. Is there a required structure of groups of plant species in ecosystems to 

enable stability within a dynamic climatic system, if so, can we use a mathematical 

function to show this? (Addressed in Chapter 7). 

The above research questions are made to give thorough coverage to plant characterisation, 

with evolutionary and climatic relevance, according to the authors motivations for this 

study, answers are given throughout as indicated. Summarisation of research questions is 

made in Chapter 8. 



Introduction                                                                                                                                      CHAPTER 1 

 7 

 

1.5 Published work 

The papers published during the period of my studies at UWE are listed below: 

 

1) J. Furze, Q. Zhu and F. Qiao, ‘Collaborative proposal development towards 

sustainable communities’, Global Education Magazine, Human Rights Day, Issue No. 

6, pp. 28-32, 10 Dec. 2013. 

 

 

2) J. N. Furze, Q. Zhu, F. Qiao and J. Hill, ‘Functional enrichment of utopian distribution 

of plant life-forms’, American Journal of Plant Science, Vol. 4, No. 12A, pp. 37-48, 

2013. 

 

3) J. N. Furze, Q. Zhu, F. Qiao and J. Hill, ‘Utopian exploration of global patterns of 

plant metabolism’, Proceedings of the Fifth International Conference on Modelling, 

Identification & Control (ICMIC 2013), Cairo, Egypt, pp. 47-52, Aug 31
st
-Sept. 3

rd
, 

2013. 

 

4) J. Furze, Q. Zhu and J. Hill, ‘The use of plant characterisation modelling studies to 

substantiate national conservation and sustainability policies’, Global Education 

Magazine, International Day of Democracy, Issue No. 5, pp. 68-75, 15 Sept. 2013. 

 

5) J. N. Furze, Q. Zhu, F. Qiao and J. Hill ‘Linking and implementation of fuzzy logic 

control to ordinate plant strategies’, International Journal of Modelling, Identification 

and Control, Vol. 19, No. 4, pp. 333-342, 2013. 

 

6) J. N. Furze, Q. Zhu, F. Qiao and J. Hill, ‘Mathematic methods to quantify and 

characterise the primary elements of trophic systems’, International Journal of 

Computer Applications in Technology, Vol. 47, No. 4, pp. 314-325, 2013. 

    

7) J. N. Furze, Q. Zhu, F. Qiao and J. Hill, ‘Implementing stochastic distribution within 

the utopia plane of primary producers using a hybrid genetic algorithm’, International 

Journal of Computer Applications in Technology, Vol. 47, No. 1, pp.68-77, 2013. 
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8) J. N. Furze, Q. M. Zhu, F. Qiao and J. Hill, ‘Facilitating description of fuzzy control 

algorithms to ordinate plant species by linking online models’, Proceedings of the 

Fourth International Conference on Modelling, Identification & Control (ICMIC 

2012), Wuhan, China, pp. 933-938, June 24-26, 2012. 

 

9) J. Furze, J. Hill, Q. M. Zhu and F. Qiao, ‘Algorithms for the characterisation of plant 

strategy patterns on a global scale’, American Journal of Geographic Information 

Systems, Vol. 1, No. 3, pp. 72-99, 2012. 

 

10) J. Furze, Q. M. Zhu, F. Qiao and J. Hill,  ‘Species area relations and information rich 

modelling of plant species variation’, Proceedings of the 17
th

 International Conference 

on Automation and Computing (ICAC), pp. 63-68, Sept. 10, 2011. 
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CHAPTER 2 

Literature survey 

 

 

 

 

 

 

 

2.1 Introduction 

 

The nature of plant characterisation is multidisciplinary, consisting of different subject 

areas that are generative in producing new areas of study. Although it would be difficult to 

provide complete reference of all areas that have contributed to progress within the subject, 

the author attempts to provide a balanced view of the areas that are of relevance to ongoing 

research and progress within the subject. This chapter is important because it presents a 

clear picture of the frontier for research work and justifies the necessity for potential 

concept/technique development in the thesis. 

 

Plant characterisation originated in geographic exploration of plants. Alexander von 

Humboldt (1769-1859) published on botany and geography, founding biogeography itself 

(Wallace, 1878). Humboldt was one of the first to describe the increase in species richness 

towards the equator (Humboldt, 1806), the ‘latitudinal gradient’ as it later became known 

(Humboldt, 1808; Rosenzweig, 1995). Humboldt (1845-1858) was the first to identify the  
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Chocó region and Andean forests of Columbia, South America as one of the mega centres 

of plant diversity: 

 

‘Die dem Äquator nahe Gebirgsgegend ... von Neugranada [today: Columbia] ... ist der 

Teil der Oberfläche unseres Planeten, wo im engsten Raum die Mannigfaltigkeit der 

Natureindrücke [today: biodiversity] ihr Maximum erreicht’ [Humboldt (1845), p. 12]. 

 

(English translation by Otté (1860, p. 10): ’The countries bordering on the equator [meant 

is the present-day country of Colombia] possess another advantage ... This portion of the 

surface of the globe affords in the smallest space the greatest possible variety of 

impressions from the contemplation of nature [today: biodiversity]’ (Barthlott et al, 2005). 

 

Humboldt (1808) hypothesized explanations for this diversity including complex 

topography and the variety of suitable climatic conditions in the Chocó region. He made 

the statement that plant richness declines at higher latitudes due to the fact that many 

species are frost intolerant and may not survive in the comparatively cooler temperatures 

of temperate zone winters, substantiating the water-energy dynamic (Wright, 1983). 

Wright continued that plant productivity is limited primarily by energy from the sun and 

water availability. He added, however, that the solar energy that transfers through each 

trophic level is what constrains richness as opposed to the total energy within a geographic 

area (Hawkins, 2003; Jetz et al., 2009; Wright, 1983). 

Addressing these issues, this chapter is organised as follows: species richness distributions 

and bio-geographical approaches are outlined in section 2.2. Life-form categorisation and 

plant life-history strategies are detailed in section 2.3. The use of computer generated 

modelling of plant strategies is covered in section 2.4. Quantitative methods of pattern 

identification are explored in section 2.5, with an elaboration of fuzzy logic, genetic 

algorithms and the fusion of these two methods included in subsections. Knowledge 

guidance underpinning intuition in evolving systems of plant strategy estimation is laid out  

in section 2.6 and the literature survey is summarised in section 2.8.  
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2.2 Plant richness distribution and bio-geography 

 

 

Barthlott (1996) used the term geo-diversity to describe the reasoning behind plant 

distribution patterns, geo-diversity being the variety of earth materials and processes that 

make up and shape a specific area of the Earth itself. Estimations of species numbers and 

their fundamental descriptions were greatly enhanced by the work of Russian geneticist 

Nikolay Vavilov (1926), his major work being on the ‘Centres of Cultivated Plant 

Origins’. Vavilov covered India, China, Indo-Malaya, Central Asia, the Mediterranean, the 

Near East, Ethiopia, South Mexico/Central America, and South America. The work of 

Vavilov provided the basis for a great Russian tradition, with the quantitative nature of his 

genetic approach facilitating later thinking on diversity mapping (Barthlott et al. 1996; 

Barthlott et al. 2005; Malyshev, 1975; Wulff, 1935). 

 

There are two main approaches to producing maps of species richness; these are taxon and 

inventory based. The more accurate of the two approaches is taxon based, being maps of a 

species or higher taxon compiled from detailed sources of distributional information. The 

information may be gained from gridded maps, locality data from natural history 

collections or from expert drawn ‘polygon’ maps (Barthlott et al., 2007). The most detailed 

taxon based maps may extend to include field data of a particular species or group of 

species and in some cases this may include every single individual within the studied area. 

In inventory based mapping summary data of the floras of different countries or areas 

(geographic units) have been used in analyses (Mutke and Barthlott, 2005). 

 

The methods of Barthlott and his group have become key in the estimation of numbers of 

species and their mapping in different areas. Recently, Barthlott has seminally published 

on numbers of plant species on a global scale (Barthlott et al. 2005). This work showed 

great progression from the times of Arrhenius and his expression of the power model of the 

species-area relationship (Arrhenius, 1921).  

 

Barthlott proposed that data gaps in the SAR are filled by interpolation using additional 

information on climate, vegetation or geo-diversity (Barthlott et al., 2005; Barthlott et al., 

2007; Kreft and Jetz, 2007; Sommer et al., 2010). The standard area used for species 
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number estimation, is 10000km
2
. Surveys are typically carried out in measured areas 

(usually square) called quadrats. Quadrat size varies with the type of vegetation. The size 

of the measured area doubles until no further new species are found. The most effective 

size following this method in Barthlott et al. papers above was 10000km
2
 when measuring 

vegetation on a global scale. Numbers of species at this resolution were measured in 

thousands. The beauty of Barthlott’s approach was that it enabled description of areas on a 

global scale in terms of diversity. In a series of papers, progressing to the present day, 

members of the group of the Institute for Biodiversity of Plants, at the University of Bonn 

in Nees, Germany, where Barthlott is located, described ‘diversity zones’ (DZ). Indeed, 

Barthlott et al. (2005) proposed a leading description of over twenty different locations, 

covering description of the zones in which over 3000 species/10000km
2
 were found. The 

most prominent climatic, geologic and floristic features of the 20 diversity zones (DZ) 

were given. Areas within DZ 8-10 were detailed, providing an invaluable reference, which 

is made use of in this study. Increasingly advanced methods are used to monitor plant 

diversity and its interaction with various patterns that are present at a global scale. The top 

5 centres of diversity were described as those that have greater than 5000 species per 

10000km
2
 (DZ 10). Examples were Costa Rica-Chocó, Tropical Eastern Andes, Atlantic 

Brazil, Northern Borneo, and New Guinea (Barthlott et al., 2005; Mutke et al., 2010). 

 

The work of Barthlott, and many others, can be said to be foremost in the development of 

geographic information systems (GIS). A GIS is any system that captures and summarises 

information about any geographic area (Trauth, 2006). Work on species distribution 

mapping therefore describes the remit of GIS. Today GIS systems are increasingly 

complex and may store and utilise vast amounts of information of many qualitative and 

quantitative types for species. One of the foremost ecological systems stored and updated 

electronically by multiple interfaces (users) is the Global Biodiversity Information Facility 

(GBIF).  

 

Global biodiversity mapping is of great importance in the setting of conservation priorities. 

The assessment of species richness and endemism has had great impact on the setting of 

conservation objectives (Soosairaj et al., 2007). Endemism is a value of the extent to which 

a species originates from a specific area. Endemism is often strongly positively correlated 

with species richness, although in island situations there are instances of there being no 

relationship. The likely explanation for this is that the isolated nature of islands puts more 

genetic pressure on species to develop, which may have resulted in high levels of species 
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suited only to the conditions of the island (Kier et al., 2009). Whatever the nature of the 

relationship between endemism and species richness, it was seen as a truism that studies of 

endemism have great value in assessing relationships between and within species groups 

(Kreft et al., 2006) and, further, the effect of land use changes on species distribution 

(Barthlott et al. 2005).  In an analysis of plant distribution and floristic knowledge it has 

been found that land-use change (‘the human footprint’) is very rarely positively associated 

with species richness (Kier et al. 2005). The analysis of species richness on islands was 

particularly useful in identifying environmental determinants, equilibrium theory and the 

high level of significance of the water-energy dynamic on biodiversity patterns per se 

(Kreft et al. 2008; Mutke and Barthlott, 2005). This is a currently developing field.  

 

Areas with extremely high levels of diversity in the equatorial regions (particularly in 

South America) were also of great use in assessing the nature of the factors that drive 

diversity due to the unique combinations of water and energy related factors. Such 

locations contained species within complex ecological (e.g. neophytic) relationships and 

extraordinary high levels of growth (Bass et al., 2010; Gentry and Dodson, 1987; Kreft et 

al., 2004; Kreft and Jetz, 2007; Silvera et al., 2009). It is difficult to measure the great 

contribution that studies in these areas have had, both on the people of the areas and the 

protection status of species within the areas. Such areas have become increasingly 

vulnerable to human development due to the high levels of species richness and variation 

in all the major kingdom groups there and also due to the mineral (e.g. fossil fuels, oil) 

reserves  found there (Bass et al., 2010).  

 

There was much evidence to substantiate a mid-elevation rise in diversity found in neo-

tropical areas. This ‘burst’ of diversity was found within ‘cloud forests’ in tropical 

montane regions, characteristically over the midpoint of increasing incline (Gentry and 

Dodson, 1987;   per et al., 2004). This phenomenon further contributed to the 

significance of the water-energy dynamic on plant diversity and adaptive radiation 

evolutionary patterns (Silvera et al., 2009). 
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2.3 Qualitative plant life-form description 

 

It was a remarkable coincidence that at roughly the same time as Wulff (1935) was making 

great progress in the mapping of species on global scale, a Danish Botanist called Raunkier 

(1934) was advancing the theory of describing plant form over different geographic 

patterns. 

  

It is incredible that such an early theory, which appears to remain for the most part in its 

original state, is still of great relevance today in descriptions of plant communities. 

Gradients are often analysed and shown to have significantly different proportions of 

Raunkier life-forms. The latitudinal gradient has recently been restated in terms of plant 

life-form differing across Burkina Faso (Schmidt et al. 2005), a study in which a 

combination of field and herbarium data were used for increased accuracy. In the drier 

areas of northern Burkina Faso the number of therophytes was seen to be highest; towards 

the more humid southerly areas the number of hemicryptohytes and phanerophytes 

increased. The categorisation shows its flexibility and robust quality for inferring climatic 

data when it was again used across the Himalayas in Eastern Nepal (Bhatterai and Vetaas, 

2003). Variation was shown along a subtropical gradient, highlighting the importance of 

water and energy in the distribution and plant species richness of such areas. This thesis 

makes great use of displaying results in 3 dimensions in order that the above effect can be 

clearly visualised, quantified and differentiated. Dimensions of x, y and z planes are 

proposed to stress the water-energy dynamic effect. 

 

The classification of Raunkier can be described as qualitative. A categorisation more 

dependent on robust numerical partitions was formed by Ellenberg (1991). Ellenberg 

distinguished 7 major scales on which to define the relationship between the vegetation 

and the surrounding climate. This was originally undertaken across mid-European areas. 

The categories were as follows: temperature, continentality, light, moisture, reaction (soil 

acidity), nitrogen, salt. The main basis of the values is a species’ realized ecological niche. 

However, mainly due to the geographic climatic variance there was a difficulty in 

transferability across different areas. In a recent paper it was found that Ellenberg values 

may be used to monitor environmental change, though transfer from one area to another 

required a strict algorithmic approach. The factor of continentality must be left out in such  
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cases, as it was difficult to transfer due to climatic patterns in effect across large bodies of 

land such as Europe and not across smaller islands such as the United Kingdom (Hill et al., 

2000). The method of Hill et al. (2000) was, in summary, a two way weighted averaging 

followed by a local regression of values.  

 

Using the method of Hill et al. (2000) it was possible to repredict values from a British 

sample. However, discrepancies arise between the values obtained from the study of Hill 

as compared to Ellenberg. These were due to different ecological requirements of the 

species measured, differences in microhabitats of the species, sampling error (due to 

human bias for homogenous sample areas), including species that were not closely 

associated and too large a sample area being used resultantly misleading values were 

obtained. Indeed, there were great problems with linking indicator values to direct 

measurements, particularly where a range of habitats or a large number of species were 

being measured (Hill et al., 2000). Difficulties were due to a shift in species behaviour 

across environmental gradients. A different scale may be used or refined definition to the 

same scale. Competition may be seen to vary in different environments. Additionally, 

species may be selected differently across different habitat types (Godefroid and Dana, 

2007). Massant et al. (2009) combined GIS with an extrapolation of plant strategy values 

on a scale larger than 50m
2
, made use of graph analysis to determine the spatial 

aggregation of strategies, logistic regression and elegantly used Ellenberg values in 

discussion of the differences between vegetation structure and strengthened the argument 

for plant strategies (Massant et al., 2009). The latter study also made use of conventional 

Boolean statistics in order to differentiate between the biotypes of plant strategies. Plant 

strategies are further discussed in the next section. 

 

2.3.1 Plant life-history strategies and continuums 

 

Plant strategies were based on plants’ life history descriptions (Grime, 1979). It was stated 

‘A plant strategy may be defined as a grouping of similar or analogous genetic 

characteristics which recurs widely among species or populations, such that they show 

similarities in ecology’ [Grime et al. (1995), p. 15]. The main categories are: Competitors 

(C), Stress-tolerating (S) and Ruderal (R) species.  
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The environment may infer the strategy and vice versa. Furthermore, in a description of the 

usefulness of plant strategy it was stated “Understanding the distribution of plant species 

across environmental gradients requires bringing theories together regarding the 

construction of plants, as well as their interactions with the environment, and the assembly 

of communities” [Craine (2005), p. 1041]. The possible flaws and merits of the plant 

strategy theories of Grime and Tilman, were given full discussion by Craine (2005; 2007). 

Craine recognised that both authors have developed exemplary theories regarding natural 

selection, the strategies of plants and the functioning of ecosystems. The question of 

nutrient availability and resource allocation (light) was key in Craine’s critique of Grime’s 

strategies. Craine accepted that high nutrient availability enables the dominance of C 

strategy, and low nutrient availability enabled the dominance of S strategists. Craine 

considered that Grime’s theory does not cater for low nutrient supply at constant rates, 

rather he recognised that a spectrum of the strategies exists. The traits of species of each 

strategy allowed more than one strategy to be adopted at highly variable nutrient resource 

rates. Considering S strategy adaptability to low levels of light, Craine stated that amongst 

certain groups of species S strategies alternatively be stated as C strategists due to the fact 

that species more tolerant to low levels of light were, in fact, better competitors in relative 

terms. Craine (2007) limited his arguments of Grime’s strategies and did not consider the 

mixture of strategies that clearly occur, especially given varying levels of water and energy 

factors. This thesis concentrates on the above matter in Chapter 5 answering RQ 1 and 2. 

Craine (2007) criticised Tilman’s strategy theory as having placing too much importance 

on modelled strategies and did not recognise that Tilman provides sufficient evidence in 

support of his models. Craine (2007) did recognise that future paradigms of strategies must 

combine elements of both Grime and Tilman, which is what we saw in the development of 

Massant et al. (2009) and this thesis progresses this development yet further in order to 

predict the numbers of species in strategy based environments.   

 

One of the drawbacks of strategies in the classical form is the difficulty/complexity with 

which plants are ordinated into each of the different types, making the categorisation 

sometimes time consuming and impractical when applied to large numbers of species. For 

example, Grime et al. (1995) listed 20 characteristics of the three strategies that have 

proved useful in classifying plants: main groups included types of morphology (including 

life-forms), elements of specific life history, physiological descriptions of growth rate 

(including photosynthetic mechanisms) and miscellaneous elements (such as litter 

description, palatability to other unspecialized herbivores and DNA content, e.g. numbers  
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of chromosomes, numbers of sets of chromosomes). Some or all of these factors may vary 

in different environments, requiring that the criteria for plant strategy characterisation are 

clearly stated in the specific studies where it is applied (Grime et al., 1995; Hodgson et al., 

1999; Kraft et al., 2008; Massant et al., 2009; Mustard et al., 2003). 

 

In accordance with the original definition of Grime et al. (1995) it was logical to attempt or 

to predict specific definition within the patterns of plant species as genetic characteristics 

are distributed in this way (Hunt and Colasanti, 2007). This was made use of by Massant et 

al. (2009), where spatial patterns are considered on a meso scale (larger than 50 m x 50 m). 

Clustering of the strategies was found which was then explained using available 

environmental factors. In an aggregated pattern, the strategies showed non-random and 

unequal distribution. Using multi-variate statistical methods, ‘clouds’ of data were shown, 

which indicated the formation of definite ‘biotopes’ (areas in which certain strategies 

predominate). Biotopes were seen to form both in accordance with habitat and disturbance 

(e.g. high competitive values indicated competitive (C) biotopes found under pine; stress 

tolerant plants (S biotopes) were found under mixed oak-beech and pure beech stands of 

100 to 150 years old; and ruderal plants (R biotopes) were found nearest roads). Detrended 

component analysis should be employed with caution when used with environmental data 

(Grime et al., 1995) due to the ‘arching effect’ of data trends on the resulting analysis. 

Massant et al. (2009) also relied on several methods of analysis (variance values of C, R 

and S, with defined measurement positions of samples, logistic regression giving 

probability of C, R and S, calculation of weighted averages, rank order of Ellenberg 

values) before making their conclusions. The work provided a useful linear interpolation of 

plant strategy, converting into 3 dimensions: C = (10,0,0); S = (0,10,0); R  = 

(0,0,10); in intermediates S-R, C-S-R, C/C-S-R, etc. the C-S-R values sum to 10.  

 

On consideration of Grime’s strategies in Quercus cerris L. var. cerris woodland in 

Samsun, northern Turkey, Kilinç et al. (2010) stated that the categorisation was considered 

appropriate as habitat diversity and environmental factors were present in different 

combinations, equating to various functional modifications in plants. The study found that 

plant species conformed to definite strategies and it further confirmed that plant traits are 

subject to key factors of competition and disturbance in their selection. However, using the 

classical predictor values described by Hodgson et al. (1999) was not appropriate for 

Ruscus aculeatus due to the stem being the photosynthetic organ as opposed to the leaf 

(which was used in the calculation for other species). Species which store large amounts of  
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water in their leaves may also be mis-classified due to the classification requiring 

calculation of specific leaf area and leaf dry matter. The problem also exists for species 

adapted to live in very shaded and high salt environments. This is also in accordance with 

the conclusions of Hodgson et al. (1999) and it was recommended that future application 

of strategies should be by different calculation using more robust methods (Kilinç et al., 

2010).  

 

Allowing for progression of the theory as identified by Craine (2005; 2007), and adjusting 

methods or combining analysis as in Massant (2009), Kilinç et al. (2010) showed that 

further application of plant strategies is a powerful approach in describing vegetation at a 

range of scales. The idea of plant strategies is a very elegant approach that may be seen as 

logical, compared with another approach which categorised strategies of plants and other 

species, the rK strategy theory of MacArthur and Wilson (1967). 

  

The basis of the rK selection theory was that evolutionary pressures work in two 

directions, allowing two ends to the selection continuum (MacArthur and Wilson, 1967). 

In unstable or unpredictable environments the ability to reproduce quickly and with many 

offspring (seed and or asexual propagules in the case of plants) is important – such species 

were termed r-strategists. Though they have a high probability of reproduction, r-strategists 

were poor competitors, as there is little advantage to competing with others due to the 

changing environment. Typical traits of r-selection were short life span, early onset of 

breeding, high fertility, early onset of maturity, short generation time and poor maternal 

quality. In terms of Grime’s strategy, r-strategists may be described as being ruderal (R) 

species. In diverse, stable environments the ability to compete was more important as there 

were available but limited resources, hence K-strategists existed in higher proportions. 

Populations with more K-strategists were described as being closer to their carrying 

capacity (or in a state of climax). Organisms with K-selected traits were typically large and 

had lengthy life spans or extended generation time. In terms of Grime’s strategy,  -

strategists may be described as being competitive (C) species. It was a logical progression 

to recognize that there is an rK continuum with some species having elements of r and K 

selection. Although rK selection theory was originally developed in the context of bio-

geographical patterns of species distribution on islands (MacArthur and Wilson, 1967, 

Simberloff, 1974), it is possible to make use of the theory in many ecological models and 

population studies. Knowledge and recognition of the rK continuum is often causal, it 

being fundamental in the distribution of evolutionary patterns. Various authors have made  
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use of Grime’s theory in simulation modelling, although the application of similar models 

in the context of rK is one that was useful in current (and future) distribution prediction 

(Barreto, 2008), and is developed in this thesis. Simulations of strategies are discussed in 

the following section. 

 

2.4 Computer generated plant strategy modelling 

 

Mustard et al. (2003) recognised that 3 main strategies exist for plants, as proposed and 

supported by Grime et al. (1995), and they acknowledged that environmental factors 

correlate strongly with the main axes of strategy variation (resources and disturbance). 

However Mustard et al. (2003) continued in their analysis and concluded that the nature of 

predictability for evolutionary outcome was as yet undefined. Increased definition may 

help to assert the primary drivers of plant strategy variation. Mustard et al. (2003) studied 

the evolution of model plant populations in environments, the object of their study was to 

determine whether the previously described plant strategies would evolve, and to ascertain 

whether the pattern was consistent with previously described theoretical and field 

evidence. After simulating  nitrogen availability and disturbance frequency alone, they 

observed the emergence of 3 distinct strategies.  

 

The virtual plant population model of Mustard et al. (2003) was set up in the following 

way: A computer generated spatial array constituted the virtual environment in which a 

mutable model of single plant growth (MSPM) was the second part of the model. In the 

virtual environment the ‘plants’ were iterated through constant plant growth with constant 

variables. In a parameter-rich, complex model plant traits developed, being confined to 

competition for space, light and nitrogen. All other potentially limiting factors such as 

herbivory, ‘biomechanical’ constraints and water and temperature variation were excluded 

from the model. Thus, the simulated plants that evolved differed only in their life history 

and ability to capture resources. Simple patterns were imposed upon the plants by not 

allowing them to combine sexually but to produce seeds asexually. Each trait mutated 

independently, with no genetic linkage between traits assumed. In the above model there 

were 29 mutable parameters/plastic responses. These can be seen as those which were 

measured to distinguish plant strategy, compared to the 20 that were provided as 

measurement criteria by Grime et al. (1995). Mustard et al. (2003) set the probability of  
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mutation such that 1/29 of the traits mutated for every new seed produced. Structurally, the 

model plants consisted of a stem, leaves and nine roots all determined by specified 

mathematical relationships. The model simulated natural selection for plant strategy and 

resulted in improved reproductive performance in the simulated environment. The model 

developed was therefore biased towards r or ruderal selection due to the exclusion of the 

other limiting factors listed above. However, Mustard et al. (2003) were able to suggest 

that plant strategies emerge in changing conditions of resources and disturbance. They 

provided a highly valid modelling tool that could be made use of in the future to indicate 

different features of populations over time. 

  

The use of computer modelling as a tool to monitor plant growth was further developed by 

Hunt and Colasanti (2007). They set the aim of identifying the ‘centre of organization’ of 

plants in response to environmental stimuli. To ascertain whether plants can be self-

assembling, Hunt and Colasanti proposed the use of a cellular automation (CA) model of 

plant growth, comprised of identical ‘modules’ making up branching structures of the 

whole plant. The modular activity was driven by morphological, physiological and 

reproductive rule-sets, which were derived from comparative plant ecology. 

Experimentation with the virtual plants showed a wide range of whole plant, population 

and community level responses. Impressively, it is concluded that a C-S-R version of the 

CA model simulated the most essential properties of natural vegetation and its inter-

relationship with environment. Hunt and Colasanti (2007) recognised and defined the 7 

combinations of plant strategies in terms of three groups of factors: morphological, 

physiological and reproductional. CA is currently being used to investigate trophic levels 

beyond the plant environment interface. 

 

A later author, Barreto (2008) carried out work in which the rK continuum was proposed 

to accommodate the seven life history strategies of the C-S-R model of plant life history 

based strategies. Barreto ‘mapped’ primary and secondary strategies of the C-S-R model in 

the linear rK continuum, using an algorithmic approach. The paper made use of the 

calculation of the entropy measure of importance, which calculated the amount of 

organization within data (discussed in a later section) and the concept of geometric 

euclidian proximity to calculate relative proximities. Growth parameters required to set 

growth vectors were established by reference (Brzeziecki and Kienast, 1994) to calculate 

the proximity (p) to archetypes at either end of the continuum (i.e. rp and Kp). For a given 

point in the scale rp+Kp=1, the higher a species Kp, the closer it is to the paradigm of the  
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K strategist. Thus, for the r (ruderal) archetype Kp=0, and for the K (competitive) 

archetype Kp=1 (Barreto, 2008).  

 

Bornhofen and Lattaud (2008) made use of strict definition of Grime (1995) in prescribing 

the evolution of C-S-R strategies in virtual plant communities using artificial life concepts. 

They developed the work carried out by Mustard et al. (2003), using a mutable model of 

single plant growth. Bornhofen and Lattaud (2008) recognized that the model is restricted 

in its parameters and therefore gave only a highly simplified morphology, unable to 

evolve.  

 

To progress, Bornhofen and Lattaud (2008) made use of an alternative approach, moving 

towards the use of ‘L-systems’ (programmed visual systems with defined morphology) in 

evolutionary plant modelling. L-systems (Lindenmayer systems, Lindenmayer (1968)) 

were developed greatly by Damer et al. (1998) in the form of ‘The Nerve Garden’, a 

computer application that allowed users to grow and interact with virtual plant 

communities created in online worlds. Ebner (2006) showed the development of 

competitive aspects of virtual plants in response to light and noted that the use of 

interacting algorithms enabled co-evolution in virtual plant communities. In virtual 

communities, functional structural plant models (FSPM) were a developing form of 

mutable single plant model (MSPM). FSPM combined morphology with physiological 

processes based on artificial life concepts, and produced 3-D architecture combined with 

resource assimilation, flow and allocation. An artificial genome was described as the 

mutable code which has morphological aspects and physiological processes. Similar to a 

real life scenario, the code was acted on by evolution and favoured individuals adapted to 

the selection process (Bornhofen and Lattaud, 2008). Using an ‘L-system alphabet of the 

used plant model’ and a defined environment in which rules are set out for development of 

plant phenotype, genotype and life cycles, experiments were carried out simulating 

evolutionary adaptations in environments with heterogeneous levels of disturbance and 

mineral stress. Propagation dynamics of the resulting population of virtual plants was 

measured, as were physiological and morphological adaptations. Plant strategies were 

visualized using multi-variate analysis of the data.  

 

The results of Bornhofen and Lattaud (2008) were consistent with those of Grime (1995) 

in that ruderal plants showed low maturity (i.e. in response to frequent disturbance early 

seed production took place). Low seed biomass allows production of many seeds. As  



Literature Survey                                                                                                                              CHAPTER 2 

 22 

 

ruderals were evolved with high growth rates, their selection favoured high resource use, 

which accelerated their life cycle. The collection of traits of ruderals also matched the life 

history strategies of r-selected plants (Barreto, 2008; Pianka, 1970). Stress tolerators 

evolved the longest life span, with slow growth and reproduction due to few soil resources.  

 

As well as distinguishing the emergence of the same relationships of plants as in the Grime 

(1995) C-S-R triangle, Bornhofen and Lattaud (2008) were also able to describe the 

morphological forms of the L-system plants and recognized the formation of three distinct 

types. The evolved morphology of competitors included a high stem without branches in 

order to reach light rapidly in crowded environments, and root systems poorly developed 

due to the presence of abundant mineral nutrients. Ruderals showed the most simple, 

condensed morphologies, with poorly developed roots, producing seed as a priority. Stress 

tolerators displayed well developed root systems and variable shoot systems. The 

descriptions of FSPM by Bornhofen and Lattaud (2008) were both quantitative and 

qualitative, and showed their great potential in evolutionary studies at both the population 

and larger scales by integration into adaptive algorithms (Prusinkiewicz and Lindenmayer, 

1990). 

 

L-systems continue to develop in their complexity and capacity to model biological 

systems. For example, Bornhofen et al. (2011) increased the iterative power of their 

original model by producing one that has levels for the individual plant, community and 

wider environment. In brief, the model operated in the following way: Individual 

genotypes with L-system, physiological and life-history parameters gave plant state at a 

defined time. This iterated through the level of the individual and community, and 

interacted with soil nutrients and light in the wider environment. As with the Bornhofen 

and Lattaud (2008) study, the gradients of disturbance and stress intensity were distributed 

over a 5x5 square grid and strategies evolved in patches. Conditions imposed upon the 

‘plants’ were more strictly defined than in Bornhofen and Lattaud (2008) and hence 

Bornhofen et al. (2011) showed more explicit examples of physiology and architecture. 

The work gave examples of the calculations used to determine shoot and root 

compartments in the virtual plants and described the relationship by which carbon and 

nutrients are assimilated and cycle back to the environment. Such equations may be 

applied in future L-systems to model the effects of plant growth in variable environments, 

for example with temperature influencing fixed growth constants and water influencing 

nutrient concentration. 
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2.5 Quantitative pattern identification 

 

When considering large numbers of species in virtual or real-life situations there are 

various methods that can be used to show clustering or grouping patterns. The recent work 

discussed on L-systems by Bornhofen et al. (2011), for example, made use of multi-variate 

principle component analysis. However, it is possible to use alternative, sometimes 

simpler, methods. In reality, use of principle component analysis and detrended 

correspondance analysis may be difficult due to the nature of data being analysed and or 

due to the ‘arching effect’ of continuous variables. In such situations, as in Barreto (2008), 

it was more pertinent to make use of basic clustering methods. One such method, nearest 

neighbour, takes advantage of the pattern of data in their own (geometric) space. Using this 

method the coefficient of squared euclidean distance may be obtained. The coefficient is 

based on the properties of a right-angled triangle, the square on the hypotenuse being equal 

to the sum of the squares on the opposite two sides. Thus, if two or more species occur in 

two or more samples or areas 1 and 2, n, the similarity or ‘distance’ (D) between the 

species in geometric space is defined as: 

 



Di, j  (X i,k  X j ,k )
2

k1

m

                                                                                                 (2.5.1)                                  



Di, j   squared Euclidean distance between quadrats/samples i, j. 



m  number of species 



X i.k   the abundance of the k
th 

species in quadrat/sample i 



X j,k   the abundance of the k
th

 species in quadrat/sample j  

 

Euclidean distance is often made use of in more complex ordination calculations such as 

polar ordination. Geometric calculations were part of the calculation for relative proximity 

(Barreto, 2008).  

 

In GIS systems basic clustering methods such as Moran’s I are used to show 

association/dispersion of species with each other. This can be seen to great effect in Kreft 

and Jetz (2007) where the clustering method was used to show the importance of various 

climatic variables versus the species richness on a global scale. 
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In the novel approaches of the current study, euclidian proximity may be inferred with 

measures of the amount of entropy (organization). Barreto (2008) made use of the 

calculation of entropy between various plant growth related parameters as part of his 

algorithm COMPTO in the calculation of relative proximity values as detailed in sections 

2.3.1 (p. 18) and 2.4 (p. 20). Entropy was first established for use in thermodynamics, but 

in information theory entropy is used as a measure of uncertainty associated with random 

variables. Shannon entropy is a measure of the ‘surprise’ or probability of an event 

occurring. Thus, entropy has found a place in modelling distribution of biological factors 

in ecology (Elith et al., 2011; Phillips et al., 2006). Elith et al. (2011) clearly explained 

how to calculate entropy using mathematical software. Entropy was calculated using the 

species presence data and a combined covariate value obtained from environmental data of 

the region being modelled. This is very useful as previous description such as that of 

Shannon (1948), have great application in machine learning, although are only accessible 

to ecologists through complex statistical software code. Full description was made of the 

process of the calculation in an informed paper and accompanying appendix (Elith et al., 

2011). Key components were defined (e.g. covariates, features and the landscape) and the 

process of model fitting (feature selection, constraints and regularization) was elucidated. 

Case studies were described for a range of both plant and animal species, the models were 

shown and interpretation given. The major use of Elith et al. (2011) is that the process of 

mechanistic species niches is eloquently described using quantitative means. It is 

speculated that such description may make the calculations accessible using alternative 

software platforms (for example, R statistical software or Matlab). This is discussed in 

Chapter 3 of the current study. The possible use of the calculation of entropy, as in Barreto 

et al. (2008) for the approximation of relative proximity matrices on which rK continuums 

may be based, is considered. 

 

2.5.1 Fuzzy logic 

 

The concept of fuzzy logic is most easily considered with respect to fuzzy sets. Fuzzy sets 

were conceived by Lotfi Zadeh, a member of the University of California, Berkely. 

Professor Zadeh (1965) proposed that it is possible to form answers and operate perfectly 

well without concise numerical input, as humans operate under these conditions. It follows, 

therefore, that feedback systems controlling (defining) large operations can be  
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programmed to accept ‘noisy’, or inaccurate input, which would render them a great deal 

more effective and easier to implement than more complex systems. In formal definition of 

fuzzy sets, Professor Zadeh (1965) stated: “Let X be a space of points (objects), with a 

generic element of X denoted by x. Thus X = {x}. Then, a fuzzy set (class) A in X is 

characterized by a membership (characteristic) function ƒA(x) which associates with each 

point in X a real number in the interval [0, 1], with the value of ƒA(x) at x representing the 

‘grade of membership’ of x in A.” 

 

Fuzzy logic can be seen both as a method to control systems or to classify them. The 

beauty of fuzzy logic is that it concentrates on what a system should do rather than trying 

to model how it works. The approach therefore may be seen to be completely devoid of 

semantic definition. The concept of the membership as applied to fuzzy and classical 

(crisp) sets of data is a curve defining how each point in the input space relates (is mapped) 

to a membership value of the set. This may also be termed the degree of membership 

between 0 and 1. The values 0 to 1 are used to describe the degree of certainty that the 

point belongs to the set. Membership function is denoted as µ. The values within fuzzy sets 

may be any value between 0 and 1, whereas the membership function of classical sets is 

more discretely defined as 0 or 1.  

 

Fuzzy sets are often defined using existing mathematical models. Such a mathematical 

model is Gaussian or ‘normal’ distribution. The use of this and other weighted 

distributions was discussed in terms of environmental indices (Silvert et al., 2000; 

Sivanandam et al., 2007). Gaussian distribution was used to great effect when using fuzzy 

logic in biological data (Taheriyoun et al., 2010). The paper by Taheriyoun et al. (2010) is 

very useful to the current author. Although Taheriyoun et al. considered reservoir water 

quality evaluation, they do so in such a way that 3 different classes of water body are 

implicated, using 4 different indicators. A parallel with vegetation distribution is drawn in 

the context of the current study. Competitive, stress tolerant and ruderal types of plant 

strategy could be considered as classes, with the seven possible combinations of these and 

their environments being the membership functions. 

 

At this stage of the review it is pertinent to state that it would be possible to make use of 

the classification latterly given using the Silvert (2000) definition of multiple membership 

function: 
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 /(1) {[1 /(11)]A[2 /(12)]B[3 /13]C...}1/(ABC ...)               (2.5.1.1) 

   

The inception of (2.5.1.1) is rooted in normal distribution, hence, recent developments in 

fuzzy logic included examples that facilitated characterisation of plant species distribution 

patterns (Broekhoven et al., 2007; Herrera, 2005; Nasibov and Peker, 2011; Taheriyoun, 

2010; Wang and Yang, 2010; Wendt et al., 2010). Broekhoven et al. (2007) made use of 

linguistic terms in fuzzy classification in ecology. Herrera provided a useful review of 

genetic-fuzzy systems. Nasibov and Peker (2011) detailed the process by which increasing 

the frequency of observation resulted in an expansive differentiation of membership 

function. Wang and Yang (2010) provided an example of the fusion of objective clustering 

and genetic algorithms to elaborate and investigate data patterns. Wendt et al. (2010) 

detailed how knowledge guidance may be used to estimate and optimise parameters in 

environmental modelling. The methods of these authors demonstrate the power of 

mathematic methods to expand environmental and species information within dynamic 

condition. As such, they are seminal to the author of this thesis and enable formation of the 

novel application fuzzy logic to more than 300 000 plant species. The use of fuzzy logic 

and related methods enable variables used in modelling to be concisely expressed in terms 

of x and y and further expand the informative value of combined objective planes. This 

point is further discussed in the context of genetic algorithms in the following section. 

  

2.5.2 Genetic algorithms 

 

Further methods (commonly in the field of evolutionary computation (EC)) used to 

prescribe patterns of species modelling include the genetic algorithm (GA) for rule set 

prediction (GARP). GARP creates ecological niche models for species, using defined 

points. Probability of the species occurrence can then be mapped elsewhere depending on 

the agreement or rule sets.  GARP is based on genetic algorithms. These were described as 

being searching functions, which generated the best fit to criteria using the genetic 

parameters of evolution and natural selection- inheritance, mutation, selection and 

crossover events (Goldberg, 1989). They were robust, stochastic evolutionary 

computational algorithms (Su et al., 2009). It is possible to calculate the genetic algorithm 

of a defined pattern using statistical software. Cao and Wu (1999) made a concise 

description of the use of genetic algorithm using the statistical software, Matlab. GA are  
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also made use of in the teaching of various computer languages. GA are adaptive 

algorithms for finding the best (global) solution to optimization problems. The stages of 

GA are as follows: start with a population of randomly generated ‘chromosomes’ (not 

actual chromosomes but sequences of defined length)- initialisation. The collection of 

‘chromosomes’ (sequences) then evolve through a form of natural selection. Each iteration 

of selection is known as a generation. The chromosomes are rated for their ‘adaption for 

solutions’ or potential to solve the problem. On the basis of the evaluation a new 

population of sequences is formed using a process of selection. At this point genetic 

processes analogous to crossover and mutation take place. After further selection, given 

the solution is found, an output is given. An evaluation or fitness function must be devised 

for each problem to be solved. Specific solutions are devised, being a sequence or 

chromosome; the evaluation function returns a single numeric value proportional to the 

adaptation of the solution represented by the chromosome or sequence (Cordón et al., 

2004). Populations may go through continual cycles of the GA depending on complexity 

of the population itself and the changing conditions in which it exists. 

 

Many systems and models have been improved using the intuitive nature of genetic 

algorithms.  Examples include the successful estimation of parameters included in a 

biochemically-based model of photosynthesis (Su et al., 2009), climatic parameter 

estimation in terms of quantitative precipitation forecasting (Lee et al., 2009), and the 

wider use of a knowledge guided genetic algorithm for input parameter optimization in 

environmental modelling (Wendt et al., 2010). The latter study used GAs to great effect in 

the elucidation of unpredictable events such as forest fire occurrence.  GAs were seen to 

produce solutions that are as good or better than those found by non-linear curve fitting 

and they also allowed complex problems within populations to be taken into account, 

formulated and solved (Su et al., 2009). GAs hold great potential in future modelling 

applications. Indeed, Lee et al. (2009), studied heavy rainfall in Korea in 2005, quantified 

related variables such as the reduction rate of potential energy for cloud structure and 

filtered numerical stability. They devised a fitness function for the quantitative 

precipitation forecast covering the Korean Peninsula and concluded that optimisation of 

computer-generated data as well as that of physical parameters improved the overall GA 

model performance.   
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2.5.3 Generative fusion of genetic fuzzy systems 

 

Herrera (2005) clearly described linguistic rules that govern fuzzy sets; the ‘IF-THEN’ 

rules are related by the concepts of fuzzy implication and the compositional rule of 

inference. A fuzzy rule based system (FRBS) is made up of a knowledge base (KB) 

including expert information making the linguistic rules, a fuzzification interface to 

transfer crisp data into fuzzy sets and an inference system to use the fuzzy rules with the 

KB in reasoning. Importantly there is also a de-fuzzification interface that translates the 

fuzzy rule action into a real action. Genetic learning systems and an algorithmic approach 

is key in genetic fuzzy systems. Further, there are ‘Michigan’, iterative rule learning (IRL) 

and cooperative-competitive approaches that may facilitate the system. 

 

Two main problems occur when generating a knowledge base in genetic fuzzy rule base 

systems (GFRBSs). Firstly, in taking specification of the ranges (universes of discourse) of 

the data and resolving the number of labels for each linguistic variable, which fuzzy 

memberships are associated to each label. Secondly, it is important to define the number of 

rules and their composition (i.e. which specific label is associated with each linguistic 

variable). Methods of resolving the problems incorporate genetic learning of the rule base, 

genetic tuning and genetic learning of the knowledge base and the database. For complex 

systems there are alternative methods as documented by Cordón et al. (2004). Complex 

methods documented included fuzzy sliding mode control, neural network, neuro-genetic 

fuzzy systems, parallel genetic algorithms, co-operative co-evolutionary algorithms and 

Lamarckian co-adaptation.  

 

An example application of a FRBS was given in Broekhoven et al. (2007), where a genetic 

learning process was made use of to increase the crisp application of linguistic terms used 

in a fuzzy ordered classification. Habitat suitability models were defined for 86 species and 

the information made use of by application of genetic algorithm to present an FRBS. 

Definition of linguistic values was given along with the variables considered in habitats. 

Linguistic values were also shown graphically, providing a useful model for alternative 

applications. Qualitative terms applied are absent, low, moderate and high (Broekhoven et 

al., 2007). Linguistic terms may be optimized with use of entropy, allowing the precise 

statement of a genetic algorithm. The genetic algorithm may be stated to give precise 

description of the membership functions particularly effectively with use of optimization 

intervals for the membership function parameters. The use of binary coded as well as real- 
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coded genetic algorithm may be applied.  The representation of the membership function 

parameters by a binary vector using Gray encoding (Goldberg, 1989) restricts the values 

the parameters can take to a limited set of values which are defined by the upper and lower 

bound of the optimization interval and the length of the binary string. Accuracy of 

allocation of the data points within the  ‘input space’ can be further increased by use of 

weighted averages. The functionality of this approach is shown to great effect, in concise 

statements of ecological network organisation which enabled greater accuracy in analysis 

of ecological relations (Broekhoven et al., 2007; Taheriyoun, 2010). The latter unveils the 

process by which we may extrapolate functions of species and variables within the current 

limits of our knowledge of the processes and also gives us motivation for novel 

investigations of further processes. The novelty of this approach is made use of in this 

study in terms of plant characterisation, further discussed in Chapters 3, 4, 5, 6 and 7.  

  

Fusion of techniques to form ‘hybrid’ methods is seen to be highly productive. One such 

example was recently described forming an iterative fuzzy identification method, which 

hybridized a modified objective clustering method with genetic algorithm (Wang and 

Yang, 2010). The method involved combining the fuzzy c-means (FCM) algorithm. A 

robust, compact fuzzy partition was obtained within the input space, obtained by iteration. 

Resulting parameters were estimated using Kalman filter based algorithm (Angelov and 

Filev, 2004). Combining the methods in this way maximizes the robustness and accuracy 

of the partition. The method was shown to be superior to other methods using an electronic 

simulation example (Wang and Yang, 2010). The method shown with application to a 

continual fuzzy identification used by Angelov and Filev (2004) may have important 

consequences in the present case when used together with more recent methods such as 

those discussed above by Broekhoven et al. (2007). Parts of the essential methods are 

developed in Chapters 3, 5 and 6. Speculatively, the methods will enable concise 

statements to be made which will facilitate future monitoring and greater accuracy of plant 

richness, rudimentary characteristics (plant strategies, life-forms and photosynthetic type), 

clarifying the relationship between antecedent data input and consequent distributions. 
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2.6 Knowledge guidance hybrid systems 

 

The development of rule based (eR) systems may use a summary of the information, in 

terms of the potential of a new data sample (such as accumulated spatial proximity 

information), to trigger the new rule base. Greater generality of the structural changes to 

the data was therefore catered for (Angelov and Filev, 2004). In terms of plant strategy 

estimation, for example, we may state the membership functions in terms of the seven 

environments (Barreto, 2008) and obtain the data for the placement of species within each 

by considering optimization limits (given that the initial number of species is known 

(Broekhoven, 2007)). Using this method we may obtain stochastic matrices, effectively a 

Kp or rK continuum. 

 

Angelov and Filev (2004) gave detailed description of an approach, which may be used 

when a combination of monitored (supervised) and unmonitored data were used. The work 

shows how a rule base and parameters of it evolved with the introduction of new data. 

Initial rule sets and linguistic parameters may be defined as in the Takagi-Sugeno-Kang 

reasoning method. For Gaussian-like anticedent fuzzy sets an important expression was 

given thus defining the distribution:  

 



i, j  e
a[x j xi , j ]

2

: i {1,R} j {1,n}                                                                       (2.6.1) 

 

a = 4/r
2
 and r is a positive constant, which defines the spread of the antecedent and the 

zone of influence of the i
th

 model (radius of the neighbourhood of a data point); too large a 

value of r leads to averaging, too small a value to over fitting (causing distortion of the 

data pattern). The methods of Angelov and Filev (2004) demonstrated an approach 

applicable to complex chaotic patterns. 

 

An alternative approach to dealing with complex data sets was mentioned earlier in the 

section on computer generated modelling of plant strategies. The technique for order 

preference by similarity to ideal solution (TOPSIS) was used effectively in fuzzy systems 

models (Hung and Chen, 2009). TOPSIS was particularly efficient when used in 

combination with an entropy based weighting within ‘intuitionistic’ fuzzy sets (IFS). In 

brief, in TOPSIS the most preferred alternative has the shortest distance (or least) from the  
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positive ideal solution (PIS), and the farthest distance (or greatest) from the negative ideal 

solution (NIS). TOPSIS is simple, rational and easily understood. It was efficiently 

computed and has a great ability to measure relative performance in a simple mathematical 

form (Hung and Chen, 2009). In essence, one may consider TOPSIS as a multiple criteria 

decision making (MCDM) process by clustering data. Its use with entropy calculation may 

thus be seen as complementary.  

 

Combining entropy calculation with TOPSIS requires a six step process using the method 

of Hung and Chen (2009). The steps are detailed using theory and an illustrative example 

with data in the paper. The steps were: construction of an intuitionistic fuzzy matrix; 

determination of the criteria weights using the entropy-based method; construction of the 

weighted intuitionistic fuzzy decision matrix, determination of the intuitionistic fuzzy 

positive ideal solution (IFPIS, A
+
) and intuitionistic fuzzy negative ideal solution (IFNIS, 

A
-
); calculation of the distance measures of each alternative Ai from IFPIS and IFNIS; 

calculation of the relative closeness coefficient (CC) of each alternative and ranking the 

preference order. The illustrated example of Hung and Chen (2009) considered five 

companies with respect to three criteria. The example could easily be extended to 

accommodate seven environments with respect to three criteria (plant strategies) in the 

current study.  

 

An example of the rK continuum was provided by Barreto (2008), as described in a 

previous section. In the approach Barreto (2008) made use of his algorithm COMPTO. He 

combined euclidian proximity with entropy calculations within growth parameters of the 

species he was considering by comparison to previously calculated values (Brzeziecki and 

Kienast, 1994). Barreto (2008) achieved reconciliation of the rK and C-S-R models by 

generating the following values within the rK continuum (0-1): Kp 0.000001-0.142857 

equal to the r3 archetype, ruderal strategy; 0.142858-0.285714 equal to the r2 archetype, 

stress tolerant ruderal strategy; 0.285715-0.428571 equal to the r1 archetype, competitive 

ruderal strategy; 0.428572-0.571428 equal to the rK archetype, competitive strategy; 

0.571429-0.714285 equal to the K1 archetype, competitive stress tolerant ruderal strategy; 

0.714286-0.857142 equal to the K2 archetype, competitive stress tolerant strategy; 

0.857143-0.999999 equal to the K3 archetype, stress tolerant strategy. Baretto’s study 

successfully applied a linear numerical basis to the discrete categories of Grime’s 

strategies. This novel approach allowed unification of Grime’s strategies with Raunkier’s 

life forms. Such a unified categorisation provides substantiation to how strategies, life- 
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forms and photosynthetic type are quantified, the novel application is used at a global scale 

in the current study. 

   

In the current study, as species numbers are known, Broekhoven et al. (2007) provided a 

good simplistic template to follow. However, the author of the present study postulates that 

characterisation of the plant strategies with the example rK continuum given by Barreto et 

al. (2008) may also be used (using values as the fuzzy centres of data for the seven 

environments) and then calibrated for each of the environments under consideration with 

an iterative genetic algorithm approach. An alternative knowledge base may be created, by 

summing species numbers equally allocated across seven possible environments 

(Bornhofen et al., 2011; Bornhofen and Lattaud, 2008; Grime et al., 1995). This approach 

is given further discussion in Chapter 3. 

Climatic data may provide probability of species occurrence (Elith et al., 2011). The 

distributions of each knowledge base may be compared in order to increase the accuracy of 

the solutions by successive iteration (Wendt et al., 2010). Climate data (using data and 

calculated co-variates from Intergovernmental Panel for Climate Change (IPCC), advised 

water/energy factors (Kreft and Jetz, 2007)) will provide the current study with factual 

entropy based optimization values. Applying these values to the equally distributed 

estimated knowledge base with a genetic algorithmic approach, until the number of 

individuals by iteration equals the number in the data samples provided, should produce 

accurate model allocation (Cordón et al., 2004). Insertion of data in the genetic algorithm 

approach takes place during mutation of the sequences (chromosomes) representing the 

individuals. Knowledge guidance may infer a greater probability of mutation on the 

population (Wendt et al., 2010). Furthermore, algorithms can be written to summarise the 

distribution of species into different strategies across the different environments. 

Additional weighting can be placed with use of Euclidian distances, increasing the 

knowledge-guided retrieval of the data, by nearest neighbour, as described in section 2.5, 

or by heterogenous Euclidean overlap measuring the similarity between individual events 

(characterisations) (Wendt et al., 2010). 
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2.7 Summary 

 

In this critical review of global plant characterisation and its distribution over evolution 

and with climate change, the author has attempted to present an overview of progress 

within the subject ranging from work of great historical significance (Humboldt, 1806), 

through computer simulated situations and mathematical model formation to current 

methods of modelling, identification and control previously untested in the specific case of 

global plant characterisation but with great application potential.  

 

Approaches to characterizing current plant distribution may use several methods. There is 

a great choice of future potential methodology, and these are given further consideration in 

Chapters 6-8, Chapter 6 answering RQ. 3 and 4, Chapter 7 resolving RQ. 4, 5, 6 and 7.  

In this thesis adaptive neural fuzzy inference systems (ANFIS) are developed to concisely 

state the ordination of plant characteristics on a global scale. Mathematic method is 

advanced by hybridization of genetic fuzzy systems with use of expert based intuition, and 

explorations into the (Z) hyper-plane of plants are made. The use of mathematics is applied 

to global models in order to answer research questions related to plants, climatic prediction 

and other component disciplines such as plant science, biochemistry and sustainability of 

ecosystems, together with the communities dependent upon them. 
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CHAPTER 3 

Preliminary methodologies 

 

 

 

 

 

 

 

3.1 Introduction 

 

This chapter discusses preliminary methodologies in order to add definition and give 

clarity to the characterisation of plant species. Detail of the data sources used in this thesis 

is also given. 

 

The chapter is structured as follows: 3.2 covers the method by which data have been 

sourced including validation and reasoning for the chosen biodiversity source. The types 

and reasoning for differentiated climatic scenario and topographic data are given and the 

use of high resolution data is justified in this section; section 3.3 outlines image processing 

carried out and its potential application and use in this study. The species area relationship 

is covered in section 3.4; section 3.5 details the process of variable partitioning. Section 

3.6 outlines the background of groups of characters under which plant distribution and 

characterisation is carried out. Section 3.7 introduces the use of fuzzy logic systems, with 

coverage of both Mamdani and the Takagi-Sugeno-Kang approach. A brief explanation of 

the weight of expert intuition in mathematic reasoning for plant characterisation is also 
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outlined in this part. Section 3.8 presents genetic algorithm optimization and hybrid 

genetic programming is detailed. Finally the chapter is summarized in 3.9. 

 

3.2   Data sources  

3.2.1 Validation and reasoning for chosen biodiversity sources 

 

Initially, literature was consulted documenting the areas of greatest plant species numbers. 

There are areas in which more than 3000 species per 10000km
2
 (Diversity Zone (DZ) 8-

10) have been recorded (Barthlott et al., 2005). The representative areas were recorded and 

actual numbers of plant species were sourced from the Global Biodiversity Information 

Facility (GBIF). DZ8-10 areas are made use of in this study due to it being suggested that 

these areas have greatest numbers of species by Barthlott and co-workers. High numbers of 

species’ individual occurrences must be used as they show the greatest impact through 

trophic levels. DZ8-10 areas are most at risk to land use change, inordinate climatic change 

and imbalances within their ecosystems. The author has taken a similar approach to Myers 

(2000), prioritising the areas of greatest richness for study in order to protect, conserve and 

or ensure sustainability in the areas. Effort is made to establish a relative (gradual) 

difference between these areas in Chapter 7. 

 

The GBIF is an international organisation that focuses on making scientific data on 

biodiversity freely available and it exists as a database hosted online with multiple 

interfaces (users and contributors). This source was chosen as it has been statistically 

validated as being the largest available source of biological presence data, being 

representative of the kingdoms it holds (Yesson et al., 2007). Key objectives of the GBIF 

are open sharing of data in order to advance scientific studies and relevant policies for the 

betterment of conservation and sustainability. Individual occurrences of species are 

recorded by field workers of multiple institutions and uploaded to the website with precise 

location details, in some cases accurate to within 2 metres on site. After searching for each 

DZ8-10 area by name, the files containing the names of all plant species recorded as 

present were stored and dated. These files can be said to be a representative picture of 

biodiversity on the date at which the files were stored (Ponder et al, 2001) in terms of 

individual occurrence data. Acknowledgement and reference is given to each contributing 

institution in Appendix 1. 
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Figure 3.2.1 Global Biodiversity Information Facility Map of Mexico 

 

Fig. 3.2.1 is shown as the first step by which data can be obtained from the GBIF. In Fig. 

3.2.1, the occurrence overview of the country of Mexico is shown within 142-62 degrees 

West, 4-44 degrees North. Reference is made to the numbers of all species recorded in the 

location. After obtaining a map of each area to act as an initial indication of its coordinates, 

species recorded in the location are queried and subsequently the kingdom plantae is 

chosen in order to obtain the list of plant species recorded. The lists of individual species 

occurrences for 7 locations (chosen at random) of DZ8-10 used in this thesis are shown 

with reference to their collecting institutions in Appendix 1. The areas were Mexico, 

Guyana, Cuba, Democratic Republic of the Congo, Georgia, Guinea and Macedonia. Data 

for Azerbaijan was also used, in Chapter 6. 

 

3.2.2 Climatic and topographic data sources 

 

Climatic data used in this thesis are of two categories- water related and energy related. 

This choice is made following recent work inferring the geographical importance of water 

and energy in the patterning of species distributions (Hawkins et al., 2003; Sommer et al., 

2010). The data are validated by their use-age through the Intergovernmental Panel on 

Climate Change (IPCC). Data were originally assessed for accuracy and presented by New 

et al. (1999) and are available in both spreadsheet and graphical format at defined 

resolution through the IPCC. 

 

The choice of variables to be considered is listed in Tab. 3.2.2 by category. 
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Table 3.2.2 Water-Energy Dynamic variables (New et al., 1999) 

 

Variable Category 

Cloud cover (CC) Water-Energy 

Ground frost frequency (GFF) Water-Energy 

Maximum Temperature (MaxTemp) Energy 

Mean Temperature (MeanTemp) Energy 

Minimum Temperature (MinTemp) Energy 

Precipitation (P) Water 

Vapour pressure (VP) Water 

Wet day frequency (WDF) Water 

      

Data were collected at regional meteorological stations, collated by the Climatic Research 

Unit of the University of East Anglia, UK and disseminated under different time scale 

scenarios. Quarterly data between 1961-90 of TS2.1 30 year monthly mean observation 

climatology are made use of in this study; as use of these data in this context has been 

validated (Evans et al., 2005), Kreft et al. (2007) have also made use of specific water and 

energy related variables in the identification of rudiments of plant characteristics and 

processes. Throughout the process of modelling, detailed in chapters 4-7, the above 

variables are minimised to enable efficient statements of the water-energy dynamic, due to 

possible co-variability or redundancy in the variables. 

 

It has been well documented that variation in climatic variables corresponds to variation in 

altitude, other elements of topography (aspect, slope), and with regard to species 

distribution (Mitchell and Jones, 2005; Bhatterai and Vetaas, 2003). Measurements of 

altitude are made use of, using first ‘range data’ from the central intelligence agency (CIA) 

with unspecified resolution and, subsequently, enhanced resolution digital elevation model 

(DEM) data from the United States Geological Survey (USGS) in order to illustrate greater 

accuracy in the frameworks presented. These data are given further mention in Subsection 

3.2.3. 
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3.2.3 High-resolution data for enhanced accuracy of modelling 

 

The work for and conclusions drawn from this thesis are based on the results of modelling 

frameworks. It has been well documented that low resolution data may be a useful tool for 

the construction of linguistic models. However, using higher resolution data enables 

enhanced accuracy of a modelling (algorithmic) framework on which analytical models 

can be based (Cleveland and Meystel, 1990; Shackelford and Davis, 2003). 

 

As detailed in subsection 3.2.2, ranges of digital elevation data are made use of in early 

stages of this work (Chapter 4). However, greater accuracy (higher resolution) is required 

for more analytical conclusions, associated with detailed algorithmic frameworks, which 

can be used to chart the (uncertain) distribution of groups of plants and their characters (Su 

et al., 2009; Zadeh, 1973). High resolution DEM data used in this study comprise global 

topography at 30 second / 1 km resolution (GTOPO30). These data are the result of a 

collaborative effort, and are under constant development, the requirements for which are 

summarised by Gesch et al. (1996). GTOPO30 data were accessed from the USGS online 

pages (http://www.usgs.gov/ accessed January, 2012).  

 

The resolution of climatic data used in initial work (Chapter 4) is taken from 30-arc minute 

(50km) grid cells. Later work (Chapters 5-7) uses 10-arc minute (18.5km) grid cells (New 

et al., 1999). The resolutions of the examples given are quoted here. These values may not 

be used unilaterally as the distance equating to 1 arc minute varies with latitudinal and 

longitudinal coordinates due to the shape of the Earth (Haswell, 1920). For enhanced 

accuracy the coordinates of each location are also given. 

 

3.3 Image processing 

 

Rudimentary water and energy climatic and topographic imagery constitute the initial 

knowledge base used for the antecedent modelling framework used in this thesis. Images 

were first extracted from the sources detailed in section 3.2.2, after which they were 

uploaded into the software platform Matlab (Version R2010a ©). Global areas (countries 

of DZ8-10) explored in Chapter 4 were obtained, ‘alpha’ and ‘cdata’ (Matlab Coded) data 

files were generated upon uploading. Images may be plotted from these files.  
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Alternatively, the data for climatic variables may be obtained in spreadsheet format from 

the IPCC website and downloaded in .csv format. After converting to .xls format the data 

may be imported into Matlab and saved as a Matlab file. Subsequently the location of the 

.xls file was used to open the data following Appendix 2.1 entered into the Matlab 

Command Prompt. The example of using ‘Mean Precipitation January 1961-90.xls’ is 

shown in Appendix 2.1. The code method was used to display climatic data of which plots 

were constructed and quantified in order to calculate algorithmic frameworks. 

 

Following code given in Appendix 2.1, and subsequent generation of data files, images 

were displayed as figures for algorithmic analysis as detailed in 3.5 and 3.7. Alternatively, 

further information may be extracted from the graphical figures using the ‘red’, ‘green’, 

‘blue’ balance within the image. Useful application of this information is to construct 

algorithms for characters of species distribution patterns as detailed in section 3.6. 

 

DEM data were extracted using Matlab after uploading the compressed files from the 

source mentioned in section 3.2.3. The 1 km resolution data were outlayed on a global 

scale, there being 33 tiles which cover the Earth. After identifying which tile and area was 

of interest using a graphical user interface within Matlab, brief example code was applied 

in order to display a figure of the chosen region (Appendix 2. 1. 1). This is an efficient 

method of processing data from multiple contributors of the USGS and has great 

informative value for topographic systems (Trauth, [ch. 1], 2006). 

 

Additional programming in Matlab modified the axis of the chosen figure, adding more 

labels onto latitude and longitude, enabling more accurate reading of the coordinates of the 

chosen locations, for example (Appendix 2.1.2).  

 

3.4 The Species-Area relationship 

 

Initial calculations carried out in this thesis on the numbers of plant species in each of the 

identified areas is by the species area relationship (Arrhenius, 1921). 

 



S  cAz                                                                                                                           (3.4.1)
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Where S refers to the number of species; c is an environmental constant specific to 

the area; A refers to the area and z is a taxon specific constant. To estimate what the 

values of c and z are from our data we take logarithms of both sides of the equation: 

 



logS  zlogA logc                                                                                                          (3.4.2) 

 

Equation (3.4.2) is that of a straight line; the constant z is its slope, the constant log c 

is its intercept, log A is the independent variable and log S is the dependent variable.  

 

A positive result in the above indicates that species do indeed increase with area, whilst a 

negative result would indicate that species decrease with area. The significance of the 

resultant weighted least squares regression shown in (3.4.2) is tested using a t-test 

significance at 5% probability indicating a perfect fit. That is the constants and 

independent variable explain the number of species present. The species area relationship 

is applied in the real context of this thesis in Chapter 4. 

 

3.5 Variable partitioning 

 

Variables are described by their probability of occurring. Distributions are defined by 

continuous and discrete classes. It should be noted that in probability theory the spread of 

normal (Gaussian) variation is defined by: 

 

                                                                                                    (3.5.1) 

 

Where µ is the mean of the distribution,  is the standard deviation 
2
 is the variance of 

the distribution and e is the base of the natural logarithm (2.71828). If for example, a 

particular plant’s distribution is defined continuously in the interval a, b, the following 

probability density function integral applies: 

 



Pr[a  X  b]  f (x)dx
a

b

                                                                                              (3.5.2) 

 

Continuous variables may be plotted over a bell shaped curve or parabola. This category of 

distribution is made use of in this thesis in patterning of biotic and abiotic variables used  



f (x) 
1
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e

(x )2
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for the modelling framework of this study.  The derivative of Gaussian or normal deviation 

is the central sample of the variation, which is proportional to the standard deviation or 

greatest incline of the population range of variables under consideration. Gaussian patterns 

are central to the inception of fuzzy techniques (Zadeh, 1965), which are given further 

mention in section 3.7 and applied in Chapter 5. 

 

Discrete variables are a further category of distribution, each vector in a discrete class is 

independent. Discontinuous variables were used to classify defined classes of variation. 

Commonly used discrete distributions include the Poisson distribution, binomial and 

Pareto distributions, which are implemented in later chapters as they show stochastic 

organisation qualities. 

 

The Poisson distribution function is defined in the following form:  

 



f (k;)  Pr(X  k) 
ke

k!
                                                                                          (3.5.3) 

 

Where e is the base of the natural logarithm, k! is the factorial of constant k, 



  is 



T when 

the number of events observed in a specified time interval is 1. 

 

This thesis concentrates on the spread of distribution, which may be transgressed through 

generations of the populations considered, hence binomial, Pareto and other n dimensional 

distributions are most easily discussed with relation to the family of estimation of 

distribution algorithms (EDAs) known as copulas. 

 

Copula theory separates a joint probability distribution function into the component uni-

variate margins of the distribution and a copula which represents the domain of the random 

variables. There are copulas that represent all classes of distribution in probability theory, 

there being Elliptical (Gaussian) copulas and Archimedean (representing classes of 

discontinuous variation). Essentially, the copula distribution may be used to generate the 

distribution of a random variable and identify dependencies between the variables used in 

modelling frameworks via differentiation of the terms contained in their expressions.  

 

Essential notation for definition of copulas (Nelson, 2006): interval I as [0,1], an n 

dimensional copula is a function C from I to I
n
 with the following property: for every  
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u  (u1,u2,...,un ) in I
n
, 



C(u)  0 if at least one vector of u is 0, if all vectors of u are 1 

except uk then 



C(u)  uk .  

 

Gaussian copula is therefore defined: 

 



Cr(u1,u2,...un ) r(
1(u1),

1(u2),...,
1(un))                                                              (3.5.4) 

 

Where 



r  is the multivariate Gaussian distribution with correlation r, 



 1 is the inverse 

function of the standard one dimensional Gaussian distribution function (3.5.2). 

 

Gumbel copula (Gumbel, 1960) is: 

 



G(u)  (logu)G                                                                                                          (3.5.5) 

 

Where 



G  is the generator of the distribution, related to the Laplace transform which may 

be used in differential / inferential equations. 

 

Sklar’s theorem (1959) states that multivariate distribution functions can be expressed as a 

copula function evaluated as a 2 dimensional distribution function. Uni-variate distribution 

functions (e.g. F1,…Fn) can be linked to a multivariate distribution function, H as shown: 

 



H(x1,...,xn) C(F1(x1),...,Fn(xn))                                                                                 (3.5.6) 

  

Elements of the water-energy dynamic, with bi-variate dependency structures (Schölzel 

and Friedrichs, 2008) are pertinently described using copula theory (Gumbel type, (3.5.4)) 

as they may show stochastic distribution in a Pareto Type I / poisson domain as may be 

seen in Chapter 6. 

 

It remains an important point that the most effective manner in which copula distribution 

may be estimated is by an intuitive nature related to its maximum likelihood. Often a 

stepwise process may be carried out in copula theory estimation, and involves partitioning 

of the variables under consideration and derivation of a rule structure (Gaspar et al., 2007; 

Schölzel and Friedrichs, 2008). 
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A criticism of conventional / Boolean mathematics is that the methods used often lead to a 

distorted view of the data. However, operation of logic-based mathematics requires 

operation of set theory, which processes vectorised data using the central premise of the 

distribution pattern shown within the data (Zadeh, 1965). Popular spreads of variation 

include the normal or Gaussian pattern (continuous), dependent on a balance of probability 

as in (3.5.2), or the use of binomial (discrete) functions, which are essentially based on a 

factorial nature (e.g. (3.5.3)) with the natural logarithm of the sample.  

 

It is usual to consider sections of Gaussian distribution as the distribution covers the 

complete range from 0 - ∞ (covering the maximum range of variables considered). 5 

sections are considered here. The variables discussed in subsection 3.2.2 are first allocated 

notation, being A1,…,An. Values were converted to percentage value and equally 

partitioned to enable 5 concise linguistic partitions, after the method shown by Alcala et al. 

(2007). The partitions are shown in Tab. 3.5. 

 

Table 3.5 Separation of variables into quintile partitions 

 

Percentage Range Linguistic Category Notation 

0-20 Low 1 

20-40 Low-Medium 2 

40-60 Medium 3 

60-80 Medium-High 4 

80-100 High 5 

 

The partitions shown in Tab. 3.5 were used to quantify the constituent parts of inference A, 

to create the union which, in combination with variables membership weight, express the 

consequent B (Zadeh, 1965). The framework for the partitioned variables (3.5.7) and 

Laplace transform union (3.5.8) is as follows: 

 

IF A1…n(n) – A1…n(n) THEN B1…n(n,…n)                                                                                                          (3.5.7) 

 

Here, the linguistic connectors IF and THEN are used to unify inferential variables 

(numerically defined from partitioned data) to give the consequent range (numerically 

defined from the knowledge base in subsection 3.2.1). 
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yyA AU /)(                                                                                                                                    (3.5.8) 

 

Where ∫U stands for the union of fuzzy singletons, 



  is the grade of membership in A (or 

y). Candidate groups distributed in characterisation of plant species are given in the 

following subsection. 

 

3.6 Groups to distinguish in plant species characterisation 

 

Plant species are differentiated into the following groups to enable quantitative 

characterisation on a global scale: 1) life-history strategies (Grime et al., 1995); 2) primary 

metabolism (photosynthetic) categories (Keeley and Rundel, 2003; Wang et al., 2012) and 

3) life-form (Raunkier, 1934). 

 

Life-history strategies 

 

Groups of plant life-history strategies (Grime et al., 1995) are as follows: Competitive 

species (C) are fast growing, often aggressive species, with rapid nutrient absorption and 

rapid root and leaf growth. They develop a consolidated growth form with vigorous lateral 

spread above and below ground, thriving in high nutrient soils. Stress-tolerating species (S) 

are slow growing, capturing and retaining scarce resources in a continuously hostile 

environment. Their leaves are long-lived and often heavily defended against predation. 

Ruderal species (R) have a potentially high growth rate within the seedling phase, and 

display early onset of the reproductive phase. The allocation of resources to flowers and 

seeds is suited neither to development of extensive root and shoot systems needed for 

dominance of habitats, nor to highly stressed environments dependent on conservative 

patterns of resource use. Species combine the above described strategies (e.g., C-R, S-R, S-

C and C-S-R), integrating different growth forms to suit the environment.  

 

In a study of the evolution of model plant populations in computer simulated 

environments, where nitrogen availability and disturbance frequency alone were used as 

variables, the evolution of expected plant strategies and patterns proved consistent with 

described theoretical and field evidence (Grime, 1979; Mustard et al., 2003). The 

illustration of plant strategies in computer simulated systems supports the existence of 

patterns on all scales, which may be modelled in real space and time. Barreto (2008)  
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linearly spaced plant species using simulation techniques to obtain the rK (‘Kp’) 

continuum, with seven definite partitions is shown in Fig. 3.6.1. 

 

 

 

Figure 3.6.1 Separation of the rK and C-S-R theories in 2 dimensions (Baretto, 2008) 

 

Fig.  3.6.1 of Baretto’s (2008) 2 dimensional rK and C-S-R reconciliation shows low to 

high Kp value: plants of ruderal (R) strategy were isolated in places of high disturbance 

and productivity; stress tolerant-ruderal plants (S-R) were seen in lightly disturbed habitats 

with low productivity; competitive-ruderal plants (C-R) were present in habitats where 

disturbance brought moderated competition by a relatively low level of stress; competitive 

plants (C or r = K) were found in environments with low disturbance and high 

productivity; competitive-stress tolerant-ruderal plants (C-S-R) were found in 

environments where there was a moderate intensity of stress and disturbance; competitive-

stress tolerating plants (C-S) were found in environments where a moderate intensity of 

stress and a situation of relative non-disturbance existed; stress tolerating plants (S) were 

found in environments where there was low productivity and low disturbance.  
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Figure 3.6.2 C-S-R and rK Strategies in 3 dimensions 

 

An algorithm was combined with the technique for order preference and similarity to ideal 

situation (Barreto, 2008; Hung and Chen, 2009), which effectively reconciled both the rK 

and C-S-R theories (Grime et al., 1995; Raunkier, 1934). Once again, computer simulated 

systems were efficiently used to illustrate plant strategy with a more complex suite of input 

variables (Barreto, 2008; Bornhofen et al., 2011).  

 

Ordination of strategies is applied in Chapter 5. This was carried out to determine the 

result of modelling of strategy characters in accordance with the water-energy dynamic. 

Numerical dispersal of strategies is applied in Chapter 6. 

 

Primary metabolism 

 

Photosynthesis is the primary metabolic process by which plants grow. There are three 

main groups of photosynthesis in plants, C3, C4 and Crassulacean Acid Metabolism 

(CAM). C3 plants have 3 carbon compounds in the first step of photosynthesis, C4 have 4  
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carbon compounds in the first step of the process and CAM plants store carbon in the form 

of an acid before photosynthesis.  

 

C3 plants’ stomata are open during the day, allowing gaseous and water exchange via 

photorespiration (breakdown of sugars formed in photosynthesis, releasing CO2 and H2O). 

Ribulose bis-Carboxylase Oxygenase (RUBISCO) is the enzyme involved in uptake of 

CO2 in C3 photosynthesis. Photosynthesis takes place throughout the leaves of the plants. 

C3 plants represent the largest group of plant species, the process being highly efficient 

under cool and moist conditions (Niu et al., 2005).  

 

C4 plants’ stomata are open during the day. Phosphoenol pruvate (PEP) carboxylase is the 

enzyme involved in uptake of CO2 with RUBISCO processing CO2 in photosynthesis. 

Photosynthesis takes place in specialized Kranz cells, compartmentalized inner layers of 

the leaf. C4 plants photosynthesize faster than C3 plants under circumstances of high 

energy (e.g. light, temperature) and have much lower rates of photorespiration as the 

enzyme RUBISCO is more saturated with CO2 for photosynthesis due to PEP activity. CO2 

uptake is more efficient in C4 plants, coupled with highly efficient water use in 

photosynthesis due to spatial separation. Stomata close, the latter enables less loss of water 

from the plants and hence greater efficiency under warm and drier conditions. They are 

mainly summer annual species, occurring in over 19 plant families (Keeley and Rundel, 

2003; Salisbury and Ross, 1992; Wang et al., 2012). 

 

CAM plants keep their stomata closed during the day, and during both day and night in 

periods when water must be conserved (known as CAM-idle). During CAM-idling 

photosynthesis and photorespiration couple, the oxygen given off in photosynthesis is used 

during respiration and CO2 given off in respiration is used in photosynthesis. CAM-idling 

leads to a build up of toxic compounds over very dry periods. When moisture is available, 

the stomata reopen and CAM occurs as before. Opening of stomata at night enables more 

efficient use of water as temperatures and wind speeds are lower than during the day.  

CAM is an adaptation to very hot, dry conditions. Most cacti and succulent plants use this 

metabolism. It is also found in orchids and epiphytic bromeliads (Lüttge, 2003). 

Intermediates occur between C3-CAM and C4-CAM. C3 metabolism evolved primarily, 

with C4 photosynthesis serving as an adaptation to warmer temperatures and CAM 

enabling plants to cover arid zones and extreme environments. 
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Algorithmic dispersal of the three photosynthetic metabolism types is applied in chapter 6, 

from which spatial separation of the metabolic types is inferred between and within 

individual environment types. 

 

Life-forms  

 

In this thesis life-forms (Raunkier, 1934) are divided as follows: 

 

 i) Phanerophytes are plants with ‘growing buds’ on above ground parts of the plant and 

are of three types: a) evergreen phanerophytes with bud scales; b) evergreen phanerophytes 

without bud scales; c) deciduous phanerophytes with bud scales. Phanerophytes are further 

divided according to height: Mega- (>30m); Meso- (8-30m); Micro- (2-8m); Nano- (<2m). 

 

ii) Chamaephytes are plants with growing buds above ground, always below 2m. There are 

woody and herbaceous types. Chamaephytes are broken into: a) Suffruticose- (after the 

main growth period upper shoots die, only lower parts of the plant remain in 

‘unfavourable’ period); b) Passive- (in unfavourable conditions upper shoots become 

procumbent, protecting from environmental stresses); c) Active- (shoots only produced 

along the ground and remain so); d) Cushion- (similar to passive type but shoots are so 

closely packed together they form a ‘cushion’). 

 

iii) Hemicryptophytes are plants of which all above ground parts die back in unfavourable 

conditions and buds are borne at ground level. Hemicryptophytes are further divided into: 

a) Proto- (leaves are well developed up the stem of the plant, partially developed leaves 

protect growing buds); b) Partial-rosette- (developed leaves form a rosette at the base of 

the plant, the following year a long aerial shoot may grow); Rosette (leaves restricted to a 

basal rosette, long exclusively flower bearing aerial shoot forms). 

 

iv) Cryptophytes are plants with buds or shoot tips surviving below ground or water. 

Cryptophytes are divided into: a) Geophyte- (underground organs such as bulbs, rhizomes, 

tubers, shoots emerge in growing season); b) Helophyte (growing buds are in soil or mud 

under water producing shoots above water); c) Hydrophyte- (buds lie under water, 

unfavourable period spent completely below water). 
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v) Therophytes are annual plants, which survive the unfavourable period as seeds, 

completing their life cycle in the summer months. 

 

The continual dispersion of the five life form classifications is applied in functional 

numeric terms in Chapter 7. 

 

The following section provides background to fuzzy logic control and details the methods 

of forming instructive Fuzzy Logic Rule Base System (FRBS) for ordination of plant 

characteristics. 

  

3.7 Fuzzy Logic 

 

Fuzzy logic is underpinned by set theory and, as such, is used to mathematically describe 

the quantification of complex design problems and form control strategies on which one 

bases a rule structure. The ordination of individuals (x) within sets may be stated as generic 

elements (X) on which we may place constitutive elements according to their membership 

value (µ) in terms of an interval between 0-1. The basic assumption is that independent 

variables share Gaussian patterns of distribution, a premise which allows a rule base of 

component variables to be formed enabling individual vectors to be given a membership 

value of the set. In essence, therefore, there are two main parts to the resultant instructive 

algorithms that may be developed: a constitutive inferential statement and a consequential 

statement. The goal of fuzzy logic is to provide a founding for approximate reasoning 

whilst using imprecise arguments, the training of which may establish a higher degree of 

certainty in uncertain systems. In this it is an ideally placed technique by which plant 

species are ordinated under extremely variable dynamics. There are two basic types of 

fuzzy logic control (FLC); Mamdani and Takagi Sugeno Kang (T-S-K) systems. The basic 

difference is that Mamdani FLC may be defined with fuzzy inference and fuzzy 

consequence, whereas T-S-K FLC uses defined statements of consequence. Mamdani and 

T-S-K fuzzy systems are detailed below. 
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3.7.1 Mamdani systems 

 

Mamdani systems (Mamdani, 1974) are the most common type of fuzzy logic systems. 

They consist of four basic parts as shown in Fig. 3.7.1. In this initial form a static mapping 

function traces inputs to outputs. 

 

 

 

Figure 3.7.1 Fuzzy logic systems 

 

Fuzzy system inputs are



xi Xi  (where 



i 1,2,...,n) and outputs are 



y j Y j  (where 



j 1,2,...,m). Inputs and outputs are both crisp, real numbers as provided and validated. 

The process of fuzzification converts inputs into membership values, establishing the fuzzy 

sets. The rule base is constructed and operates on the membership values after which the 

defuzzification process results in crisp outputs from the system. As indicated in Fig. 3.7.1 

fuzzy values may flow back through the system in a loop, thereby updating the database 

and providing more accurate allocation of the membership values for the system.     

 

Definitions for fuzzy systems are provided by Zadeh (1965) and are summarised below. 

D 3.7.1. Universe of discourse: All information relevant to inferential or consequential 

variables, e.g. data sets 



X i  and 



Y j  are the “universes of discourse” of elemental sets 



x i and 



y j  respectively.  

 

D 3.7.2.  Linguistic variables: A variable expressed as a word or sentence, used in 

description of fuzzy inputs and outputs. 
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D 3.7.3.  Linguistic rules: A simplification of an algorithmic statement which ordinates 

inputs of a fuzzy system to outputs of the same. These rules make use of conditional 

statements formed with linguistic connectors, e.g. ‘IF’ inference, ‘AND’,… ‘THEN’ 

consequence.  

 

D  3.7.4.  Membership function: expresses the degree of truth or value of a variable 

within the interval 0,1. The type of membership function employed within a fuzzy system 

is determined by the spread of distribution of the characters being considered within the 

system. Most commonly used membership functions are Gaussian, Triangular and 

Trapezoidal types. The spreads of distribution and key equations for these are given below. 
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 Figure 3.7.1.2 a) Gaussian Membership Function 

 

  

 

Figure 3.7.1.2b) Triangular Membership Function 

  

 

 

Figure 3.7.1.2c) Trapezoidal Membership Function 

 

Figure 3.7.1.2 Generic membership function structures 

 

In (3.7.1.1) c is the mean and 



2 the variance; b) Parameters a, c (feet) and b (peaks) are 

defined within (3.7.1.2). Gaussian and Triangular functions of Fig. 3.7.1.2 expressed in 

these equations are accepted alternate views of considering continual variation. 

 

         
        

                                   (3.7.1.1) 

                    
   

   
 
   

   
                (3.7.1.2) 
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The structure of the trapezoidal membership function is shown here as an example 

although the Gaussian and Triangular functions are used in later stages of this thesis.  

 

Membership functions are non-negative and differ from probability density functions in 

that the area under the membership function curve may by less than unity, as more than 

one membership function may be used in any one system, depending on the number of 

rules which require differentiation in the rule base. Gaussian functions are often used in 

biological and or continuously variable systems (Broekhoven et al., 2007). 

 

D 3.7.5 Fuzzy sets: the integers of a universe of discourse expressed through their 

associated membership values. Set values are denoted as xi and yj. However in later parts 

of this thesis linguistic terms A(1,…,n) and B(1,…,n) are used to summarise x and y variables 

where more than one variable is used within the antecedent and consequential statements 

respectively. Fuzzy singletons are class variables, elements of fuzzy sets. 

 

3.7.2 Takagi-Sugeno systems 

 

T-S-K fuzzy systems (Takagi and Sugeno, 1985) are more easily applied to multiple input 

and multiple (ranged) output. The general form of the ith rule as applied to T-S-K systems 

is as follows: 

 

),,(Then   is    is      If 12211 niinn xxfyAxAxAisx                                                  (3.7.2.1) 

 

Here we see a constructive breakdown of the antecedent term A which may be dispersed 

through multiple sets of linguistic variables such as those present in climatic systems. 

These are detailed as: 

 



X {x1,...,xn}                                                                                                            (3.7.2.2) 

Where x1,…,xn are set values of generic set X. In this thesis, the following definitions using 

multiple elements in T-S-K systems are used: 

 



x  [x1,x2,...xn]                                                                                                                                (3.7.2.3) 



y  [y1,y2,...yn]                                                                                                                                (3.7.2.4) 



fA (x;y)  X;Y                                                                                                        (3.7.2.5) 
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In (3.7.2.3) the mean of set x is represented by normal set elements x1,…,xn. Accordingly, 

in (3.7.2.4) the mean of set y is represented by normal set elements y1,…,yn. In (3.7.2.5) fA 

refers to function A in x and Xµ is the grade of membership of X and may also be used to 

express function A in y and Yµ is the grade of membership of Y. Both X and Y are used in 

the antecedent linguistic A matrix in order to form: 

  



y  [x *R]                                                                                                                                         (3.7.2.6) 

 

Where R is the relational index matrix as a function of the combined arguments of 



x  and 



y . In this it may also be stated to be the result of the Laplace transform union as in (3.5.8), 

or succinctly defined as ‘IF A… THEN B’ (Zadeh, 1965). 

 

T-S-K fuzzy logic allows greater accuracy in modelling as rule consequents are functions 

of crisp inputs whereas Mamdani fuzzy logic use fuzzy inputs as well as consequents. For 

this reason, accuracy is a key strength of T-S-K systems as opposed to interpretability for 

Mamdani systems. 

 

Fuzzy logic has been applied in quantification, classification and to affect control of many 

artificial and man made systems. It has also found application in ecological systems (Cui et 

al., 2012; Su et al., 2009; Taheriyoun et al., 2010). However this thesis documents the 

novel use of fuzzy logic and consequent systems in order to characterise over 300 000 

plants (primary species). The original application of these techniques, which was useful in 

description of non-linear systems (Herrera, 2005), is of principle use in precise analytical 

statements of ecological relations and parameters.    

 

Adaptive neural fuzzy inference systems (ANFIS) are developed which effectively map 

inputs to outputs as in the system diagram of Fig. 3.7.1. These are discussed in greater 

detail where they are implemented in Chapter 5. 

 

Use of fuzzy logic is what underpins the development of instructive algorithms, which are 

used in combination with expert intuition to form geographic information systems (GIS) 

shown in Chapter 7, where research questions of plant distribution are also answered. The 

following subsection details expert intuition. 
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3.7.3 Expert intuition 

 

Expert intuition may be used on fuzzy classification in order to make value judgements of 

the sets deployed in both antecedent and consequent expressions. These value judgements 

have two basic components.  

 

Firstly, in choosing variables to use in modelling, variables should be from those that have 

a broad inference on the patterns of dispersion of plant species. These choices are made 

from the knowledge base built up by the researcher and that which is dispersed across 

literature. 

 

Secondly, the variables to be considered in the modelling framework may be minimised to 

maximise efficiency of the algorithms deployed. Minimisation is carried out given that the 

general trend of the variable does not change the distribution of the species as predicted by 

the control structures given in the original algorithmic statement (i.e. the pattern of 

distribution type is not altered from one form to another. Error, therefore, is less than 1 for 

the variable to be minimised). The end result of the use of intuition is ultimately a product 

of the mathematic inference shown by the variables in question (Nasibov and Peker, 2011).  

 

Certainty in the algorithmic statement is strengthened, although as researchers we must be 

aware of the expanding relations of the research work we carry out and at all times 

consider a balanced (objective) view of our expert intuition (Furze et al., 2013a; Nasibov 

and Peker, 2011; Zhao, 2012). In order to consider the most accurate, efficient and 

interpretable system of balancing variables, optimisation methods are carried out. Some of 

these are detailed in the following section and expanded in Chapters 6 and 7. 

 

3.8 Genetic algorithm optimisation of objective variables 

 

The choice of the objectives should be made by knowledge guided expert intuition 

(subsection 3.7.3), followed by their successive minimisation in order to make the most 

efficient choice for optimisation. Optimisation of objective variables is the process of 

improving the variables so that they are optimally expressed. In this thesis characteristics 

of plant species (plant strategies, life-forms and photosynthetic metabolism) are dispersed  
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optimally through different conditions and scenarios via mathematic quantification based 

on T-S-K fuzzy logic. These are described in Chapters 6 and 7.  

 

There are many techniques by which optimisation may be carried out (e.g. Particle Swarm 

Optimisation, Simulated Annealing and Genetic Algorithm) and subsequently many 

categories within these techniques. This thesis focuses on the use of optimisation within 

constrained parameters. The variables expressed as objectives in climatic systems may 

indeed be described as being stochastic, that is they operate within functional domains, 

hence the chosen area of technique is by genetic algorithm (GA). 

 

GAs are algorithms based on natural genetics, providing robust search capabilities in 

complex (objective) space. The design of a genetic algorithm is such that elements of the 

character being optimised are represented by a string of chromosomes. After random 

selection of the chromosomes, they then run through a series of iterations of evaluation, 

selection and recombination, followed by re-evaluation. Given that the best solution to the 

specified objective parameters has been found, the best global solution in the chromosome 

population is found. The algorithm continues with other chromosomes until all the best 

solutions are found. The process of these algorithms is outlined in Fig. 3.8. 
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Figure 3.8 Genetic algorithm basic flow (Cordon et al., 2004) 

 

In Fig. 3.8, P represents the population of chromosomes, t represents the population stage 

(0 being initialisation), parameters are chosen against which to evaluate the (strings) 

chromosomes of the population after which the best individuals are selected via a fitness 

function (set) and used as parents to produce offspring. The offspring undergo mutation 

and are included in the next iterative generation of the population. Should the termination 

criteria (eg. number of generations; time limit; change greater than the weighted average 

change in vectors of chromosomes; no change being achieved within a defined time limit) 

be met, then the chromosomes of the population disperse over objective space to form 

‘non-inferior’ or Pareto optimal solutions. 

 

The search capabilities of genetic algorithms enables their use in the tuning of membership 

functions, or indeed in representation of them, which have both been explored in 

Pittsburgh (Smith, 1980) and Michigan (Holland and Reitman, 1978) approaches and more 

recently fuzzy methods have been combined with a basic genetic algorithm structure to 

produce efficient sets of fuzzy rules (Alcala et al., 2007). The combination of T-S-K 

systems with genetic algorithms is an intuitive step in categorisation and control studies  
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and one that has found application in studies of continual and discrete variables (Alcala et 

al., 2007). 

 

Genetic algorithms are described here in order to clarify the technique expanded upon in 

subsection 3.8.1. As has been described in subsection 3.2.2 there is more than one 

objective in question in characterisation of plant species. A novel modified (fuzzy hybrid) 

multi-objective genetic algorithm method is described in the following subsection.  

 

3.8.1 Hybrid systems to explore utopian relations of plant 

characters 

 

T-S-K fuzzy systems are accurate systems by which we may derive fuzzy rule bases suited 

for the analytical power of genetic computational methods. The variables to be taken into 

consideration include more than one objective set in the case of the water-energy dynamic 

(Hawkins et al., 2003). As such, the vector of objectives is defined as follows: 

 

 



F(x)  [F1(x),F2(x),...Fm(x)]                                                                                     (3.8.1.1)  

 

Here, the multi-objective optimisation function of x (in the case of elements of water and 

energy) is equal to the functions of x (set value(s)) and y (set value(s)), with the assumption 

made that the most efficient choice of objectives has been carried out. 

 

The process is simply expressed in the following order: ANFIS of objective variables to 

form efficient sets of rules for construction of the fuzzy rule base leading to accurate 

identification of consequent environments for strategy, life-form or photosynthetic 

identification (expanded in Chapters 5, 6 and 7); dispersal of elements of characters to be 

optimised via intuitive use of genetic computation (using a random selection process 

expanded in Chapter 6). This methodology is carried out after agreement of the distribution 

type of variables to be considered (Schölzel and Friedrichs, 2008). 

 

Given that the genetic computation method identifies (3.8.1.1) via the dispersal of 

objective elements in a strength Pareto across the defined objective space, it may be stated 

that: 
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Z {xRn}                                                                                                              (3.8.1.2) 

 

Where Z  is equal to the objective (utopian) space over which x is an element of R
n
, in 

agreement with (3.7.2.6). 

 

Plotting a least squares regression through the dispersed elements may produce a utopia 

line and hence calculation of the objective values at any point within the objective space 

may be made. Furthermore, complex (polynomial) estimations of the precise distribution 

pattern of dispersed elements enable further methods to be developed for the estimation of 

the presence of the dispersed elements in similar dynamic objective conditions. In this 

regard the modified objective genetic algorithm mentioned here and expanded on in 

Chapter 6 enables a precise stochastic structure, which may be extrapolated onto a 

geographic information system in order to answer research questions posed in Chapter 7. 

 

3.9 Summary 

 

In this chapter essential knowledge for sourcing of data frameworks within global plant 

characterisation is shown and preliminary methodologies are given to provide foundation 

for the work developed in the rest of the thesis. Each section does not provide a complete 

reference of the methods used in the thesis, methods are applied throughout and given 

further discussion. The main contributions of this chapter to the thesis are as follows: 

 

1) Details of validated biodiversity sources and climatic modelling frameworks, along with 

reasoning and a brief discussion on the value of high-resolution data. 

 

2) The basic outline of image processing is detailed, with examples of code, which may be 

employed for high resolution mapping. This may be is used later in construction of 

geographic information systems. 

 

3) The species-area relationship is detailed, with background of the calculation. This 

section provides justification for further methodologies to be developed. Further detail is 

shown in Chapter 4. 
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4) Variable partitioning carried out in the thesis is outlined with mention given to 

distribution types and copular distribution, which provides justification for the use of 

stochastic methods shown in later sections, elaborated on in Chapters 4, 5, 6 and 7. 

 

5) The groups that are characterised for all plant species are covered, being life-history 

strategies, life-forms and photosynthetic metabolism. An example is given of how life 

history strategies may be extrapolated to 2 and 3 dimensions. Strategy based environments 

are covered in global locations in Chapter 5. 

 

6) Fuzzy logic systems are explained with reference to both Mamdani and T-S-K systems, 

which may be used for interpretable and accurate statements respectively. Some definitions 

were also provided. The algorithmic framework applied in Chapter 5 of the thesis was also 

described and a brief section on intuition included. 

 

7) Genetic algorithms of objective variables are given simplistic description and hybrid 

genetic-fuzzy systems are detailed with the same principles. These are expanded on in 

chapter 6 (strategies and metabolism) and Chapter 7 (life-forms). 
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CHAPTER 4  

The Species-Area Relationship in context 

 

 

 

 

 

 

 

4.1 Introduction 

 
As discussed in section 3.4 the species-area relationship (SAR) is the classical 

methodology by which one may quantify the numbers of species distributed in variable 

geographic locations. This is based on a non-specified relationship between the 

environment of a location, the area of the locations and the rate of increase of species 

presence. Though the SAR was formalized around 200 years ago, it is still used in 

essentially the same form. 

 

The aims of this chapter are to construct a global plant species area relationship and to 

show how its use is becoming redundant on larger scales for estimation of species numbers 

due to measured species numbers being recorded in non standardized units. Many papers 

on the SAR do not control for sampling error, using data from tree species in Ghana 

illustrated that when sampling error was standardized a weak relationship emerges (Hill et 

al., 1994). Furthermore, this chapter introduces the use of algorithmic techniques in order 
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to demonstrate a more accurate information based plant species relation, allowing the 

examination of trends such as plant strategies, with genetically grouped origins at macro 

levels. As a result of the above, the author will identify the relevance and development of 

engineering techniques in biogeography, computer science and related fields. 

 

The remainder of this chapter is organized as follows: in section 4.2 the basic methodology 

for the SAR is shown, detail of the numeric basis of plant species occurrences is illustrated 

and the statistical method utilized for analysis is elaborated. Further, the results of species 

presence against locations of increasing area are shown along with linear SAR and 

quadratic plots. In section 4.3 a fuzzy logic-based (FLB) approach is proposed and 

examples of climatic data are shown at low resolution. The framework of the FLB 

approach is shown with respect to 7 life-history strategy environments. In Section 4.4 the 

algorithm is validated and applied to field data of specific locations. Finally, the chapter is 

summarized in section 4.5. 

 

4.2 Species-Area Relationship implementation 

 

Calculation of species numbers were made by Barthlott et al. (2005). Twenty diversity 

zones (DZ) were described by these authors and standardized to the number of 

species/10000km
2
. DZ 8-10 contained more than 3000 species/10000km

2
 and these areas 

are investigated in the current study. Species recorded in terms of individual occurrences 

were sourced from the Global Biodiversity Information Facility (http://www.gbif.org/ , 

accessed: December 2010, as validated by Yesson et al. (2007) in each of the DZ 8-10 

locations (Barthlott et al., 2005). Individual species occurrences against locations in 

latitudinal order were plotted using a histogram form. Species-area relations were indicated 

by plotting species presence against area, following the classic (non-standardized) form of 

the species area relationship of (3.4.1).   

 

Least squares regression is applied (3.4.2) where exponent z is the gradient of the line 

(slope m) and the intercept of the line is the logarithm of c. Species-area relations were 

plotted and are shown below. The plant species occurrence numbers are listed in Appendix 

1. Fig. 4.2.1 shows the number of recorded species presences at the selected locations of 

DZ 8-10 in longitudinal order. 
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Figure 4.2.1. Species presence versus location for the diversity zones 8-10 of Barthlott et 

al. (2005) 

 

Fig. 4.2.2 shows the number of species occurrences plotted against the area of each 

location in km
2
. 
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Figure 4.2.2 Number of individual occurrences versus area 

 

We form the null hypothesis that there is no relationship of species with area. 

 

In accordance with equation (3.4.2) the gradient of the straight line obtained is:  

 



(m(z))  0.00717939                       (4.2.1)  

 

Testing the significance of the relationship of species with area is simple. We derive the 

following 2 tailed t-test: 

 

21

2

r

Nr
t






                       (4.2.2)
 

 

where r is the regression correlation, N is the number and 2 is the degrees of freedom. 

 

                  (4.2.3)

  
 

The gradient of the linear curve shows a positive relationship between area and species 

numbers, but the correlation of 0.19 is insignificant at p=0.05.  
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In order to write the SAR we identify: 

 



b  logc  40977.8769                      (4.2.4) 

 

where b is the the intercept of the line. 

 

The calculation for the species area relationship can therefore be written as  

 



S  log40977.8769A0.00717939                      (4.2.5)  

 

The conclusion is made that the variation in species numbers cannot be explained by the 

increase in area, even when incorporating estimations of changes in environmental 

conditions (interpreted logarithmically from the intercept) and the rate of increase due to 

the species present (interpreted from the gradient of the regression line).  

 

The author appreciates that such a conclusion compared to much published literature is 

rather unusual. However, the points on the graph each represent multiple users and data 

built up, in the highest cases, by in excess of 65000 individuals. Although the results 

indicated that a species-area relationship could be used as an indicator of ecological 

processes they do not specify the ecological processes themselves in an informative model. 

Various authors have made an effort to explain the nature of ecological processes in 

different terms, such as MacArthur and Wilson (1967) and Simberloff (1974), who 

invoked island biogeography theory (summarizing that species extinction rate decreases 

due to large areas supporting greater population totals which are less susceptible to random 

extinction). The habitat diversity hypothesis, covered in relation to equatorial areas of high 

diversity by Zimmerman and Biergaard (1986), illustrated how larger areas have greater 

diversity of habitats, each with their own sets of species (Jetz et al., 2009; Kier et al., 

2009). Succession development was described by Houle (1990) and showed how larger 

islands possess more stages of community succession development, inferring that the SAR 

is shaped by competitive interaction of life-cycle history strategies of species within stages 

of succession.  

 

Progressing from these early theories, Kreft and Jetz (2007) clearly show that there are 

multiple factors involved in global patterns of plant diversity and Kraft and Ackerly (2008) 
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explain the importance of developing perspectives of functional traits related to species 

niches in community assemblies in complex ecosystems. Although previous work enables 

us to hypothesise about ecological processes and community assemblies, criticism  of these 

studies is that they make use of isolated cases, distorted statistical views, or largely 

unknown ‘black-box’ inferences describing the processes they cover. Lomolino (2001) 

summarised biogeographical factors that must be taken into consideration for the SAR to 

provide meaningful value for ecologists and biogeographers alike. He detailed that the 

relationship often requires multifactorial causal explanations as a range of processes are 

involved, which gives further justification for the research of this thesis. 

 

Weaknesses may be dealt with by differentiation of the species-area relationship into 

different categories of modelling elements in a more information-rich modelling of plant 

species. This novel application is undertaken in this thesis with the context of all plant 

species on the planet using the water-energy hypothesis (Hawkins et al., 2003) as 

justification for differentiation of plants into groups distributed in a non-linear fashion. 

This is further discussed in the following section.  

 

4.3 Information-rich modelling 

 

In this subsection elaboration of the formation of a fuzzy-logic model to cater for variables 

of the water-energy dynamic is shown, which must be taken into consideration in order to 

predict the non-linear distribution of plant species (Hawkins et al., 2003). Fig. 4.3.1 lays 

out the basic principle of the fuzzy logic model. 

 

 

 

 

 

 

 

 

 

 

 



The Species Area Relationship in context                                                                                         CHAPTER4 

 

 67 

 

CC     

     

GFF    E1 

     

MaxTemp    E2 

     

MeanTemp    E3 
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Figure 4.3.1 Fuzzy logic based classification of environments containing plant species 

 

In Fig. 4.3.1, CC is cloud cover, GFF is ground frost frequency, MaxTemp is maximum 

temperature, MinTemp is minimum temperature, P is precipitation, VP is vapour pressure, 

WDF is wet day frequency, A is Altitude, FIS is Fuzzy Inference System, E1,…,E7 

represent environments 1 to 7, analogous with the 7 plant strategies detailed in Chapter 3, 

subsection 3.6, pp. 44-45 and Chapter 2, subsection 2.3.1, pp. 15-19. 

 

The basic fuzzy logic system of Fig. 4.3.1 is a solution as to how we may model the 

occurrence of the 7 plant strategy environments. This model was formed using low-

resolution variables, (exemplified in Fig. 4.3.2) on a global scale at 10-minute 

(approximately 20km depending on location) spatial resolution. It is postulated that we 

may form an approximation of environment type from the above 8 climatic variables 

(water and / or energy factors) and discretely ranged altitude data. However, the above 

model does not easily enable us to accurately specify the ranges, which may provide a 

unified statement or algorithmic base.  

 

The basic model is described in terms of linguistic fuzzy predicates and gives a vague 

description of the conditions which best suit a strategy of plant growth. The proposed 

model effectively combines knowledge base and expert knowledge. This may be further 

refined using additional techniques. Development of the current model enables us to make 

use of the Water-Energy based patterning of variation (Hawkins et al 2003), used here to 

determine plant strategies (Grime et al., 1995). For this purpose rules are generated in the 
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FIS: for example IF P is high AND MeanTemp is high AND CC is medium AND A is 

Low to Medium THEN E1. 
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Figure 4.3.2 a) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.3.2 b) 
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Figure 4.3.2 c) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.3.2 d) 
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Figure 4.3.2 Quarterly measured global cloud cover percentage 

 

Fig. 4.3.2 a) – d) shows quarterly values of one of the variables used in the current 

proposed model on a global scale.  

 

Cloud cover is given as an example of a variable, which combines both elements of water 

and elements of energy. Data sets of other climatic variables are shown in Appendix 3. At 

this wide resolution, for example, Madagascar, within 30 and 60
o
East, 0-30

o
South shows 

50-80% cloud cover in January, 40-60% in April, 40-50% in July and 50% in October. 

 

The first step to increase the efficiency of the basic model shown in Fig. 4.3.1 is to 

minimize the variables used to form the model. The variables are shown in terms of their 

water or energy type in Tab. 3.2.2. 

 

Intuition for the distribution of plant strategies dictates that we need only use key elements 

of the water energy (W-E) dynamic, a variable to show disturbance within habitats and 

altitude, these are used due to the fact that both water and energy display different effects 

with altitude values (Bhatterai and Vetaas, 2003; Sommer et al., 2010). 

 

Using these key elements we are able to make the following framework to form a rule 

based structure, removing co-variable, redundant variables: 

 

7,...,144332211 )()()()()()()()()( EEThenBAAAAAAAIfA nnnnnnnnn     (4.3.1) 

 

Where A1 is mean precipitation, A2 is mean temperature, A3 is mean ground frost 

frequency, A4 is altitude and E1,…,E7 are environments 1 to 7. This is a concise statement 

linking the defined ranges of climatic and altitude antecedent variables to consequent plant 

strategy environments.  
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Figure 4.3.3 a) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.3.3 b) 
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Figure 4.3.3 a) Gaussian membership functions as applied to the 5 divisions over the 

interval [0 1] of climatic and altitude input variables, b) Gaussian membership functions as 

applied to the 7 divisions (R is Ruderal, S-R is Stress tolerant to Ruderal, S-R/C-R is S-R 

or Competitive Ruderal, C-R/C is Competitive to Ruderal or  Competitive, C-S-R/C-S  is 

Competitive Stress tolerant Ruderal or Competitive Stress tolerant, C-S is Competitive 

Stress tolerant and S is Stress tolerant) over the interval [0 1] of plant strategies. 

 

The FL system membership functions are for Mamdani type FL due to the fact that 

comparatively low resolution is used for the input variables and un-specified non-crisp 

numerical ranges are conceptualized for the plant strategy environments. The consequent 

surface area of the Mamdani FL system is shown in Appendix 2.2. The rules used to 

generate this system are shown in Appendix 2.3.  

 

Fuzzy logic is an appropriate system by which one may develop the algorithms to 

characterise global plant distribution as the proposed characterisation is reliant on 

covariates of climatic factors which are used to calculate species presence based on 

probability of the species occurring (Furze et al., 2011). 

 

In the next subsection higher resolution input variables and specific consequent ranges are 

employed for greater accuracy, enabling more specific statements to be made to further 

predict the occurrence of plant strategy types with regard to specific locations. 

 

4.4 Validation of algorithms and global mapping of plant 

strategies 

 

In this subsection the preliminary methodology for the construction and validation of the 

algorithmic framework shown in (4.3.1) is shown. The first step is to clarify the process 

required for formation of location specific fuzzy rules to ordinate the plant strategy 

environments. These are shown in Fig. 4.4.1. 
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Figure 4.4.1 Stages of model construction 

 

Fig. 4.4.1 shows the stages of methodology for the formation of fuzzy based 

algorithms to quantify plant life-history strategies on a global scale. Macro based 

species data from the GBIF, climate data from the IPCC and altitude ranges from the 

CIA world factbook are shown in Appendix 2.4. 

 

Steps 1-9 of Fig. 4.4.1, are described as follows: 

 

1. Data were selected to define model parameters. 

2. The spread of numerical data and the total number of variables were defined. 

3. The minimum number of key parameters required to build the model was determined. 
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4. Units and partitions within the data used were identified and concise linguistic 

description was made. 

5. Linguistic description of the data to give fuzzy description of each variable and the 

fuzzy consequences for each plant strategy/environment (E1 to E7) were defined. 

6. Seven estimates of the total number of individual plant occurrences found in each 

example geographic location, chosen at random from amongst areas containing more than 

3000 plants per 10000 km
2
, were made to infer E1 to E7. 

7. Model parameters were numerically quantified. 

8. Algorithmic instruction of E1 to E7 was constructed. 

9. Plant life-history strategies with respect to the total number of individual plants were 

conceptually illustrated. The conceptual plot was undertaken using the contour plot 

element of Matlab (version R2010a ©), shown in Fig. 4.4.2. 

 

The variables shown in Tab. 4.3.1 were statistically reduced to four key variables in order 

to facilitate modelling of strategies. These variables were mean ground frost frequency 

(chosen for its effect in terms of disturbance), mean precipitation (chosen as the key water 

related variable), mean temperature (chosen as the key energy related variable) and 

altitude. Altitude was used as it is key in the water-energy modelling of plant species; at 

low latitudes (south of the equator) water is more important for high species numbers, 

whereas at higher latitudes energy is seen to be more important for species numbers 

(Hawkins et al., 2003; Vetaas, 2000). 

 

Table 4.4.1 Unit percentage of key W-E modelling parameters. 

 

Variable Unit Percentage 

Mean Ground Frost frequency 0.3 Days 

Mean Precipitation 5 Kg m
-2 

Mean Temperature 0.7 Celsius 

Altitude 68.3 m 

 

Unit percentage relates to 0.01 in the interval [0 1] of the variables, quantified according to 

the 5 linguistic terms (Alcala et al., 2007) (shown in Fig. 4.3.3. a)). 
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Overall seven estimates of the total number of individual plant occurrences were made, 

one for each of the example locations that were chosen randomly from areas containing 

more than 3000 plant species per 10000 km
2
 - diversity zones (DZ) 8-10 (Barthlott et al., 

2005). GBIF recorded number of individual occurrences in each location were summed. 

The resultant total numbers of individuals were ranked in decreasing order from one to 

seven. After modelling W-E and altitude variables to infer extremity of the environments’ 

plant life history based strategy, each number was allocated to an environment (data and 

citations of collections for each example location used are shown in Appendix 1). 

 

Contour Plot function was used to display conceptual levels of the seven plant strategies 

with respect to the total individual numbers of plants within each of the seven 

environments. Numbers of individuals were entered into Matlab (Version 2010b ©) to 

form a 2x2 matrix and a Z matrix of numbers was calculated (using a numerical space of 

700 to reflect the seven plant strategies) from the 2x2 data. The magnitude of the number 

of individuals in each environment was used to reflect the difference between contour 

levels. The contours were plotted diagrammatically on a 700x700 axis. 
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Figure 4.4.2 The concept of dimensionality (relative size) of environments one to seven 

(Furze et al., 2012a) 

 

Zero and negative numbers were not present in reality, but were shown here representing 

the inverse of the positive levels. The legend defines the spectrum of colour used to display 

each contour level. Contour levels were as follows: 1 = numbers of individual plants for 

Mexico (Ruderal), 2 = numbers of individual plants for Guyana (Stress tolerant-Ruderal), 3 

= numbers of individual plants for Cuba (Stress-tolerant to Ruderal, Competitive to 

Ruderal), 4 = numbers of individual plants for Democratic Republic of the Congo, Africa 

(Competitive to Ruderal, Competitive), 5 = numbers of individual plants for Georgia, 

Eastern Europe (Competitive to Stress-tolerant to Ruderal, Competitive to Stress-tolerant), 

6 = numbers of individual plants for Guinea, Africa (Competitive to Stress-tolerant), 7 = 

numbers of individual plants for Macedonia, Southern Europe (Stress tolerant). Fig. 4.4.2 

means that as the environment number 1-7 increases, the number of species decreases. 

Limits are not stated precisely due to the fact that the contours are conceptualised from a 

Mamdani (imprecise) FLC. The power of this type of modelling is increased in Chapter 5, 

with use of greater precision in the modelling variables.  
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Figure 4.4.3 a) 

 

  

 

   
 

 

 

 

 

Data of climatic variables for locations were taken at 30 second, 18.5km resolution, to 

enhance accuracy of the algorithmic statements. These are shown below in Fig. 4.4.3 
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Figure 4.4.3 c) 

 

Figure 4.4.3 Quarterly climatic data representing the water energy dynamic used for 

algorithmic statements for Mexico, a) Mexico quarterly mean temperature, 1961-90, b) 

Mexico quarterly mean precipitation, 1961-90, c) Mexico quarterly mean ground frost 

frequency, 1961-90.

 

Table 4.4.2 Partitions for climatic and topographic variables. 

 

Variable  Low (1)  Low-Med (2)  Med (3)  Med-High (4)  High (5)  

MT (%) 0-20 20-40 40-60 60-80 80-100  

MP kg m
2
  0-100   100-200  200-300  300-400  400-500  

GFF (days) 0-6 6-12 12-18 18-24 24-30  

Altitude (m) -30 - 1366  1366 - 2732 2732 - 4098  4098 - 5464 5464 - 6830  

 

In the above table MT is Mean Temperature, MP is Mean Precipitation, GFF is mean 

Ground Frost frequency and kg m
2
 is Kilograms per metre squared.  

Figure 4.4.3 b) 
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The total range of each of the variables considered was quantified according to the 

partitions of Tab. 4.4.2 and the unit percentage of Tab. 4.4.1 to enable precise algorithmic 

statements to be formed according to (4.3.1). 

 

Fig. 4.4.3 exemplifies the data of Mexico, which shows the following control algorithm for 

orientation of plant species: 

 

144325.03

325.0225.0225.011

)65535()5()1()1()3(

)1()5()1()3()1()5()4(

EThenBAAAA

AAAAAAIfA








                                            (4. 4. 1) 

 

In (4.4.1), antecedent expressions are mean temperature is A1, mean precipitation is A2, 

mean ground frost frequency is A3 and altitude is A4. Variable choice is made following 

climatic data available from the IPCC (Scenario T.S. 2.1) originally provided by New et al. 

(1999). Consequent expression B is the number of individual plant species occurrences and 

E1 is environment 1. The algorithm expands into the following conditions: 

 

IF Variables (A) = 

 

- Temperature = 40-60 % to 80-100 % 

- Precipitation = 0.5 x 0-100 Kg m
2 

to 200-300 Kg m
2
, 0.5 x 0-100 Kg m

2
 to 400-500 Kg 

m
2
 

- Ground Frost frequency = 0.25 x 0-6 days to 24-30 days, 0.5 x 0-6 days to 12-18 days, 

0.25 x 0-6 days to 0-6 days 

-  Altitude = -30-1366 m to 5464-6830 m 

 

THEN Environment 1 (B) = >51847  

 

Mexico is designated as E1 with ruderal species dominating due to the fact that the highest 

number was obtained for this location in comparison to the other example locations. 

 

The algorithmic statements for the other example locations (Guyana, Cuba, Democratic 

Republic of the Congo (Africa), Georgia (Southern Europe), Guinea (Africa) and 

Macedonia (Southern Europe)) are shown in Appendix 2. 

 

Latitude 
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The patterning of plant species presence may be broken down into the seven life-history 

based strategies in the following way: The occurrence of a high water-energy dynamic 

results in the highest level of plant species diversity reflected in the greatest numbers of 

plant species presence. The highest plant species presence numbers reflects the dominant 

ruderal plant species. The effect of water and energy (mean rainfall and temperature) on 

plant distribution shown in this chapter may also be used to suggest application of more 

accurate modelling variables with the changing conditions within global warming / cooling 

cycles. Patterning of plant species in this chapter, provide first glimpses of the power of 

mathematical modelling. Decreasing numbers of individuals in each algorithmically 

described environment reflects the transition through competitive to stress tolerant species, 

which are present in the more extreme (hotter, dryer) environments. 

 

Preserving the relationship between plant species presence and climatic and topographic 

variability requires the application of cooperatively controlled multi-agent systems. The 

use of a fuzzy-logic rule base is especially appropriate with respect to species presence as 

numbers of the latter involve mathematical dispersion based on the levels of water, energy 

and topographic dynamics. This chapter clearly shows the relevance of a mathematical 

approach with respect to water and energy dynamics and furthers the information rich 

patterning of plant species based on life-history strategy characterisation (Furze et al., 

2011). The ecological relevance of the concept of plant strategies as derived from 

individual plant numbers is that the plant strategy patterns are shown in macro scale space. 

Topology has been simplified to discrete value ranges for the example locations given in 

this initial mathematical approach in order to show the validity of the modelling procedure 

in this thesis. Precise detail of the locations will be explored in later studies in order to 

enhance the accuracy of the algorithmic statement. Feeding location-specific data into the 

models will validate their application at finer spatial resolution and enhance regional 

interpretation of biodiversity patterns. Greater understanding may direct conservation 

management at local and national level, especially pertinent in future dynamic climatic 

scenarios.  

 

The mathematical approach detailed is superior to other previously shown methods 

(Grime, 1979; Hodgson et al., 1999) as it enables simple quantification of many different 

elements and expression through specific algorithms. The methods used in this paper are 

not Boolean as resultant data may be distorted by uneven data sampling. The normal 

distribution of variables may be used to describe dynamic patterns with greater accuracy 
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(Zadeh, 1965). These methods are suggested above historical approaches as they result in 

minimal error (Furze et al., 2011). This is of great use in describing natural systems as the 

sensitivity of ecosystems with change can be eloquently stated. The application of the 

fuzzy rule base was shown along with the appropriate use of contour levels in order to 

reflect the numerical distribution of dimensionality between plant strategy groups. The 

information rich ordering of plant strategies shows the least severe environment (Mexico) 

to contain the highest numbers of individuals (ruderal plants) through competitive to the 

least number of individuals (stress tolerant plants) in the most severe environment 

(Macedonia) (Furze et al., 2012a). Although this is what we might expect from theory 

developed to the current time, the novel application of fuzzy logic in the subject of plant 

characterization at a global scale provides the basis for further analysis to be carried within 

temporal and spatial terms from which we can infer patterns in the categories of plant 

species, which are as yet undiscovered. Ultimately the novel application of fuzzy logic 

enables unification of previous theory by mathematic quantification, thereby substantiating 

concise statements for species community assemblages on a global scale.  

 

4. 5. Summary 

 

This chapter demonstrates the application of the SAR to real life data and shows that the 

relationship is not sufficient to describe the multi-objective approach that is required to 

ordinate plant species without distorted sample selection. This justifies the work of this 

chapter and that of remaining chapters. 

 

An information-rich modelling approach (Fig. 4.3.1) is proposed for global 

characterisation of plant species and detailed at low-resolution. An initial model containing 

9 antecedent variables by which plant species may be ordered into 7 consequent 

environments has been detailed. The initial model has been minimized to contain 4 

antecedent input variables. After illustrating a conceptual model of the dimensionality of 

the seven environments, the seven combinations of plant strategies are allocated to 

environments. Examples of locations are given for the seven environments and reduced 

climatic data of an example location is shown at higher resolution for enhanced accuracy.  

 

The control algorithm based on Gaussian distribution of the antecedents for the country of 

Mexico is given and expanded. Use of logic based mathematics given in this chapter is 

devoid of numerical error present in Boolean methods. Hence the only error in the control 
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algorithm approach shown is due to too wide a resolution of data, repetition of variable 

types and sampling errors present within initial knowledge bases. 

 

In the following chapter we refine the fuzzy logic control method to show a concise 

description of plant strategy ordination. 
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CHAPTER 5 

Using fuzzy logic control to ordinate plant 

strategies 

 

 

 

 

 

 

 

5. 1 Introduction 
 

In Chapter 4 it was shown that the basic species-area relationship shows an insignificant 

relationship when applied to actual numbers of species occurrence relative to the area of 

locations in more than twenty of the richest areas of diversity on the planet. Many studies 

have shown a relationship, but the methods employed in these studies are limited by the 

statistics used in them and represent examples of distorted Boolean methods, which have 

led to subsequent distortion of related patterns and possible misinterpretations in their 

conclusions. The major advantage of fuzzy logic control in description of species 

ordination is that fundamentally there is no error in the technique, due to the methods 

being centralised according to Gaussian distribution. Hence, significant or insignificant 

relationships or trends may be informatively explored with use of robust modelling 

frameworks. The novel application to plant characterisation enables inferences to be made 

throughout successive trophic levels of ecosystems. The application of fuzzy logic was 

proposed in order to differentiate the conditions in which plant species occur, using the 

water-energy dynamic. An expansive model allocated 7 environments based on the life-

history strategy classification of plant species (Grime et al., 1995), successfully predicting 

plant species occurrences. The basic model used a Mamdani form of fuzzy logic, using 

broad ranges of input data and non-specific ranges of numerical consequence.  
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In this chapter a Takagi-Sugeno-Kang (T-S-K) fuzzy logic approach is taken to ordinate 

individual species occurrences in specific locations, using comparatively higher resolution 

of reduced numbers of climatic variables and specific ranges of altitude and consequent 

species occurrences. Species occurrence in Guyana, South America is exemplified, 

according to elements of the water-energy dynamic. Furthermore the analytical power of 

the original FLC proposed in the previous chapter is increased with use of defined ranges 

of consequential statements. 

 

The remainder of this chapter is structured as follows: section 5.2 describes the 

methodology for construction of the T-S-K fuzzy logic control with respect to plant 

strategies. Section 5.3 exemplifies the location of Guyana, illustrating the fine scale 

resolution climatic and topographic data used in formation of the model and gives a 

developed algorithmic framework, with results of the control theory in other locations. 

Section 5.4 implements FLC to ordinate plant strategy in Guyana and finally section 5.5 

summarises the chapter. 

 

5. 2 Takagi-Sugeno-Kang modelling of plant strategies 

 

In this section, the background of data types and sources is given along with their 

subsequent categorization to facilitate T-S-K modelling of plant strategies, with use of 

defined input data and specified ranges of consequence.  

 

Biodiversity data, in the form of digitised data of individual plant occurrences identified to 

species level, were sourced from the Global Biodiversity Information Facility (GBIF, 

http://www.gbif.org). The total number of occurrences was then summed; this substantiates 

a component of the knowledge base used in T-S-K modelling. Seven locations were 

chosen at random from Barthlott’s description of diversity zones 8–10. The zones were 

documented as containing more than 3,000 plant species/10,000 km
2
 (Barthlott et al., 

2005). The data have been validated (Yesson et al., 2007) and their quality proved 

sufficient to allow analysis using fuzzy techniques in classification (Zadeh, 1965).  

 

Previous studies (Furze et al., 2011, 2012a) have made use of ranges of topographical 

measures based on publicly available broad-scale digital elevation model (DEM) data. 
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In this T-S-K modelling approach of plant life-history strategies, the sources of data for the 

modelling basis were as follows: topographical data (1 km resolution) was sourced from  

 

the United States Geological Survey (USGS) DEM (USGS 

http://www.http://eros.usgs.gov/#/Find_Data/Products_and_Data_Available/GTOPO30), 

being 33 tiles with global coverage. The chosen areas were identified. Files were 

downloaded in compressed format. Data were extracted and processed using MATLAB 

(Version R2010a ©) and topographical maps were produced using the same platform. Data 

of climate variables (mean precipitation; mean temperature; mean ground frost frequency) 

at monthly intervals 1961-90 were sourced from the IPCC (http://www.ipcc-data.org). The 

geographical location (i.e. latitude, longitude) of the chosen area(s) was defined from the 

display of the DEM. Graphical images displaying quarterly data of 1961-90 (Mitchell and 

Jones, 2005; New et al., 1999) were obtained for the three required climate variables and 

altitude. The four images displaying the variables were processed in MATLAB in order to 

obtain the variables that express the image. The range of each variable was obtained from 

the data sources using the units of each source. These were then converted into percentage 

values and the percentages broken into five quintiles. The linguistic expressions, 

quantification and notations used to describe the data are shown in Tab. 5.2.1. 

 

Table 5.2.1 Variable partitioning for T-S-K modelling of plant strategies 

 

 

Ling exp 

 

% Quant/Not’n 

Range 

MT
o
C MP (kg m

2
) MGFF 

(days) 

Alt (m) 

Low 0-20/1 -75 to -51 0-100 0-6 0-600 

Low-medium 20-40/2 -51 to -27 100-200 6-12 600-1200 

Medium 40-60/3 -27 to -3 200-300 12-18 1200-1800 

Medium-high 60-80/4 -3 to 21 300-400 18-24 1800-2400 

High 80-100/5 21 to 45 500-500 24-30 2400-3000 

 

Ling exp = linguistic expression, Quant’ = quantification, Not’n = notation, % = 

percentage, MT = mean temperature, °C = degrees Celsius, MP = mean precipitation, kg 

m
2
 = kilogram per square metre, MGFF = mean ground frost frequency, Alt = altitude, m = 

metre. 
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The numerical data for each of the variables was considered in each of seven example 

environments. Using the maximum and minimum inference of each variable’s linguistic 

definition (A1(n),…,n(n)), the fuzzy rule-based algorithms were constructed so that each  

 

variable was expressed in terms of the number of species (B1(n),…,n(n)) of each geographic 

location (E1(n…,n), …, E7(n,…,n)). Mean temperature was noted as A1(n,…,n), precipitation was 

noted as A2(n,…,n), mean ground frost frequency was given as A3(n,…,n), altitude was noted 

as A4(n,…,n) and the number of species was noted as B(n,…,n). The numerical data 

substantiates the antecedent knowledge base, the ranges of values used in each case were 

extrapolated from the data sources. The linguistic connections ‘IF’, ‘AND’ and ‘THEN’ 

were used to construct the conditional fuzzy rule base. 

 

The above elemental breakdown of the T-S-K modelling framework is in agreement with 

the basic rule structure (Takagi and Sugeno, 1985; Zadeh, 1965) as covered earlier in 

Chapter 3, subsection 3.7.2. In order to substantiate the elements of the T-S-K system, the 

following section details the enhanced resolution of data used for modelling of plant 

strategies. 

 

5.3 Fine-scale resolution data enhances model formation 

 

In this section, climatic data are shown which underlie the algorithmic structure employed 

based on set theory (Zadeh, 1965). 

 

In order to build the fuzzy inference engine, which may predict the structure of seven 

strategy-based environments of plant species occurrence, the following steps were taken: 

 

1 Define fuzzy inference system type (Sugeno for defined output type) variable names 

2 Define membership functions of each variable 

3 Define rules, weights in the interval [0 1]  according to algorithm 

4 Examine (adaptive neuro fuzzy/Sugeno) logic structure and modify as necessary 

5 Test rules through data input 

6 Display 2D and 3D views of resultant surface in order to graphically display the 

algorithm (efficiency). 
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The modelling system may also be used as a ‘stand alone’ engine. This was carried out by 

saving the fuzzy inference system in MATLAB workspace and to file. The code is given in 

Appendix 2.3. Enhanced resolution of antecedent variables, in turn, enables greater 

accuracy in consequential statements to be obtained. This is an imperative when using a T-

S-K modelling basis as any errors received during the modelling process are borne out  

 

during later stages of analysis (Sivanandam, 2007). Higher logic based mathematics used  

 

in this study tolerate the presence of a degree of error due to the fact that they are based on 

continuous (Gaussian) process models. The error detected in the methods is minimized in 

this study by use of the triangular membership function, which gives a discrete perspective 

of continuous variation. An example of a method by which one can detect error present is 

the use of a random dispersal of objectively formed solutions (shown in Chapter 6). 

 

Here (Fig. 5.3.1, Fig. 5.3.2) we show examples of the fine scale resolution data used 

to construct the algorithmic framework for ordination of (environment 2) stress  

 

tolerant-ruderal species present in the location of Guyana, South America. 
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Figure 5.3.1 Guyana quarterly mean 1961-90 precipitation at 10 minute (18.5km) 

resolution 

 

Fig. 5.3.1 shows example data, where Guyana mean precipitation is 0.75 (January, April, 

July) 0–100 kg m
2
  to 200–300 kg m

2
 , and 0.25 (October) 0–100 kg m

2
  to 300–400 kg m

2
. 

The quantity of precipitation is shown in colours from low (dark blue) to high (dark red). 
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Figure 5.3.2 Guyana digital elevation model / topography at 30 second (1km) resolution 

 

Fig. 5.3.2 is a digital elevation model (DEM) representation of Guyana, situated between 

latitude 60° – 55° West, longitude 0° – 7.5° North with an elevation from 0 – 1500 metres 

above sea level. Sea level is shown in blue, low elevation is in dark green and low-medium 

elevation in lighter green to white. 

 

Climatic and DEM data for the other sourced environments, discussed in Subsection 5.4, 

are shown in Appendix 3. 

 

The linguistically broken down T-S-K Fuzzy control algorithm integrating climate 

variables and DEM data for Guyana is written as follows: 

 

24433

2225.02275.011

)51847()2()1()1()1(

)4()1()3()1()5()5(

EThenBAAAA

AAAAAIFA








                   (5.3.1) 

 

The control algorithm applicable for categorisation of the example location chosen at  
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random is (5.3.1). The dominant strategy of individuals in this location was stress 

tolerating-ruderal species (E2). Numerical quantification of the algorithm is as follows: 

 

IF Variables A = 

 

• Mean temperature = 80 – 100 % to 80 – 100 % (A1(5)) 

• Mean precipitation = 0.75 0 – 100 kg m
2
 (A2(1)) to 200 – 300 kg m

2
 (A2(3)), 0.25 0 – 100 

kg m
2
 (A2(1)) to 300 – 400 kg m

2
 (A2(4)) 

• Mean ground Frost frequency = 0 – 6 days to 0 – 6 days (A3(1)) 

• Altitude = –30 – 1366 m (A4(1)) to 1366 – 1500 m (A4(2)) 

 

THEN B(51847) = E2 

 

Temperature and ground frost frequency are not shown in this chapter; however, they can 

be found in Appendix 3. Example locations of environments E1, E2, E3, E5, E6, and E7 

were defined using the algorithmic control structure of (5.3.1), as shown in Tab. 5.3.1. 

 

Table 5.3.1 Categorisation of environments and plant life-history strategies 

 

Environment Plant life-history 

strategy 

Example location / number of individuals 

1 R Mexico / 51857 – 65535 

2 S-R Guyana / 50700 – 51847 

3 S-R / C-R Cuba / 33356 – 50700 

4 C-R / C Democratic Republic of the Congo / 

11355 – 33366 

5 C-S-R / C-S Georgia / 8805 – 11355 

6 C-S  Guinea / 2203 – 8805 

7 S Macedonia / 0 – 2203 

 

In Tab. 5.3.1 R is ruderal, S-R is stress tolerant-ruderal, S-R / C-R is stress tolerant ruderal 

/ competitive ruderal, C-S-R / C-S is competitive stress tolerant ruderal / competitive stress 

tolerant, C-S is competitive stress tolerant, S is stress tolerant. 

 

In the following section RQ1 and RQ2 are resolved with the implementation of the T-S-K  
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FLC applied for plant life-history environments. 

 

 5. 4 Implementation of fuzzy logic control to predict plant 

species occurrence 

 

In this section, the choice of fuzzy inference system is presented by which plant life history 

strategies are mathematically ordinated according to the data presented in the previous 

section. The FL simulation engine was applied over the input vectors temperature, 

precipitation, ground frost frequency and altitude and the output vector of strategy is 

mapped according to the control algorithm of (5. 3. 1). Membership functions of each of 

the variables were defined as shown in Fig. 5. 4. 2, making use of triangular functions to 

discretely define each partition. Each inferential variable membership function was defined 

with use of the graphical user interface within the fuzzy toolbox of Matlab (Version 2010a 

©), each vector function operated together under the instruction of the root algorithm of 

(5.3.1), which was expressed with the use of ten separately weighted rules as follows: 

 

1 If (temperature is high) and (GFF is low) then (strategy is S-R) (1) 

2 If (precipitation is low) then (strategy is S-R) (0.75) 

3 If (precipitation is low-medium) then (strategy is S-R) (0.75) 

4 If (precipitation is medium) then (strategy is S-R) (0.75) 

5 If (precipitation is low) then (strategy is S-R) (0.25) 

6 If (precipitation is low-medium) then (strategy is S-R) (0.25) 

7 If (precipitation is medium) then (strategy is S-R) (0.25) 

8 If (precipitation is medium-high) then (strategy is S-R) (0.25) 

9 if (altitude is low) then (strategy is S-R) (1) 

10 If (altitude is low-medium) then (strategy is S-R) (1). 

 

The rules fed into the fuzzy inference system shown in Fig. 5.4.1. 
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FIS is fuzzy inference system, f(u) is the fuzzy union consequent output. 

 

Figure 5.4.1 Design of the fuzzy inference engine to differentiate plant strategies from the 

water-energy dynamic. 
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FIS is fuzzy inference system, f(u) is fuzzy union consequent variable 

 

Figure 5.4.2 Definition of triangular membership functions for ordination of plant 

strategies 

    

As noted in Chapter 3, the discrete values for ‘feet’ and ‘peak’ of the triangular 

membership function are defined by (3.7.1.2). 

 

Fig. 5.4.3 gives the nodal structure of the T-S-K FLC for the plant strategy environment of 

Guyana, South America. 
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Figure 5.4.3 Node structure of the T-S-K model for differentiation of S-R plant strategy of 

Guyana, South America 

 

During the fuzzification of Layer 1 the variables were split into their 5 membership values 

to result in Layer 2. The rules for S-R E2 (Furze et al., 2013b) listed above operated in 

Layer 3 of Fig.  5.4.3. Finally, Layer 4 resulted in the summation of membership values 

and were defuzzified to give the consequent Layer 5 union of strategy or environment. 

 

The structure of the ANFIS for stress tolerant-ruderal plants is shown in Fig. 5.4.3. Within 

the node structure it follows that the input variables (A1(n), A2(n), …,An(n)) may be stated as 

vectors 



x  [x1,x2,...xn] and 



y  [y1,y2,...yn]. The model was tested by inputting the data  
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within the ranges of (5.3.1) for Guyana into the engine shown in Fig. 5.4.1. The resultant 

strategy was S-R, the 2
nd

 of the seven possible strategies. The result was also displayed in 

graphical form in two-dimensional (given in Appendix 4) and three-dimensional formats in 

order to monitor the efficiency of the algorithm when considering different variables of the 

dynamic. Combinations of single factors led to incorrect strategy (z) output. It was found 

that combining any two variables other than mean precipitation and mean temperature 

resulted in the correct measurement with the 1
st
 (x) variable, but too high a measurement 

with the 2
nd

  (y) variable. The three-dimensional diagram of Fig. 5.4.4 shows the 

maximum efficiency obtained from the algorithm. It is imperative that at least two of the 

driving dynamic vectors are used – both altitude and ground frost frequency show static 

responses. This relationship is consistent with previous work (Omizegba and Monikang, 

2009), which suggests that transference of variables into vector structure, such as that 

shown in (5.3.1), may provide a relational index (R) which may also be determined by 

expert knowledge or alternatively via genetic algorithm (Zadeh, 1973). Such a relational 

algorithm index may be used to quantify the cooperative link between the number of 

individuals and climatic modelling structure in different locations, since 



y  [x *R]. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.4.4 Three-dimensional surface view for differentiation of plant strategy 

environment 2 
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highest level of plant species diversity, reflected in the greatest numbers of plant species 

presence. The highest numbers of plant species presence reflect the dominance of ruderal 

plant species. Decreasing numbers of individuals in each of the algorithmically described 

environments reflect the transition through competitive to stress tolerant species, which are 

present in more extreme environments. The overall advantage of using the methods 

presented here are finer scale resolution in terms of the modelling framework and the 

resultant consequent strategy environment. Ultimately greater detail can be inferred within 

the strategies (environments) as follows:  

 

Environment 1 contains ruderal plants, i.e., herbaceous and bryophyte species. These are of 

relatively small stature and have limited lateral spread; leaf forms show great variation and 

are often mesophytic; roots formed are short in length. The canopy layers of these species 

may be of various types. Each phase of the ruderal plants’ life cycle is short. They have a 

short phase of production in periods of high potential productivity. In moderate to high 

temperature and water availability, flowers are formed early in the life history and there is 

a high frequency of flowering. The proportion of production devoted to seeds is high in 

annual growth cycles. In response to adverse conditions for growth (e.g, presence of 

competitive species, resource depletion), the plants show a rapid decrease in vegetative 

growth and re-allocation of resources into flowering. Consequently, photosynthesis may be 

described as opportunistic: it is optimal in environments with high temperatures and water 

availability. The total number of individuals present in environment 1 (e.g., Mexico) is 

very high as inferred in Chapter 4.  

 

Environment 2 contains plants with elements of both ruderal and stress tolerant species, i.e. 

herbaceous, bryophyte, shrubs and trees. Species and conditions are intermediate between 

environments 1 and 7; hence, the number of species is consistently high. Temperature and 

water availability are also high, although there is a moderate intensity of disturbance/stress 

shown in the example produced by variable altitudes across the location and low ground 

frost frequency (e.g. Guyana).  

 

Environments 3, 4, 5, and 6 contain either stress tolerant and/or ruderal species, as well as 

increasing numbers of competitive species (i.e. herbaceous, shrubs and trees). Competitive 

species have dense canopies of leaves around prominent, rapidly growing shoots. The leaf 

form is robust and exists in rapidly ascending monolayers. Phases of life cycle may be  
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short or long, flexibly matching the optimal growth for the environmental conditions. Leaf 

production is well defined and coincides with periods of maximum potential productivity. 

Root length is relatively short; flowers are most often produced after periods of maximum  

 

productivity on an annual basis. A small proportion of annual production is devoted to 

seeds. Resource depletion is addressed by great morphogenetic redistribution of leaf and 

root form. Optimal conditions of photosynthesis align with periods of vegetative growth 

during wetter and/or warmer seasonal months. Alternative strategies are out-competed 

given that the environmental conditions become more suited to competitors; only the stress 

tolerant species survive against competitors in the extreme environments, e.g., Macedonia 

(Kilinç et al., 2010; Furze et al., 2013a).  

 

The novelty of the greater differentiation carried out using defined ranges of T-S-K 

consequent results enables further mathematic technique to be employed by which we can 

directly model characteristics of plant species in accordance with the identified pattern of 

climatic data. Use of the stochastic methods enable discrete patterns to be differentiated as 

indicated in Chapter 3, sections 3.5, 3.7.2 and 3.8. Such stochastic method enables novel 

characterisation of ecological systems within fixed time scales as appropriate for the 

current stage of progress identified within climatic science, thus linking it with the frontier 

research of biogeography (Lomolino and Heaney, 2004). 

   

5.5 Summary 

 

This chapter details the simulative use of fieldbased data to identify seven environments of 

plant species occurrence, via a T-S-K fuzzy logic modelling process. Although there are 

inevitably errors in data collection (e.g. for climatic data height of weather stations in 

collection of climatic data, inconsistent use of variables by collecting institutes (New et al., 

1999); for species data human error in identification of species (Yesson et al., 2007)), the 

use of logic based mathematics shown in the chapter is devoid of semantic definition so 

any error or distortion in ordination of the individuals of species occurring in the locations 

investigated is extremely minimal. Fuzzy logic itself does not allow for distortion or 

arching of data patterns, which may be present in Boolean methods, hence the resultant 

union is an accurate portrayal of plant species occurrence with use of sophisticated control 

theory. 
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T-S-K modelling systems were first described in the context of plant strategies, after which 

the use of higher resolution data was detailed and some of the advantages of using these 

data were described. Fuzzy control algorithms were used to give structure to the spatial 

categorisation of plant species by integrating digital elevation model data at increased  

 

resolution with data of selected climatic variables (mean precipitation, mean temperature, 

mean ground frost frequency and elevation). The latter is achieved via construction of rules 

using statements of variable ranges, and formation of a nodal structure by which control 

theory is used to resolve plant life-history strategy based environments. In previous studies 

covered in Chapter 4 the climatic variables have been obtained by minimising them to 

those essential for expression of the water-energy dynamic (the way in which water and 

energy are distributed in relation to diversity) in order to model life-history strategies of 

plant species. In this chapter, T-S-K fuzzy modelling has been applied to infer which 

factors of the water-energy dynamic may be used for efficient prediction of individual 

species occurrences in the groups of plant strategies. Additionally, this chapter balances 

the trade-off between accuracy and interpretability of individual plant species occurrences. 

In brief, more accurate modelling antecedent data enables more accurate consequent 

expression. In turn, the interpretability of the modelling process leads to the possibility of 

further mathematic differentiation of other characteristics of plant species and conditions in 

which they exist. Implications include modelling of plant life-forms and metabolic 

patterning, which are further discussed in Chapters 6 and 7. 
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CHAPTER 6 

Stochastic processes to model uncertainty 

 

 

 

 

 

 

 

6.1 Introduction 

 

In Chapter 5 the presence of plant species within 7 nodes of plant life history were 

successfully predicted using a T-S-K modelling structure. In this chapter the higher 

mathematic theory of logic based systems progresses to illustrate how strategies may be 

further differentiated, split into their rudimentary elements, each specifically optimal in 

different water-energy conditions present in ecological systems. A combination of random 

dispersal methods are used in this chapter together with the stochastic evolutionary 

algorithm programming of strategies. This introduction serves as a brief discussion of 

stochastic methods in the context of biological systems. 

 

The principal area of set theory with relation to development of evolutionary networks is 

species stochasticity. A stochastic process is generation of random variables, the key point 

being that evolution of variables is not uni-variate, but may potentially develop in many 

different shapes. Stochastic networks are well suited in the field of evolutionary algorithms 

and have extensive use in non-linear system modelling, computer technology and 

biological systems (Silvera et al., 2009). Just as any stochastic group, plants may be said to 

be functions of one or several deterministic arguments. To apply stochastic processes, the 

key point is that the variables determining the measured characteristics or vectors must 

share the same functional domain. In other words, they may be seen to show certain  
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probability distributions such as Poisson, Gaussian or other continuous or discrete pattern, 

as discussed in Chapter 3 and hence they often share complex statistical relationships 

(Zhang et al., 2012).  

 

Plants show chaotic patterns of evolution in terms of their individual growth processes and 

plant species numbers (Cui et al., 2012; Furze et al., 2011; Su et al., 2009). Patterning of 

plant species may be determined by key factors of the water-energy dynamic (Hawkins et 

al., 2003; Kreft and Jetz, 2007; Sommer et al., 2010). Climatic variables such as rainfall 

and temperature often show discrete patterns across timescales, so are often made use of 

within fixed time ranges. As such, they can be said to be discrete stochastic patterns, which 

facilitate macro-level modelling of plants (Grime and Pierce, 2012; New et al., 1999; 

Silvert, 2000).  

 

Gaussian functions, or normally deviated variables, are those that may be plotted with a 

bell-shaped curve or parabola; they are deeply rooted in probabilistic and statistical theory 

and have been made use of by many authors for patterning of natural or artificially created 

variables (Herrera, 2005). In particular, Lotfi Zadeh made use of Gaussian distribution 

functions in the inception of fuzzy techniques. The effect of the Gaussian pattern is that it 

can normalise a distorted statistical view of a variable or individual vector. The derivative 

of Gaussian or normal deviation is the central sample of the variation, which is 

proportional to the standard deviation or greatest incline of the population range of 

variables under consideration. Gaussian functions arise by applying the exponential 

function of variables to a general quadratic function; the key premise is hence the natural 

logarithm of the system’s total. The latter makes Gaussian distribution a central function to 

minimise the error within Boolean statistics. As such, it may be seen to be a central 

premise of higher (logic based) mathematics of great application in the analysis of complex 

systems through inferential/differential equations (Angelov and Feliv, 2004; Zadeh, 1973; 

Zhao, 2012). Furthermore, the normal deviation can be estimated most effectively by an 

iterative estimation of differential weighted least squares until the tail ends of the bell 

curve are produced (Guo, 2011). Gaussian distribution is related to other functional 

spreads of variation such as Poisson distribution. 

 

Evolutionary computing methods include genetic algorithms (Broekhoven et al., 2007; 

Zadeh, 1973). These algorithms make use of representation of the components of variation  
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as vectors (chromosomes) within strings (populations). The chromosomes recombine in an 

iterative process under specified conditions involving the same elements of genetic 

recombination as in natural systems. As in biological systems, operators are selection, 

crossover and mutation. In combination with fuzzy set theory, GAs are robust, stochastic 

evolutionary computational algorithms (Su et al., 2009). GAs are adaptive algorithms for 

finding the best (global) solution to optimisation problems. 

 

A natural progression of GA and fuzzy systems is the estimation of a population’s resultant 

distribution (introduced in Chapter 3, section 3.5); which forms an additional method of 

approximation: Estimation of Distribution Algorithms (EDAs) are algorithms with 

applications in computing, industry and natural systems. Copula theory is a concise, robust 

form of EDAs (Nelson, 2006). Copulas join multivariate distributions to one-dimensional 

marginal distribution functions, which make them ideal candidates for the analysis of 

patterns of genetic variation such as that which is produced by the multi objective 

optimisation (MOO) or Pareto front of a multi objective genetic algorithm (MOGA) 

process (Wang et al., 2012). 

 

The objective of this chapter is to show proportions of plant strategies nested within fixed 

population sizes, which have been determined by a genetic (generational) algorithm fuzzy 

rule base. Subsequently the Pareto front for plant strategies is estimated, with further 

exploration into the utopia hyperplane (Erfani and Utyuzhnikov, 2011) of objective space 

for plant strategies via the construction of code (given in Appendix 5). The aim of this 

chapter is to show a minimised (efficient) modelling framework. Techniques employed 

within this chapter increase the accuracy of both data sources of plant variation employed 

and climatic modelling data using the novel method. 

 

The remainder of this chapter is structured as follows: Section 6.2 gives a brief summary 

of the method used to form the T-S-K FL system of individual plant species occurrence of 

E6, the dynamic of Azerbaijan (identified as an E6 candidate) to form the algorithm. The 

robust nodal structure used to form the T-S-K model and algorithmic detail is given. 

Section 6.3 integrates genetic programming methods with fuzzy technique and the MOGA 

process is expanded to show examples of resulting data detected within elements of plant 

strategies. Section 6.4 gives further metabolic application of the MOGA process and 

expands linear and quadratic rules used in formation of elementally dispersed variables.  
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Finally, section 6.5 provides a summary of the information covered in the chapter. 

 

6.2 Fuzzy-genetic programming of plant life-history strategies 

 

Firstly, we must recall that the development of rule-based (eR) systems (FRBS) are hybrid 

systems which may provide knowledge guidance (Chapter 2, section 2.6). They use a 

summary of the information, in terms of the potential of a new data sample (such as 

accumulated spatial proximity information), to trigger the new rule base. Greater generality 

of the structural changes to the data can, therefore, be catered for (Angelov and Filev, 

2004). In terms of plant strategy estimation, we may state the membership functions in 

terms of the seven environments (as demonstrated by Barreto (2008)) and obtain the data 

for the placement of species within each by considering optimisation limits, given that the 

initial number of species is known (Broekhoven et al., 2007). This method was covered in 

depth in Chapters 3, 4 and 5. Using the method, we may obtain stochastic matrices, 

effectively Kp or rK continuums. In combination with a generational algorithm approach, 

the rule base may be successfully used to generate the distribution present in natural 

systems (Elith et al., 2011). A ten-point summary for the combined methods is included 

here, representing a novel form of the scheme outlined in Fig. 3.8: 

 

1. Determine structure via identification of complete sets of 

background/environmental data. 

2. Derive minimal TSK IF–THEN rule base for strategical nodes of network 

organisation. 

3. Identify elements of strategies (node structure). 

4. Use expert-based intuition to rank ideal solutions of each element, represent within 

chromosome population structure. 

5. Identify constraints (stopping conditions), key objectives and total number 

(maximum) individuals/generations for generation of ideal solution combination 

(MOO) to achieve the Z utopia hyperplane. 

6. Generate random population of chromosomes and operate random selection of 

chromosomal values via MOGA. 

7. Allow algorithm to run until sets of ideal solutions have spaced in objective (Z) 

space – this determines the Pareto Frontier. 

8. Identify distribution of Ideal Pareto Frontier, fit linear, quadratic and polynomial 

functions as required to precisely describe relative distribution of chromosomes  
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within maximum number of individuals. The linear fit of the Pareto frontier is 

defined as the Utopia Line (The Utopia objective space is represented by the error 

of each individual Pareto solution; this may be determined by binary conversion of 

each Pareto (P) generating set, equal to 0-1). 

9. Approximation of the distribution may determine real proportions of strategies 

within strategical nodes (stochastic distribution in this case). 

10. Apply solutions to ranges identified through T-S-K FRBS, additionally structure 

may be checked via pattern identification (Angelov and Feliv, 2004; Juang and 

Hseih, 2012; Salah and Abdalla, 2011). 

 

This chapter demonstrates the occurrence of the competitive-stress tolerant plant life-

history strategy in the location of E6, Azerbaijan, Southern Europe, which falls between 

latitude 42.14 degrees north, 38.33  degrees south and longitude 50.53  degrees east, 44.78 

degrees west. Coordinates of the location were obtained using United States Geological 

Survey (USGS) data and extracted using Matlab (Version 2010a©). Exemplified data is 

given in Figs. 6.2.1, 6.2.2 and 6.3.3. 
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Figure 6.2.1 Azerbaijan energy (mean temperature 1961–1990) data, 18.5 km resolution 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6.2.2 Azerbaijan water (mean precipitation 1961–1990) data, 18.5 km 

resolution 
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Figure 6.2.3 Area of Azerbaijan, Europe DEM data, 1km resolution 

 

Azerbaijan quarterly mean temperature (1961–1990) at 18.5 km resolution is shown in Fig. 

6.2.1, characteristic of the energy component of the water-energy dynamic used to form 

the algorithmic framework for modelling of strategies. Azerbaijan quarterly mean 

precipitation (1961–1990) is shown in Fig. 6.2.2. Data of Figs 6.2.1 and 6.2.2 were 

originally recorded by New et al. (1999) and have been used by the Inter Governmental 

Panel on Climate Change (IPCC) for the use of climate modelling. They were made use of 

in this chapter after having been shown to be characteristic of the water-energy dynamic 

(Sommer et al., 2010).  

 

The DEM data of GTOPO30, published through the United States Geological Survey 

(USGS), is shown graphically in Fig. 6.2.3, being at 30 s (1 km resolution). Data were 

processed using Matlab (Version R2010a ©). Code was constructed for mapping and 

image-processing sections of Matlab and is available in Appendices 2.1 and 2.1.1. The 

legends of the figures were used to obtain a unit percentage as detailed in Chapter 5 and 

subsequently the figures were summarised into ANFIS as shown in the following 

subsection. 

Latitude                                                                 Elevation 

                                                                                   (m) 

L
o

n
g

it
u

d
e 

                   44
o
E            45

o
E         46

o
E          47

o
E          48

o
E         49

o
E             50

o
E               

  42
o
N 

  41
o
N 

  40
o
N 

  39
o
N 

0 

500 

1000 

1500 

2000 

2500 

3000 

3500 

4000 

4500 



Stochastic processes to model uncertainty                                                                                       CHAPTER 6 

 107 

 

 

 

 

 

 

 

 

 

6.2.1 Nodal structure and algorithmic detail 

 

In layer 1 of the ANFIS procedure, input variables were estimated and quantified from the 

data sources (Intergovernmental Panel on Climate Change for climate variables, United 

States Geological Survey for altitude). The original data were partitioned into 5 linear 

ranges across 100% for the purposes of the algorithmic statement, seen to optimize model 

efficiency and accuracy whilst removing unnecessary data redundancy (Alcala et al., 

2007). In the case of mean temperature the ranges were 0–20%, Low (A1(1)); 20–40%, 

Low-Medium (A1(2)); 40–60%, Medium (A1(3)); 60–80%, Medium-High (A1(4)) and 80–

100%, High (A1(5)). Mean precipitation, mean ground-frost frequency and altitude were all 

quantified in the same way. Weights were finally added to the variable ranges to make an 

accurate inference of the plant strategy present in Azerbaijan (E6). Layer 2 transferred the 

variable ranges through 5 equally partitioned triangular functions between 0 and 1, in the 

fuzzification process. 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6.2.1.1 T-S-K Nodal structure of Competitive-Stress tolerant strategy of 

Azerbaijan, E6 
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The fuzzy ranges were separated in layer 3 according to the rules applied (19, listed in 

Appendix 5. 1, in the case of E6 shown here). Layer 4 returned fuzzy output depending on 

the combined distributed range as instructed. Finally, layer 5 gave the crisp output, sourced 

from the Global Biodiversity Information Facility. 

 

The structure of Fig. 6.2.1.1 is similar to that of Fig. 5.4.3, however the former contains 

additional rules and alternative quantification of the variables as shown in (6.2.1.1) below. 

 

The T-S-K nodal structure of Fig. 6.2.1.1 resulted in the following control algorithm for 

E6: 
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         (6.2.1.1) 

 

where the consequent number of individual plant species occurrences was 8805. 

 

In fact, it was seen that the membership values of input variables mean temperature and 

mean precipitation were sufficient to instruct the occurrence of the life-history strategy (C-

S) of E6. The maximum efficiency of the algorithm is displayed below. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6.2.1.2 Three dimensional surface view of algorithmic control for differentiation 

of plant strategy environment 6 
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Areas of membership values of each input variable are seen at their most efficient values in 

the lighter (non-shaded) parts of the graph, particularly where Mean Temperature 

membership was <0.4 and Mean Precipitation was in the range >0.7 to 0.9. One may 

estimate the distribution of plant species elements to be dispersed in a Gumbel copula 

within the water energy dynamic, which is in agreement with previous climatic studies 

(Schölzel and Friedrichs, 2007). This distribution is further investigated in the remaining 

sections of this chapter and in Chapter 7. 

 

The following section proceeds to elaborate the hybridization process of fuzzy-genetic 

method, which was used to disperse elements of the algorithmically mapped characteristic 

/ environment. 

 

6. 3 Fuzzy – genetic programming hybrid methodology 

 

Global optimisation techniques are often used to calculate the dispersal of elements within 

objective space following application of the modelling technique (ANFIS). Genetic 

algorithms in particular calculate the optimal configuration of elements of characters given 

set objective values (see Chapter 2, sub-section 2.5.2 and Chapter 3, section 3. 8 for further 

detail). 

 

The process of multi-objective genetic algorithm involved the following main steps: 

 

1 Define each vector for plant strategies. 

2 Randomly generate an initial population of 20 solutions (chromosomes). 

3 Evaluate each solution according to how well it fits into the desired environment (as 

defined in equation (6.2.1.1)). 

4 Select chromosomes randomly (tournament selection). Keep those with the highest 

fitness function to improve the population and discard those with too low (value may be 

previously calculated) fitness. 

5 Create new chromosomes by crossing selected solutions using crossover of proportions 

of the individual strings of solutions. 

6 Mutate a previously determined proportion of the population’s chromosomes. 

7 Go back to step 3 until final population number is reached, then stop.  

Code was constructed in Matlab for 4 sets of variables within defined parameters, variables  
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were mean temperature, mean precipitation, mean ground frost frequency and altitude). 

The variables were directed through two main objective types (water and energy) and 

expressed as a double vector population in Matlab. The algorithm was programmed to stop 

when the total number of individuals had reached that of C-S, E6. Code for the operation is 

available in Appendix 5.  

 

The number of iterations required was recorded and the distribution of ideal solutions for 

each of the 20 chromosomes across objective space was noted. Linear and quadratic lines 

were fitted to the resulting Pareto in order that an approximation of the distribution be 

made. A plot was made and the position of the linear fit (representing the Utopia line) and 

the quadratic shape of the curve visualised in order that the evolution of the 20 characters 

could be estimated through future transgressions. This is given further discussion in 

Chapter 3, sub-section 3.8.1, section 6.4 and subsection 6.4.1. 

 

6.3.1 Multi-objective genetic algorithm dispersal of plant 

strategies  

 

In order to apply the multi objective genetic algorithm on the defined plant population, it 

was necessary to identify and quantify ideal solutions of the elements of strategies (Zadeh, 

1973). In this section, elements of plant strategies (Grime et al., 1995) are detailed, defined 

and given quantifiable values.  

 

In Tab. 6.3.1, the elements of plant strategies are: PT = plant type, sm = shoot 

morphology, lf = leaf form, c = canopy, loep = length of established phase, lor = lifetime 

of roots, lp = leaf phenology, rop = reproductive organ phenology, ff = flowering 

frequency, poaps = proportion of annual production for seeds, podup = perennating organs 

during unfavourable periods, rs = regenerative strategy, mpgr = mean potential growth 

rate, rrd = response to resource depletion, pumn = photosynthetic uptake of mineral 

nutrients, ac = acclimation capacity, sop = storage of photosynthates, lc = litter 

characteristic, psh = palatability to non-specific herbivores and nDNA = nuclear DNA 

amount. Ideal quantification is seen in brackets. 
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Table 6.3.1.1 Solutions and ranges for plant strategy chromosomes (Furze et al., 2012a) 

 

Character/ 

Chromosome 

Competitive (1,…,5) Stress Tolerating (1,…,5)  Ruderal (1,…,5) 

PT Herbs, shrubs, trees (1,2,3)  Lichens, bryophytes,  herbs, 

shrubs and trees (4,5,1,2,3)  

Herbs, Bryophytes (1,5) 

sm Long with extensive above 

and below ground (3) 

Long, short and intermediate 

(3,1 and 2) 

Short stem, limited lateral 

spread (1) 

lf Robust, large often require 

high water (5) 

Small (1), leatherly (1) or 

needle-like (2) low water 

requirement (1) (1,1 or 2,1) 

Variable, often require 

high water (1,…,5) 

c Rapid upward growth of 

one layer (5,1) 

Multi layered (5) if mono (1) 

layered , slow (1) upward 

growth (1,5,1) 

Variable (1,…,5) 

 loep Long or relatively short (4 

or 2) 

Long to very long (4≤5) Variable (1,…5) 

 lor Relatively short (2,3) Long (4) Very short (0,1) 

 lp Well defined peaks of leaf 

production coincides with 

periods of maximum 

productivity (5≡5) 

Short phase of production 

within period of high 

productivity (1,…,4)  

Evergreen, with various 

patterns of leaf generation 

(5≡1≤5) 

rop Flowers produced after 

periods of maximum 

productivity (1,…,5) 

No relationship between 

productivity and flowering 

time (1,…,5≠1,…5) 

Flowers produced early in 

life-history (often before 

maximum growth) (5=1) 

ff Established plants flower 

every year (5) 

Flowering intermittently 

over a long life-history (4) 

High frequency of 

flowering (>1 a year) 

poaps Small (1) 

 

 

Small (1) Large (4) 

podup Buds and seeds 1,…,5) None (0) Seeds (5) 

rs Vegetative (1), seasonal 

regeneration in gaps (1), 

wind dispersal of small 

seeds (1), persistent seed 

bank (5) (1,1,1,5) 

Vegetative, wind dispersal 

of small seeds, persistent 

juvenile bank (1,1,5)   

 Seasonal regeneration in 

gaps (2), wind dispersal of 

small seeds (1), persistent 

juvenile bank (5) 

mpgr High (5) Low (1) High (5) 

rrd Rapid morphogenetic 

responses in form and 

distribution of leaves and 

roots (5,5) 

Slow, small morphogenetic 

responses (1,1) 

Rapid cessation of 

vegetative growth and 

reallocation of resources 

into flowering (5≡1) 

rumn Strongly seasonal 

coinciding with long 

continuous period of 

vegetative growth (5=1) 

Opportunistic, uncoupled 

from vegetative growth 

(1≠1) 

Opportunistic, coinciding 

with vegetative growth 

(3=1) 

ac Weak (0,…,1) Strong (5) Weak (0,…,1) 

sop Rapid incorporation in 

vegetative structure and 

compartmentalized storage 

for growth in next season 

(1) 

Storage in leaves, stems, or 

both (2,3 or 5) 

Seeds (4) 

lc High volume (5), non-

persistent (0) 

Sparse (2), persistent (5) Sparse (2), non-persistent 

(0) 

psh Various (0,…,5) Low (1) High (5) 

nDNA  Small (1) Small (1) and high (5) Small (1) to very small 

(0,…≤1) 

 

The elements identified in Tab. 6.3.1.1 represented a chromosomal population and were 

used to form a MOGA, in which the chromosomes cycled (via roulette wheel selection)  
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through 1–5, resulting in a Pareto front. The process was carried out in order that 

estimation of the numerical distribution of each plant strategy in the previously 

algorithmically defined environments could take place. In the following section the 

resulting solutions are plotted, and the MOGA process is applied to plant metabolic 

(photosynthetic) types. 

 

6.4 Multi-objective dispersal of plant strategies and metabolism 

 

In this section the objective dispersal of the twenty elements detailed in Tab. 6.3.1.1 is 

shown. Linear weighted least squares and quadratic expressions (with corresponding 

errors) summarise the distributions as shown in Fig. 6.4.1. 

 

 

 

  

 

 

 

 

Figure 6.4.1 dispersal of twenty elements of plant strategies dispersed over the simulated 

water-energy dynamic of Azerbaijan 

 

In Fig. 6.4.1 the axis ‘objective 1’ (mean temperature, x) and ‘objective 2’ (mean 

precipitation, y) are n objective functions which may be expressed as Z in the following: 

 

RnZ                                                                                                                    (6.4.1) 

 

Where vectors of Z (described in Tab. 6.3.1.1), are seen to be within the correlation 

(Relational) matrix multiplied by the number of objectives. Fig. 6.4.1 represents the 

graphical dispersion / simulation via genetic programming of the T-S-K FIS summary 

expression of (6.2.1.1). Expansion of the rudiments of plant life history strategies across 

the numerical (Z) hyperplane is elucidated. This may be translated to geographical and  
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species characterisation via differential expressions. Expressions for the utopia line and 

curve are given in Fig. 6.4.1, and these are discussed in sub-section 6.4.1. From (6.4.1) it 

follows that there was a design variable (D) formed from the MOO (Erfani and 

Utyuzhnikov, 2011), being the numerical estimate of the utopian (Z) space.   The following 

expression is used as a generic form of the optimisation: 

 



MinF  {F1(x),F2(x),...,Fn(x),  subject to xD                                                      (6.4.2) 

 

Where F represents different optimisation solutions (or functions in the case of F1, F2, Fn 

, with x  representing set values of individuals). The residual error of the quadratic utopia 

curve and of D in (6.4.2) was seen to be 0.02717. The optimisation may be expressed 

across a given total number of individuals following a Poisson distribution with use of 

quadratic or varying degrees of polynomial expressions with greater differentiation to 

express greater numbers of categories within the optimisation (Zhao, 2012). We may 

approximate a similar distribution with a lesser number of grouped characters (such as 

strategies, or photosynthetic metabolism type) or a greater number of characters such as 

life-forms owing to expanding/contracting dimensional relations given through fuzzy and 

interval type 2 fuzzy inference systems (Raunkier, 1934; Zadeh, 1965; Zhao, 2012).  

 

The beauty of the MOGA Strength Pareto shown in Fig. 6.4.1 is that one may substitute 

any value of objective 1, temperature, and return a value for objective 2; these values being 

subject to the parameters entered (population size, number of characters to be dispersed). 

This novel method may, therefore, be used to identify accurate prediction of temperature or 

precipitation given a finite population number. 

 

The efficient prediction of the presence of photosynthetic groups within the set population 

of individual plant species occurrences of E3, Cuba is carried out by a further reduced 

form of T-S-K FL (seen in Appendix 5.2). The reduced variables considered are the 

‘driving variables’ (discussed in section 5.4) of Mean Temperature and Mean Precipitation. 

In this section, proportions of plant metabolism characteristics nested within the fixed 

population size, which has been determined by a hybrid genetic (generational) algorithm 

fuzzy rule base, were investigated. 

 

Characteristics of plant species related to each type of photosynthesis are defined  
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according to Chapter 3, section 3.6. This section proceeds to qualify and quantify different 

characters shown in individuals of each photosynthetic type.  

 

 

Table 6.4.2 Photosynthetic characters and quantification solutions for MOGA cycle 

 

Character /  

Chromosome 

C3  

(1,…,5) 

C4  

(1,…,5) 

CAM     (1,…,5) 

   ws (3,…,5) (0,…,2.5) (1,…,2) 

fs (1,…,2.5) (2.5,…,5) (2.5,…,5) 

hs (4,…,5) (2.5,…,4) (0,…,1) 

fl (0,…,2.5) (2.5,…,5) (2.5,…,5) 

tl (2.5,…,5) (2.5,…4.5) (0,…,2.5) 

nll (0,…,2.5) (0,…,1) (0) 

tr (0,…,2) (2,…,5) (0,…,2.5) 

crb (0,…,3) (0,…,3) (0,…,2.5) 

drb (3.5,…,5) (0,…,2.5) (0,…,2.5) 

gpspod (5) (5) (0) 

gpspon (0) (0) (4,…,5) 

pka (0) (5) (1) 

ppep (0) (5) (0,…,2.5) 

sspc (0,…,2) (2,…,5) (2,…,5) 

tspc (0) (0,…,2) (5) 

sac (0,…,2.5) (2.5,…,5) (5) 

soc (5) (3) (0,…,2.5) 

c (0,…,2.5) (3) (3) 

s (0,…,2.5) (2.5) (5) 

r (5) (2.5) (2) 

 

Plant characters in Tab. 6.4.2 are: ws = woody stem, fs = fleshy stem, hs = hairy stem, fl = 

fleshy leaves, tl = thin leaves, nll = needle-like leaves, tr = tap root, crb = compact root 

ball, drb = dispersed root ball, gpsod = greater proportion of stomatal pores open during 

day, gpspon = greater proportion of stomatal pores open during night, pka = presence of 

Kranz anatomy, ppep = presence of phosphoenol pyruvate, sspc = spatial separation of  
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photosynthetic compounds, tspc = temporal separation of photosynthetic compounds, sac = 

storage of acidic compounds, soc = storage of carbohydrate, c = competitor, s = stress 

tolerant, r = ruderal. Ideal quantification is shown in brackets in the table. 

 

 

In the following subsection the dispersal of photosynthetic elements identified in Tab. 

6.4.2 are shown and subsequently construction of combined objective (utopia) rules are 

detailed. 

 

6.4.1 Linear and quadratic rules of multi-objective dispersed 

elements 

 

In this penultimate part of the chapter an example of the dispersal of 20 elements within 

the water energy dynamic is shown, by exemplifying the plot of elements of 

photosynthesis for the individual plant occurrence data of Cuba (E3). The variance of the 

linear weighted least squares (utopia line) and quadratic (utopia curve) plots may be 

obtained as mentioned in the last subsection as shown in Fig. 6.4.1.1. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6.4.1.1 Plant photosynthetic evolutionary strength Pareto of Cuba 
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of E3, Cuba, enabled estimation of the distribution of photosynthetic characteristics to be 

carried out, in accordance with the W-E dynamic as summarized in the utopia line and 

utopia curve expressions given in Fig. 6.4.1. As discussed in the previous section, these 

expressions are subject to the variance seen within the range of points plotted. 

 

 

The residual variances of these expressions were also plotted as seen in Appendix 5.3 and 

in Fig. 6.4.1.2. 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

 

Figure 6.4.1.2 Residual error of the utopian space of plant photosynthetic characters 

 

Plotting the residual error of utopian space enables the formation of rules for the 

distribution of photosynthetic elements to be formed as shown in table 6.4.1.1. 

  

Table 6.4.1.1 Utopia rules of photosynthetic character rudimental dispersal 

 

Rule Variables (3 significant figures) 

     ∂1 ∂2 ∂3 



  
1.



Z1x2 -0.111 -0.154  0.541 

2.



Z 1x2 2x 3   0.014 0.014 0.007 0.03 

linear 

 

quadratic 0.2 

0.15 

0.1 

0.05 

0 

-0.05 

-0.1 

-0.15 

-0.2 

 

 

 

 

 
Linear norm of residuals = 0.54147 

Quadratic norm of residuals = 0.030429 

Residuals 
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In rule 1 of Tab. 6.4.1.1, y (objective 2, mean precipitation) is equal to an element of Z 

(given that x (objective 1, mean temperature) and y axis form the Z space), ∂1 is -0.11061 

and ∂2 is -0.15387 following a weighted least squares structure subject to the error (



 =  

 

0.54147). In rule 2, y (objective 2) is equal to an element of Z (given that x (objective 1, 

mean temperature) and y axis form the Z space), ∂1 is 0.013653, ∂2 is 0.013537, ∂3 is 

0.0071417, subject to the error (



 = 0.030429). 

 

Construction of the above rules from linear and quadratic expressions enables estimation 

of each objective to be made given a fixed population number, as identified for each T-S-K 

algorithmically described location and character; hence the hybrid MOGA techniques 

enable us to predict climatic data and additionally species numbers subject to errors such 

as those detailed in Tab. 6.4.1.1. This point not only enables us to remove uncertainty in 

prediction of individual plant species occurrences, but also to enhance the knowledge bases 

on which the modelling system is founded (Furze et al., 2013a). Expression of the W-E 

dynamic in quintile terms together with quantification of plant characteristics in the same 

way allows the cyclical nature of the MOGA to produce optimal distribution of individual 

traits within the dynamic conditions. The benefit of carrying out the technique is that the 

likelihood of individual characteristics occurring in ecology / field conditions may be 

approximated within concise conditions. Knowledge of the characters being dispersed is 

very important, as it is this which supplies the root of intuition to infer which elements of a 

character are present given conditions of the dynamic in which they are dispersed. A major 

advantage of mathematics in this chapter is that it can be used to give highly accurate 

indications of both plant species presence / characteristics and given plant species 

occurrence, the conditions of the W-E dynamic are stated with greater accuracy. The novel 

application of these techniques provides time and financial savings for ecologists and 

biologists in otherwise purely field based studies.  

 

Plots for dispersed elements of strategies, such as those detailed in Tab. 6.3.1, and plant 

life-forms (Chapters 3 and 7) are shown in Appendix 6 and Appendix 6.1 respectively. In 

the following section a summary of this chapter is given.  
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6.5 Summary 

 

This chapter has presented the method and results of objective dispersal of plant strategies 

and primary metabolic (photosynthetic) patterns of individual plant species occurrences, 

citing example locations of Azerbaijan and Cuba. First introduction of  stochastic 

distribution and mathematic methodological descriptive background was given. A brief  

 

summary of T-S-K nodal structure employed in combined fuzzy genetic methods was 

shown furthering the background required for development of T-S-K rule based systems. 

The novel methodology required for fuzzy genetic differentiation of plant strategies was 

covered and subsequently elements of strategies are itemized for dispersal and dispersed 

using a process analogous to natural genetic recombination.  

 

Genetic programming of strategies and metabolism enables the distribution of the 

characteristics of individual plant species occurrences to be numerically distributed in the 

combined objective space of the water-energy dynamic. The dispersal is in agreement with 

alternative methods used in climatic science which have resulted in similar shapes of data 

points (Schölzel and Friedrichs, 2007). The developed dispersal method of hybrid MOGA 

enables formation of expressions which allow summarization of the dispersed elements of 

strategies to be carried out in utopian space. Given that similar results are obtained for the 

Pareto fronts of 2 different environments (E6 and E3) used in the methods and results of 

this chapter it is reasonable to assess that the water-energy dynamic has the same effect 

regardless of location, though this point is further elaborated in Chapter 7. 

 

This chapter gives the answer to research questions posed in Chapter 1, the sub groups of 

plant life-history strategies and photosynthetic types are differentiated. Informative value is 

given to inferential and antecedent variables used in the modelling of plant species 

characterisation. All research questions are revisited in Chapter 8. Subsequently, the 

mathematic distribution of elements has been shown and geographic coverage is given to 2 

different areas (for others see Chapter 7 and Appendices 5.2 and 6). 

 

Furthermore, linear and quadratic rules of utopian space of the water energy dynamic 

elucidate a method by which further characteristics of plant species may be investigated. 

Additional benefit is also found in enhancement of the climatic, species numbers and  
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characteristic knowledge bases used in modelling of plants. 

 

The following chapter details the use of T-S-K FL and MOGA systems to inform 

geographic information systems. Further detail of mathematic exploration is also 

elaborated to substantiate statements of conservation and sustainability policies.  
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CHAPTER 7 

Plant life-form distribution and instructive 

geographic information systems 

 

 

 

 

 

 

 

7.1 Introduction 

 

Chapter 3 identified plant life-forms as one of the potential categories by which plants may 

be grouped. Plant life-forms are a primary means by which to categorize forms of plant 

growth, together with life history strategies and metabolism. Distribution of life-forms is 

an effective way to show distribution of plant species on a macro scale with use of 

computational statements (Grime et al., 1995; Raunkier, 1934). Patterning of plant species 

may be determined by key factors of the water-energy dynamic (Hawkins et al., 2003; 

Kreft and Jetz, 2007; Sommer et al., 2010). Climatic variables such as rainfall and 

temperature often show discrete patterns across timescales, so are often made use of within 

fixed time ranges. As such, they can be said to be discrete stochastic patterns, which 

facilitate macro-level modelling of plants (Grime and Pierce, 2012; New et al., 1999; 

Silvert et al., 2000). 

 

Utopian distribution refers to the informative combined objective Z matrices, which may 

be generated through the use of techniques including adaptive fuzzy neural inference  
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systems, genetic programming, and particle swarm optimization (Alcalá et al., 2007; Furze 

et al., 2013c; Omizegba and Monikang, 2009; Wang and Yang, 2010; Zadeh, 2011). 

  

Functional relations may be explored within the products of evolutionary algorithms via 

the use of functional process models, which display continuous or discontinuous qualities 

(Büche et al., 2005; Schölzel and Friedrichs, 2007). Computational methods may be 

applied to break down biological systems such as reservoir capacity to support life and 

produce indices of essential ecological descriptors (Taheriyoun et al., 2010; Silvert et al., 

2000; Wang et al., 2012). 

 

There are five main groups of plant life-forms as documented in Chapter 3, section 3.6. 

The groups may be further differentiated to component sub-groups as detailed in section 

7.3. Life-forms are often seen in differing proportions or spectra; plants show chaotic 

patterns of evolution in terms of their individual growth processes and numbers (Cui et al., 

2012; Furze et al., 2011; Su et al., 2009). Life-form differences are often associated with 

variable gradients in topographical and climatic conditions (Bhatterai and Vetaas, 2003; 

Schmidt et al., 2005). In order to clarify the difference in life-form spectra this chapter 

considers two contrasting areas known to be rich in plant numbers: Ecuador, South 

America and Macedonia, Southern Europe (Barthlott et al., 2005; Bass et al., 2010; Furze 

et al., 2012b; Zlatković et al., 2011). The former of these has been well documented as 

being the most diverse location on the planet and the latter has previously been 

algorithmically defined as having the characteristics of a more extreme environment 

(elevated temperature, comparatively low rainfall). 

 

In this chapter proportions of plant life-form characteristics are investigated within fixed 

population sizes, which have been determined from a combined genetic algorithm fuzzy 

rule base, furthered by field based studies (Bass et al., 2010; Zlatković et al., 2011). 

The remainder of the chapter is structured as follows: section 7.2 illustrates DEM and 

climatic data of candidate locations for life-form categorisation, there is elaboration of the 

method for algorithmic breakdown of the ANFIS for plant life-forms and the resultant 

ANFIS is given. Section 7.3 explains the methodology for dispersal of life-form elements 

and gives the MOGA Pareto and selection process of the chromosomal population. The 

author explains the use of process models to distribute plant life-forms and expands the Z 

hyperplane with use of functional approximation. Section 7.4 gives a description of plant-

strategy, plant photosynthetic and plant life-form ANFIS algorithms, and further life-forms  
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are used to elaborate the functional approximation algorithm approach for stable 

communities of plant species individual occurrence. Section 7.5 defines geographic 

information systems in the context of plant characterisation. The novel application of 

mathematical methods to substantiate national and international conservation and 

sustainability policy formation is briefly covered. Finally, section 7.6 summarises the 

chapter. 

 

7.2 Using DEM and climatic data to substantiate T-S-K systems 

 

Climatic variables of diversity zones 8-10 (Barthlott et al., 2005), of greater than 3000 

species per 10000km
2
, were investigated and given algorithmic definition (Furze et al., 

2012a). Further, these areas are included within high resolution mapping tiles available 

from the Intergovernmental Panel on Climate Change (at 18.5km resolution) and the 

United States Geological survey (at 1km resolution). Two candidate areas were selected 

from the literature to show the breadth of difference in climatic, topographic and actual 

documented numbers of individual plant occurrences within the areas. The selected areas 

were Ecuador, including the reserve surrounding Tiputini Biodiversity Station (covering 

approximately 10000km
2
) (Bass et al., 2010; Bilsborrow et al., 2012) and the country of 

Macedonia (covering 25713km
2
 (European Environment Agency, 

http://www.eea.europa.eu/ accessed 30 06 13)). Coordinates for each area were obtained 

from the above sources and code was constructed in Matlab (available in Appendix 2.1.1) 

enabling display of the digital elevation model (DEM), precipitation, temperature and 

ground frost frequency data for each region. Variables were quantified to maximize 

computational efficiency and interpretability of the ANFIS. The DEM data of GTOPO30, 

published through the United States Geological Survey (USGS), are shown graphically in 

Fig. 7.2.1 at 30 s (1 km resolution). 
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Fig. 7.2.1 Digital Elevation Maps for a) Ecuador, South America; b) Macedonia, Southern 

Europe (Furze et al., 2013d) 

 

Ecuador shows an elevation range from 0m to 6300m above sea level, whereas Macedonia 

shows an elevation of 0m to just over 2520m above sea level. The elevation ranges of 

Ecuador and Macedonia were quantified according to a five-split partitioning of the range 

as shown in Tab. 7.2.1. 
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Tab. 7.2.1 Quantification of DEM data for Ecuador, South America and Macedonia, 

Europe 

 

Elevation (m) Notation 

0 – 1260 A4(1) 

1260 – 2520 A4(2) 

2520 – 3780 A4(3) 

3780 – 5040 A4(4) 

5040 – 6300 A4(5) 
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Figure 7.2.2 Quarterly mean temperature (1961-90) of a) Ecuador, South America and b) 

Macedonia, Southern Europe (Furze et al., 2013d) 
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Figure 7.2.3 Quarterly mean precipitation (1961-90) of a) Ecuador, South America and b) 

Macedonia, Southern Europe (Furze et al., 2013d) 
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With reference to Fig. 7.2.2 a) Ecuador shows mean temperatures of -3 to >21
o
Celsius in 

January, April, July and October; b) Macedonia shows temperatures of -27 to 21
o
Celsius in 

January, -3 to 21
o
Celsius in April, 21 to 45

o
Celsius in July, and -3 to 21

o
Celsius in 

October. Mean temperatures were quantified according to the method shown in (Furze et 

al., 2012a). 

 

With reference to Fig.  7.2.3 a) Ecuador shows precipitation of 0-500 kg m
2 

in January, 

April and October and 0-400 kg m
2
 in July; b) Macedonia shows precipitation of 0-200 kg 

m
2

 in January, April and October and 0-100 kg m
2
 in July. Data of ground frost frequency 

(New et al., 1999) is available on the IPCC web site. All climatic variables are displayed at 

18.5 km resolution. The method for quantification of climatic variables is shown in Furze 

et al. (2012b). Mean temperature was designated as A1, mean precipitation as A2, mean 

ground frost frequency as A3 and elevation as A4 to enable the construction of the ANFIS 

engines, which is detailed in the following section. 

 

7.2.1 ANFIS and efficiency of reduced model components  

 

ANFISs are commonly built using Takagi-Sugeno-Kang (T-S-K) or Mamdani fuzzy logic. 

T-S-K fuzzy systems (Takagi and Sugeno, 1985; Zadeh, 1965) are more easily applied to 

multiple input and multiple (ranged) output as discussed in Chapter 3, section 3.7.  

 

After quantifying the variables for the geographic locations of Ecuador and Macedonia, 

and sourcing the number of individual plant occurrences from the Global Biodiversity 

Information Facility (http://gbif.org , accessed December 2012), the following concise 

fuzzy singleton antecedent-consequent rule bases were applied in order to build the 

inference engines: 

 

1B 4433

2225.02275.01A1 

(65535))5()1()2()1(

)4()1()5()1()4((3)

EThenAAAA

AAAAAIf








                                   (7.2.1.1) 

 

The above algorithm translated into the following conditions:  
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IF Variables (A) = Temperature = 60-80 %; Precipitation = 0.75 x 0-100 Kg m
2
 to 400-500 

Kg m
2
, 0.25 x 0-100 Kg m

2
 to 200-300 Kg m

2
; Ground Frost Frequency = 0-6 days to 6-12 

days; Altitude = 0-6300m THEN Environment 1 (Phanerophytes dominant ≤ 

Chamaephytes ≤ Hemicryptophytes ≤ Cryptophytes ≤ Therophytes) (B) = 65535 

individual plant occurrences. (7.2.1.1) Creates 17 rules with variable weights as shown in 

Tab. 7.2.1.1. 

 
 

Table 7.2.1.1 ANFIS rules for Ecuador, South America showing life-form dominance 

 

Rule Description Weight [0, 1] 

1 If Temp is Med-High the L-F is P 1 

2 If Prec is Low then L-F is P 0.75 

3 If Prec is Med-Low then L-F is P 0.75 

4 If Prec is Med then L-F is P 0.75 

5 If Prec is Med-High then L-F is P 0.75 

6 If Prec is High then L-F is P 0.75 

7 If Prec is Low then L-F is P 0.25 

8 If Prec is Low-Med then L-F is P 0.25 

9 If Prec is Med then L-F is P 0.25 

10 If Prec is Med-High then L-F is P 0.25 

11 If GFF is Low then L-F is P 1 

12 If GFF is Low-Med then L-F is P 1 

13 If Alt is Low then L-F is P 1 

14 If Alt is Low-Med then L-F is P 1 

15 If Alt is Med then L-F is P 1 

16 If Alt is Med-High then L-F is P 1 

17 If Alt is High then L-F is P 1 

 

 

In Tab. 7.2.1.1, Temp = Mean temperature, Prec = Mean precipitation, GFF = Mean 

ground frost frequency, Alt = Altitude, L-F = Life-form, P = Phanerophyte dominated, 

Med = Medium. The terms Low, Low-Medium, Medium, Medium, Medium-High, High 

are quantified according to Furze et al. (2012b). 

 



Plant life-form distribution and instructive geographic information systems                                  CHAPTER 7 

 129 

 

5B 44325.0335.03

325.0225.02275.0125.015.01125.0

(2023))3()1()1()2()1()5(

)1()1()2()1()5()4()5()4(

EThenAAAAAA

AAAAAAAAIf








        (7.2.1.2) 

 

(7.2.1.2) is the algorithm for Macedonia, which translated into the following conditions: 

 

IF Variables (A) = Temperature = 0.25 x 60%-80% to 80-100%, 0.5 x 60-80%, 0.25 x 80-

100%; Precipitation = 0.75 x 0-100 Kg m
2
 to 100-200 Kg m

2
, 0.25 x 0-100 Kg m

2
; Ground 

Frost Frequency = 0.25 x 0-6 days to 24-30 days, 0.5 x 0-6 days to 6-12 days, 0.25 x 0-6 

days; Altitude = 0-3780m THEN Environment 5 (Hemicryptophyte, Therophyte dominant 

≤ Chamaephytes ≤ Hemicryptophytes ≤ Cryptophytes ≤ Phanerophytes) (B) = 2023 

individual plant occurrences. (7.2.1.2) Creates 16 rules with variable weights (see 

Appendix 2.4). 
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Figure 7.2.1.1 Adaptive neural fuzzy inference system quantifying the dominant plant life-

form type of Ecuador (Furze et al., 2013d) 

 

The first layer of the computational engine shown in Fig. 7.2.1.1 accepted the crisp input 

variables, the second layer enabled conversion of the variables according to their 

membership functions values / terms, the third layer was where the rules of the engine 

operate (seen in Tab. 7.2.1.1), the fourth layer converted the values back through 

membership function partitioned terms and the fifth layer computed the specific (crisp) 

number applicable for the predominant life-form type. The estimated primary consequent 

nodal number was 65535 (individual plant occurrences) for Ecuador and 2203 (individual  

 

f(u) Life form  = 

Phanerophyte 

P(dom) =E1 

Input Variables  Input mf                                       Rule                   Output mf                            Output      

       Layer 1        Layer2                                       Layer 3                   Layer 4                             Layer 5 

Temperature 

A1(1,n) 

Precipitation 

A2(1,n) 

Ground Frost 

Frequency 
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plant occurrences) for Macedonia (GBIF (http://gbif.org, accessed December 2012) 

(Yesson et al., 2007)). The efficiency of each pair of variables was seen by viewing the  

 

surface of the algorithm (Fig. 7.2.1.2.2). Clear definition is a good indication of accuracy 

achieved and helps to choose which variables are minimized in optimization techniques 

(Furze et al., 2013a). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 7.2.1.2.2 3-D Surface views of variables of the algorithm for plant life-forms. a) 

Ecuador, South America (precipitation versus temperature), b) Macedonia, Southern 

Europe (precipitation versus temperature, c) Ecuador, South America (precipitation versus 

altitude), d) Macedonia, Southern Europe (precipitation versus altitude) (Furze et al., 

2013d) 
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Fig. 7.2.1.2.2 a) and b) show similar defined peaks of life-form differention, whereas c) 

and d) give no consistently defined life-form peaks. It is suggested therefore that the most 

effective variables for definition of the life-form categories are water (precipitation) and 

energy (temperature). Further dispersal of the life-forms is required in order that we may 

consider the distribution of the range of life-form sub categories present in the two 

candidate areas. 

 

The following section proceeds to quantify the 18 life-form characterisation and shows the 

result of a multi-objective genetic programming allowing dispersal of the 18 life-form 

elements, employing the objectives temperature and precipitation to generate the utopian 

space via multi objective genetic algorithm (MOGA). 

 

7.3 Multi-objective optimisation selection and dispersal of plant 

life-forms 

 

In terms of plant life-forms we may state membership functions in terms of the five main 

groups of life-form within a final (known) population number, with an established 

distribution of the (objective) variables (Broekhoven et al., 2007). Integrating a mechanism 

to disperse elements (or sub-categories) of life-forms has proved to be in visualisation and 

estimation of the distribution of the associated life-form traits. A hybrid genetic algorithm 

approach is applied in order to achieve dispersal of elements and extrapolation of the Z 

hyperplane (Furze et al., 2013a). In this chapter the node structure of plant strategies is 

replaced with plant life-forms. The expanded number of life-forms (18) are given solutions 

and detailed in Tab. 7.3.1. 
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Table 7.3.1 Solutions and potential ranges for plant life-form chromosomes 

 

Character / 

Chromosome 

Phan 

(0,…,5) 

Chamae 

(0,…,5) 

Hemi-crypt 

(0,…,5) 

Crypt 

(0,…,5) 

Thero 

(0,…,5) 

ws / 1 5 1,…,5 1,…,2.5 0,…,2.5 0,…,3 

eg/d bs / 2 5 0 0 0 0 

H>30m / 3 1.25,…,5 0 0 0 0,…,1.25 

H 8-30m / 4 1.25,…,5 0 0 0 0,…,1.25 

H 2-8m / 5 1.25,…,5 0 0,…,1.25 0,…,1.25 0,…,1.25 

H<2m / 6 1.25,…,5 5 1.25,…,5 0,…,1.25 0,…,1.25 

amgpusd / 7 0,…,1.25 1.7,…,5 0,…,1.25 0 0 

amgpusf  / 8 0,…,1.25 1.7,…,5 0,…,1.25 0 0 

sopag / 9 0,…,1.25 1.7,…,5 0,…,1.25 0 0 

scpag / 10 0,…,1.25 1.7,…,5 0,…,1.25 0 0 

agdoamgp / 11 0 0,…,1.25 1.25,…,5 0 0 

lwdusspgb / 12 0,…,1.25 0,…,1.25 1.25,…,5 0 0 

dlfbrlasgyal / 13 0 0,…,1.25 1.25,…,5 0 0 

lrtbrlasaldffo / 14 0 0,…,1.25 1.25,…,5 0 0 

ufsoseigs / 15 0,…,1.7 0,…,1.7 0,…,1.7 1.7,…,5 0 

gbaisbwsapaw / 16 0,…,1.7 0,…,1.7 0,…,1.7 1.7,…,5 0 

gbuwagpsruw / 17 0,…,1.7 0,…,1.7 0,…,1.7 1.7,…,5 0 

apcegcismawsas / 18 0,…,0.3 0,…,0.3 0,…,0.3 0,…,0.3 5 

 

In Tab. 7.3.1 Phan is phaneropyte, Chamae is chamaephyte, Hemi-crypt is 

hemicryptophyte, Crypt is cryptophyte, Thero is therophyte, ws is woody stem, eg/d bs is 

evergreen / deciduous bud scale, H is height, m is metres, amgpusd is after main growth 

period upper shoots die, amgpusf is after main growth period upper shoots flat, sopag is 

shoots only produced along ground, scppag is shoots closely packed produced along 

ground, agdoamgp is all above-ground dies off after main growth period, lwdusspgb is 

leaves well developed up the sides of stems protecting growing buds, dlfbrlasgyal is 

developed leaves form basal rosette long aerial shoots grow year after leaf development for 

leaves and flowers, lrtbrlasaldffo is leaves restricted to basal rosette long aerial shoot after 

leaf development for flowers only, ufsoseigs is underground food storage organs shoots 

emerge in growing season, gbaisbwsapaw is growing buds are in soil beneath water shoots  
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are produced above water, gbuwagpsruw is growing buds under water after growth period 

shoots remain under water, apcegcismawsas is annual plants complete entire growth cycle 

in summer months, after which survive as seeds.  

 

Quantification values are seen in brackets in Tab. 7.3.1. The characters represented in the 

table represented a chromosomal population and were used to form a multi objective 

genetic algorithm (MOGA) in which the chromosomes cycled through 0-5, resulting in a 

Pareto front across the combined objective space. This substantiates one method by which 

the distribution of the life-form elements was estimated within the previous sections 

algorithmically defined statements, expanding the number of life-form nodes from 5 to 18.  
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Figure 7.3.1 a) Objective dispersal of the Strength Pareto Evolutionary population 

obtained for Ecuador, b) Error of linear Utopia line and quadratic curve, c) Illustration of 

how selection within the chromosome populations took place (Furze et al., 2013d) 
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In Fig. 7.3.1 a) Life-form sub groups are distributed within the water-energy dynamic of 

Objective 1 (Mean temperature) and Objective 2 (Mean precipitation) of combined 

objective space. The number of individual plant occurrences is 65535, enabling the same 

number of generations over which the algorithm cycled. Fig.  7.3.1 b) illustrates the spread 

of hyperbolic residual variance obtained in the population of 18 chromosomes’ utopia line 

and the much lower variance obtained given the utopia curve. This gave a similar result to 

that shown for plant strategies and photosynthetic elements, confirming the effect of the 

water-energy dynamic on individual plant occurrence characters from three alternative 

biological processes with implications as to the spread of characters in different 

environments and also to the spread of photosynthetic elements. Fig. 7.3.1 c) gives an 

illustration of the points at which the chromosomes were selected from within the MOGA 

process. The process of MOGA is covered in Chapter 6, (Furze et al., 2013a) with the 

essential difference being that 18 elements of plant life-forms as opposed to 20 elements of 

strategies are dispersed as covered in Chapter 6. Code for the MOGA is available in 

Appendix 7. The consequent rules for utopia line and curve are seen in Appendix 7.1. 

 

The following sub-section develops an approximation of the distribution of the sub-groups 

of life-forms with use of a surrogate model of plant life-form distribution. 

 

7.3.1 Functional approximation within utopia of plant life-forms 

 

Approximation of the functional distribution of any character may be seen to be within the 

field of evolutionary algorithms and estimation of distribution algorithms as stated in 

Chapter 2, section 2.5.3 and Chapter 3, section 3.5. In this section a novel approach is 

formulated by making use of process models to summarise the distribution of plant life-

forms seen within individuals of any set population. A further advantage of using a 

Gaussian process model in estimation of rudimentary distribution is the effective 

estimation of the life-forms’ fitness function, which must be known when programming a 

MOGA such as that used in the previous sections. The fitness function is a numerical 

estimation of chromosomal ‘fitness’. In previous application of MOGA the default fitness 

of 0.8 or 80% adaptation for selection has been made use of. The method of functional 

approximation algorithm (FAA) for plant variation consists of the following 4 steps: 

 

 Step 1. Geographic and climatic study to establish the framework for modelling  
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species of plant life-forms in candidate areas. 

 Step 2. Adaptive fuzzy neural inference system (ANFIS) using identified 

variables based on consequent primary nodal number. 

 Step 3. Multi objective genetic algorithm dispersing expanded secondary nodal 

number. 

 Step 4. Functional approximation of characters within secondary nodal number 

using a continuous/discrete surrogate process model. 

 

Sub-section 7.2 completed step 1 and step 2 of the method given above. Section 7.3 

numerically dispersed the sub-groups of plant life-forms, completing step 3. In this section 

a further method of generating the Z matrix is developed via the use of a surrogate 

function.  

 

The assumption that individuals within the populations of plant species in each of the 

studied areas are normally distributed in their life-form characteristics is made, furthered 

by elaboration of the ANFIS in section 7.4. Additionally, standardization of the dispersed 

strength Pareto population to zero mean and unit variance allows the population to be 

expressed across a bell shaped (Gaussian) curve (Guo, 2011). 

 

The choice of Gaussian models selected is Rastrigin’s function, which served the dual 

purpose of expanding the dispersal of the 18 sub groups of life-forms simultaneously and 

verified the validity of the GA process described in section 7.3. This is elaborated below. 

 

                                                                                                                            (7.3.1.1) 

 

Where i=1/n, xi is an element of the interval [-5.12,5.12]. In order to make use of 

Rastrigin’s function as a surrogate Gaussian process model in the current case, the number 

of life-form sub categories (n=18) occurs within the interval shown. Fig. 7.3.1.1 is a visual 

representation of the function. 
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Figure 7.3.1.1 Rastrigin’s function as applied to the standardised distribution [0,…,5] of 

18 sub groups of plant life-forms (Furze et al., 2013d) 

 

Objective 1 (standardised mean temperature) and Objective 2 (standardised mean 

precipitation) give the parameters in which individual plant species occurrence life form 

sub groups are distributed. The percentage of each of the 18 sub groups is shown in colours 

indicated in the legend. For clarity the valleys (minima) of the peaks can also be seen in 

contour form below the plot. 
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Plant life-form traits are distributed normally amongst the species occurrences of the 

candidate locations Ecuador (Bass et al., 2010) and Macedonia (Zlatković et al., 2011) as 

the strength Pareto shown in the previous section indicates. It is therefore possible to 

generate values of the Z plane with use of a surrogate Gaussian function model (Büche et 

al., 2005). Rastrigin’s function is one such process function, which can be made use of in 

order to extrapolate values of a multimodal optimization. Code for the Rastrigin’s function 

as applied to 18 life-form sub groups in Matlab (Version R2010a © is available in 

Appendix 7.2). Given that Rastrigin’s function is particularly well suited for validating the 

MOGA approach shown in the previous section, we also visualised distributions of a lesser 

number of characters within a hyperplane (Appendix 7.3). Using this method, any value of 

either of the dimensions used in multimodal control models may be made use of to 

objectively extrapolate local set values of equations (3.7.2.3), (3.7.2.4), (3.7.2.5), shown 

earlier underpinning T-S-K logic FRBS, given the initial knowledge of the number of 

groups under investigation within the dynamic of the model. 

 

The following section gives a summary of algorithmic approaches, which may be used to 

ordinate plant species and their characters. 

 

7.4 ANFIS control strategy of plant strategies, plant metabolism 

and plant life-forms 

 

This section gives examples of the T-S-K FL algorithms, formed in previous chapters, to 

predict the ordination of individual plant species occurrence in global locations. 

Expansions of the algorithms are seen in Appendices 2, 2.3, 2.4, 5.1, 5.2. Individual plant 

species occurrence is considered from the perspective of plant life-history strategies 

(Grime et al., 1995), metabolic (photosynthetic) pathway type (Chapter 3, section 3.6) and 

life-form (Chapter 3, section 3. 6, Chapter 7, sub-section 7.2.1). All ANFIS are based on 

the modelling framework provided by the water-energy dynamic together with high 

resolution altitude data, as antecedent data and individual plant species occurrence data 

providing consequent ranges, sourced from the Global Biodiversity Information Facility 

(GBIF) meta-database (Yesson et al., 2007). Citations of contributing institutions are 

included in Appendix 1. 
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Chapter 2, section 2.3.1 elaborates the numerical basis on which we ordinate strategies. 

This thesis proposes the sum of the strategy types always equates to 1 in order to classify 

an environment of plant species, there being 3 main nodes on which plant strategies are 

defined: Competitive, Stress tolerant, Ruderal or n, n, n = 1. Using this basis, the Ruderal 

Environment 1, consequent individual occurrence of plant species number (65535) = 0, 0, 

1. 

 

Table 7.4.1 Plant species C-S-R balance in numerical form. 

 

Strategy / 

Environment 

Competitive Stress tolerant Ruderal 

R / E1 0 0 1 

S–R / E2  0 0.5 0.5 

C-R / E3 0.5 0 0.5 

C / E4 1 0 0 

C-S-R / E5 0.33 0.33 0.33 

C-S / E6 0.5 0.5 0 

S 0 1 0 

  

In reality, the existence of a pure strategy without any elements of the others very rarely 

exists due to the polyploidy level of plant species. By extension to an ecosystem approach 

this means that in the plant-strategy environments, levels of competitive and of stress 

tolerant species do exist in ruderal environments, the limit after which, the strategy element 

is detected is equal to 1/3. The latter leads to the statement that each environment E1,…, 

E7 is dominated by the strategy elements shown in Tab. 7.4.1, following knowledge of the 

conditions in which each strategy element occurs (Grime et al., 1995). Proportionality 

(probability) of the 3 strategy elements may be investigated via the construction of a 3-

dimensional linear mesh of the species elements as seen earlier (Chapter 3, Fig.  3.6.2). 

 

T-S-K logic systems allow concise statements to be made due to the fact that the combined 

elements of plant strategies are seen to be membership values as stated in Chapters 3, 4, 5 

and 6. Hence one may make an approximation of the proportionality of each strategy type 

within an estimated population number based on the applied T-S-K logic framework. 
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In fact, we may extend the above to interpolate the proportionality of plant photosynthetic 

types using the same principal, there being C3, C4 and CAM types of metabolism. 

 

Dividing 1 by the number of groups under investigation leads us to consider that 1/18 

probability equates to the probability of occurrence of each life-form category. There are 

18 sub groups, as detailed in Chapter 3, section 3.6, in section 7.2 and 7.2.1, of the current 

chapter. The expanded probability table of life-form groups within each environment is 

seen in Appendix 7.4. 

 

Algorithms for plant strategy environments ordinate individual plant species occurrence in 

terms of the probabilities indicated in Tab. 7.4.1 with use of the following concise 

statements: 

 

1B 44332

225.02275.01A1 

(65535))5()1()2()1()4(

)1()5()1()4((3)

EThenAAAAA

AAAAIf









                 (7.4.1.1) 

E.g. Ecuador, South America. 

24432

225.02275.01

)51847()2()1()1()4(

)1()3()1()5(

EThenBAAAA

AAAIfA









                   (7.4.1.2) 

E.g. Guyana, South America. 

34432225.02

225.025.0175.01125.0

)50700()2()1()1()3()2()3(

)1()1()5()5()4(

EThenBAAAAAA

AAAAAIf








              (7.4.1.3) 

E.g. Cuba, America. 

44435.0335.0

225.0225.011

)33356()5()1()1()2()1(

)3()1()4()1()5()4(

EThenBAAAAA

AAAAAIfA









              (7.4.1.4) 

E.g. Democratic Republic of the Congo, Africa  

5443325.0335.03325.0

2225.02275.01125.01175.0

)11355()5()1()2()1()4()1()5()2(

)3()1()2()1()5()4()4()3(

EThenBAAAAAAAA

AAAAAAAAIf









                  (7.4.1.5) 

E.g. Georgia, Southern Europe. 

6443325.03)1(35.03

325.0221125.015.01125.0

)8805()4()1()2()1()3()5(

)3()2()1()5()4()4()4()3(

EThenBAAAAAAA

AAAAAAAAIf








                  (7.4.1.6) 

E.g. Azerbaijan, Southern Europe. 
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7B 44325.0

335.03325.0225.02

275.0125.015.01125.0

(2023))3()1()1(

)2()1()5()1()1()2(

)1()5()4()5()4(

EThenAAA

AAAAAA

AAAAAIf













                                                 (7.4.1.7) 

E.g. Macedonia, Southern Europe. 

 

Algorithms for plant photosynthetic type environments share the same basis as the above, 

there being 3 main types as detailed in Chapter 3, section 3.6. These provide the following 

concise statements: 

 



C3 C4 CAME1;E2;E3                                                                              (7.4.1.8) 



C4 C3 CAME4;E5                                                                                    (7.4.1.9) 



CAM C4 C3E6;E7                                                                                  (7.4.1.10) 

 

Algorithms for plant life-form dominance must be expressed in different terms, the 

primary-nodal number of life-form groups being 5. The secondary-nodal number of (18) 

combined probabilities, indicated in Appendix 7.4, may be obtained using the dispersive 

optimisation method detailed in section 7.2 and the functional approximation method of 

section 2.1 above. Although the spectra of life-forms are dispersed in a non linear fashion 

the two ends of a continuum may be obtained with use of the following: 

 

1EteDomPhanerophy                                                                                                     (7.4.1.11) 



Therophyte;HemicryptophyteDomE5limE7(max)                                                      (7.4.1.12) 

 

Use of genetic methods covered in section 7.2 enable expansion to the secondary nodal 

number of plant life-forms. Further, a C-S-R based model was split into 6 further 

categories as 18/3 returns 6. However, unless the investigators have field-based knowledge 

of the life-forms within each location it is difficult to combine the probabilities formed in 

Appendix 7.4. It is suggested that the localised use of the Gaussian process model formed 

in sub-section 7.3.1 is implemented in combination with field data. The standardised mean 

of individual populations life-form categories will enable the statements of the water 

energy dynamic and elevational conditions within which each life-form category occurs to 

be stated. From the latter statements of objective dispersal we may proceed to make 

statements linked with further character dispersal. 
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The T-S-K based algorithmic structure may be employed to implement geographic 

information systems as detailed in section 7. 5. 

 

7.4.1 Functional approximation algorithm for plant 

communities 

 

Gaussian process models may be used to simulate the distribution of species within 

individual environments and equally of elements of life-form characteristics of individual 

species. Complex dynamical relations at both the individual plant level due to the number 

of sets of chromosomes and the population level in different ecosystems may be easily 

diagnosed and certainties may be formed using T-S-K FL based method. Further, genetic 

computation methods elaborated in section 7.2 enable the dispersal of expanded orders 

(nodal numbers) of plant characters in set objectives such as that which is provided by the 

water-energy dynamic and altitude.  

 

Using Rastrigin’s function to approximate the distribution of a localised population 

provides the population with an estimate of zero mean and unit variance. Given a normally 

distributed set of individuals within the plant life-forms, imposing variable water or energy 

related elements will result in transgressing the population range proportional to the 

pressure on the population. Positive or negative transgressions of the distribution maintain 

a stable population dependent on pressures imposed. Increasing altitude leads to positive 

skewing of the life form characterisation, increasing individual occurrences and overall 

richness (Bhatterai and Vetaas, 2003; Gentry and Dodson, 1987;   per et al., 2007). 

Decreasing altitude leads to negative skewing of the population.  

 

There are thought to be more than two distinct niche processes operating in convergence 

and divergence of plant strategies and life-forms (Furze et al., 2013b; Kraft et al., 2008). It 

has been proven that strategy differentiation in plant species contributes to the maintenance 

of diversity in highly diverse locations (Jenkins et al., 2013). The logical progression is 

that life-forms provide the potential of a diverse range of plant strategies so are of equal 

importance. Although it is complex to dissect the life-form spectra, further genetic 

approaches are advised in combination with the logic based mathematics of this thesis 

(Kearsey and Pooni, 1995).  
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The following section implements geographic information systems in the context of plant 

characterisation to demonstrate the application of the mathematic methods formed in this 

thesis, by which teams of mathematicians and biogeographers can make substantive 

statements for national policy concerning ecosystems and human populations who are 

dependent on them.  

 

7.5 Geographic information systems – applying plant 

characterisation 

 

Geographic information systems (GIS) are integrated computer systems that can be 

employed to visualise geographic and species data in order to display a combination of 

statistical and raw data. As such, they offer a great tool to geographers, mathematicians 

and those whose work is in various disciplines which may relate to species characterisation 

and indeed to the wider cataloguing of information science. As such there are many uses of 

GIS, for example displaying species demographic information, land use change software, 

industrial development and so forth. GIS can be used to integrate characteristics of 

databases, spread-sheets and other soft computing methods (Trauth, 2006 [ch. 1]).  

 

An example of a large integrated GIS is the data portal of the Global Biodiversity 

Information Facility (GBIF), which acts as a gateway to information catalogued by 

multiple interfaces (users) in many institutes on a global scale. The GBIF in particular has 

been praised for its capacity to be made use of in species characterisation (Yesson et al., 

2007). 

The use of species data is often standardised to a given unit area in order that it may be 

compared and given further analysis. Section 2.2 of Chapter 2 gives detail of the 

justification of ecological species data being displayed at the scale of 10000km
2
. 

 

In this section, simple geographic information systems are developed employing the output 

of the mathematical models developed in this thesis to provide a working tool (for example 

Fig. 7.5.1) for national organisations involved in policy formation. The framework was 

provided by the mapping graphical user interface of Matlab (Version R2010a ©). Code 

developed in order to make use of the GIS framework of Fig. 7.5.1 is shown in Appendix 

8. The algorithms developed in section 7.4 are implemented in terms of plant life-history  
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strategies and plant photosynthetic type. As such the GIS shown makes use of techniques 

of evolutionary computation and global optimisation, thereby providing substantial 

mathematic foundation to take knowledge and decision support further, providing 

recommendations of concentrated conservation and research efforts with mathematic 

reasoning. 

 

 

 

Figure 7.5.1 Outline of simplistic GIS based on plant strategy based environments (Furze 

et al., 2013g)  
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Environments E1-E7 are indicated on the above GIS map, representing dominant strategies 

recorded in the locations to form the environments. Each environment is highlighted with a 

different colour to reflect the combination of water and energy that prevail in the location 

and which dictate life-form. Colours are ordered from blue (E1, e.g. Ecuador), grey blue 

(E2, e.g. Guyana), light blue (E3, e.g. Cuba), green (E4, e.g. Democratic Republic of the 

Congo), rose (E5, e.g. Georgia), orange (E6, e.g. Azerbaijan) and red (E7, e.g. Macedonia). 

The location of each environment was found by selecting the tile code (e.g. W100N40 for 

Ecuador), number of columns from left to right and row number from top to bottom. Each 

area above may be mapped with latitude, longitude with use of Matlab code, as seen in 

Appendix 8. 

 

The three types of photosynthesis are represented across the 7 environments as specified in 

(7.4.1.8), (7.4.1.9) and (7.4.1.10). Furthermore, life forms are ordinated according to the 

expressions given in (7.4.1.11) and (7.4.1.12). This modelled map has been finessed and 

could not otherwise be produced without labour intensive fieldwork, as detailed by Yesson 

et al. (2007). The map could be tested and compared to smaller areas where we do have 

such data, for example for herbarium data, Ponder et al. (2001), for field data, Bass et al., 

(2010). The importance of such maps which can be produced for any location is the 

predictive function they provide for biogeographers, plant scientists and field workers. 

Dissection of plant’ processes provide inferences of complex conditions in which they 

exist within set time scale scenarios. Photosynthesis is the primary metabolic process of 

plants, hence the simplistic statements outlined give the method by which subsequent 

metabolic processes may be ordinated within populations on a global scale, with great use 

in human and ecological terms due to the uses of plant products (e.g. food, construction 

and medicinal compounds). 

 

The algorithmic basis of GIS shows great potential in simulation development as the 

algorithms developed in this thesis are constructed from initial knowledge bases, which are 

publicly available with use of the internet. Linking of different time scenario climatic data, 

topographic data, image processing, map processing, species occurrence records and 

finally digital mapping are techniques by which new software may be designed for design 

of control systems with both mathematical and geographical global inferences. This 

represents novel simulation development using driving dynamic factors of the W-E 

dynamic and continuously monitored numbers of individual plant species occurrence. The  
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implications of such a GIS allow the unification of multiple subject areas to substantiate 

policy formation and enable subject development in the component areas (e.g. geography, 

biochemistry, physiology and mathematics).  Generally, GIS offer cost and time savings 

involved in data collection and interpretation, may lead to better decision making and 

improved communication between contributors, geographers, mathematicians and policy 

makers. The following sub-section discusses the recommendations for policy formation 

using mathematical method. 

 

7.5.1 Recommendations for policy formation using 

mathematical method 

 

Substantiation of the methods of this thesis, and in particular this chapter, are useful not 

only to explore mathematical relations (niches and functional traits) but also to reinforce 

the requirement for enhanced protection of the areas covered by this study. The 

implementation of logic-based mathematics adds strength to related interdisciplinary fields 

of plant characterisation. Additionally, modelling of climatic variables and the characters 

of plants modeled therein is enhanced in terms of accuracy and pattern distribution. The 

unification of different approaches (geographic, physiological and mathematic) allows 

plant characteristics to be expressed in a common language. Mathematic methods provide 

the unified approach in this thesis. Authoritative descriptions of plant strategies, life-forms 

and photosynthetic type characterized plant species. Mathematic substantiation is therefore 

added to ecology, biology and biochemical characterization in this thesis. Examples of the 

potential uses of this work include the finer scale structuring of phylogenetic trees, the 

patterning of prey-taxis relations (Grunewald et al., 2013; Ma et al., 2013; Huson et al., 

2004) and measurement of quantitative trait loci such as those involved in biochemical 

pathways (Kearsey and Pooni, [ch. 8] 1996; Kraft and Ackerly, 2010).  

 

There are many potential areas of research which are fundamental to protective policies. 

The accessibility of higher mathematics to related subject areas and therefore policy 

makers is important to emphasize. Policy formation in vulnerable locations and affecting 

indigenous populations in locations such as Ecuador, which is under threat of development 

(Pappalardo et al., 2013), benefit from the systematic approaches taken in the thesis. 

Identification and expression of life within priority conservation areas under threat of 

destructive human activity is of increasing importance, given the nature of the activities  
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and the immediate effect on the concentrated biodiversity. The GIS illustrated in the 

previous section also assists in further policy formation for planting of predicted plant 

strategies in conservation efforts, in the areas of E1-E7 for example, ensuring high levels 

of the predominant plant strategy of the environment enables balanced populations of life 

forms and plant photosynthetic types to form in naturally ranked continual distributes 

present in ecology. Continual distribution becomes a key premise as it has been well 

documented that plant traits themselves are expressed from quantitative patterns of genetic 

loci (Kearsey and Pooni, [ch. 8] 1996).   

 

There are thought to be more than two distinct niche processes operating in convergence 

and divergence of plant strategies (Furze et al., 2013b; Kraft et al., 2008). Kraft et al. 

(2008) states that strategy differentiation in plant species contributes to the maintenance of 

diversity in highly diverse locations. The work of this thesis may assist with national 

policy formation in justification of direction of resources towards increased conservation 

and protection of vulnerable locations (Jenkins et al., 2013). A starting place for 

implementation of conservation policy could manifest through local or national 

government partnerships with increased numbers of research based organizations, in order 

that the mathematical substantiation provided in this chapter could be further investigated. 

 

The implemented geographic information system (GIS), shown in the previous section, 

provides yet another tool which may be viewed by policy makers in local and national 

governments. The GIS also provides a gateway through which intergovernmental bodies 

such as the United Nations Environment Programme (UNEP) can view informative 

patterns in summary in order to enhance future sustainability of the communities within the 

highlighted areas. Ideally, surrounding areas may also be supported by local and national 

governmental policies formed within these areas as the beneficial nature both of research 

and enhanced protection will take effect at various levels, from local community 

understanding of diversity and sustainability through to in-country industries with 

emphasis on natural products and their potential in producing novel opportunities for trade 

and further research. Beneficial effects are also seen at many levels within trophic systems, 

ensuring the maintenance of predator-prey relations as higher trophic levels are reliant on 

the productivity of natural systems of a primary level (Ma et al., 2013).  
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7.6 Summary 

 

In this chapter we have presented a T-S-K logic based structure for the ordering of plant 

life-forms, carried out genetic programming of the life-forms and developed a method by 

which one can form functional approximation algorithms to elucidate distribution of 

elements within the Z utopia hyperplane. The crucial difference between the use of 

Boolean mathematics to describe systems and the higher mathematic logic based methods 

employed are that the latter are devoid of semantic definition, establishing certainty in a 

previously distorted view (Jongman et al., 1995 [ch. 5], Kent and Coker, 1992 [ch. 4], 

Sivanandam et al., 2007 [ch.1]). In order to visualise the distribution of elements within a 

stochastic population this thesis used a Gaussian process model, from which enhanced 

detail of the Z matrix was extrapolated. An efficient minimized algorithmic approach was 

implemented, using key elements of the water-energy dynamic for 2 candidate areas. A 

spectrum of life-forms were distributed, within given environments ideal for plant growth 

and comparatively more extreme conditions (Hawkins et al., 2003; Furze et al., 2013b). 

Creation of the closed loop system for the areas covered allowed bounds of life-form 

spectrum distributions to be perceived as a continuum and primary nodes of life-forms 

identified, amongst which the location of Ecuador was the most diverse and Macedonia 

was less diverse. Further use of optimization methods enabled dispersal of the primary 

nodal number to give the secondary nodal number of life-forms. The distribution of the 

subcategories of life-forms was of a binomial, Poisson nature in agreement with previous 

climatic studies (Schölzel and Friedrichs, 2007). The distribution was summarised using 

linear and quadratic rules.  

 

Using the multi-modal Rastrigin’s function showed that each dispersed life-form was 

expressed continuously for each individual life-form element, with zero mean and 0-1 

variance (of the Z plane) within alternate environments. This method may be used to 

estimate proportions of individual species occurrences according to life-form (Furze et al., 

2013a). The additional use of alternate functions (e.g. Sphere function, Schwefel’s 

function, Rosenbrock’s function) is proposed in order to indicate the functional 

approximation of all characters of plant species individual occurrence, either involving a 

simulative base, field data or an integration of the two (as in this chapter). Using this 

method further unveils the dimensions of multi-objective orientated characters such as 

those of plant metabolites. This chapter adds a more structured approach to strategy  
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differentiation in plant species, which contributes to the maintenance of diversity in highly 

diverse locations (Kraft et al., 2008).  

 

Plant life-history strategies, plant photosynthetic pathways and plant life-form dominance 

within example locations have also been summarised in order to make further 

recommendation towards which areas should be allocated limited resources and national 

policy focus detailed above, similar to the priority conservation zonation carried out by 

Soosairaj et al. (2007). Community linked knowledge of the issues with regard to diversity 

patterns should be dispersed through as many channels as possible, in order to increase 

awareness of the pressure imposed on natural habitats. Trophic webs and individual 

ecosystems themselves are fragile systems which may be put out of sink by well meaning, 

but in the longer term, ineffective conservation efforts, due to the lack of quantified 

knowledge of the range of strategies, metabolism and life forms. Taking the elements 

covered in this chapter into consideration should help to implement more effective 

conservation policies over the longer term. Section 7.4 and 7.4.1 are included to make 

simplistic representation of the mathematic substantiation included in earlier chapters. 

These sections are by no means meant to be considered as the final word in the power of 

modelled plant characterisation but hopefully will provide the readers with some 

inspiration in future characterisation of complex (linear or non-linear) systems. This 

chapter partially answers the research questions posed in Chapter 1. Mathematic and 

geographic distribution of individual plant occurrence has been shown and discussed. 

Predictions of climatic conditions are made within utopia after having calculated linear and 

quadratic relational curves. A brief discussion of conservation and sustainability policy 

contribution in the light of this thesis has been given. The required structure of groups of 

plant species has been shown to be most tolerant to change given that the number of 

strategies and life-forms are maximised within each location. The functional fitness of the 

groups (individuals) can be plotted using the Gaussian Process model of Rastrigin’s 

function. 

 

The following chapter summarises the fundings of this thesis, concludes the work and 

makes a brief discussion of the future potential of plant characterisation. 
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CHAPTER 8 

Future research work and conclusions 

 

 

 

 

 

 

 

8.3 Thesis summary 

 

The research work in this thesis has been divided into two main sections. Firstly theoretical 

studies were covered and consequently simulations based on mathematic technique were 

developed.  

In the first part of the thesis, the background of the research was outlined and fundamental 

knowledge revisited, the related concepts and definitions were clarified, adaptive fuzzy 

neural algorithms were developed both for the strategical nodes applicable to 300 000 plant 

species and the variable dynamics in which they exist. T-S-K fuzzy systems were 

introduced into optimization techniques to enhance the knowledge bases employed and for 

predictive value of the modelling framework. 

In the second part of the thesis, seven case studies were explored with different fuzzy 

neural strategies. A GIS was designed with plant diversity at its core in order to provide a  
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platform on which the dispersal of characters can be founded. The distribution of plant 

strategies was addressed in Chapter 5. Uncertainty of plant strategies and of their basic 

metabolism was simulated in Chapter 6 to verify the effectiveness of hybrid genetic 

nonlinear systems with no strict constraints and prior knowledge. In Chapter 7, the 

dynamics of plant life-forms were characterised using an additional algorithmic basis and 

the differentiated life-history strategies, life forms and metabolic patterning of plants 

combined for the integrated GIS to answer research questions concerning climatic 

prediction and contributions of plants to biotic and abiotic systems. The GIS simulation 

generalised the application of the developed control algorithms and verified their 

effectiveness following available species data of the GBIF (Yesson et al., 2007), giving a 

promising opportunity to further investigate both the theoretical aspects and practical 

applications of plant processes. 

 

8.2 Answering the research questions 

 

The research questions posed in the first chapter have been answered throughout the thesis. 

In this final chapter the answers to the research questions are brought together and 

summarised in order that conclusions can be drawn and further research is stimulated.  

Answering RQ.1, prediction of individual occurrence of plant species according to the 

species-area relationship of Arrhenius was carried out in Chapter 4. However, the 

relationship identified between species and area (with inclusion of non-differentiated 

environmental and taxon related variables) was insignificant (at p=0.05). The species-area 

relationship has been significantly identified in other studies, e.g. island systems of 

MacArthur and Wilson (1967). Further the relationship has been made use of by more 

recent authors (Kreft et al., 2007) and it offered the base by which biotic and abiotic 

factors were introduced to successfully document species categorisation in different 

ecological settings. Such justification of the use of the species-area relationship was 

enabled by the continued use of Boolean statistical method within the sampling method, 

which allowed distortion of data. However, when non-standardised, field based individual 

plant species occurrence data were used in this thesis, prediction was seen to be affected  
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using fuzzy logic based systems. The use of both Mamdani and T-S-K FLC in description 

of individual occurrence data enabled a continual monitoring of both species occurrence 

and climatic conditions upon which the individual occurrences were based. Fuzzy logic 

based categorisation was therefore recognised as being the most efficient form of 

prediction. 

Answering RQ.2, regarding the balance of the trade-off between accuracy and 

interpretability of models used, T-S-K FLC systems accurately predicted individual plant 

species occurrences with use of the modelling framework provided by the water-energy 

dynamic. It was recognised that additional variables which affect distribution of plant 

species were included in the modelling framework. Use of FLC enabled minimisation of 

variables to show key elements of the W-E dynamic which increased the efficiency of 

modelling. Grime’s plant strategy (Grime et al., 1995) theory proved to be a highly 

effective grouping system for plant species, with inferences within ecological systems. 

Plant strategy based models gave inferences for ecological systems which ensure the 

maintenance of high levels of diversity throughout trophic levels of ecology. Additionally, 

increased resolution of the modelling antecedents gave highly efficient predictive patterns. 

Subsequently GA techniques were made use of to further relate species prediction in 

feedback to climatic systems due to the relationship between the individual occurrences 

and objectives (climatic variables). Linear weighted least squares and quadratic polynomial 

systems identified trends between individual occurrences and climatic data in Chapter 5 

and 6. The interpretation made was limited by the rate of current progress in identification 

of climatic variability and species data available. 

Answering RQ.3, within the wide groupings of plant strategies, plant photosynthetic type 

and plant life forms, rudimentary sub-groups were identified which expanded the 

informative value of plant characterisation modelling carried out. After illustrating the use 

of GA based technique and making use of novel MOGA, combined objective distributions 

were shown, which enabled further interpretation and informative value to be gained. 

Functional approximation algorithms were implemented via the use of process models 

which enabled further extrapolation of Z hyperplanes. Component subject areas (e.g. 

biogeography, mathematics, and plant science) benefited from the functional expansion, as 

standardising mean and variance within the hyperplane allowed approximations of 

modelling variables within Gaussian frameworks. The explorative informative value of 

genetic algorithm stochastic techniques were such that patterns were identified in utopian  
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distributes to encourage further research on subsequent categories of plant characteristics 

which may as yet be undiscovered. 

Answering RQ.4, it was shown that the groups of plant species were distributed according 

to their functional types within ecological systems. These functional groups related to the 

form expressed within each group of plant strategy, life-form and metabolic type. The 

groups were formed as a result of their combinatorial parts, hence expanding distribution 

from the number of groups to secondary and tertiary nodal numbers of rudimentary parts. 

Within each group the individual characteristics of the group were distributed with use of 

Gaussian process models, i.e. by mathematical function (Rastrigin’s function). Mathematic 

expansion of the combined objectives within which the primary group of life-forms was 

expressed, for example, results in expansion of the Z hyperplane of plant life-forms, from 

which indirect inferences may be drawn regarding the expression of each objective on 

which the modelling of life-forms was carried out. The numerical distribution of plant 

species primary groups within the W-E dynamic was seen to be stochastic, Poisson 

distribution. Latitudinal and longitudinal ordering of the groups of plant species was 

carried out to an extent with the use of minimised partial differential equations of FLC. 

Greater numbers of plant species, in ruderal based environments were found in equatorial 

regions (e.g. Mexico, Ecuador), where the levels of water related variables are high, 

whereas competitive (e.g. Democratic Republic of the Congo) and stress tolerant based 

plant environments were found in locations where energy related variables are expressed 

with greater weight acting on the distribution (e.g. Macedonia), such areas are shown by 

example in Chapters 5, 6 and 7. The areas of competition and stress tolerance were 

principally ordinated above the equator, e.g. Macedonia. The finite distribution of plant 

species requires further research in areas of physical and biochemical characterisation. It 

was suggested that the Gaussian patterns identified may be further extrapolated into 

discrete distributes, e.g. using discrete functions to enable characterisation of plant species 

in terms of different metabolic groups. It is postulated that further functional 

approximations of plant species will be useful in identification of biotic and abiotic 

conditions within ecological systems as well as the conditions in which they are found. 

Answering RQ.5, it is possible to make predictions of climatic systems using individual 

occurrence data of plant species. The basic process makes use of the relationship between 

plant species occurrence and the prevailing conditions in which they occur. After forming 

simulated distribution via genetic computation of final population numbers it was seen to  
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be possible to predict the main objectives (climatic conditions) of these distributions using 

weighted least squares and polynomial regression differential expressions. Relationships 

between set variables of x, y and z allow estimation of each of the variables dependent on 

the other parts of the linear or non-linear expressions formed. Expansion of combined 

objective numerical planes (Z) via Rastrigin’s function allows fitting of objectives with 

differential Z values. Further research in this expansive functional area will make use of 

more functions and characteristics to give concise statements of characterisation and 

distribution in rational mathematic (Zhu et al., 2013) and separable real terms (Furze et al., 

2013d). In the latter study key integration of in-country and international research institutes 

is proposed as a result of the mathematic foundation discussed above. 

Answering RQ.6, GIS of plant characters can be developed with use of FLC modelling 

systems, as these systems are based on Gaussian process models. Conclusions may be 

drawn for conservation and sustainability policy formation within the limits of error of the 

distribution of the modelling frameworks employed. The mathematic substantiation 

provides incentive for national organisations to recommend protection of these areas and 

safeguarding from developmental pressures which may exist on the respective areas. 

Protection of the land from industrial development is recommended due to the sensitive 

nature of the relationship between the numbers of species occurrences and climatic 

conditions. Monitoring and planting programmes are advised to maintain the 

predominance of the strategy types in each location respectively. Indigenous populations 

of the areas are preserved by such policies, given that their cultures and life-styles are 

extremely vulnerable to developmental change. Maintaining diversity in plant strategies is 

linked with diversity in plant species and indeed through trophic levels in ecology. The 

parabolic distribution of life-form types enables balanced ecological systems of the 

vulnerable areas. Peaks in life-form types exist, indicating the dominant type and giving 

stochasticity to plant populations related to characteristics of life-history strategy and 

photosynthetic type. Thus maintenance of the dominant life form type in natural 

ecosystems ensures high diversity and distribution of successive trophic levels. The 

dominant life form type within the population of individual plants is analogous to a major 

quantitative trait locus of an individual plant (Kearsey and Pooni, 1998). Accordingly 

quantification of the environments in which plants exist enables the measurement of each 

life-forms impact on the environment and trophic system, giving a further avenue for 

research leading on from this thesis. The photosynthetic types predominantly found in each  
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location are strongly linked with the climatic conditions of the areas themselves. 

Photosynthesis is the primary metabolic process of plants and the dominance of each of the 

respective types identified in this thesis should therefore allow secondary metabolite 

development through different plant products to be formed with maximum efficiency. The 

greatest recommendation that the latter point can make is for further integration of the 

protected areas with research based institutes, stimulating research in the range of plant 

products present. Research in plant products is likely to be linked with additional 

functional distribution, which will provide further incentive for limited financial resources 

of conservation to protect the areas. Completing functional approximation of levels of 

plant products in each area provides an avenue for generating revenue for the locations 

from use of the plant products. The latter point enables sustainability of diversity of plant 

populations in the areas and of subsequent trophic levels (including humans) dependent 

upon them. 

Answering RQ.7, this thesis has identified that groups of plant species require a Gaussian 

structure within dynamic climatic systems and in Chapter 7 Rastrigin’s function was 

proposed as being suitable. Ordering dominance of plant strategies, plant life-forms and 

photosynthetic type within climatic systems helps to quantify and partition non-linearity 

which is exhibited in distribution of plant characterisation. In this thesis Boolean 

mathematics, novel FLC, MOGA and Functional Approximation have been made use of to 

generate the combined objective numerical plane within which plant characters are 

distributed. A framework for an original GIS has also been presented. It is suggested that 

future field studies and biochemical characterisation will allow use of discrete functions to 

further characterise plant species within individual ecosystems. 

 

8.3 Future research directions 

 

1) The research work of this project develops a control strategy, which furthers 

recommendation of patterns of plant numbers to be maintained in order to sustain 

stability of other trophic levels of living organisms. However, it remains that species 

dynamics of all trophic levels vary with non-linearity. Therefore, it is necessary to  
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 develop control systems for complex systems with space allowed for the stochastic 

pressures of trophic levels which feed-back onto plant species. 

 The integrated knowledge guided control strategies in this research work suffer from 

one main defect, that is, their direct interpretability, which is one of the trade-offs with 

accuracy of the developed model. It is practically feasible at the current stage, though 

in comparison to previous alternatives there is still room to improve the interpretability 

to reach an increased audience. 

2)

 Neural network based fuzzy logic control algorithms and genetic methods are 

developed in this thesis. Databases of plant information, such as that developed here, 

should use fuzzy sliding mode control combined with alternative optimization 

techniques to further amplify the significance of species loss through ecosystems.   

3)

 Applying hybrid optimization techniques to climatic and biotic systems has resulted in 

the fundamental properties of plants being characterised. Much work remains in classes 

of plant metabolites and morphology on both a national and more local basis.  

4)

 It is a global imperative that the technique developed in this thesis is continually 

progressed in order that species characterisation is not lost by increasing pressures on 

the environment. Hence this study calls for more publication and integral research in 

the domain in order that policies may be formed to safeguard and conserve ecosystems. 

Additional implementation of integrated localised research, eg. of plant diversity and 

production in urban settings provides more potential for application of research of this 

thesis. 

5)

 The algorithms and optimization developed in this research work are analysed 

mathematically and verified by simulations and literature across a wide range of 

disciplines. In order to further verify and demonstrate validity, field based and 

laboratory work should follow, but for the problems in finance and time limitations, 

this is only a desire of the author. 

6)
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8.4 Conclusions 

 

A novel adaptive neural fuzzy control algorithm has been developed to tackle the problems 

of numerical distribution of plants within a GIS. Practical simulation with integrated 

species occurrence data and detail of case study locations were made to validate the 

developed control strategies.  
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Table 8.3.1 Summarising the main research findings, research questions and answers 

RQ Chapter(s) / 

Summary  

Notes 

1 4,5 / 

pp.152-153 

It is possible to predict plant species occurrence, the most 

efficient method is with use of Mamdani and T-S-K FL 

2 5 / p.153 Accuracy and interpretability of predictive models is balanced 

by use of FL and expansion of the methods seen  

3 6 / pp.153-

154 

Sub-groups of the main groupings of plants were identified. 

The novel hybrid MOGA by which this is carried out is 

detailed  

4 6, 7 / p.154 Functional groups of plants are distributed. FL, determining 

stochastic distribution within the W-E dynamic, hybrid MOGA 

and the Gaussian Process (Rastrigin’s function). The Z plane of 

plant characteristics gives informative value to plant 

characteristics and Geographic distribution alike. The latter is 

shown by example on a global scale 

5 7 / pp.154-

155 

Predictions of climatic conditions may be made by making use 

of the relationship between occurrence of plant species and 

conditions in which they occur. This is carried out by the use of 

differential equations 

6 7 / pp.155-

156 

Planting programmes can be recommended and policy 

formation structured with long term developmental importance 

7 7 / p.156 Gaussian structure is required within dynamic conditions of 

ecosystems, use of novel FLC, MOGA and Functional 

Approximation are key techniques of related subject 

development in plant characterisation, all of which can be 

mathematically stated 
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The main research findings of this thesis are summarised in Tab. 8.3.1. The research work 

has benefited the family of hybrid computational intelligence and conventional control 

algorithms. It has also improved the integral value of GISs. The work has provided 

contributions towards national policy development, and offers an efficient alternative for 

areas of biogeography and plant science to consider, with conclusive publications made 

across the time of the research (Furze et al., 2011; Furze et al., 2012a; Furze et al., 2012b; 

Furze et al., 2013a; Furze et al., 2013b; Furze et al., 2013c; Furze et al., 2013d; Furze et 

al., 2013e, Furze et al., 2013f, Furze et al., 2013g).  
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