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Abstract  
 

 

The distillation column is an important processing unit in the chemical and oil refining 

industry. Distillation is the most widely employed separation method in the world’s oil plants, 

chemical and petrochemical industrial facilities. The main drawback of the technique is high 

energy consumption, which leads to high production costs. Therefore, distillation columns are 

required to be controlled close to the desired steady state conditions because of economic 

incentives. Most industrial distillation columns are currently controlled by conventional multi-loop 

controllers such as proportional-integral-derivative (PID) controllers, which have several 

shortcomings such as difficulty coping with sudden set-point jumps, complications due to the 

integral term (I), and performance degradation due to the effect of noise on the derivative term 

(D). The control of ill-conditioned and strongly non-linear plants such as high purity distillation 

needs advanced control schemes for high control performance. This thesis investigates the use of 

active disturbance rejection control (ADRC) for product composition control in distillation 

columns. To the author’s knowledge, there are few reported applications of ADRC in the chemical 

industry. Most ADRC applications are in electrical, robotics and others. Therefore, this research 

will be the first to apply the ADRC scheme in a common chemical processing unit, and can be 

considered as a first contribution of this research. 

Initially, both PI and ADRC schemes are developed and implemented on the Wood–Berry 

distillation column transfer function model, on a simulated binary distillation column based on a 

detailed mechanistic model, and on a simulated heat integrated distillation column (HIDiC) based 

on a detailed mechanistic model. Process reaction curve method and system identification tools 

are used to obtain the 2×2 multi-input multi-output (MIMO) transfer function of both binary and 

HIDiC for the purpose of PI tuning where the biggest log-modulus tuning (BLT) method is used. 

Then, the control performance of ADRC is compared to that of the traditional PI control in terms 

of set-point tracking and disturbance rejection. The simulation result clearly indicates that the 

ADRC gives better control performance than PI control in all three case studies.  

The long time delay associated with product composition analysers in distillation columns 

such as gas chromatography deteriorates the overall control performance of the ADRC scheme. 
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To overcome this issue an inferential ADRC scheme is proposed and can be considered as a second 

contribution of this research. The tray temperatures of distillation columns are used to estimate 

both the top and bottom product compositions that are difficult to measure on-line without a time 

delay. Due to the strong correlation that exists in the tray temperature data, principal component 

regression (PCR) and partial least square (PLS) are used to build the soft sensors, which are then 

integrated into the ADRC. In order to overcome control offsets caused by the discrepancy between 

soft sensor estimation and actual compositions measurement, an intermittent mean updating 

technique is used to correct both the PCR and PLS model predictions. Furthermore, no significant 

differences were observed from the simulation results in the prediction errors reported by both 

PCR and PLS. 

The proposed inferential ADRC scheme shows effective and promising results in dealing 

with non-linear systems with a large measurement delay, where the ADRC has the ability to 

accommodate both internal uncertainties and external disturbances by treating the impact from 

both factors as total disturbances that will then be estimated using the extended state observer 

(ESO) and cancelled out by the control law. The inferential ADRC control scheme provides tighter 

product composition control that will lead to reduced energy consumption and hence increase the 

distillation profitability. A binary distillation column for separating a methanol–water mixture and 

an HIDiC for separating a benzene–toluene mixture are used to verify the developed inferential 

ADRC control scheme.  
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 Introduction 
 

1.1 Background 

The refining process of crude oil produces different oil products. The separation process of 

these products necessarily requires a distillation column. Among all common technologies, 

distillation columns are the most frequently used facility in the oil and chemical industries for the 

separation of liquid mixtures. Indeed, distillation is the most preferred separation method at various 

industrial scales with more than 40,000 columns in operation worldwide (Kiss, 2014). A general 

distillation column consists of a vertical column where trays or plates are used to increase the 

separation of components. A condenser and reboiler are used as heat duties. The reboiler provides 

the required heat for necessary vaporisation from the column bottom, and then the vapour is 

condensed by the condenser. Part of the condensed vapour is used as reflux whilst the rest is 

collected in a reflux drum and withdrawn as a top product. 

Notably, almost every product in the market includes chemicals that have passed through a 

distillation column. Despite their flexibility and simplicity, the total efficiency of distillation 

columns is quite low due to irreversible energy loss associated with mass transfer such as re-mixing 

in separation, pressure heat, and drop transfer. Distillation has been in use for a decade and is often 

observed as a mature technology, but it consumes a significant percentage of the total heating in 

the world’s process industry. It is a major energy consumer in the petrochemical and chemical 

industry. Most distillation column operations require a vast amounts of energy and account for 

more than 32.9% of the total energy used in the refining and bulk chemical processes industry 

(Figure 1.1) and more than 95% of the energy consumed in separation processes (World Energy 

Council, 2016). The minimum energy expected to be consumed in distillation columns depends 

on temperature span and operating pressures (Kiss, 2014). It is very possible that it will remain the 

choice of separation technology for the next decade, but radial modifications and changes need to 

be made to reduce energy consumption. Reducing or minimising the energy consumption of a 

distillation column is not a straightforward task. First, distillation columns come in various 
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configurations with different operating objectives. These kinds of variances lead to a different 

operational degree of freedom and distinct dynamic behaviours. Moreover, many columns are 

subject to significant interactions among the control loops and have frequent limits and constraints 

on their operation that complicates dynamic behaviour and makes it more difficult to control and 

optimise. As a result, specialised control configurations are required to minimise the energy 

consumption to control both top and bottom product stream compositions.  

 

Figure 1.1: Industrial energy consumption worldwide, 2016 (World Energy Council, 2016) 

Waheed et al. (2014) observed that distillation columns require high energy consumption for 

the entire processing system that accounts for around 95% of the total energy used in the chemical 

industry, and an estimated 3% of the total energy consumption (Waheed et al., 2014; Jeffries et al, 

2016; Orozco et al., 2016; Manikandan et al, 2017). It is very clear that energy consumption has a 

large impact on the overall production and operational costs of such processing units, where it can 

produce greater than 50% of both capital and plant operating costs in a typical chemical plant, 

significantly impacting overall profitability (Kiss and Bildea, 2011). By investigating the 

relationship between the heat source of the reboiler and cold source on the top from the condenser, 

the distillation process can be considered as a heat engine which generates energy at the reboiler 

32%

22%

30%

8%

8%

Petroleum Natural gas coal Nuclear Renewable
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stage and rejects part of temperature at the condenser stage, in order to separate the volatile 

components from the less volatile components (Soares Pinto et al., 2011).    

Despite efforts made by researchers to control and optimise energy consumption, the issue 

of achieving good separation with less energy consumption still exists. There is no doubt that any 

reduction of energy consumption, without compromising yield and product quality, can directly 

create some economic benefits. Funk and his co-workers (1978) conducted a feasibility study in 

around 400 distillation columns and found that more than 42% of the energy consumption of 

distillation towers can be effectively reduced by changing and manipulating the operation 

parameters (Funk et al, 1978). Extensive research has been conducted to enhance the energy 

efficiency of distillation columns, focusing on either the efficiency of the distillation column or 

improving the design of optimal distillation schemes. However, there are other options for 

enhancing the energy efficiency of distillation operations, which include modifying the operating 

conditions or making changes to the design of the column, such as adjusting the reflux ratio 

(Abolpour et al., 2013; Waheed et al., 2014) and preheating the feed rate (Soave and Feliu, 2002). 

Other alternative cost-effective and attractive approaches proposed in relation to the above are to 

implement optimal control solutions (Fuentes and Luyben, 1983). Nevertheless, dynamic 

simulation models of these distillation column systems are normally required by current control 

methods. Improving the control technique of product compositions can have a significant effect 

on enhancing product quality, reducing energy consumption and protecting environmental 

resources (Waller et al., 1988). 

Currently, the need to optimise efficiency in terms of energy consumption and enhancing 

the reliability of optimisation and automation results in increasing expectations towards modern 

industrial control applications. Control engineers have strived to solve various control issues in 

terms of operating industrial processes in a more accurate manner, but at the same time with lower 

production costs in terms of energy consumption. For example, non-linear control issues have been 

emerging an area of research for the last three decades. Learning the basic strategies of non-linear 

control design and analysis can significantly improve the control theories to overcome such 

practical control problems successfully. The vast majority of literature on adaptive control and 

adaptive estimation relies on the assumption that the system parameters are constant or slowly 

time varying. Traditionally, the dynamics of distillation columns are approximated by linear 



5 

 

models as they are simple to understand, ease the control system design and can be used in well-

developed linear control theory in order to design linear controllers. Waller et al. (1988) argued 

that the main drawback of using these types of linear controllers is that they achieve good 

performance only with small changes of the nominal operating point and in a narrow range of 

operating conditions without a large amount of external undesired disturbance (Waller et al., 

1988). In practice however, the non-linear and time-varying behaviour of the process parameters 

might be of significant importance. Time-varying parameters could exist due to the uncertain, 

complex mechanisms that are not designed or accounted for by the process model. They can also 

be introduced from unmeasured inputs or model plant mismatch that affects the overall process 

dynamics.  Moreover, many industrial processes exhibit highly time-varying and non-linear 

behaviour across the industrial operating range. The behavioural complicacy of these types of 

systems causes many difficulties in design and analysis techniques that prevent researchers from 

providing systematic solutions to the various problems associated with non-linear systems (Precup 

et al., 2009). In addition, this phenomenon needs more sophisticated techniques that would enable 

non-linear function approximation and input–output mapping to be established.  

The design of current controllers, such as model predictive control (MPC) and many others, 

relies heavily on an accurate mathematical model of the system under control. However, 

constructing such a dynamic model for any industrial system needs detailed process knowledge 

from specialist engineers. Commonly it is a challenge to assemble the existing knowledge into a 

compact and coherent mathematical design. Usually this leads to a very complex model of the 

dynamic system, as it is very difficult to identify which effects are relevant and should be 

considered in the final model, and which should be neglected. Such an approach is usually found 

to be very expensive and laborious. If the knowledge of the specialist is lacking, like in the case 

of poorly understood systems, the construction of an accurate dynamic model is actually 

impossible. Furthermore, some quantities such as rates and coefficients required to construct the 

dynamic mathematical model are often unknown, and should be estimated by conducting various 

dedicated experiments (Tóth, 2010). However, in many industrial cases such a model is quite 

difficult to design due to the many reasons investigated by Mohammedzaman and Jamab (2006): 
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• Lack of accurate knowledge about parameters of the overall system. Unfortunately, the use 

of a simplified model usually leads to performance reduction of the overall system and may lack 

robustness due to modelling error.  

• The presence or existence of a strong non-linear dynamic at the dynamic system. 

For the last decades and until now, the PID controller has been considered the backbone for 

most current control applications, as described in Åström and Hägglund (2006) and O'Dwyer 

(2009). Despite the fact that PID controllers are easy to derive, configure, implement and tune, 

they also produce poor performance and lack efficient handling of constraints for the critical 

integration processes and processes with a large time delay. Due to the above reasons, various 

research studies have been carried out in order to overcome the limitations of PID controllers. As 

a result various control techniques like PI, active disturbance rejection control (ADRC), and 

inferential control will be implemented in this research to investigate their performance and make 

a suitable analysis in each control algorithm regarding set-point tracking, robustness, and 

disturbance rejection.  

Due to the difficulty of obtaining accurate measurements for top and bottom product 

compositions in distillation columns without a time delay, the integration of an ADRC algorithm 

and inferential control algorithm is proposed here using the secondary variables, tray temperatures, 

in order to control the primary variables which are top and bottom product compositions.  

 

1.2 Significance of the study  

Regarding control applications, an ideal control algorithm solution is the control system that 

can be implemented straightforwardly into a specifically given process. It is immediately available 

to use upon implementation and designed to achieve or execute a specific task without any external 

user intervention. Such an ideal control system is highly recommended in the industry as it 

provides intuitiveness and simplicity for the user as well as the effectiveness of task realisation 

due to both its adaptive and robust features. Moreover, there are certain difficulties in designing a 

robust control system in practice: 

• The uncertainty description is not usually provided and should be accounted for and 

developed in a mathematical model.  
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• The choice of sensors, actuators, and their locations that specify the achievable 

performance of the overall system usually require some intervention from the instrument and 

control engineers.  

• Operational aspects such as handling of constraints, sensor failures, actuator failures and 

stuck valves can create a bottleneck for the closed loop performance.  

There are several industries that benefit from the use of intelligent, robust and expert control, 

ranging from electrical, electronic, food, textile, automotive to chemical industries, etc. These 

industries commonly include processes that show highly non-linear systems, coupled and 

uncertain behaviour and thus need intelligent and robust solutions for their efficient operation. 

However, the chemical industry is a major one due to its association with a large proportion of the 

world population and the huge impact on people’s lives through the nature of products and 

operations that it provides including pharmaceuticals, food, beverages and petroleum products. 

One of the common processes in the chemical industry is the distillation process. It is considered 

as a typical unit operation in chemical engineering that requires a robust control technique due to 

its complexity, nonlinearities and the uncertainties of the dynamic process. Using a suitable robust 

and intelligent control system will lead to significant energy savings, consistent product 

composition quality and higher product yield. However, current control algorithms are hampered 

by many issues such as strong control loop interaction, lack of reliable measurements, and large 

system uncertainty. The application of adaptive and robust control theories can substantially 

enhance distillation column control. 

Even after numerous advancements in robust control theories, the control of most industrial 

distillation columns is still being conducted based on intuition and heuristic control techniques 

such as multi-loop PID as some of the new control techniques have some drawbacks. Fuzzy control 

rules rely on expert knowledge. The Neural Network (NN) algorithm is quite comlex and not easy 

to implement. 

The ADRC has been proposed and considered as a new paradigm to overcome the 

disadvantages of the conventional industrial control tools (Sun et al., 2017). Initially, the ADRC 

technique was applied in many applications outside the domain of chemical and process 

engineering, especially in electrical and electronic engineering applications. It has shown strong 

practical appeal and provides interesting and promising results in controlling various complex 
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time-varying and nonlinear systems. To the author’s knowledge, there are few reported 

applications of ADRC in the chemical industry, which will be discussed in detail in Chapter 2. It 

also provides some other contributions: 

• Recently there have been several studies on various approaches to reduce energy 

consumption, plant operational cost and reduce environmental harm in chemical process plants. 

Specifcally, one of these approaches is to control the operational parameters by an efficient control 

strategy (Contreras-Zarazúa et al., 2016; Zheng et al., 2017). ADRC is a new control technique 

which has strong practical appeal. It is a model free control approach and can deal with 

nonlinearities, time delay and loop interactions. Most of the currently reported applications of 

ADRC are in the motion control area. This thesis investigates using ADRC in various types of 

distillation columns such as the binary distillation column and HIDiC. The control techniques 

developed in this thesis will also be applicable to other process units in the oil and gas industry. 

There are many process loops that should be tuned and controlled by using various control 

techniques. As a result, it will assist the control engineer in acquiring several control strategies of 

various oil and gas industry processes.   

• A time delay issue frequently occurs in many non-linear practical systems such as nuclear 

reactors, chemical processes, telecommunications, long transmission lines and many others 

(Rakkiyappan, 2011). Since time delay is the main cause of poor control performance and 

instability, the control of systems with time delay has received significant attention from 

researchers over the past years. However, current measurement tools such as gas analysis and NIR-

infrared—used to measure the product composition—possess an undesired time delay of 

approximately 10–15 minutes (Zhang, 2001). This will affect the overall performance of the 

control technique and reduce its efficiency. This research aims to overcome this issue by building 

a soft sensor model to estimate the product compositions and integrate it within the ADRC to 

significantly enhance the overall control performance.  

 

1.3 Aim and objectives 

The core aim of this research is to design and develop an inferential ADRC technique to 

control a binary distillation column and HIDiC. Moreover, there are certain objectives that need 

to be executed and completed in this research: 
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• Implement the PI controller on a binary distillation column and HIDiC as a basis for 

performance comparison.  

• Implement the ADRC technique on a binary distillation column and HIDiC.  

• Investigate the overall performance of both (PI and ADRC) regarding set-point tracking, 

robustness, and disturbance rejection, the impact of model uncertainty and control loop 

interactions. 

• Build inferential estimation models to estimate the product compositions from easy-to-

measure process variables using PCR and PLS techniques.  

• Integrate inferential control with ADRC and implement these on the binary distillation 

column and HIDiC.  

 

1.3 Papers published 

This research has led to the development of some new control strategies that have the 

capability of handling the modelling issue of non-linear applications and strong control loop 

interactions. Furthermore, another novel control strategy is introduced to overcome the 

measurement delay associated with product composition. The novel strategies introduced in this 

research are summarised below: 

• A novel control technique that has the ability to control both top and bottom product 

compositions of a simulated binary distillation column based on a rigorous mechanistic model was 

introduced in this paper. A comparison was made between the performance of PI and ADRC 

schemes in terms of set-point tracking and external disturbance rejection which shows an efficient 

performance of the ADRC scheme over the conventional PI controller. This paper was presented 

at the 8th IEEE GCC conference and won the 3rd best paper award (Al Kalbani, Al Hosni, and 

Zhang, 2015). 

• Another novel control technique was introduced by integrating static PCR based inferential 

control with the ADRC scheme on a binary distillation column to overcome the undesired delay 

introduced by the current measurement tools of product composition. This paper was presented at 

IFAC ADChem 2015 (Al Kalbani & Zhang, 2015). 

• In order to improve the performance of the static model based inferential ADRC scheme, 

a dynamic model based inferential ADRC control was developed and it provides better control 
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performance compared to the static one. This paper was presented at the ICINCO 2015 conference 

and was short-listed for best paper award (Al Kalbani & Zhang, 2015).  

• Due to the promising result produced from applying the ADRC scheme on the binary 

distillation column, the ADRC was applied to a HIDiC in order to investigate its performance in 

overcoming the strong loop interactions. The performance of the ADRC and PI schemes was 

investigated again in terms of set-point tracking and undesired disturbance rejection. This paper 

was presented at the 21st MMAR conference (Al Kalbani, Zhang, Bisgaard and Huusom, 2016).  

• The static PCR model based inferential control was integrated with the ADRC scheme to 

overcome the measurement delay of product composition in the product composition control of a 

HIDiC. This paper was presented at the IEEE ICARCV 2016 conference (Al Kalbani & Zhang, 

2016). 

• The dynamic PCR model based inferential control was again integrated with the ADRC 

scheme to provide better performance than the static inferential ADRC scheme and overcome the 

measurement delay of product composition. This paper was presented at IEEE- GCC 2017 

conference in Bahrain (Al Kalbani & Zhang, 2017). 

Furthermore, the following papers are in progression to be submitted to journals: 

• Dynamic PCR model based inferential ADRC of a binary distillation column.  

• Dynamic PCR model based inferential ADRC of a heat integrated distillation column for 

separating benzene–toluene.  

 

1.4 Thesis outline  

This thesis is divided into five major chapters, in addition to this introduction chapter and 

conclusion in Chapter 7. 

Chapter 2 presents the literature review. It starts with a brief overview of various distillation 

columns. It subsequently highlights various control algorithms used in refinery and chemical 

industrial applications with their associated drawbacks. It is shown that the PI controller is the 

most common control technique used in current industrial applications for approximately 90% of 

chemical industrial applications. Despite this fact, this type of common algorithm has several 

limitations that will be introduced in detail in this chapter. In addition, in order to overcome these 
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limitations the new control approach introduced by Han (2009) will be explained in minute detail. 

The structure and implementation of the ADRC scheme will be described and discussed with its 

associated equations in order to apply its structure on proposed case studies in this research. 

However, obtaining accurate measurements for the product composition of distillation columns is 

quite difficult and critical due to the presence of delay caused by the current measurement tools 

such as the gas analyser. As a result, a background overview of inferential control is introduced 

and its characteristics are described. Since there are various types of techniques to build the 

inferential control introduced and used in the existing literature, only suitable techniques for 

proposed case studies are discussed in this chapter.   

Chapter 3 starts by presenting an overview of the Wood–Berry distillation column model, 

which is a well-known 2×2 (two inputs and two outputs) transfer function of a pilot plant binary 

distillation column for separating a mixture of methanol and water. It is used in this chapter as a 

first case study in this research. Prior to implementing the PI controller, the parameters of this 

controller are obtained using the BLT tuning technique. Then, both PI and ADRC controllers are 

implemented and applied to the Wood–Berry distillation column. Furthermore, the control 

performance of both schemes are investigated and discussed in terms of set-point tracking, loop 

interaction and the external disturbance rejection. The importance of these tests is to investigate 

the efficiency of both schemes and decide on the most suitable controller to deal with this type of 

strong non-linear application. The sum of squared error (SSE) is used as a control performance 

indicator.  

In Chapter 4, a background overview of a binary distillation column is introduced. This brief 

background has also been highlighted in the existing literature in terms of various control schemes 

that have already been applied before. In contrast to the simulation using transfer functions in 

Chapter 3, simulation of a binary distillation column based on a nonlinear mechanistic model was 

implemented in order to provide a more realistic simulation. The process reaction curve technique 

is used to obtain the transfer function of the binary distillation column from the mechanistic model. 

Again the BLT approach is used to specify the PI controller parameters. Then, both PI and ADRC 

controllers are designed and applied to the mechanistic model based simulation to investigate their 

performance in terms of set-point tracking and external disturbance rejection to evaluate if the 

ADRC scheme will provide good results compared to the conventional PI control, and if it will be 
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able to overcome the PI controller limitations. Again, SSE is used as a control performance 

indicator.  

Chapter 5 presents inferential ADRC for the product composition control in the binary 

distillation column. This chapter presents the current composition measurement devices such as 

gas analyser possessing undesired delay, which is estimated to be 10–15 minutes. It will also 

discuss the issues associated with the single temperature control in the binary distillation column. 

These issues will be overcome by designing the inferential control technique and implementing it 

as a feedback control loop to the ADRC controller. In this chapter, the PCR and PLS techniques 

are used first to build the soft sensors of the estimation model in order to integrate it with the 

existing ADRC scheme designed in the previous chapter. Furthermore, the main purpose of this 

integration is to provide a continuous measurement by soft sensors for the ADRC scheme to keep 

the product compositions at the desired set-point. However, the existence of control offset due to 

the nominal operating condition change such as set-point change in the estimated signal has been 

eliminated successfully using the mean updating technique.  

In Chapter 6, after the promising results presented in Chapter 4 of applying the ADRC 

scheme to the binary distillation column, ADRC is applied to the most critical and complicated 

column: the HIDiC. The HIDiC is considered to be one of the most difficult distillation columns 

to control and handle due to the challenges it presents such as strong loops interaction. Thus, 

evaluating the performance of the ADRC scheme on this type of distillation column will give a 

clear idea about the efficiency of this type of controller compared to other existing controllers 

especially the PI controller. Simulation of the HIDiC in MATLAB based on the mechanistic model 

is developed. This chapter will start by providing an overview of the HIDiC, its components, and 

the overall operating principle. It is subsequently followed by obtaining the 2×2 MIMO transfer 

function of HIDiC using the system identification toolbox in order to apply the BLT tuning method 

and producing the suitable gain parameters of the PI controller. After obtaining the appropriate 

controller parameters, both PI and ADRC control schemes are implemented. Different tests are 

conducted to evaluate their performance in terms of set-point tracking and disturbance rejection. 

Then the introduced ADRC scheme is integrated with the inferential control scheme in order to 

overcome the delay associated with the measurement of the product compositions. Again, the soft 

sensors or estimation model in this chapter are implemented using both PCR and PLS due to the 
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strong collinearity associated with the secondary measurement variables (tray temperatures). 

Furthermore, the existence of control offset due to the nominal operating change such as set-point 

change in the estimated signal was eliminated successfully using mean updating technique. 
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 Literature review 
2.1 Introduction 

Many industrial processes are considered to be strongly time varying, non-linear and ill- 

conditioned plants. They are also often associated with long delays that in fact introduce an 

additional phase lag that significantly reduces the stability margin or simply destabilises the control 

system. The ecological and economical optimal operation requires tight control of the controlled 

product quality variables. The economic benefits of enhanced control schemes tend to be 

significantly underestimated.  

In the last decades, the proficient and efficient use of energy has become a highly significant 

issue in the industrial sector, since the prices of energy as well as environmental awareness are 

continually increasing. Thus, industry is highly interested in approaches for minimising energy 

consumption (Fazlali et al., 2009). In particular, distillation is still one of the most commonly used 

and one of the most versatile separation methods for separating liquid mixtures in petrochemical 

and chemical industries, accounting for about 25–40% of total energy usage (Kiss, 2014). Due to 

its relatively low energy efficiency, it is often considered one of the biggest energy consumers in 

industrial processes. When considering energy efficiency in any type of distillation column, it is 

essential to account for the form of energy being consumed and the quality of cooling and heating 

required. Trade-offs exist between environmental impact, cost, energy sources and equipment 

requirements. Distillation columns consume a huge amount of energy to generate the heat required 

to convert liquid to vapour and then condense the vapour back to liquid via a condenser. They use 

more than 40% of the total energy used in the refining and bulk chemical process industry and 

more than 90–95% of the energy consumed in liquid separation and purification (Vazquez–Castillo 

et al., 2009; Jogwar and Daoutidis, 2010; White, 2012; Masoumi and Kadkhodaie, 2012; Nair and 

Raykar, 2017), and account for more than 3% of the energy consumption in the world (Biyanto et 

al., 2017; Jeffries et al, 2016). Moreover, the capital investment in these distillation systems is 

indicated to be at least eight billion US dollars, which can contribute to greater than 40–50% of 

both capital and plant operating costs in a typical chemical plant and can have a significant impact 

on the overall plant profitability (Kiss and Bildea, 2011; Kiss, Landaeta and Ferreira, 2012; Tarjani 

et al., 2017). The minimum energy expected to be consumed in distillation columns depends on 

various operation variables such as temperature spans and operating pressures, so the optimisation 

of these variables leads to reduced energy demand while meeting product quality and quantity 
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requirements (Kiss, 2013).  

This chapter is organised as follows. Section 2.2 gives brief background information about 

binary distillation column and HIDiC. Section 2.3 introduces one of the commonly used controller, 

the proportional – integral and derivative controller, and its advantages and limitations. Then, the 

concept of ADRC is introduced in Section 2.4 with its main components and associated 

mathematical equations. Section 2.5 presents brief information about the Kalman filter with its 

constructed mathematical equations.  Section 2.6 provides background information about the 

observer that is used to observe the state variables that are inaccessible and not available to measure 

by direct measurement tools. Then, the concept of the inferential estimator with background 

information about the PCR and PLS are outlined in Section 2.7.  Finally, a summary is given in 

Section 2.8.  

 

2.2 Distillation columns  

The distillation column is probably the most common and important process unit, and has 

been intensively investigated and analysed in the chemical engineering sector during the past few 

decades (Keller and Humphrey, 1997; Al-Muslim et al., 2003; Rivero, Rendón and Gallegos, 2004; 

Alhajji and Demirel, 2015; Demirel, 2013; Shin et al, 2015; Zhang and Liu, 2017). Distillation is 

a thermal separation technique for separating a mixture of two or more liquid materials into their 

component fractions of required purity according to the difference in volatility of the components. 

Note that distillation refers to a unit operation of a physical separation process. However, the 

combination of different distillation process operations lead to the introduction of new distillation 

processes such as a dividing wall column (Harmsen, 2010), or with a chemical reaction, leading 

to the introduction of chemical reactive distillation (Sharma and Singh, 2010; Sundmacher et al, 

2005), and other chemical process operations (Schmidt-Traub and Górak, 2006).  

Distillation has various applications such as the separation of crude oil into different oil cuts 

(e.g. diesel, gasoline, kerosene, etc.), water desalination and purification, the separation of air into 

its components (e.g. nitrogen, oxygen, and argon), and the production of distilled beverages or the 

distillation of fermented solutions with high alcohol content (Forbes, 1970). Distillation has been 
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the subject to vast development due to the petrochemical industry and as such it is one of the most 

significant techniques in the global energy supply system (Harmsen, 2010). 

 

2.2.1 Binary distillation columns 

Binary distillation columns constitute a major part of most chemical industries such as 

petrochemical production, liquor production and coal tar processing for the separation of feed 

mixtures. Figure 2.1 presents a schematic diagram of a conventional binary distillation column 

that illustrates some of the desired inputs and components present in a large-scale distillation 

column. The feed is composed of a mixture of the two components that need to be separated. The 

feeding tray separates the column into a rectifying or enriching section (upper part of the column) 

and a stripping section (lower part of the column). Separation occurs due to both mass transfer and 

intensive heat transfer between the liquid flow and counter-currently rising vapour flow (Rehm, 

2009). The separation process of the two components in the feed composition can occur due to the 

fact that the boiling mixture’s vapour will be richer in components compared to the component 

that has a lower boiling point. Hence, when this vapour is condensed and cooled the condensate 

will contain more volatile components. Meanwhile, the remaining feed mixture will contain a 

higher proportion of the less volatile component.  

The feed mixture is usually fed in the middle of the column. The vapour component is 

produced by the reboiler that is supplied by sufficient heat. The steam moves up through trays 

inside the distillation column to reach the top part and then rises out to be liquefied in a condenser. 

At that point liquid from the condenser enters into the reflux drum. At the final stage the distillate 

and top product are collected from the drum as a pure product. In addition, part of the pure product 

from the reflux drum is fed back close to the top, while the impure is produced at the bottom 

channel (Kiss, 2013). The trays of a binary distillation column indicate distillation stages, where 

some of the vapour leaving up the column is condensed by the condenser. The distillation column 

trays are characterised by many bubble caps or holes to allow the vapour to pass through. Their 

intended purpose is to increase the contact time between liquid and vapour in the column. If there 

are two components in the feed mixture (as in the case study considered in this research), a greater 

amount of the volatile component will vaporise and a larger amount of non-volatile components 

will remain in the liquid condensate. In other words, the component with the lower boiling point 
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will condense in the top condenser and the substances with a higher boiling point will move out 

from the bottom of the column as a condensed liquid (Miccio and Cosenza, 2014).  

 

Figure 2.1: Schematic of a binary distillation column 

The separation process of a binary column requires a large amount of heat from the reboiler 

to boil up the liquid mixture. This heat is then lost when liquefying the overhead vapour at the 

condenser. Despite its substantial energy consumption, the binary distillation column continues to 

be widely used in many industrial applications for separation and purification (Jana, 2010). Thus, 

there is a need for successful and efficient control techniques to increase the profitability and 

productivity of a plant. In distillation column control, the overhead distillate composition xD and 

bottom composition xB are usually selected as the controlled variables. When the reflux flow rate 

L and vapour boil up rate V are used as manipulated variables for controlling the product 

compositions of binary distillation columns, the increase of reflux flow rate always increases the 

purification of the top product composition (Feng et al., 2006). The rates of the manipulated 

variables are normally limited. Specifically, the extremely high reboiler rate and high reflux rate 

cause column flooding. However, the extremely low rates in these manipulated variables enlarge 

the spaces between liquid and vapour and might cause column channelling, which will lead to 

damaging the column itself (Skogestad, 1997).  
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2.2.2 Heat Integrated Distillation Columns (HIDiC) 

In a typical chemical plant, the separation processes occurring in the distillation column are 

the main energy consumers and account for around 40–70% of both operating and capital costs 

(Ruiz et al., 2010). Unexpectedly, the thermal efficiency provided by the conventional distillation 

column is about 5–20% (Nair and Raykar, 2017). The low thermodynamic efficiency is usually 

associated with the substantial energy wastage existing in the process of distillation, which occurs 

due to the large difference between condenser and reboiler temperatures. Moreover, the thermal 

energy recovered in the condenser stage cannot be used to heat other flows in the same distillation 

column (Ponce et al., 2015). To increase heat separation and reduce energy consumption, a greater 

temperature should be provided in the reboiler part and drawn-off at a low temperature in the 

condenser. Due to the intensive energy consumption and low thermal efficiency, the distillation 

column has become a potential applicant for minimising its utility demand. Furthermore, various 

attempts are being made to introduce a successful systemic technique for enhancing the efficiency 

of the distillation process. 

 Almost 80 years ago, the concept of heat integration was originally proposed to improve 

energy efficiency. So far, several studies have been introduced on optimal design and synthesis of 

heat integrated distillation schemes (Gross et al., 1994). The concept of a thermally coupled 

distillation column was first introduced by Brugma in 1937. This energy efficient separation 

operation technique was re-introduced again by Wright (Wright, 1949) and then discussed and 

investigated by Petlyuk (Petlyuk et al, 1965). The heat transfer principle from the rectifying to the 

stripping section in a single unit was initially introduced by Freshwater (Freshwater, 1961). In 

order to improve the energy efficiency of the distillation column, the heat pump principle is usually 

implemented as an operative means of re-using the rejected heat (Null, 1976; King, 2013). This is 

normally referred to as heat pump assisted distillation columns. While it is a useful method for 

saving energy, it suffers from strict requirements imposed by the feed mixtures to be separated. 

 In 1967, Freshwater and Pike introduced the internal heat integration between the rectifying 

and stripping sections of a distillation column (Freshwater and Pike, 1967). This technique was 

initially presented for gas separation processes (Haselden, 1958). The advantages of this approach 

have been further systematised and clarified through various numerical solutions based on the 

second law of thermodynamics (Shimizu and Mah, 1983). Using the same principle of internal 
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heat integration, a secondary reflux and vaporisation distillation column was introduced. This type 

of distillation column included internal heat integration between part of the rectifying and stripping 

sections. Next, the principle of internal heat integration was extended to the whole rectifying and 

stripping sections (Shimizu et al., 1985; Shimizu and Mah, 1983). 

 A complete comparison was introduced between the benefits of the HIDiC and the 

traditional distillation column (Lueprasitsakul et al., 1990; Takamatsu et al, 1996). Since 1990, 

various heat integrated distillation schemes have been investigated and presented (Glenchur and 

Govind, 1987; Naito et al., 2000). A new scheme of HIDiC was designed that has alternating trays 

of stripping and enriching sections (Feng et al., 2006). Then, the efficiency was further improved 

by introducing a unique structure of HIDiC that has neither a trim condenser nor a trim reboiler; 

this column is commonly referred to as an ideal-heat integrated distillation column (i-HIDiC). The 

operation of i-HIDiC proves that it is more energy efficient than the general HIDiC, which includes 

both the condenser and reboiler along with the presence of an internal heat integration structure 

(Takamatsu et al, 1996).  

The HIDiC is one of the technologies introduced to reduce the energy consumption by 20–

40% compared to the conventional distillation process due to the heat exchange strategy especially 

in the separation of close to boiling mixtures (Masoumi and Kadkhodaie, 2012). The heat exchange 

process occurs when heat is propagated and produces condensation or vaporisation due to the 

pressure difference between the rectifying and stripping sections (Suphanit, 2010a). As a result, 

the ideal structure of HIDiC has neither a condenser nor a reboiler, and thus has a huge amount of 

energy reduction (Nakaiwa et al., 2000). The heat transfer occurs in the stripping and rectifying 

sections. The operation of both the rectifying and stripping sections is similar to a diabetic column 

that allows heat to leave or enter any particular stage along the column section. Furthermore, 

instead of rejecting heat through the main condenser and generating the heat through the main 

reboiler, the rectifying section distributes the total heat rejection, while the total heat absorption is 

distributed along the stripping section. The utility load required in the main reboiler or the main 

condenser can hence be reduced. The difference in pressure between the two column sections that 

is adjusted via a throttling and a compressor valve should be large enough to driving a positive 

temperature between the two sections (Suphanit, 2011b). Moreover, the implementation of this 

technology pursues minimising the emissions of carbon dioxide and reducing the total annual cost 
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(TAC) of this fundamental separation process. Figure 2.2 presents the schematic diagram of an 

ideal HIDiC.  

 

 

Figure 2.2: Schematic of an ideal HIDiC (Nakaiwa et al., 2000) 

It is very likely that distillation will continue to be the process chosen for liquid mixture 

separation for the next decade as it is still labelled “as the technique of choice for many current 

purification and separations” but it needs to make radical modifications and changes to reduce 

energy consumption. With rising environmental concerns and growing energy awareness there is 

a need to minimise energy use in all industry sectors (Kiss, 2013).  

The distillation column is commonly considered to be a non-linear and time varying system 

and its model is typically required in control and optimisation. Obtaining an accurate model is 

challenging. Even if the model system is accurate, the dynamic model of the system has numerous 

parameters that present a range of difficulties to controlling this type of system. 

 

2.3 Control of distillation columns 

2.3.1 Control of binary distillation columns  
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A review of the existing literature regarding control schemes reveals various schemes 

applied to the Wood–Berry distillation column. The main idea of applying various control 

strategies to a distillation column is to select one of the many possible control strategies that meet 

process operational needs. Acharya, Dumpa and Dan (2016) provide a comprehensive study of 

control of the Wood–Berry binary distillation. They applied a multi-loop PID and decoupled PID 

controller in order to control the binary distillation column. In addition, the introduced decoupled 

PID controller showed high performance compared with that of the conventional PID controller, 

especially in a strong loop interaction. The main drawback of their work is that the decoupling PID 

controller reduced the impact of loop interactions only, without improving the overall performance 

of the PID controller (Acharya et al, 2016).  Costa and colleagues applied the conventional PID 

scheme on the Wood–Berry binary distillation column and quadruple tank (Costa, de Almeida and 

Angélico, 2012). The tuning parameters of the PID controller were tuned using both genetic 

algorithm (GA) and particle swarm optimisation (PSO). Their results show that both GA and PSO 

tuning techniques with the exiting of the decoupling structure were able to produce a good dynamic 

performance from the PID controller. A major disadvantage to their research is the overshoot 

associated with the sudden set-point change that leads to deterioration in the overall performance 

of the PID controller. 

 Dumpa et al. (2016) presented a comparative analysis of various control techniques for the 

Wood–Berry distillation column. Different control schemes such as internal model controller 

(IMC), lead-lag IMC, Smith predictor IMC and feed forward IMC controller were considered, 

applied and compared based on their performance. Each individual controller has a specific 

implementation and working principle. For example, the IMC controller approach has the 

advantage of robust to model uncertainty and trade-offs between the overall performance and 

robustness, the lead-lag IMC approach is used to improve settling time and reduce overshoot 

percentage, and the feed-forward IMC controller is implemented along with feedback control to 

reduce external disturbance and reject it. In brief, the overall performance of all implemented 

controllers are promising but it is better to find a controller with a specific known design and one 

capable of providing improved performance in terms of disturbance rejection, robustness to model 

uncertainty and set-point tracking. 
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 Mishra et al. (2013) applied MPC to the Wood–Berry model in order predict the control 

variable. The MPC scheme provides various important advantages such as addressing the static 

and dynamic interaction between input, output and disturbance variables. 

 Olesen et al. (2013) introduced a new technique for tuning the autoregressive exogenous 

input (ARX)-based MPC scheme of multivariate processes. The MPC scheme is designed and 

implemented based on a state space model. The tuning technique of the MPC parameters can be 

done numerically by minimising the integrated absolute error (IAE). They applied their technique 

on the Wood–Berry model and a cement mill. The introduced technique provided improved control 

performance with improved robustness capability but performs poorly under external disturbances 

generated from both feed flow rate and feed composition. 

 Adel, Elamvazuthi and Hanif (2009) used a Supervisory Control and Data Acquisition 

(SCADA) system in order to monitor and control the binary distillation column. They applied the 

conventional PI controller on the Wood–Berry distillation column. The parameters of the PI 

controller were determined using four different tuning methods: Coohen–Coon, multi-loop, 

Ziegler–Nichols, and minimal Integral of Time-Weighted Absolute Error (ITAE). The simulation 

results showed that comparatively, ITAE is the most suitable tuning technique. These results are 

then used in the creation of a graphical user interface (GUI). In their research, the Wood–Berry 

binary distillation column exhibited very high overall performance. Both product compositions 

settled down to their set-points with little overshoot, but the effect of external disturbance on the 

overall performance of their controller was not investigated. 

 Kadhar and colleagues (2015) proposed the design of a non-fragile multivariable PI 

controller for an industrial MIMO dynamic system using a diversity controlled self adaptive 

differential evolution with local search (DCSaDE-LS) scheme. The proposed technique was 

formulated as a single optimisation problem with the objective of evaluating robustness 

performance against the non-fragileness constraint. The robustness and non-fragileness of the 

proposed controller was investigated under -40% to 40% variations in nominal operating process 

and controller parameters. Real-time level temperature reactors and Wood–Berry distillation 

processes were considered a case study system. The simulation result showed that the DCSaDE-

LS-designed non-fragile multivariable PI controller has improved time domain performance, and 

better non-fragileness and robustness than the reported multivariable PI controller et al, 2015). 
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 Tufa and Ka (2016) evaluated the effect of model plant mismatch (MPM) on the overall 

performance of MPC and a systemic technique to specify the mismatch threshold in which the 

performance deterioration can be significantly considered. The Wood–Berry distillation model is 

used as a simulation case study with the MPC scheme to evaluate the efficiency of the proposed 

approach. The simulation result demonstrated that a 70% increase in the overall integral error 

(OIE) for the set-point tracking issue is found to be an acceptable limit for the performance 

deterioration of the MPC scheme (Tufa and Ka, 2016). 

 Uddin et al. (2016) compared the performances of the ARX model and auto regressive 

moving average with exogenous input (ARMAX) model for detection of model plant mismatch. 

A Wood–Berry distillation column was used as a simulation case study with the MPC scheme to 

evaluate the efficiency of both proposed approaches. The simulation result showed that both ARX 

and ARMAX models were able to identify the MPM introduced in the simulation model with little 

difference in magnitude of partial correlation coefficients. Furthermore, the ARMAX models gave 

higher accuracy with less computational complexity compared to ARX models (Uddin et al., 

2016).  

 

2.3.2 Control of HIDiC  

Early in 1976, the first research in this area was published by Tyreus and Luyben (1976) to 

investigate the control issue of double effect distillation. They investigated the control of three 

different heat integration schemes: feed-split, light-split reverse, and light-split forward 

(integration). They suggested that the light-split reverse is the most controllable configuration. 

Weitz and Lewin (1996) studied the light-split reverse scheme using the disturbance cost as a 

control parameter variable and a similar conclusion was suggested. Wang and Lee (2002) 

introduced a non-linear PI control for a binary high purity heat integrated distillation column with 

a light reverse/split scheme. Zhu, Hong and Wang (2004) discussed the implementation issues of 

a two level control approach of dynamic integrated Real Time Optimisation (RTO) and nonlinear 

MPC for the HIDiC. They considered four nonlinear schemes: data reconciliation and state 

estimation, economic operation optimisation, parameter estimation and nonlinear MPC. The 

simulation results indicated that the proposed technique is effective to realise such advanced 

strategy on a rigorous model of an industrial sized plant (Zhu, Hong and Wang, 2004). Fukushima 
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et al. (2006) gave dynamic simulation models for various types of HIDiC. Furthermore, the 

dynamic and controllability of HIDiC were evaluated and compared with the Conventional 

Distillation Column (CDiC). They also introduced a suitable control system for the HIDiC 

(Fukushima et al, 2006). 

In order to control the system successfully, reliably, regularly, and efficiently, measurement 

should be provided. At the same time, environmental regulation dictates strict refinery emissions 

and product quality specifications.  

 

2.4 Proportional–Integral and Derivative control (PID) 

Currently, industrial control applications are based on a PID controller in over 95% of cases 

(Chunzhe et al., 2015). Investigating the widespread industrial use of conventional PID schemes, 

it can be clearly observed that even for a small percentage of enhancements in the design structure, 

a PID controller might have an enormous effect on practical applications. Furthermore, due to the 

structural limitations of conventional PID controllers, they might not produce the desired 

performance for complex systems. The main reason behind this is that PID is an error feedback 

control scheme where the control action is determined by control error only. The derivative term 

of the PID controller only gives a ‘one step’ estimation of error, hence the disturbance and 

uncertainties of a complex process cannot be estimated well, which leads to slow compensation 

(Tan and Fu, 2015; Chen et al., 2017). 

Han (2009) mentioned that the PID controller was first introduced by Minorsky in 1922. The 

PID controller is defined mathematically as:  

𝑢(𝑡) =                                                                                       (2.1)  

Where: 

 𝑘𝑐 represents the controller gain 

 𝜏𝐼 represents the integral constant 
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 𝜏𝐷 represents the derivative constant 

 e represents the error signal 

 

2.4.1 PID controller tuning in SISO systems 

Despite the significant development that occurred in advanced control theory, the PID 

controller is still the most common controller used in process control due to its implementation 

simplicity and remarkable effectiveness (Deshpande, 1989; Koivo and Tanttu, 1991). According 

to Almodaresi and Bozorg (2017), more than 95% of industrial applications are still using PI 

controllers, particularly when the requirement of mathematical models are not too rigorous and 

when dominant process dynamics are of the first or second order ( Almodaresi and Bozorg, 2017). 

Although the PID controller has only three tuning parameters, it is not a straight forward task to 

find their optimal values without a systematic procedure (Skogestad, 2003). In addition, suitable 

PID tuning techniques are extremely desirable due to their widespread use (Tavakoli et al, 2006). 

Currently there are a number of techniques for tuning PID controller parameters (Skogestad, 2001; 

Cominos and Munro, 2002; Garcia et al, 2007). The efficient selection of the tuning method can 

produce an efficient output performance with less error signal between the desired set-point and 

the output performance.  

The ZN PI controller setting can be calculated from the values of ultimate gain Ku and 

ultimate period Pu as: 

𝐾ZN = 
𝐾𝑢

2.2
                                                                                                                                     (2.2) 

𝜏ZN = 
𝑃𝑢

1.2
                                                                                                                                    (2.3) 

Where: 

 KZN represents the controller gain 

 τZN represents the reset time 

 Ku represents the ultimate gain 
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 Pu represents the ultimate period 

In the frequency domain, the ultimate gain Ku is effectively the gain margin Gm, which 

indicates the amount of system gain amplification that will make the dynamic system become 

marginally unstable: 

𝐾𝑢 = 𝐺𝑚                                                                                                                                     (2.4) 

Consequently, the dynamic system will oscillate with a constant magnitude and the ultimate 

period, Pu, which is related to the phase crossover frequency 𝜔𝐺 as: 

𝑃𝑢 = 
2𝜋

𝑤𝐺
                                                                                                                                      (2.5) 

 

2.4.2 Tuning PI in multi-loop systems 

Due to energy integration and the fact that product quality is generally influenced by multiple 

factors, most modern industrial processes are MIMO systems. Multivariable control requires 

maintaining various controlled variables at their desired set-points. For easier control 

implementation and tuning, it is desirable to apply well established single loop PID tuning 

techniques to these MIMO processes (Grosdidier and Morari, 1987). However, compared with 

Single Input Single Output (SISO) systems, MIMO systems are more difficult to control due to 

the existence of control loop interactions. Adjusting controller parameters of one loop impacts the 

overall performance of other loops which may lead to destabilisation of the entire dynamic system 

(Xiong and Cai, 2006). 

Luyben (1986) introduced a simple and practical multi-loop controller tuning technique 

called the Biggest Log-Modulus tuning (BLT). It is an interactive strategy for tuning the PI 

controller applied for an MIMO system. It is considered an extension to the Ziegler–Nichols 

method as it is based on the ZN tuning technique for each individual loop and a single detuning 

factor is introduced to meet the stability criterion considering the interactions between loops 
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(Nandong and Zang, 2014). In this technique the ZN tuning rules are first applied to the diagonal 

elements of the transfer function matrix of an MIMO process by treating them as SISO processes.  

After acquiring the ZN tuning parameters, a detuning factor F is applied to the controller 

parameters: 

𝐾𝑐 = 
𝐾𝑍𝑁

𝐹
                                                                                                                                    (2.6) 

𝜏𝐼 = 𝐹 𝜏𝑍𝑁                                                                                                                                  (2.7) 

The detuning factor F specifies the stability of each individual loop where a larger value of 

F will lead to a more stable system but the load and set-point tracking responses are more sluggish 

and vice versa. 

For a given detuning factor F, the closed loop log modulus Lcm can be calculated as: 

𝐿𝑐𝑚 = 20 log |
𝑤

1+𝑤
|                                                                                                                      (2.8) 

𝑤 = −1 + det(𝐼 + 𝐺𝑝𝐺𝑐)                                                                                                          (2.9) 

Where Gc is a diagonal (n x n) matrix of PI controller transfer functions, Gp is ( n x n ) matrix 

representing the process transfer functions associating the n controlled variables to the n 

manipulated variables (Luyben, 1986). 

Then, the detuning factor F will be varied until the biggest Lcm over the entire frequency is 

equal to some selected specified number [𝐿𝑐𝑚]
𝑚𝑎𝑥 . This specified number is usually equal to 

double the system dimension: 

𝐿𝑐𝑚
𝑚𝑎𝑥  = 2𝑛                                                                                                                              (2.10) 
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2.4.3 Limitations of PID 

Commonly, the conventional PID controller is the first choice for industrial control 

engineers, but it is hard for a controller to provide an effective control signal to uncertain, non-

linear and coupled systems despite all mentioned advantages (Xu and Wang, 2017). Gao (2006c) 

also argued that the simplicity of the PID controller leads to some fundamental limitations, 

especially in digital control applications that consist of powerful and new compact digital 

processors (Gao, 2006c). Due to this fact, Han (2009) highlighted various major limitations that 

exist in the PID control framework (Han, 2009). These limitations, with the corresponding 

conceptual and technical solutions, are as follows: 

I. Set-point jump 

Here, a sudden change at the set-point signal leads to a sudden jump in the manipulated 

signal or the controller output. As a result it produces some undesired overshoot. For example, this 

kind of sudden jump can lead to frequent fluctuations that may destroy the valve easily. To 

overcome this limitation, it is of great importance to design a transient profile in order to force the 

controlled variable to follow the set-point changes gradually. The speed of the transient profile 

should vary in accordance with applications and should be selected accordingly (Gao, 2006d). 

II. Noise degeneration in the derivative control D 

Despite the advantages of D control in reducing the overshoot of error change, most 

practitioners prefer to use the PI controller in most real applications instead of PID control. 

Increasing the differential control factor kd will accelerate the response of the system and remove 

the unnecessary overshoot and offset. However, it makes the system sensitive to measurement 

noise and reduces the anti-jamming ability of the plant (Cao et al., 2008). The main method to 

overcome and resolve this kind of issue is by effectively estimating the total amount of noise and 

removing it from the control law (Gao, 2006c; Han, 2009).  

III. Oversimplification in the form of linear weighted sum control law 

A loss of performance in and the oversimplification of the control law in the arrangement of 

the linear weighted sum is another limitation of PID control. The control law of the PID control 

consists of a linear combination of present or current error, the accumulative errors over an interval 
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of time in the past and the error variation predictions for the future, which are manually tuned to 

obtain the desired performance (Chen et al, 2007). 

As a result, Han (2009) indicates that this linear combination ignores other parameters that 

are more effective and should be considered and thus make the PID controller more powerful (Han, 

2009). In order to overcome this limitation, non-linear feedback where the error signal can be 

reduced or reach the desired set-point more quickly in certain finite cases is introduced. 

IV. Complication due to the integral term I 

The integral term means the summation of an error signal over an interval of time to 

eliminate the steady state offsets. In fact most control loop actions reach the desired steady state 

due to the effect of the integral term I (Han, 2009). Despite all previous advantages, the utilisation 

of the integral term in any control loop introduces unwanted performance issues such as integral 

windup, a decrease in the stability margin due to phase lag characteristics, unacceptable saturation, 

and large settling time (Maurya and Bhandari, 2016). Moreover, Cao et al. (2008) argued that if 

the integral parameter 𝑘𝑖 is too high, it would make the dynamic quality of the system weaker and 

result in closed loop system instability.  

According to Xia et al. (2007), in order to overcome the conventional PID defects and control 

the distillation column, the new proposed control scheme should have the following 

characteristics: 

• Overcome the PID key weakness or limitations. 

• Tolerate large uncertainties in a physical process. 

• Capable of estimating the controlled variable from accessible and measurable variables, 

since quite often in the chemical industry the controlled variable cannot be measured directly due 

to the undesired delay or is too expensive to measure. The control action can then be generated 

based on the estimated signal (Chen et al., 2016). 

• Easy to understand and implement in vast industrial applications.   

• Easy to tune, optimise, and operate.  

• Capable of controlling and eliminating the frequent occurrence of disturbance.  

• Capable of eliminating the impact of strong loop interactions.  
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It should combine the advantage of conventional PID controllers with the best advantages of 

modern control paradigms such as the state observer (Xie and Long, 2009). As a result, a highly 

successful solution was introduced by Han for processes that are time varying, non-linear and full 

of uncertainties, both external and internal parameters. This scheme is called Active Disturbance 

Rejection Control (ADRC). ADRC is gradually gaining recognition and consideration, owing to 

its excellent quality control and unique philosophy. It prefers to use non-linear functions in the 

design of the control law and the observer, which is potentially more successful in disturbance, 

uncertainty and enhancing system dynamics (Li, Qi, et al., 2015).  

 

2.5 The concept of ADRC 

The principle of ADRC was pioneered in 1995 by Jinqing Han who worked in the Chinese 

Academy of Science (Han, 2009). However the term ADRC was systemically introduced for the 

first time into English scientific literature in 2001 by Zhiqiang Gao (Gao, Huang and Han, 2001; 

Gao, 2006c; Gao, 2006d). It was introduced, developed and matured in the last twenty years by 

different groups of researchers around the world (Han, 2009; Huang and Xue, 2014; Gao, 2014b; 

Zheng and Gao, 2014), and it has been used in various applications in much of the relevant 

literature in recent years. Miklosovic et al. (2006) claim that the main idea of ADRC is very 

intuitive and that ADRC focuses on disturbance rejection as the central task, and the ‘active’ part 

is introduced by mitigating disturbance before it enters the system. ADRC is a departure from both 

model based multivariable and PID control paradigms and brings together the advantages of PID 

(i.e. error based) and modern control concept (i.e. state observer; (Gao, 2006c). It is independent 

of the mathematical model of the controlled plant. In other words, ADRC is an error driven scheme 

and has the capability to access and control the plant without an accurate model (Lu and Wang, 

2012). It deliberately assumes an integrator mathematical plant model and handles all modelling 

errors as disturbance estimations. The conventional disturbance concept as something coming 

from outside the system is broadened in the ADRC scheme to include internal dynamics, and its 

latter removal makes design and tuning of the controller a simple task (Gao, 2015a). Its use of real 

time estimation and compensation eliminates the steady state error between the input and output 

with the help of Non-Linear Weighted Sum (N-LWS) and Extended State Observer (ESO). The 

undesired external disturbance and system uncertainties can be estimated and compensated 
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instantaneously at each sampling time, effectively and accurately (Kai and Yanlei, 2010). 

Furthermore, the ADRC scheme has various features over existing control algorithms such as fast 

control response, strong disturbance estimation and rejection, a simple tuning algorithm, not 

requiring an accurate mathematical model and physical measurement of the disturbances (Zhu et 

al., 2011). According to Figure 2.3, the ADRC scheme has three main components: Transient 

Profile Generator (TPG), ESO, and N-LWS. 

 

Figure 2.3: ADRC schematic (Han, 2009) 

 

i. Transient Profile Generator  

In tracking, the desired output trajectory or reference must be carefully produced to make it 

physically feasible for the output to follow. It is helpful to keep the tracking error to a minimum 

(Sun et al., 2017). This is the idea behind the reference generator and has been widely applied and 

practiced in many industrial applications under different names such as soft start in power 

electronics or motion profile in servo systems. It is able to minimise the oscillation and overshoot 

and increase system robustness. As a result, the s-curve and trapezoidal profile are usually used in 

a motion profile to avoid actuator saturations and to save energy. Han was very much aware of 
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such existing profile generators and he introduced a clever and simple reference generator called 

the TPG, as a component in the structure of the ADRC (Gao, 2015a). TPG designs the reasonable 

differential signal to achieve the target of noise suppression and arranges a transition process for 

the output signal to produce a smooth output signal from the differential signal of the input signal. 

It is also proposed to solve the issue of overshoot and rapidity of the PID control scheme by 

preserving the response speed of the system (Sun et al., 2017; Han, 2009): 

The desired transient profile generator can be designed as follows: 

{
𝑣̇1 = 𝑣2                                           

𝑣̇2 = −𝑟 𝑠𝑖𝑔𝑛(𝑣1 − 𝑣 +
𝑣2|𝑣2|

2 𝑟
)
                                                                                            (2.11) 

Referring to equation 2.11, v represents the desired set-point, v1 is the desired transient 

trajectory, v2 is the derivative of the desired transient trajectory, r is one of the ADRC design 

parameters that plays an essential role in adjusting the speed of the TPG. Furthermore, it is well 

known that the continuous time solution represented in this equation may introduce significant 

numerical errors in the discrete time implementation. To overcome this issue, a discrete time 

solution can be represented below (Han, 2009): 

{
𝑣1 = 𝑣1 + ℎ𝑣2      
𝑣2 = 𝑣2 + ℎ 𝑓ℎ𝑎𝑛

                                                                                                                  (2.12) 

Where fhan represents Han function 𝑓ℎ𝑎𝑛 (𝑣1, 𝑣2, 𝑟0, ℎ0) which can be obtained by the 

following equations: 
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                                                                                     (2.13) 

Where h represents the required smoothness for the output response.  

Table 2.1: Recommended ranges for TPG tuning parameters r and h (Gao, Huang and Han, 

2001; Han, 2009). 

TPG tuning parameter Recommended range value Effect 

r 0.1 < r < 10 Describes the required speed of the 

output response of the industrial 

application, it is a compromise between 

speed and stability. 

h 0.002 < h < ∞ Describes the required smoothness of 

the output response of the industrial 

application, it is a compromise between 

smoothness and sluggishness. 

 

With reference to Table 2.1, it might be noticed that the practitioners will have to make a 

trade-off between smoothness and sluggishness. In addition, they should select the tuning 

parameter values based on the industrial application and desired output. 
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It can be realised that the TPG operates as a filter where the proportions of the signal that 

exert an acceleration greater than the design parameter r are blocked. The TPG filter will exert the 

desirable performance. 

One of the advantages the TPG has in the ADRC structure is its functionality in generating 

the derivative of signals accompanied by noise while maintaining a suitable rate of Signal-to-Noise 

Ratio (SNR). The importance of this characteristic is that a pure differentiator in practice is not 

physically implementable. This is due to the existence of noise in the feedback control and also 

the result of continuous discontinuities occurring at the reference signal that affect the 

impracticability of differentiating the error signal. 

 

ii. Extended State Observer  

Observers are dynamic functions that extract information about the system states from their inputs 

and outputs in real time. ESO is introduced in the context of ADRC and is independent of the 

mathematical model. ESO is also recognised as an estimator that plays a vital role in modern 

control theory. The main idea of the ESO is to estimate online variables that are usually 

inaccessible instrumentation-wise such as model errors, external disturbances and internal non-

linear dynamics of the physical plant and to effectively compensate online for the unexpected 

disturbances in the control effort (Zheng and Gao, 2014). The ADRC can perfectly and 

successfully drive the controlled output signal to its desired value if the ESO has an accurate 

estimation for the external disturbances, model error and internal non-linear dynamics of the plant 

(Xia et al., 2007). It also acts as a low pass filter that reduces the effect of measurement noise in 

the feedback control loop (Zhao et al., 2011). 

The parameters of ESO are selected and tuned in accordance with the essential conditions of 

the error dynamics stability (Han, 2009). ESO adopts a double channel compensating technique to 

redesign the system model and alter the uncertain, non-linear system to be approximately certain 

and linear (Xia et al., 2007). According to Figure 2.3, the output signal y and the control signal u 

are fed as inputs to the ESO, which then generates three output signals consisting of z1, z2, and z3. 

z1 traces y, z2 traces the differentiation of y and z3 traces the disturbances. As a result ESO can be 

designed and implemented as follows (Li, Xia, et al., 2015): 
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{
 
 

 
 

𝑒1(𝑡) =  𝑧1(𝑡) − 𝑣1(𝑡)

𝑒2(𝑡) =  𝑧2(𝑡) − 𝑣2(𝑡)

𝑧1(𝑡 + 𝑘) =  𝑧1(𝑡) + 𝑘𝑧2(𝑡) − 𝛽1𝑒(𝑡)

𝑧2(𝑡 + 𝑘) =  𝑧2(𝑡) + 𝑘(𝑧3(𝑡) + 𝑏(𝑢) – 𝛽2𝑒(𝑡)

𝑧3(𝑡 + 𝑘) =  𝑧3(𝑡) − 𝛽3𝑒(𝑡)

                                                                   (2.14) 

Where: 

k represents the sampling interval.  

b represents the tuning parameter. 

e represents the error signal between the estimation outputs of ESO component and the 

output signal of the TPG. 

β1, β2, and β3 represents the linear observer gain that can be calculated by: 

𝛽1 = 1, 𝛽2 = 
1

3 𝑘 
 , 𝛽3 = 

2

64 𝑘2
                                                                                                    (2.15) 

The design gains 𝛽1, 𝛽2 and 𝛽3 affect the performance of ESO and if selected properly, can 

enable ESO to produce very good observation for the error variable, the error differential variable 

and the total disturbance of the controlled system. For example, the parameter 𝛽3 determines the 

lag degree of the observed estimation z3 of the total disturbance the system is subjected to. A larger 

gain of 𝛽3 leads to a smaller lag of the observed estimation z3 of the total amount of disturbance. 

If the gain parameter 𝛽3 is too large it will make some oscillation of the estimated value of the 

total disturbance and produce an inaccurate estimation. Han (2009) suggested that the above tuning 

rule is valid for sampling times between 0.0001 and 1000. 

iii. Non-Linear Weighted Sum  

ADRC is a non-linear controller configuration that is independent of the plant model and has 

the capability to enhance the overall dynamic performance compared to the traditional PID scheme 

without substantially increasing the computational complexity (Gong et al., 2012; Shao and Wang, 

2015). The N-LWS implements feedback linearisation to generate state variable error. This state 

variable error signal can be obtained by calculating the difference between the TPG output and 

ESO state variables, revealing that the control signal of the ADRC includes both the state variable 

of non-linear feedback and the unknown disturbance compensate of ESO (Zheng et al, 2012). 
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According to the real time and online values provided by TPG and ESO, the compensation signal 

and control signal for the total undesired disturbance are generated by N-LWS. The main 

advantage of feedback linearisation of a dynamic behaviour system is the real-time compensation 

for the undesired disturbance, converting the dynamic system from a non-linear system to an 

integrator system. Moreover, it solves the contradiction between system overshoot and response 

rapidity. It also strengthens the controller robustness and makes the system reach a stable state 

quickly (Qiao and Jie, 2005). Based on the error signal e introduced from the calculation difference 

between the TPG and ESO (equation 2.14), uo can be calculated by the following equation: 

𝑢0 = 𝑓𝑎𝑙(𝑒, 𝛼, 𝛿) =  {
𝑘𝑝

𝑒

𝛿1−𝛼
                                 |𝑒|  ≤  𝛿

𝑘𝑝|𝑒|
𝛼𝑠𝑖𝑔𝑛(𝑒)                    |𝑒|  >  𝛿

                                                         (2.16) 

Where: 

𝑒 represents the error value, 

𝛼 represents the non-linear error factor. The typical value of this parameter can range 

between 0.25 and 1, 

δ represents the filtering factor and is used to reduce the oscillation function. The typical 

value of this parameter can be 0.05 and 0.5 

kp is the proportional gain. 

The fal function was introduced by Han (2009) and plays an important role in the ADRC 

scheme, where when |𝑒| ≤ 𝛿, fal filter function is a first order inertial filter that removes the high 

frequency noise (Han, 2009). When |𝑒| ≥ 𝛿 , the output signal will reach the desired set-point 

rapidly. Thus, the fal function filter not only has a significant filtering impact on noise, but also a 

good tracking speed. 𝛿 and 𝛼 are two essential variables to be predetermined (Dong and Zhang, 

2015). Finally, and upon the observation of Figure 2.3, the control signal u can be calculated by 

the disturbance rejection equation: 

𝑢 =  
𝑢0− 𝑧3

𝑏
                                                                                                                                  (2.17) 

Where the parameter 𝑏 is the compensation factor to specify the compensation intensity. In 

terms of the stability analysis and smoothing the output control signal, the control signal u is passed 
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through a low pass filter to remove any undesired overshoot and increase the quality and stability 

of the generated control signal. The form of a discrete low pass filter is: 

𝐹(𝑛) = 𝑓𝑐  ×  𝐹(𝑛 − 1) + 𝑢(𝑛) × (1 − 𝑓𝑐)                                                                                          (2.18)                                                             

Where: 

𝑓𝑐 represents the filter constant between 0 and 1, corresponding to no filtering impact on the 

original control signal and extreme filtering impact on the selected original control signal.  

F represents the filtered control signal. 

However, it can be realised from the above components that the common idea of an ADRC 

controller is to divide the process design into two main parts (Madoński and Herman, 2011): 

• The first part is responsible for compensating for model uncertainties that can be designed 

by input and output data using the ESO.  

• The second part is responsible for realising and achieving the desired performance for the 

N-LWS and TPG compensated system. 

 

2.6 ADRC applications 

Due to its simplicity, the ADRC algorithm can be easily implemented in a wide range of 

applications. The key in ADRC applications is the reformulation of the control problem as that of 

disturbance rejection control, as shown in several applications such as internal combustion, space 

applications, power generation, aeronautics, high energy physics and process control (Gao, 2006). 

Texas Instruments and Parker are adopting the ADRC algorithm to replace the predominant PID 

in motion control and process control respectively (Gao et al, 2001). Moreover, Goforth (2004) 

and Zheng, Gao and Gao (2012) argue that the parameterised ADRC not only offers much 

improved performance, but it can be tuned easily.   

Dinh et al. (2017) designed an ADRC for integrated missile guidance and control based on 

ESO and sliding mode control (SMC). The integrated model was designed as a block strict 

feedback nonlinear system where the target manoeuvres, modelling errors and unmodelled non-

linearities are considered unknown uncertainties that have been estimated and compensated online 
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by the designed ESO. The simulation results demonstrated dynamic performance in terms of 

dynamic response and noise tolerant performance. The MATLAB simulation indicates that smooth 

missile trajectories and small miss distances are achieved, and the system is robust against system 

uncertainties and undesired external disturbance. 

The position tracking control issue of the electrical cylinder in the presence of inertia load, 

friction load and nonlinear disturbance due to its transmission process is addressed by Peng et al. 

(2017). They applied ADRC to compensate for the external disturbance and make a continuous 

and accurate transition. A TPG component is used for providing a transition process to force the 

output process to follow the desired set-point and avoid any overshoot. ESO is designed to estimate 

the unmeasurable internal disturbance, internal uncertainties and external uncertainty of servo 

motion for better performance. The N-LWS is used to produce a reasonable control signal. 

Experimental and simulation results show that ADRC produces very strong robustness and 

adaptability compared with conventional PID control algorithms.  

Zhang et al. (2017) applied ADRC to solve the issue of reduction ratio uncertainty, time 

varying load torque disturbance, and the initial deviation of the eccentric shaft mechanical zero 

that exists in a continuous casting mould vibration displacement system driven by a servo motor. 

TPG is used to provide a transition process of eccentric shaft angular displacement with a 

differential signal that forces the eccentric shaft angular displacement to change softly. To reject 

disturbance and improve control robustness, an ESO is used to estimate and compensate the 

external disturbance that leads to enhanced disturbance rejection capability. N-LWS is then used 

to enhance stability and rapidity of the control system. Finally, the experiments and simulation 

results show that the ADRC scheme has the advantages of fast response, high accuracy and strong 

robustness against internal and external disturbance in the control system. 

Dong and Zhang (2015) applied ADRC on an aero engine to realise the acceleration and 

deceleration process in a more flexible and controllable manner. Comparison between the 

proposed ADRC scheme and the conventional PI controller are conducted based on a nonlinear 

model to investigate the flexibility and effectiveness of the proposed control scheme. The 

simulation results show that the ADRC scheme can reduce overshoot of the turbine temperature, 

which consequently extends its lifetime.  
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Zhang et al. (2017) used ADRC for furnace pressure control in a thermal power plant. 

Maintaining a stable pressure in a furnace guarantees the efficiency and safety of combustion. 

Multi-loop coupling and frequent external disturbance make this system difficult to maintain at an 

anticipated furnace pressure. Through simulation and experiment on a 100 MW power plant, the 

effectiveness of ADRC is demonstrated by fast response, rejecting the external disturbance, and 

coping well with uncertain dynamics in the absence of a detailed mathematical model.  

Wang et al. (2017) studied the stability of a floating wind turbine where the output of the 

turbine is significantly affected by uncertainty introduced from the inaccuracy of a mathematical 

model and the external disturbances generated from wind and waves. They applied the ADRC 

scheme to control the floating wind turbine. The experiment and simulation results show that the 

proposed control scheme has better performance on floating wind turbine power control.  

Motion control: the superior performance of an ADRC in response to load changes in non-

linear applications is highlighted by Gao (2006c). Chong and Zhang (2010) present an ADRC 

specifically designed for a missile servo system with large loads. A comparison has been made 

between the ADRC and the conventional PID and it shows that ADRC offers an effective robust 

performance and capability of large load disturbance rejection. According to the results of more 

than 168 benchmark tests on an industrial motion control platform that characterises the 

performance of both existing industrial controllers and ADRC, the promising potential of the 

ADRC algorithm is shown as a reasonable solution in the manufacturing industry (Tian and Gao, 

2009). Other difficult issues concerning position control of the servo system such as motional 

disturbance, smoothing input signal and hard matching between parameters due to the system’s 

strict stability requirements are solved to achieve a quick and precise response in position control 

by utilizing a novel idea that combines the soft computing technique of fuzzy logic and ADRC 

(Xiong and Cai, 2006). 

Microelectromechanical systems (MEMS) Gyroscope: the main advantage of ADRC is its 

tracking performance capability that is employed in vibrational MEMS gyroscopes by Zheng et 

al. (2007). A demodulation strategy is used to estimate the time-varying rotation to control the 

sense and drive axes of the vibrational gyro. The extensive possibilities of research in the domain 

of MEMS sensors like pressure sensors and micro-accelerometers using ADRC are also 

mentioned. The successful and effective hardware implementation of ADRC on MEMS 
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gyroscopes is also analysed and discussed by Dong et al. (2008). Stability analysis shows 

promising results and proves the theoretical establishment of applying the ADRC algorithm in 

MEMS gyroscopes where the core issue is disturbance rejection (Zheng et al., 2009). It also shows 

the robustness of the ADRC algorithm against parameter variations (Hou et al., 2001).  

Velocity regulation and web tension: successful implementation of ADRC in velocity 

regulation and web tension is detailed in Zhou and Gao (2007) and Kotina et al. (2011). The zero 

steady state control error without the integrator term and better command following in the transient 

stage are demonstrated. 

In addition to the areas mentioned above, the ADRC algorithm concept has been successfully 

applied by Chen et al. (2007) to solve a range of issues related to human postural sway. Among 

several control problems in thermal power plants the key problematic issue is that of disturbance 

rejection.  

ADRC has been configured in Parker Hannifin Extrusion plant in North America by 

LineStream Technologies and it is claimed to have resulted in energy conservation of 50% (Desai 

et al, 2018). 

It has been noticed however that the applications of the ADRC scheme applied in process 

control is less than in motion control. This gives as motivation to consider a process control 

application where the dynamic plant is difficult to identify.  

 

2.7 Kalman filter 

Generally, it is essential to get measurements of controlled variables in order to control them. 

Unfortunately, many controlled variables are either too difficult or too expensive or even 

impossible to measure. Some controlled variables cannot be measured due to the lack of suitable 

sensors. Distillation columns are broadly used in the chemical and petroleum industries and it is 

usually hard to obtain accurate and reliable product composition measurements without a large 

time delay. Many composition analysers like gas chromatography commonly have a substantial 

time delay of around 10 to 20 minutes because of long dead times for sensors located far 

downstream and the time involved to heat the sample and purge the sample line. A further 
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drawback is that the reliability of composition analysers is usually quite low. Moreover, using this 

type of analyser in a distillation column composition control will consequently involve high 

maintenance costs. As a result, the achievable composition control performance is reduced 

significantly (Miklosovic et al, 2006). Schemes for dealing with unmeasured variables of dynamic 

systems should be used. The Kalman filter can be considered an optimal recursive data processing 

algorithm that operates as a state estimator for a linear system when the dynamic model for the 

system as well as certain characteristics of measurement and undesired external noises are 

identified (De Assis and Maciel Filho, 2000). It uses all available measurements regardless of their 

accuracy to estimate the current value of the controlled variables. Figure 2.4 shows the typical 

application in which a Kalman filter could be implemented advantageously for estimation purposes 

where the dynamic system (e.g. mobile robot, motor, chemical process, satellite) is affected by a 

known set of external disturbance and control signals, and its outputs are measured by measuring 

devices, and available measurements concerning system behaviour are solely given by the inputs 

and observed outputs (Ribeiro, 2004; Welch and Bishop, 2006). 

 

Figure 2.4: Typical application of a Kalman filter (Welch and Bishop, 2006) 

The Kalman filter uses a state space model to estimate the state vector x from the 

measurement z given in the equation below (Welch and Bishop, 2006): 

𝑥𝑘 = 𝐴𝑥𝑘−1 + 𝐵𝑢𝑘−1 + 𝑤𝑘−1                                                                                                      (2.19)                                                                 
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𝑧𝑘 = 𝐻𝑥𝑘 + 𝑣𝑘                                                                                                                             (2.20) 

Where: 

x represents the state variables.  

u represents the control input signal. 

w represents the input disturbance noise.  

v represents the measurement noise.  

z represents the available measurements.  

The Kalman filter can operate in a form of feedback control signal where it first estimates 

the states of the process and then obtains measurement feedback. Thus, the Kalman filter has two 

groups of equations, time update and measurement update. Initially, the time update group project 

forward both the current state (𝑥𝑘−1 ) and error covariance (𝑃𝑘−1 ), while the second group 

measurement update equations correct the projected estimates by the actual measurement at that 

time. This process is then repeated using the corrected estimates, to produce the new estimates. 

Figure 2.5 presents the complete diagram of the operation of the Kalman filter. 

 

 

 

 

 

 

 

 

 

Figure 2.5: Operation of Kalman filter (Welch and Bishop, 2006) 

Where: 

Time update 

1. Project the state ahead 

𝑥ො𝑘
− = 𝐴𝑥ො𝑘−1

− + 𝐵𝑢𝑘−1   

2. Project the error 

covariance ahead  

𝑃𝑘
− = 𝐴𝑃𝑘−1𝐴

𝑇 + 𝑄  

 

Measurement update 

1. Compute the Kalman gain 

𝐾𝑘 = 𝑃𝑘
−𝐻𝑇(𝐻𝑃𝑘

−𝐻𝑇 + 𝑅)−1 

2. Update estimate with 

measurement  

𝑥ො𝑘 = 𝑥ො𝑘
− + 𝐾𝑘(𝑧𝑘 − 𝐻𝑥ො𝑘

−)  

3. Update the error covariance  

𝑃𝑘 = (𝐼 − 𝐾𝑘𝐻)𝑃𝑘
−  

 

Initial estimates 

𝑥ො𝑘−1 & 𝑃𝑘−1 
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𝑥ො represents the estimated state. 

A represents the state transition matrix. 

u represents the control variables. 

B represents the control matrix (i.e., mapping control to state variable). 

P represents the state variance matrix. 

Q represents the process variance matrix. 

Z represents the measurement variables. 

R represents the measurement error covariance. 

H represents the measurement matrix. 

K represents the Kalman gain.   

I represents the Identity matrix. 

Subscripts: 

K represents the current sampling time. 

k-1 represents the previous sampling time. 

The Kalman filter described earlier is capable of predicting the state variables of a discrete 

time process that is described by a linear difference equation and it becomes a very powerful tool 

when estimating a noisy system. Furthermore, this filter is unable to estimate the system with non-

linear behaviour. In addition, this Kalman filter is not suitable for estimating the product 

compositions in distillation columns that are usually nonlinear (De Assis and Maciel Filho, 2000).  

   

2.8 Inferential measurement 

The Kalman filter scheme is linear in nature and needs a mathematical model representation 

of the system behaviour, as well as direct output measurements, in order to estimate the state 

variables. However, in the case of a distillation column as mentioned before, neither a physical 

measuring tool to provide direct composition measurement nor any suitable dynamic model exists. 
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Thus, a Kalman filter may not be a suitable means to provide composition estimations for a 

distillation column. 

 Another solution to the observability issue for a distillation column system is to estimate 

the product compositions using an inferential measurement scheme, by the support of other output 

variables and estimation models connecting these two variables together. Inferential measurement 

is the technique by which the difficult-to-measure product quality variables can be inferred and 

estimated from other accessible and easy-to-measure process variables such as pressure, flow, and 

temperature (Guilandoust et al, 1988; Du, del Villar and Thibault, 1997) . Inferential control has 

been an active research area in recent years (Liao and Dexter, 2010; Oomen et al., 2011; Xie et al, 

2011; Abusnina et al, 2014; Singh et al., 2016;  Jeffries et al, 2016;  Dekemele et al., 2016), and 

was first introduced by Brosilow and Tong (1978). The inferential control scheme uses the 

accessible outputs of the plant to infer the impact of control input changes and unmeasured noises. 

Guilandout et al. (1987) introduced an estimation strategy to frequently infer unmeasured outputs 

using measured system outputs. Unfortunately the complete implementation procedures of their 

system are quite difficult to follow. 

 Lu and Fisher (1988) introduced an algorithm for predicting the inter-sample outputs by 

utilising fast control input and slowly measured outputs. Lee and Morari (1997) proposed a 

generalised inferential control structure and discussed several optimal control issues in the MPC 

and IMC frameworks. The inferential control approach is more efficient and effectively utilizes 

the measured variables that are already available. Inherent in inferential control technology is a 

knowledge of the interdependencies and relationships between easy-to-measure and difficult-to-

measure variables. The extraction of this knowledge and the structure in which it is used is key to 

the effectiveness of inferential control technology. 

Kano et al. (2003) proposed a predictive inferential control scheme to control the product 

composition in a distillation column. Singh et al. (2005) investigated an inferential control scheme 

applied to a distillation column where the estimator has been designed by an artificial neural 

network. Abusnina, Kudenko, and Roth (2014) integrated the Kernel principal component analysis 

with the Gaussian process inferential control system to achieve robustness of the soft sensors 

during all process operating conditions. 
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2.8.1 Principle of inferential control 

The behaviour of any system/process is specified by the system state variables that depend 

on the process operating conditions and control adjustments applied to them. The primary 

controlled variables are usually difficult to measure online for some processes (Tham et al., 1991b, 

2002; Bolf et al, 2008). In order to overcome this issue, the primary controlled variables can be 

estimated or inferred by building and utilising a suitable mathematical model of the plant whose 

inputs are secondary output variables. The feasibility of the inferential measurement system is 

valid when the states of secondary variables reveal and reflect the primary variables states. It is 

also useful when the secondary measurements contain some information about the disturbance that 

impact the primary variable (Deshpande and Deshpande, 2012). The main purpose in designing 

and developing this inferential estimator model is to model the relationship between the 

unmeasured primary variables and measured secondary input and output variables. It provides an 

effective and elegant technique to improve the utilisation of currently available information. The 

implemented model can then be used to estimate primary variables as shown in Figure 2.6.  

 

Figure 2.6: Inferential feedback control (Kadlec and Gabrys, 2008) 

According Figure 2.6, samples of secondary measurements X(s) are taken and fed back to 

the inferential estimator to produce the estimation value of the output K(s). The estimated process 

outputs are then compared with the desired set-point to produce the error signal that will be the 

input signal to the controller. The inferential estimator can generate the estimation of difficulty to 
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measure primary variables at the same frequency that secondary variables are measured and then 

used as feedback in an inferential control algorithm (Abusnina, Kudenko and Roth, 2014). If the 

estimation signal of the primary outputs is sufficiently accurate, then the estimated outputs of the 

primary variables can be used in controlling and optimising the process. The important part of the 

inferential estimator is the design of the mathematical model that connects the difficult to measure 

primary variables with the easy to measure secondary variables. 

The application of an inferential control scheme for estimation and control of the 

unmeasured primary variables is of great importance in the processing industry, where a vast 

number of secondary measured variables that are measured quickly and can be used as input 

signals for the inferential estimator. There are various advantages of soft sensors in comparison 

with traditional instrumentation (Deshpande and Deshpande, 2012; Singh, Gupta and Gupta, 2005; 

Andrijić et al., 2017): 

• They provide more insight into the process through catching information hidden in data. 

• They allow industrial users to reduce environmental impact, enhance productivity, become 

more energy efficient, and develop business profitability by decreasing the production costs due 

to the reduction of off-specification products.  

• They can be simply implemented on existing hardware. Moreover, several on-line 

identification algorithms can be used to preserve the model when plant system parameters change. 

• They entail little or no capital costs e.g. installation cost, commissioning and management 

of the required infrastructure.  

• When there is an existing measurement delay for a controlled variable, the overall 

performance of the control loop can deteriorate. In such a case, inferential control is considered a 

good choice because it relies on secondary measurements that have relatively low levels of dead-

time where soft sensors can operate in parallel with the current analysers in order to keep control 

loops operating quickly and properly.  

• In many cases, the cost of online analysers for measuring primary variables can be 

excessive. Sensors for measuring secondary variables are typically cheap and less expensive to 

maintain.  

In terms of product composition control in distillation columns, soft sensing and inferential 

control techniques have acquired momentum as viable replacements and complements to hardware 
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sensors (Fortuna et al, 2005). In the last two decades, there has been rising interest and research 

into the development of inferential control models, which are often called soft sensors, to provide 

regular on-line estimations of quality variables on the basis of their correlation with on-line process 

measurements (Bolder et al, 2014; Andrijić et al., 2017). Such predictive models dedicated to 

create real time estimates of product quality variables may help to improve system reliability, 

reduce the need for measuring devices and develop tight control policies ( Tham et al., 1991b). 

Soft sensors in distillation columns can be defined as a system design consisting of mathematical 

algorithms that generate reliable real-time estimates of unmeasured product compositions by 

utilising their correlation with the accessible data of tray temperatures ( Tham et al., 1991c). 

 

2.8.2 Developing a model based software sensor 

Generally, throughout the extensive literature, multivariate statistical techniques are popular 

when designing inferential estimators. Kresta, Macgregor and Marlin (1991) stated that the partial 

least squares (PLS) method could be exerted to form a good inferential estimation from a very 

large number of process variables. Mejdell and Skojested (1991) presented the use of a principal 

component regression (PCR) estimator to estimate distillation column product composition from 

flow rate measurements and tray temperatures. It was shown that PCR is capable of dealing with 

the strong collinearity between the temperature measurements leading to improved estimation 

performance (Mejdell and Skogestad, 1991). Moreover, Zhang (2001) reported that the inferential 

feedback control of distillation composition can be implemented by using PLS and PCR models. 

He also presented a new method for removing static estimation and control off-sets by using a 

mean updating technique (Zhang, 2001).  

 

2.8.2.1 Principal Component Regression  

The main principle of PCR is to use a reduced number of principal components (PCs) of the 

input variables to predict the response variable. The main reasons behind regressing the output 

response variable on the PCs rather than directly on the predictor variables is to decompose the 

highly correlated inputs to uncorrelated variables and hence reduce the dimensionality of the 

predictor variables by taking only the first few PCs. Therefore, this technique can be performed in 
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two steps: firstly to decompose the correlated X matrix to uncorrelated PCs, and secondly to 

perform regression using the first few PCs as predictor variables. The data transformation to the 

new coordinate system can be achieved in a way that the highest variance of data projection lies 

on the first coordinates (1st PC). This means that the first PC preserves as much data variability as 

possible in one dimension. Successively, the second PC accounts for the next highest data variance 

and so on (Rencher, 1998). 

The predictor matrix X can be decomposed into the sum of k outer product of vectors: 

𝑋 =∑𝑡𝑖

𝑘

𝑖=1

𝑝𝑖
𝑇                                                                                                                                            (2.21) 

Where k is the number of columns in X or number of rows in X if there are more columns than 

rows, ti is called the ith score vector, and pi called the ith loading vector. 

The score vectors are mutually orthogonal, so are the loading vectors that are of unit length. The 

variation of X in the direction of pi is reflected by the length of ti. The first loading vector p1 

indicates the direction of the largest variation of X while pk represents the direction of the smallest 

data variation in X. 

The principal components can be calculated as:  

𝑇 = 𝑋𝑃                                                                                                                                      (2.22) 

The linear regression of the response variable Y on the PCs can be written as  

𝑌 = 𝑇𝐵 + 𝐸                                                                                                                              (2.23)    

Where B represents the vector of model parameters which can be obtained by the least square 

estimation as shown below  

𝐵 = (𝑇𝑇𝑇)−1 𝑇𝑇𝑌                                                                                                                     (2.24) 

In addition, the vector of model parameters 𝜃 for the original predictor variables can be calculated 

as shown in the equation below  

𝜃  = 𝑃𝐵 = (𝑇𝑇𝑇)−1 𝑇𝑇𝑌                                                                                                         (2.25)  
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The MATLAB function (svd) will be used to compute the loading matrix P in order to be used to 

calculate the score matrix T. 

[𝑈, 𝑆, 𝑉] = 𝑠𝑣𝑑(𝑋)                                                                                                                    (2.26) 

Where: 

V=P. 

X represents the matrix data from the secondary variables (in this research, X is tray temperature 

measurements).  

 

2.8.2.2 Partial Least Squares  

Since its introduction in 1975 and similar to PCR, PLS has been recommended as one of the 

standard tools for designing and developing regression models when data sets are ill-conditioned 

or have highly correlated predictor variables compared to other traditional techniques (e.g. MLR). 

Both PCR and PLS techniques are similar in terms of their efforts to regress response variables on 

reduced dimensional latent variables (Chen et al,2017). Nevertheless, unlike the PCR technique 

that uses the X predictor variables to find the new latent variables, PLS technique uses both 

predictor variables X and response variables Y to find the new latent variables. These resultant 

latent variables are essentially playing the part of predictor variables. The core idea of the PLS 

technique is to extract those implicit latent variables from the predictor variables X that can best 

predict the response variables. These latent variables or underlying factors are useful for estimating 

the response variable as well as reducing the dimension of the predictor variables (Shepard et al, 

1966; Geladi and Kowalski, 1986). 

The outer relationship for the input data matrix can be written as: 

𝑋 = 𝑇𝑃𝑇 + 𝐸 = ∑ 𝑡𝑖
𝑎
𝑖=1 𝑝𝑖

𝑇 + 𝐸                                                                                                  (2.27) 

The outer relationship for the output data matrix can be written as: 

𝑌 = 𝑈𝑄𝑇 + 𝐹 = ∑ 𝑢𝑖
𝑎
𝑖=1 𝑞𝑖

𝑇 + 𝐹                                                                                                     (2.28) 

Where: 

T and U represent the latent vectors for X and Y respectively. 
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P and Q are the loading vectors for X and Y respectively. 

E and F represent the residuals matrices for X and Y respectively.  

The PLS technique is used to provide a linear relationship fitting between X and Y by 

applying the least square regression between each pair of t and u latent vectors as given by the 

equation below:  

𝑢̌ℎ = 𝑏ℎ𝑡ℎ          ℎ = 1,2, … . . , 𝑎  

Where 𝑏ℎ = 𝑡ℎ
𝑇𝑢ℎ/(𝑡ℎ

𝑇𝑡ℎ), which is equivalent to regression parameters in MLR and PCR.  

 

2.8.2.3 Dynamic inferential model  

Since the static inferential estimator is usually not efficient in some industrial processes 

where the relationship between soft sensor input and output variables are dynamic and for the 

purpose of improving the prediction accuracy of the static soft sensor, dynamic inferential 

estimation models should be developed. The dynamic approach of PCR and PLS modelling can 

be achieved by adding the past measurements of the inputs as additional model inputs (Abusnina, 

Kudenko and Roth, 2014). For example, the first order dynamic model can be designed and 

developed as: 

𝑦(𝑡) = ∑ (𝜃𝑖,1
𝑘
𝑖=1 𝑇𝑖(𝑡) + 𝜃𝑖,2𝑇𝑖(𝑡 − 1))                                                                                     (2.29) 

Where: 

Ti represents the secondary variables (tray temperatures). 

y represents the primary variable (top and bottom compositions). 

𝜃𝑖 represents the model parameters associated with each individual secondary variable. 

𝑡 represents the discrete time. 

The 2nd order dynamic model can be written: 

𝑦(𝑡) = ∑ (𝜃𝑖,1
𝑘
𝑖=1 𝑇𝑖(𝑡) + 𝜃𝑖,2𝑇𝑖(𝑡 − 1) + 𝜃𝑖,3𝑇𝑖(𝑡 − 2))                                                               (2.30) 
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The 3rd order dynamic model can be written:  

𝑦(𝑡) = ∑ (𝜃𝑖,1
𝑘
𝑖=1 𝑇𝑖(𝑡) + 𝜃𝑖,2𝑇𝑖(𝑡 − 1) + 𝜃𝑖,3𝑇𝑖(𝑡 − 2) + 𝜃𝑖,4𝑇𝑖(𝑡 − 3) )                                    (2.31) 

And so on.  

It has been expected that a dynamic inferential model will give a better estimation than a 

static one. In this research, once the dynamic inferential model is designed it will be combined and 

integrated with the ADRC scheme in order to introduce the dynamic ADRC scheme, which will 

be applied to the binary distillation column and HIDiC. 

 
 

2.9 Summary 

It appears from the literature that distillation columns have been in use for a long time and 

are often considered mature technology, but they consume a significant percentage of the total 

energy in the global processing industry: they are major energy consumers in the petrochemical 

and chemical industries. Most operations of distillation columns involve a significant amount of 

energy, where they account for more than 40% of the energy used in the refining and bulk chemical 

processes industry and more than 95% of the energy consumed in separation processes.  

Currently, many of the advanced control design methods depend on a mathematical model 

of the controlled plant. Moreover, many industrial plants are not only time-varying and non-linear 

but also extremely uncertain. Obtaining an accurate mathematical model description of physical 

plants is generally not accessible in industrial control, which leads to a significant dilemma for 

control practitioners where the essential requirement is to obtain a mathematical plant model from 

the uncertainty and theoretical aspects of the dynamic plant in practice. Another dilemma in 

designing a control system is how the undesired disturbances can be handled. In current control 

schemes, disturbance dilution is the main key control design objective. The common solution is to 

estimate and cancel the disturbance directly.  

It has been noticed in the literature that most industrial applications are controlled by PID 

controllers. However, this PID controller has several limitations such as sudden set-point jumps, 

oversimplification of non-linear weighted sum control law, complication due to the integral term 

I, and noise degradation associated with the derivative term D. These limitations may lead to 
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degradation of the overall performance of the controller. In addition, Han (1995) proposed ADRC, 

which is independent of the mathematical model. The ADRC algorithm is proposed to replace the 

dominant PID controller and overcome its limitations.  

In order to control a dynamic system effectively, it is essential to get real-time measurements 

of the controlled variables. Unfortunately, many of the controlled variables in industrial 

applications are either too difficult, too expensive or even inaccessible to measure. The Kalman 

filter and observer are not suitable schemes for non-linear processes as both techniques are linear 

and need a mathematical model representation of the system behaviour and direct measurement of 

the controlled variables. Instead, the inferential model can be considered a suitable technique to 

solve the difficulty of measuring the inaccessible or difficult to measure variables. The inferential 

model can be built using three different categories such as data based modelling techniques, hybrid 

techniques and multivariate statistical techniques.  

The combination of the ADRC scheme and the inferential control will introduce another 

control scheme known as the inferential ADRC scheme, which will be applied on the distillation 

column in order to control it continuously and successfully.  
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 ADRC of a distillation column simulated using a MIMO transfer 

function 
 

3.1 Introduction 

Wood and Berry in 1973 presented the control of a binary distillation column with a 9 inch 

diameter and 8 trays for separating a methanol and water mixture as shown in Figure 3.1. They 

presented the transfer function models of the distillation column identified from experimental data 

as a 2×2 (two inputs and two outputs) transfer function matrix with a long time delay (Liu et al., 

2017). The Wood–Berry model is considered a classical example that has been used in many 

previous research papers in MIMO process control (Deshpande and Ash, 1983; Shridhar and 

Cooper, 1997; Mantz and De Battista, 2002; Jain and Lakshminarayanan, 2007; Zheng et al, 2009).  

The controlled variables are the top and bottom product compositions expressed in weight 

% of methanol. The reboiler boiling up rate and reflux rate are the manipulated variables expressed 

in lb/min. The transfer function model is given by (Ahuja, Narayan and Kumar, 2016): 

[
𝑌1(𝑠)

𝑌2(𝑠)
] =  [

12.8 𝑒−2𝑠

16.7 𝑠+1

−18.9 𝑒−4𝑠

21.0 𝑠+1

6.6 𝑒−10𝑠

10.9 𝑠+1

−19.4 𝑒−4𝑠

14.4 𝑠+1

]  [
𝑢1(𝑠)

𝑢2(𝑠)
] + [

3.8 𝑒−8.1𝑠

10.9 𝑠+1

4.9 𝑒−3.4𝑠

13.2 𝑠+1

] . [𝐷(𝑠)]                                                     (3.1) 

Where: 

𝑌1 represents the overheads composition or top composition (weight % water).  

𝑌2 represents the bottom composition (weight % methanol).  

𝑢1 represents the reflux rate (lb/min), the first manipulated variable for controlling the top 

composition. 

𝑢2 represents the steam rate to the reboiler (lb/mim), the second manipulated variable for 

controlling the bottom composition. 

D(s) represents the undesired external disturbances to which the column is subjected. In this 

research, the external disturbances in this model is feed flow rate (lb/min).  
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In the Wood–Berry distillation column, the feed entering the distillation column is a mixture 

of light and heavy components almost at the centre of the column, referred to as the feed stage 

(since the Wood–Berry distillation column consists of 8 trays, the feed tray is approximately 

located at the 5th tray). The light component (more volatile) exits the column from the top while 

the heavy component (less or non-volatile) exits the column from the bottom (Kiss and Bildea, 

2011). Figure 3.1 shows the simplified schematic diagram of Wood–Berry distillation column.  

 

Figure 3.1: Simplified schematic of a Wood -Berry distillation column 

This well-known Wood–Berry distillation column is used in the current research to 

investigate the effectiveness of ADRC for the control of distillation columns. This chapter is 

organised as follows: Section 3.2 provides a brief background on the control structure of 

controlling the Wood–Berry distillation column, where it starts by applying the BLT tuning 

approach for selecting the PI controller parameters, followed by implementing the components of 

ADRC scheme. In Section 3.3, both PI and ADRC schemes are investigated and evaluated by 

implementing various tests such as set-point tracking, strong loop interactions, system robustness 

and external disturbance rejection. Finally, conclusions are drawn in Section 3.4.  
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3.2 The control structure of the Wood–Berry column 

3.2.1 Multi-loop PI control of the distillation column  

Since PI control is the most common control scheme and is used in about 90% of industrial 

applications mentioned in the literature, the PI controller is implemented and applied to the Wood–

Berry distillation column. 

Selecting a suitable control configuration for dual composition control of a binary distillation 

column is a significant challenge. As shown in Figure 3.2, the LV control configuration is used 

here. In this configuration, the top composition Y1 is controlled by first input (reflux), and the 

bottom composition Y2 is controlled by second input (steam). 

 

Figure 3.2: LV control pairing 

The controller parameters of the multi-loop PI controller are tuned based on the BLT 

technique. 
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3.2.1.1 Tuning the PI controller parameters 

ZN tuning technique: 

According to the Wood–Berry model in (3.1), there are two control transfer functions to 

obtain: 

[
𝑌1
𝑌2
] = [

𝐺𝑝11 𝐺𝑝12
𝐺𝑝21 𝐺𝑝22

] [
𝐺𝑐1 0
0 𝐺𝑐2

] [
 𝑌1(𝑠𝑝) − 𝑌1
𝑌2(𝑠𝑝) − 𝑌2

]                                                                           (3.3) 

In addition, the transfer function Gp11 is used to obtain the parameters of the first controller 

Gc1 and the transfer function Gp22 is used to obtain the parameters of the second controller Gc2. 

Figures 3.3 and 3.4 shows the bode plot for Gp11 and Gp22 respectively.  

 

Figure 3.3: Bode plot of the transfer function Gp11 (s) 
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Figure 3.4: Bode plot of the transfer function Gp22 (s) 

The gain margin GM and phase crossover frequency wG were obtained from the above Bode 

plots and are used for tuning controller parameters as shown in Table 3.1.  

Table 3.1: ZN tuning setting 

Loop Controller GM wG KC 𝝉𝑰 

Y1 Gc1 1.0749 0.8217 0.4886 6.3720 

Y2 Gc2 1.4648 1.9722 0.6658 2.6548 

These parameters were further detuned using the BLT factor F (detailed in the next section).  

BLT tuning technique: 

According to the Wood–Berry model in Equation 3.1, the Wood–Berry distillation column 

is a MIMO (2×2) dynamic system and the BLT should be set as 4: 

 [𝐿𝑐𝑚]
𝑚𝑎𝑥 = 4                                                                                                                               (3.4) 

The plot of Lcm is shown in Figure 3.5. It can be shown that the detuning value of F that gives 

the biggest Lcm is approximately equal to: 
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F = 1.3225 

 

Figure 3.5: Closed loop log modulus 

Using the detuned factor F, the controller parameters obtained from ZN tuning approach is 

further detuned and summarised in Table 3.2. 

Table 3.2: BLT tuning setting 

Loop Controller Kc 𝝉𝑰 

Y1 Gc1 (reflux) 0.3694 8.4272 

Y2 Gc2 (steam) 0.5035 3.5111 

 

3.2.2 ADRC of the distillation column  

In order to implement the ADRC scheme on the Wood–Berry distillation column, each part 

of the ADRC was designed and investigated individually. 



59 

 

i. TPG 

The set of mathematical relationships presented in equations 2.12 and 2.13 were 

implemented in order to generate and simulate the full order of the discrete TPG form. As 

mentioned by Han (2009), the discrete TPG performance can be specified by both tuning 

parameters r and h, which are used to adjust the speed and smoothness of the TPG response 

respectively. Furthermore, after conducting various implementation experiments and according to 

Han (2009), Table 3.3 gives the TPG tuning values.  

Table 3.3: Selected values for TPG tuning parameters r and h. 

TPG tuning 

parameters 

Selected values 

Y1 Y2 

r 1 1 

h 0.9 1.1 

 

ii. ESO 

As explained in Chapter 2, ESO can be designed by implementing the set of mathematical 

equations in 2.14 and 2.15. Table 3.4 gives the ESO tuning values.  

Table 3.4: Selected values for ESO tuning parameters. 

ESO tuning 

parameters 

Selected values 

Y1 Y2 

β1 1 1 

β2 33.33 33.33 

β3 156.25 156.25 

b 99 100 
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k 0.01 0.01 

 

iii. N-LWS 

Referring to Chapter 2, the N-LWS can be designed by using equations 2.16, 2.17 and 2.18 

in order to produce the suitable filtered control signal fc. Table 3.5 gives the N-LWS tuning values.  

Table 3.5: Selected values for N-LWS tuning parameters. 

N-LWS tuning 

parameters 

Selected values 

Y1 Y2 

𝛼 0.99 0.7 

𝛿 0.5 0.25 

kp 4.5 54 

𝑓𝑐  0.1 0.99 

 

3.3 Investigating the performance of both control schemes 

Set-point tracking, model uncertainty, control signal response, and disturbance rejection in 

the output response are the most important behavioural characteristics for any multivariable 

control system. In this section, the performance of both PI and ADRC schemes are analysed and 

discussed in order to investigate the efficiency of both controllers.  

A. Set-point tracking performance  

Multi-loop SISO controllers are usually used to control chemical processes that are MIMO. 

The simple controller and easy-to-handle control loop are the most attractive advantages of these 

control systems. Inevitably however, interactions exist between control loops upon which the 

design of such a controller to meet the desired specifications faced more difficulties than that for 

a single loop, and became an attractive research topic for years (Gagnon et al, 2003). The loop 
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interaction can be defined as a parameter change in one loop that might generate a significant 

disturbance in another control loop. This issue is introduced mainly due to the hidden feedback 

link or channel between the two interacting loops (Parvat et al, 2015).  

The existence of loop interactions in a multi-loop control configuration might cause an 

undesirable effect in control performance. Furthermore, the presence of a significant amount of 

loop interactions among the loops can seriously deteriorate the overall performance of the 

decentralised controller and may even lead to unstable control systems (Garrido et al, 2011). 

Detection of the extent of interactions among the loops and identifying the most important loop is 

a difficult task, because a chemical process can have hundreds of control loops (Rahman and 

Shoukat Choudhury, 2011). In this research, a sequence of set-point changes in both Y1 and Y2 

were applied in order to investigate the influence of control loop interactions. Set-point changes—

especially in chemical applications—occur when the steady state changes due to a change in raw 

materials and product specifications. Thus, it is necessary to make the system follow up and track 

the new state or new set-point without violating the constraints (Kögel and Findeisen, 2013). 

According to Limon et al. (2016), the impact of the set-point change can be considered equivalent 

to a disturbance that needs to be handled properly to reduce the control error (Limon et al., 2016).  

The controller set-point tracking performance is evaluated based on settling time and SSE. 

Figures 3.6 and 3.7 show the set-point tracking performance in Y1 in conjunction with the 

interaction as a result of coupling both control loops together using both ADRC and PI schemes. 

Figures 3.8 and 3.9 represent the set-point tracking capability in Y2 in conjunction with the 

interaction as a result of coupling both control loops together using both ADRC and PI schemes. 
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Figure 3.6: Performance of PI and ADRC schemes under the set-point tracking test for Y1 

 

Figure 3.7: Control action of PI and ADRC schemes under the set-point tracking test for Y1 
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Figure 3.8: Performance of PI and ADRC schemes under the set-point tracking test for Y2 

 

Figure 3.9: Control action of PI and ADRC schemes under the set-point tracking test for Y2 
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Several points can be noticed from Figures 3.6 to 3.9: 

Referring to Figures 3.6 and 3.7, the overall performance of the ADRC scheme under the 

set-point tracking and loop interaction tests are efficient where the controlled variables follow the 

TPG set-points. This is especially apparent at the top composition with no exerted signs of 

sluggishness or overshoot, and as soon as a set-point change is introduced in other loop, ADRC 

successfully and efficiently rejects this form of loop interaction and resumes tracking its desired 

set-point. It is also noticed that the maximum deviation from the original desired set-point was 

around 120 min and was found to be less than 15%—considered an acceptable percentage for the 

control practitioners. Overall, the ADRC scheme has the capability to estimate and reject the 

internal disturbance represented by loop interactions and force the output response to resume its 

desired set-point. Furthermore, it can also be observed from Figures 3.7 and 3.9 that the control 

signals exerted from the ADRC scheme are smooth, non-aggressive and non-oscillating.  

The PI controller performance under loop interaction and set-point tracking is not efficient 

as the ADRC, where the output signal follows the desired set-point especially for the top 

composition. Some overshoots exist at the bottom composition that were introduced due to the 

strong loop interaction, where the maximum deviation from the original desired set-point was 

around 160 min (57%), which is impractical and not an acceptable percentage for the control 

practitioners. The response was also observed to oscillate before it settles to the designed set-point. 

Furthermore, this substantial overshoot will affect and deteriorate the overall control performance 

of the PI controller. 

Table 3.6 gives the SSE values related to the performance of set-point tracking of both 

control schemes. The SSE values associated with the PI controller are significantly greater than 

the SSE values corresponding to ADRC in terms of set-point tracking under the presence of control 

loop interaction. Moreover, the greater SSE values of the PI controller reflect the large overshoot 

signs that make the PI controller inapplicable for real applications. 
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Table 3.6: SSE values associated with set-point tracking performance 

Control Loops SSE (PI ) SSE ( ADRC) 

Y1 103.426 22.2875 

Y2 1436.2 480.1744 

 

B. Controller Robustness  

Control systems are designed and implemented based on simplified models of dynamic 

processes. The process dynamics of a plant may change during operation. The sensitivity of a 

closed loop control system to the variations in process dynamics is therefore considered a 

fundamental issue. In addition, robustness is the ability of the closed loop control system to be 

insensitive and unaffected to any parameter variations (Selvi et al, 2007). Controller robustness 

can be defined as the ability of the controller to reach or achieve satisfactory performance despite 

the presence of parameter variations. Generally, in a model-based control technique, deviation of 

a parameter value from its nominal operating value in the plant model used by the controller can 

be defined as model uncertainty (Limon et al., 2016). 

In reality, as it is really difficult to find an accurate plant model, some assumptions are 

always made while modelling a process. Since the prime controller is already configured or 

designed, tuned and tested primarily on the dynamic simulated model rather than the real plant, it 

becomes an essential part to investigate the controller performance if the values of the plant 

parameters deviate from the originals that were specified whilst designing and tuning the 

controller. Furthermore, this test is implemented to assess the robustness of each controller. In this 

research, the modelling disparity can appear in the Wood–Berry model where the nominal plant 

model does not exactly match the real process dynamics. A −25% decrease in both dominant time 

constants τ11 and τ22 of the nominal plant model are implemented to investigate the impact of 

model-plant mismatches (Kalpana et al, 2017): 

[
𝑦1(𝑠)
𝑦2(𝑠)

] =  [

12.8 𝑒−2𝑠

16.7𝑠 12.5 𝑠+1

−18.9 𝑒−4𝑠

21.0 𝑠+1

6.6 𝑒−10𝑠

10.9 𝑠+1

−19.4 𝑒−4𝑠

14.4 𝑠10.8 𝑠+1

]  [
𝑢1(𝑠)
𝑢2(𝑠)

]                                                                       (3.5) 
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The set-point tracking capability of Y1 and Y2 applied to the updated modified transfer function 

using the ADRC schemes is represented in Figures 3.10 to 3.13. 
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Figure 3.10: Performance of PI and ADRC schemes under the robustness test for Y1 

  

Figure 3.11: Control action of PI and ADRC schemes under the robustness test for Y1 
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Figure 3.12: Performance of PI and ADRC schemes under the robustness test for Y2 

 

Figure 3.13: Control action of PI and ADRC schemes under the robustness test for Y2 
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Upon the comparison of Figures 3.6 and 3.8 with Figures 3.10 and 3.12, several points may 

be noted. Referring to Figures 3.10 and 3.12, the ADRC set-point tracking performance on the 

modified transfer function system is similar to and as efficient as the performance on the original 

Wood–Berry transfer function. Moreover, and according to Figures 3.11 and 3.13, the ADRC 

control action exerted on the modified transfer function system is smooth non-oscillatory, which 

produces a smooth tracking signal. However, referring to Figures 3.10 and 3.12, the set-point 

tracking performance of the PI controller on the modified transfer function is as efficient as that 

on the original transfer function. Moreover, the PI control action exerted on the modified transfer 

function system is approximately oscillating with an aggressive response. As a result, the PI 

controller needs to be re-tuned in order to handle the variation of the plant parameters and reduce 

the effect of loop interactions. The SSE value of PI will be higher than the one applied to the 

original Wood–Berry transfer function.  

Table 3.7 represents the SSE values associated with the set-point tracking performance of 

both control algorithms. The values of SSE associated with the PI controller are considerably 

greater than the SSE values associated with ADRC. 

Table 3.7: SSE values associated with set-point tracking performance under the robustness test 

Control Loops SSE (PI) SSE (ADRC) 

Y1 122.6 34.636 

Y2 2585.2 540.22 

 

According to Table 3.7 the SSE values corresponding to the ADRC scheme are significantly 

less than the SSE values corresponding to the conventional PI controller. For the sake of 

comparison between the original and altered Wood–Berry system, and by taking the top 

composition Y2 as an example, it may be observed that the SSE value increased from 480.17 to 

540 for the ADRC scheme. Correspondingly, the SSE value associated with the PI controller 

increased dramatically from 1436.2 to 2585.2, indicating that as process variations exist in the 

system, the control objective becomes more challenging to achieve for both control schemes. 

However, it was concluded that despite the 25% modification in the dominant time constants 𝜏1and 
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𝜏2, the ADRC scheme maintained tight control performance where the process model mismatch 

(PMM) that was introduced as a result of process variations was successfully estimated and 

rejected by the presence of ESO component without re-tuning the ADRC components to 

compensate for this alteration.  

C. External disturbance rejection  

It is well known that variation in feed flow rate is one of the most common external 

disturbances in a distillation column, and has a huge impact on both product compositions. 

According to the Wood–Berry model in (3.1), the disturbance models are considered as H1(s) = 

3.8 𝑒−8.1𝑠

10.9𝑠+1
  , H2(s) = 

4.9 𝑒−3.4𝑠

13.2 𝑠+1
 . In general, the disturbance magnitude of the distillation column is 

around 10–20% of the nominal value in operating points. So in this simulation, the feed disturbance 

of ±0.1% is added at t = 60, 90, 130 and 150 min as shown in Figure 3.14. Such type of 

disturbances are commonly encountered in the refinery and chemical processes as a results 

of changing feedstocks.  The response curves of the top and bottom compositions with the impact 

of external disturbance under the control of the ADRC and PI controller are shown in Figures 3.15 

to 3.18. 

 

Figure 3.14: External disturbances of feed flow rate 
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Figure 3.15: Performance of PI and ADRC schemes under the external disturbance test for Y1 

 

Figure 3.16: Control action of PI and ADRC schemes under the external disturbance test for Y1 
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Figure 3.17: Performance of PI and ADRC schemes under the external disturbance test for Y2 

 

Figure 3.18: Control action of PI and ADRC schemes under the external disturbance test for Y2 
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 Referring to Figures 3.15 and 3.17, the overall performance of the ADRC scheme under 

the impact of external disturbance is very efficient. The process output response successfully 

follows the desired set-point with a much faster transient tracking response, quick recovery speed, 

small amplitudes of fluctuations, shortened settling time and less oscillation from input 

disturbances due to the ESO efficient estimation for the external disturbance generated from feed 

flow-rate. Hence, the output response of both product compositions follows the TPG response very 

closely. Furthermore, it can also be observed from Figures 3.16 and 3.18 that the control signal 

exerted from the ADRC scheme is much less sensitive to external noise variations, resulting in 

effective set-point tracking performance despite the impact of external disturbance. This is again 

due to the existence of a low pass filter that removes the sluggish response and smoothens the 

ADRC control signal.  

Referring to Figures 3.15 and 3.17, the overall performance of the controlled process outputs 

of the PI controllers under the impact of external disturbance is not efficient as the ADRC 

performance, where the output signal follows the set-point successfully with slow recovery speed, 

large fluctuation amplitudes and a large settling time compared to the ADRC scheme. In addition, 

it can also be observed from Figures 3.16 and 3.18 that the control signals of the PI controller give 

a slightly aggressive and excessive response compared to the control actions of ADRC.  

Table 3.8 represents the SSE values associated with the set-point tracking performance of 

both control algorithms. The values of SSE associated with the PI controller are considerably 

greater than the SSE values associated with ADRC. It can be seen from this table that the SSE 

values of the set-point tracking performance under the external disturbance is smaller than the 

previous one and this is due to the set-point changes where in previous condition there are a large 

serious changes of the set-point which produce an increase in SSE value while in this test, the set 

point signal it kept constant and the output signal follows the desired set-point in most iterations.  
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Table 3.8: SSE values associated with disturbance rejection performance under the external 

disturbance test 

Control Loops SSE (PI) SSE (ADRC) 

Y1 21.5 0.237 

Y2 347 67.57 

 

 

 

3.4 Conclusions  

In this chapter, both ADRC and multi-loop PI control are designed and implemented on the 

MIMO transfer function model of the Wood–Berry distillation column. The PI controller is tuned 

by using the BLT tuning method. The performance of both control strategies were investigated 

and demonstrated in terms of set-point tracking capability, robustness in process variation, and 

external disturbance rejection. The SSE values were used to compare the two control schemes. 

The simulation results clearly indicate that the ADRC scheme performs better than PI control. The 

results of this chapter give motivation to implement the ADRC scheme in more complex dynamic 

simulations. 
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 ADRC of a distillation column simulated using a mechanistic model 
 

4.1 Introduction  

In the previous chapter, the ADRC and PI controllers were applied to the Wood–Berry 

distillation column represented by MIMO transfer functions. This transfer function model is a 

linear approximation that attempts to represent the dynamic behaviour of a distillation column in 

a relatively small operating range. In this chapter, both ADRC and PI controllers are applied to a 

binary distillation column simulated using a detailed mechanistic model. The mechanistic model 

is more accurate and contains tray-by-tray mass balance of the column. The control performance 

of both ADRC and PI controllers will be investigated in terms of set-point tracking and disturbance 

rejection. 

This chapter is organised as follows: Section 4.2 introduces the considered distillation 

column in this chapter. In this section, the mechanistic model of a binary distillation column is 

introduced with the assumption made prior, implementing both PI and ADRC schemes. 

Furthermore, the 2×2 MIMO transfer function of the binary distillation model is obtained using a 

process reaction curve approach. Subsequently, the multi-loop control of the distillation column is 

represented in Section 4.3. This section starts by tuning the PI controller using the BLT technique 

in order to find suitable gain parameters for the PI controller. Suitable parameters of the ADRC 

scheme are also specified in this section. Section 4.4 investigates and evaluates both ADRC and 

PI by implementing various tests such as set-point tracking and external disturbance rejection. 

Finally, conclusions are drawn in Section 4.5.  

 

4.2 Binary distillation columns 

4.2.1 The considered distillation column  

A non-linear dynamic mechanistic model-based simulation of a binary distillation column 

for separating a mixture of water and methanol is used in this research. The feed stream enters into 

the feed tray as a continuous stream with feed flow rate (F) and feed composition (xf). Commonly, 

this feed tray (NF) is located between the stripping and rectifying sections. The column obtains 

both distillate product stream (D) with distillate composition (xD) and bottom product stream (B) 
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with the bottom composition (xB). The column is used to separate methanol–water mixture into a 

distillate containing 97% methanol and a bottom stream containing 3% methanol. The water-

cooled condenser (considered as tray N + 1) is used to completely condense the overhead vapour. 

The manipulated variables that are considered for product composition control purposes are the 

vapour flow rate (V) and reflux flow rate (L) (Fernandez De Canete et al., 2013). The rigorous 

mechanistic non-linear model has been developed based on detailed tray-by-tray mass and energy 

balances. This mechanistic model has been verified and validated using pilot plant test data and 

has been used in various control system studies (Tham et al., 1991a; Tham et al., 1991b). The non-

linear dynamic simulations are based on the following assumptions: constant molar flow rates; 

constant relative volatility; constant stage pressure of 1.013×105 Pa; distillation tray efficiency of 

100% (acts as an ideal tray); the dynamic system shows essentially ideal performance; the liquid 

feed at bubble point; the liquid on each distillation tray, in condenser, and reboiler are constant 

and completely mixed; the vapour holdup is completely neglected; vapour flow rate is constant; 

constant liquid holdup in the reflux drum; and finally the reflux stream is not sub-cooled. 

Thus, the mathematical expression of the binary distillation model can be represented by the 

following equations (Al-Dunainawi and Abbod, 2016; Bendib, Bentarzi and Zennir, 2015): 

• On each individual tray (excluding reboiler, condenser, feed tray and the tray immediately 

above the feed tray) 

𝑀𝑖
𝑑𝑥𝑖

𝑡
= 𝐿𝑖+1𝑥𝑖+1 + 𝑉𝑖−1𝑦𝑖−1 − 𝐿𝑖𝑥𝑖 − 𝑉𝑖𝑦𝑖                                                                            (4.1) 

• Immediately above the feed stage i = NF + 1: 

𝑀𝑖
𝑑𝑥𝑖

𝑡
= 𝐿𝑖+1𝑥𝑖+1 + 𝑉𝑖−1𝑦𝑖−1 − 𝐿𝑖𝑥𝑖 − 𝑉𝑖𝑦𝑖 + 𝐹𝑉𝑦𝐹                                                              (4.2) 

• At the feed stage i = NF: 

𝑀𝑖
𝑑𝑥𝑖

𝑡
= 𝐿𝑖+1𝑥𝑖+1 + 𝑉𝑖−1𝑦𝑖−1 − 𝐿𝑖𝑥𝑖 − 𝑉𝑖𝑦𝑖 + 𝐹𝐿𝑋𝐹                                                                (4.3) 

• In the reboiler and column base: 

𝑀𝐵
𝑑𝑥𝑖

𝑡
= 𝐿2 − 𝑉1 −  𝐵                                                                                                                 (4.4) 

• Total condenser: 



77 

 

𝑑𝑀𝐷

𝑑𝑡
= 𝑉𝑁𝑇 − 𝐿 − 𝐷                                                                                                                    (4.5) 

• Vapour-liquid equilibrium relationship for each tray: 

𝑦𝑖 = 
𝑎𝑥𝑖

1+(𝑎−1)𝑥𝑖
                                                                                                                               (4.6)                                          

• Reflux ratio:  

𝑅 =  
𝐿

𝐷
                                                                                                                                              (4.7)        

• Total mass balance in the reboiler: 

𝐵 = 𝐹 − 𝐷                                                                                                                                        (4.8) 

• Total mass balance in the condenser: 

𝐷 =  
𝑉

𝑅+1
                                                                                                                                                         (4.9) 

A description of variables and typical values is shown in Table 4.1(Díaz et al., 2016): 

Table 4.1: Model variables and parameters 

Symbol Description Typical value and unit 

M* Hold-up 0.5 kmol 

V Vapour flow rate into the condenser 19.238 g/s 

L Reflux 10.108 g/s 

D Distillate flow rate 9.13 g/s 

B Bottoms flow rate 9.1 g/s 

F Feed flow rate 18.23 g/s 

A Relative volatility 2 

R Reflux ratio 1.107 

S Steam flow rate 13.814 g/s 

N Number of trays 10 

NF Feed tray no. 6 

xF Feed composition 0.5 

xD Top composition 93% 

xB Bottom composition 7% 

yi Vapour molar fraction on the ith stage -  

xi Liquid composition on the ith stage -  
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* The hold-up on each individual stage including reboiler and condenser has the same value. 

In order to control the top composition Y1 and bottom composition Y2 efficiently, reflux rate 

u1 and steam rate u2 will be used as manipulated variables respectively. The disturbances 

considered here are feed flow rate F and feed composition xf disturbances. For analysing the 

control system of the binary distillation column, its transfer function model as shown in Figure 4.1 

will be identified. 

[
𝑌1(𝑠)
𝑌2(𝑠)

] =  𝐺𝑃 [
𝑢1(𝑠)
𝑢2(𝑠)

]+  𝐺𝑑  [
𝐹(𝑠)
𝑥𝑓(𝑠)

]                                                                                           (4.10) 

In the above equation, the process model is represented by the transfer function Gp and the 

disturbance model is represented by Gd 

Gp = [
𝑃11 𝑃12
𝑃21 𝑃22

] , and Gd = [
𝑑11 𝑑12
𝑑21 𝑑22

] 

 

Figure 4.1: Control structure of the binary distillation column 
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4.2.2 Transfer function model of the distillation column  

In order to obtain the transfer functions of Gp, a step change was applied on both reflux rate 

and steam flow rate individually and the corresponding changes in both Y1 and Y2 were recorded 

as shown in Figures 4.2 and 4.3. It is assumed that there is a 10 min time delay in the composition 

analyser. 

 

Figure 4.2: Process modelling with reflux flow rate step changes 
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Figure 4.3: Process modelling with steam flow rate step changes 

In addition, the identified process model is: 

𝐺𝑝 = [

0.6651  

4.53𝑠+1
−

0.693 

8.62𝑠+1
3.804  

19.7𝑠+1
−

8.435 

21.3𝑠+1

]    𝑒−10𝑠                                                                                      (4.11)  

It can be seen from the identified process model Gp that there is a direct relationship between 

the feed flow rate and the product compositions, while there is a reverse relationship between the 

steam rate and product compositions.  
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In order to obtain the transfer functions of Gd, step changes were applied individually on the 

external disturbance represented by feed flow-rate and feed composition as shown in Figures 4.4 

and 4.5. It is assumed that there is a 10 min time delay in the composition analyser.   

 

 

Figure 4.4: Disturbance modelling with feed flow rate step changes 
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Figure 4.5: Disturbance modelling with feed composition step changes 

The identified disturbance model is: 

𝐺𝑑 = [

0.021 

64.7𝑠+1

0.63

9.31𝑠+1
3.28

17.4𝑠+1

86.5 

21.9𝑠+1

] 𝑒−10𝑠                                                                                            (4.12)  
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4.3 Multi-loop control of the distillation column 

Since the main aim of this research is to make a suitable comparison between the common 

conventional multi-loop PI controller and the ADRC scheme, the parameters of the PI controller 

should be properly tuned. 

4.3.1 Tuning the PI controller parameters 

As in the previous chapter, the parameters of the PI controller are tuned by using the BLT 

tuning method. The multi-loop controller is given as: 

𝐺𝑐 = [
𝐺𝑐1 0
0 𝐺𝑐2

]                                                                                                                       (4.13) 

The transfer function P11 will be used to calculate the initial parameters of the first controller 

Gc1 while P22 will be used to calculate the initial parameter of the second controller Gc2 where Gc 

represents the PI controller.  

Figures 4.6 and 4.7 show the Bode plot for P11 and P22 respectively. 

 

Figure 4.6: Bode plot of the top transfer function 
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Figure 4.7: Bode plot of the bottom transfer function 

Table 4.2 gives the GM and wG values and the corresponding initial PI controller parameters. 

These parameters were further detuned using the BLT method. 

Table 4.2: ZN tuning setting for binary distillation column 

Loop Controller GM wG KC 𝝉𝑰 

Y1 Gc1 3.1867 0.4124 1.4485 12.6951 

Y2 Gc2 2.4076 0.9523 1.0944 5.4984 

 

According to the transfer function in Equation 4.10, the binary distillation column is a 2×2 

MIMO dynamic system, which should have a biggest log modulus of 4 under a properly tuned 

controller. 

 [𝐿𝑐𝑚]
𝑚𝑎𝑥 = 4                                                                                                                           (4.14) 

The plot of Lcm  with F = 2.698 is shown in Figure 4.8. It can be seen that under this detuning 

factor the biggest Lcm is approximately equal to 4. 
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Figure 4.8: Closed-loop log modulus for binary distillation column 

The initial PI controller parameters from ZN tuning are further tuned by this detuning factor, 

and final controller parameters are summarised in Table 4.3. 

Table 4.3: BLT tuning setting for a binary distillation column 

Loop Controller Kc 𝝉𝑰 

Y1 Gc1 (reflux) 0.5369 34.2548 

Y2 Gc2 (steam) 0.4056 14.8343 

 

4.3.2 Implementing the components of ADRC scheme 

Prior to applying the ADRC scheme on the mechanistic model of a binary distillation 

column, each component of the ADRC will be designed and tuned based on the equations given 

in Chapter 2. 

i. TPG 
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Equations 2.12 and 2.13 were used to implement the discrete form of TPG. Table 4.4 gives 

the TPG tuning values. These values have been selected according to the recommended values for 

the TPG parameters introduced in Table 2.2. Furthermore, the initial value of the tuning parameter 

r should be approximately the inverse of the dominant time constant and then further modified as 

desired.  

Table 4.4: Selected values for TPG tuning parameters r and h. 

TPG tuning 

parameters 

Selected values 

Y1 Y2 

r 10 10 

h 0.004 0.004 

 

ii. ESO 

The ESO is designed by implementing equations shown in 2.14 and 2.15. The ESO tuning 

values are presented in Table 4.5. It can be observed from these equations that the gain parameters 

β1, β2 and β3 are selected based on sampling interval k. 

Table 4.5: Selected values for ESO tuning parameters. 

ESO tuning 

parameters 

Selected values 

Y1 Y2 

β1 1 1 

β2 33.33 33.33 

β3 156.25 156.25 

b 3.7 10 
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k 0.01 0.01 

 

iii. N-LWS 

The N-LWS is designed and implemented using equations 2.16, 2.17 and 2.18 to produce 

the effective suitable control signal u. Table 4.6 presents the suitable tuning values of N-LWS. 

These values have been selected based on the recommended values introduced in Chapter 2.  

Table 4.6: selected values for N-LWS tuning parameters. 

N-LWS tuning 

parameters 

Selected values 

Y1 Y2 

𝛼 0.05 0.5 

𝛿 0.05 0.05 

kp 90 -80 

𝑓𝑐  0.982 0.964 

 

4.4 Investigating the performance of both control schemes 

In order to evaluate and investigate the performance of both PI and ADRC control schemes, 

both control schemes are applied to the binary distillation column. In this section, the performance 

of both control schemes are investigated and analysed by conducting several common tests such 

as set-point tracking and external disturbance rejection. These types of experiments have been 

selected due to the existence of a sudden set-point change and undesired external disturbance in 

the MIMO system.  
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A. Set-point tracking performance  

According to Murad et al. (1997), the simultaneous control of distillate and bottom 

compositions in a binary distillation column using the reflux and steam flow-rate as manipulated 

variables is usually quite difficult due to the inherent interaction between the control loops. 

Furthermore, any deviation from the desired set-point and steady state value in one loop will need 

quick and appropriate action or change in the controller signal of other interacting loops in order 

to maintain their respective set-points. As a result, loop interaction should be considered in the 

control system where a series of set-point changes are applied to both product compositions.  

The performance of both control schemes will be investigated by applying various sudden 

set-point changes. The control performance is evaluated based on the SSE values of the control 

errors. The set-point tracking performance of Y1 and Y2 using ADRC and PI controllers are 

presented in Figures 4.9 and 4.11 respectively. 
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Figure 4.9: Performance of PI and ADRC schemes under the set-point tracking test for Y1 

 

Figure 4.10: Control action of PI and ADRC schemes under the set-point tracking test for Y1 
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Figure 4.11: Performance of PI and ADRC schemes under the set-point tracking test for Y2 

 

Figure 4.12: Control action of PI and ADRC schemes under the set-point tracking test for Y2 
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Table 4.7 shows the SSE values associated with the set-point tracking performance of both 

control schemes. The SSE values associated with the PI controller are considerably greater than 

the SSE values. 

Table 4.7: SSE values associated with both control schemes under the test of set-point tracking 

Control Loops SSE (PI) SSE (ADRC)  

Y1 40.9622 10.665 

Y2 79.422 33.70 

 

Furthermore, several points can be clearly observed from the above simulation results:  

Set-point tracking capability 

Referring to Figures 4.9 and 4.11, the ADRC scheme exhibits efficient control performance 

under set-point tracking. The controlled variables follow their set-points without any signs of 

overshoot or oscillation. This interesting result is due to the structure of the ADRC scheme: after 

the set-point signal change, the TPG generates a transient profile that forces the output signal to 

follow the desired set-point gradually, while the ESO is used in the path of a feedback loop to 

continuously observe the internal states in order to update the N-LWS and compensate for the error 

rapidly and efficiently. Based on accurate estimation from the ESO component, the product 

compositions of the binary distillation column track the desired reference input signal accurately. 

Moreover, and by referring to Figures 4.10 and 4.12, the ADRC control signal gives non-

aggressive, non-sluggish and non-oscillating output performance due to the internal low-pass filter 

mentioned earlier, yielding an excellent set-point tracking performance. 

 Referring to Figures 4.9 and 4.11, the performance of the PI controller performs well at 

maintaining both product compositions close to their set-points with some variation or overshoot 

at both product compositions especially at bottom composition during the set-point change where 

more change in set-point will produce more overshoot. In most general cases, the suitable rates for 

both manipulated variables—reflux flow rate and steam flow rate—should be within their 

operating point 30–40% specified in Table 4.1. In this test, both the ADRC and PI control signals 
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are operating within the specified operating range except the bottom composition of the PI 

controller, which exceeds this range.  

 

Strong loop interactions 

The ADRC scheme produces efficient control performance under the effect of loop 

interactions. The response of the controlled variables follows the desired set-point successfully 

with little sign of overshoot when the set-point of any loop has been changed, especially at the 

bottom composition where there are small signs of overshoot during alteration of the top 

composition set-point. Reducing the impact of loop interaction proves the capability of the ADRC 

scheme to recover to the original steady state rapidly. The efficient performance of the ADRC 

scheme is due to its structure where the interaction between both loops are considered an external 

disturbance and can be estimated and compensated for by the ADRC algorithm in order to recover 

the output signal to the original steady state. Moreover, the control signal of the ADRC scheme 

shows smooth performance without any signs of oscillation, leading to excellent set-point tracking 

performance and conferring a practical ADRC control signal. 

The performance of the PI controller under loop interaction is significantly compromised 

with a large variation and overshoot at both product compositions, especially at top composition, 

which has undesirable error under the PI controller. Moreover, the speed of the PI controller in 

compensating the disturbance is not as fast as the ADRC scheme and takes longer to become stable, 

resulting in a large overshoot. The control signal of the PI controller is not as practical as the 

ADRC control signal. This test highlights one of the major limitations of the PI controller.  

 

B. External disturbance rejection 

Several factors affect the desired product purity in the binary distillation column. External 

disturbances such as change in feed composition ZL and feed flow rate FL may cause a deviation 

in the top or distillate composition Y1 and bottom composition Y2 from their respective desired set-

points. These kinds of external disturbance variations can disturb the steady state operations of the 

system and severely degrade the overall performance of the column. In order to eliminate the effect 
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of external disturbances on controlled variables and acquire the desired performance 

specifications, the controller must generate the corrective action rapidly and sufficiently. The 

impact of undesired unmeasured external disturbance on the performance of the controller is 

investigated by implementing periodic change in both feed flow rate and feed composition. A good 

controller is expected to suppress the disturbance introduced in both loops. Furthermore, the major 

control objective in this experiment is to keep both product compositions as close as possible to 

the desired set-points in spite of unexpected fluctuation in both feed composition and feed flow 

rate, which strongly impact product compositions.  

In many existing publications, the disturbance of the binary distillation column is designed 

as an external random signal or a step signal ( Zafiriou and Morari, 1987; Lee et al, 1991; Tham 

et al., 1991a; Skogestad, 1997). Nevertheless, this external disturbance varies persistently over a 

specific period of time. Hence, modelling it as a random signal could be unrealistic because the 

random signal rate and magnitude of change might be outside normal bounds in some instances. 

In addition, in order to test the noise suppression ability of both designed controller PI and ADRC, 

a random noise was introduced simultaneously by adding deviation changes in both common 

causes of disturbance, namely feed composition and feed flow rate. It is good to point here to point 

that the serious changes of the set-point signal in both compositions have been removed in order 

to investigate the efficiency of both controllers under the impact of external disturbances.  

 

External disturbances in the form of changes in the feed flow rate 

According to Table 4.1, the normal operating condition of the feed flow rate is 18.23 g/s. 

External disturbance can be generated by changing the feed stream flow rate while maintaining 

constant normal operating set-point values of Y1 and Y2. Figure 4.13 shows the series step changes 

that were introduced in the feed flow rate. 
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Figure 4.13: Changes in feed flow rate introduced to the system 

Figures 4.14 to 4.17 represent the external disturbance rejection capability in both Y1 and Y2 for 

feed flow rate disturbance.  
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Figure 4.14: Performance of PI and ADRC schemes under the external disturbance test for Y1 

 

Figure 4.15: Control action of PI and ADRC schemes under the external disturbance test for Y1 



96 

 

 

Figure 4.16: Performance of PI and ADRC schemes under the external disturbance test for Y2 

 

Figure 4.17: Control action of PI and ADRC schemes under the external disturbance test for Y2 
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The results presented in Figures 4.14 and 4.16 show the successful and efficient external 

disturbance rejection performance of the ADRC scheme, where both product compositions quickly 

return to the desired original set point in a relatively smooth and non-oscillatory manner. 

Furthermore, and according to Figures 4.15 and 4.17, the control action of ADRC is found to be 

smooth. Correspondingly, the control performance of the PI controller is found not to be as 

efficient as the ADRC performance in terms of the magnitude of deviation away from the desired 

set-points. Moreover, according to Figures 4.15 and 4.17, the control signal of the PI controller 

under the effect of disturbance is non-smooth and aggressive. 

External disturbances in the form of changes in the feed composition 

According to Table 4.1, the nominal feed compositions is 0.5. The external disturbance can 

be generated by changing the feed composition while maintaining constant normal operating set-

point values of Y1 and Y2. Figure 4.18 shows the series step changes introduced to the feed 

composition. 

 

Figure 4.18: Changes in feed concentration introduced to the system 

Figures 4.19 to 4.22 represents the external disturbance rejection capability in both Y1 and Y2 under 

feed composition disturbance.  
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Figure 4.19: Performance of PI and ADRC schemes under the external disturbance test for Y1 

 

Figure 4.20: Control action of PI and ADRC schemes under the external disturbance test for Y1 
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Figure 4.21: Performance of PI and ADRC schemes under the external disturbance test for Y2 

 

Figure 4.22: Control action of PI and ADRC schemes under the external disturbance test for Y2 
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The results presented in Figures 4.19 and 4.21 show a similar efficient performance of the 

ADRC scheme, where both product compositions quickly return to the desired set point in a 

relatively smooth manner after the introduction of disturbance. This efficient performance of the 

ADRC scheme is due to the presence of the ESO component that estimates the external disturbance 

and reduces its effect. Furthermore, according to Figures 4.20 and 4.22, the control actions of the 

ADRC are found to be smooth and non-aggressive. On the other hand, the performance of the PI 

controller is found not to be as efficient as the ADRC in terms of the magnitude of deviation from 

the desired set-point, in addition to the speed of compensating for undesired disturbance where the 

speed of the PI controller in compensating the disturbance is not as fast as the ADRC scheme. 

Moreover, according to Figures 4.20 and 4.22, the control signals of the multi-loop PI controller 

under disturbance are non-smooth and aggressive. Table 4.8 shows the SSE values associated with 

both control schemes under both external disturbances. The SSE values associated with the PI 

controller are considerably greater than those of the ADRC.  

 

Table 4.8: SSE values associated with external disturbance rejection performance 

Control loop Feed flow rate disturbances Feed concentration disturbances 

SSE of PI SSE of ADRC SSE of PI SSE of ADRC 

y1 31.86 15.35 9.5677 6.7479 

y2 81.16 19.25 68.5131 13.5332 

 

4.5 Conclusions 

In this chapter, both the ADRC and multi-loop PI control are applied to a binary distillation 

column simulated by a detailed mechanistic model. The performance of both control strategies 

was investigated and demonstrated in terms of set-point tracking and external disturbance rejection 

capability. The simulation results indicate that the ADRC scheme has the ability to introduce fast 

and smooth dynamic performance under various amounts of disturbance. Compared with the PI 

scheme, ADRC has significantly better performance in terms of set-point tracking and disturbance 

rejection. In addition, the fact introduced in the existing literature that the ADRC scheme can 

overcome the total external undesired disturbance and perform well in tracking is confirmed where 



101 

 

it has capability to estimate the external disturbance and reject it prior to entering the dynamic 

system. However, efficient control performance from the ADRC in settling down to the setpoints 

quickly after the presence of disturbances and/or setpoint changes can also lead to energy saving 

as large variations in manipulated variables such as steam rate to reboiler and reflux rate, usually 

lead to more energy consumption. In addition, due to this promising result, it follows that the 

ADRC algorithm could be successfully applied in other complex chemical applications. In the next 

chapter, the ADRC scheme will be combined with inferential control, in order to estimate the 

product compositions and avoid the delay associated with current composition measurement tools.  
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 Inferential ADRC of a binary distillation column  
 

5.1 Introduction 

Inferential control of distillation columns using multiple tray temperature measurements as 

the secondery measured variables have been discussed and investigated in the existing literature 

(Mejdell and Skogestad 1991; Kaspar and Ray 1992; Zhang 2006; Jeffries et al. 2016). As 

mentioned in Chapter 2, soft sensors or inferential estimators are developed and used to overcome 

the issue of large measurement delay associated with composition analysers thus improving overall 

control performance because they are flexibile enough to be updated at any instant and have the 

capability to estimate the output quickley (Singh et al. 2016; Andrijić et al. 2017). However, in 

those studies the conventional PI controller is used and integrated with inferential estimators. It is 

expected that the overall control performance could be further enhanced and improved if an 

advanced control scheme is used in conjuction with soft sensors. This chapter proposes integrating 

inferential control into the ADRC scheme in order to control the binary distillation column.  

The proposed inferential ADRC scheme for distillation column product composition control 

is presented in Figure 5.1, it can be seen from this figure that the top composition Y1 and bottom 

composition Y2 can be considered the primary controlled variables whereas the secondary 

measurements are tray temperatures x. In this control scheme, both top and bottom compositions 

will be estimated via multiple tray temperature measurements through soft sensors that are then 

used as feedback signals for the ADRC scheme in order to provide a continuous measurement for 

the product compositions. Designing the soft sensors can be done by using multivariate statistical 

techniques, which have became an indispensable part of current modern analytical chemistry.  

Among these approaches are PCR and PLS. These approaches are similar in many ways and 

the theoretical relationship between both of them has been treated extensively in the literature 

(Kalivas 2001; Abdi 2003; Wentzell and Montoto 2003;  Abdi 2010; Abdi 2010; Alibuhtto and 

Peiris 2015; Gagnon et al. 2017). The soft sensors in this research will be designed and 

implemented using PCR and PLS.  
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Figure 5.1: Inferential ADRC control scheme 

This chapter is organised as follows: Section 5.2 provides a brief introduction on 

implementing the inferential estimator in the binary distillation column. Section 5.3 introduces the 

control structure with the PCR software sensor. In this section, the inferential models of 𝑌̂1 and 𝑌̂2 

using static and dynamic PCR is introduced in order to integrate it within the ADRC schemes. 

Then, Section 5.4 details the control structure with the PLS software sensor. In this section, the 

inferential model of static and dynamic PLS is presented in order to integrate it with the ADRC 

schemes. Finally, conclusions are drawn in Section 5.5. 

 

5.2 Software sensors based on the PCR model 

The data generated from the mechanistic model of the binary column in the previous chapter 

is used here to build the estimation model. To generate data for building soft sensors several set-

point changes are applied to the top and bottom product compositions. Moreover, several 

disturbances were applied to the simulated column. Figure 5.2 shows the top and bottom product 

compositions while the corresponding secondary measurements of tray temperatures are shown in 

Figure 5.3. Simulated measurement noises with normal distribution are added to both product 
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compositions. The mean and standard deviation of the noise are specified at 0 and 0.2% 

respectively.  

 

Figure 5.2: Top and bottom product compositions (primary variables) 

 

Figure 5.3: Tray temperatures (secondary variables) 
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It can be observed from Figure 5.3 that a strong correlation exists among tray temperature 

measurements. Since the tray temperature measurements are highly correlated, the multiple linear 

regression (MLR) is not efficient to build a reliable estimation model. As a result, PCR and PLS 

techniques can be used to build inferential estimation models (Weber and Brosilow 1972; Zhang 

2006). 

 The data are scaled to zero mean and unit variance before building the model in order 

eliminate the influence of different magnitudes of model input and output variables. The complete 

set of tray temperatures and product composition data are divided into two parts: the training data 

set (samples 1 to 1000) and the testing data set (samples 1001 to 1982). PCR models with various 

numbers of principal components are developed on the training data and tested on the testing data 

which will be used to test the model performance (Hussain et al. 2017). Utilising the testing data 

to test the estimation model is a good way to determine whether the model can identify the right 

relationship in the data (Bolf et al. 2008). PCR models are created from principal components that 

are linear combinations of the original model input variables. It is essential to select the number of 

principal components appropriately. In this research, the cross-validation procedure is used as it is 

a statistically more suitable method to specify the number of PCs and avoid overfitting. This 

validation process can be executed by selecting the minimum value of SSE. 

 

5.2.1 Static PCR models 

The inferential model estimates the product compositions at time t with the tray temperatures 

at time t. Since the case study used in this research has 10 tray temperatures, the estimation model 

can be presented in the following form: 

𝑦(𝑡) =  𝜃1𝑇1(𝑡) + 𝜃2𝑇2(𝑡) + ⋯+ 𝜃10𝑇10(𝑡)                                                                           (5.1) 

Where y denotes the product compositions, T1 to T10 represent the tray temperatures from 

trays 1–10 respectively, θ1 to θ10 correspond to model parameters, and t represents the discrete 

time. The data are scaled to zero mean and unit variance before model building. Figure 5.4 and 

Table 5.1 present SSE of different PCR models with different numbers of principal components 

on the training and testing data. The PCR model with the lowest error on the testing data is 

considered to have the most suitable number of principal components. 
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Figure 5.4: SSE of static PCR prediction of binary distillation 

Table 5.1: SSE on training and testing data for static PCR models with different numbers of 

principal components 

 Top composition Bottom composition 

No. of PCs Training 

data 

Testing data Training 

data 

Testing data 

1 138.826 111.052 771.4089 1190.25 

2 122.526 172.096 744.052 1427.52 

3 61.8852 54.1165 30.3316 28.2952 

4 50.7095 45.3246 29.5166 27.2593 

5 50.5490 44.7872 28.8777 26.0764 

6 49.3117 42.3979 28.6747 25.8648 

7 49.2793 42.4041 25.8739 23.3020 

8 47.8213 40.6261 25.8065 23.2054 
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9 46.3866 39.0442 25.8038 23.1709 

10 46.3540 39.1547 25.7536 23.0539 

 

It can be noted from Table 5.1 that the PCR model with nine principal components provides 

the best performance for the top composition on the testing data and the one with ten principal 

components offers the best performance for the bottom compositions on the testing data. 

Therefore, nine principal components are used in the top composition model and ten principal 

components are used in the bottom composition model. The developed PCR models for the top 

and bottom product compositions in terms of PC’s are as follows: 

yD = −0.47221 PC1 + 0.074952 PC2 − 0.18727 PC3 + 0.161918 PC4 + 0.035033 PC5 − 0.106035 

PC6 − 0.019274 PC7 + 0.133379 PC8 + 0.156755 PC9                                                             (5.2) 

yB = 0.174896 PC1 − 0.097101 PC2 − 0.64249 PC3 + 0.043726 PC4 − 0.06989 PC5 + 

0.042949 PC6 + 0.179119 PC7 − 0.0286766 PC8 − 0.006786 PC9 − 0.036186 PC10                 (5.3) 

The developed PCR models for the top and bottom product compositions can be converted 

in terms of tray temperatures as model inputs as follows: 

yD = 93 + 0.04500ΔT1 − 0.03572ΔT2 − 0.130424ΔT3 + 0.189102ΔT4 − 0.034529ΔT5 + 

0.08806ΔT6 − 0.31151ΔT7 – 0.32551ΔT8 − 0.0666ΔT9 − 0.67369ΔT10                                         (5.4) 

yB = 7 − 0.39444ΔT1 + 0.071845ΔT2 − 0.22059ΔT3 + 1.356745ΔT4 + 0.21753ΔT5 + 

0.88404ΔT6 − 0.98501ΔT7 − 0.87577ΔT8 − 1.75977ΔT9 − 0.71489ΔT10                                        (5.5) 

Where yD and yB represent the top and bottom compositions (wt%) respectively, and ΔT is 

the deviation of a tray temperature from its nominal mean value.  

 

5.3.2 Dynamic PCR models 

 The inferential estimation accuracy might be further enhanced and improved if dynamic 

PCR models are developed. In this chapter, dynamic PCR models with orders ranging from 1–7 

were developed. The first order dynamic PCR models can be represented in the equation below: 
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𝑦(𝑡) =  𝜃1.1𝑇1(𝑡) + 𝜃1.2𝑇2(𝑡 − 1) + 𝜃2.1𝑇2(𝑡) +  𝜃2.2𝑇2(𝑡 − 1)…+ 𝜃10.1𝑇10(𝑡) +

 𝜃10.2𝑇10(𝑡 − 1)                                                                                                                                                 (5.6) 

Data partition and data scaling are the same as in developing static PCR models. The suitable 

dynamic model was specified by the least SSE on the testing data. Table 5.2 presents the number 

of principal components and the corresponding SSE values on the testing data of these dynamic 

PCR models.  

Table 5.2: Number of principal components and SSE on testing data of different dynamic PCR 

models 

Model orders Product 

composition 

SSE No. of principal 

components 

Static PCR model Top composition 40.5665 9 

Bot composition 46.5507 10 

1st dynamic PCR model Top composition 28.9446 19 

Bot composition 30.1110 19 

2nd dynamic PCR model Top composition 25.4500 24 

Bot composition 26.6627 28 

3rd dynamic PCR model Top composition 23.0394 30 

Bot composition 24.1184 28 

4th dynamic PCR model Top composition 22.5688 36 

Bot composition 22.4950 34 

5th dynamic PCR model Top composition 21.7144 49 

Bot composition 20.5285 39 

6th dynamic PCR model Top composition 21.4245 49 

Bot composition 19.6649 47 
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The table clearly shows that the dynamic PCR models significantly enhance the estimation 

accuracy compared to the static PCR model. The differences in SSE values between these models 

are not very significant. Hence, the 6th order dynamic PCR model is used and integrated into the 

ADRC scheme to estimate the top and bottom compositions. Figures 5.5 and 5.6 and Figures 5.7 

and 5.8 present, respectively, predictions from the static inferential PCR model and the 6th dynamic 

inferential model. In these figures, the blue line represents the actual product composition response 

while the red solid line represents the corresponding estimation response.  
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Figure 5.5: Model estimation of static PCR model (training data) 

 

Figure 5.6: Model estimation of static PCR model (testing data) 
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Figure 5.7: Model estimation of 6th order dynamic PCR model (training data) 

 

Figure 5.8: Model estimation of 6th order dynamic PCR model (testing data) 
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Figures 5.9 and 5.10 present estimation errors for both static and 6th dynamic PCR models. 

It can be noticed from this figure—and as expected—the 6th order dynamic PCR model shows 

better estimation performance than the static model.  

 

Figure 5.9: PCR Model estimation errors (training data) 
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Figure 5.10: PCR Model estimation errors (testing data) 

5.3 Inferential ADRC scheme based on PCR models 

In the product composition control considered here, the manipulated variables for top and 

bottom compositions are reflux flow rate L and steam flow rate V to the reboiler respectively. The 

secondary measurements (tray temperatures) are fed to the PCR software sensors to estimate the 

top and bottom product compositions. The estimations are then used as a feedback signal to the 

ADRC scheme in order to provide an online measurement for the product compositions as shown 

in Figure 5.11. The availability of the continuous measurements of both compositions will allow 

the ADRC scheme to operate efficiently. The performance of both the ADRC and inferential 

ADRC control was investigated through simulation.  
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Figure 5.11: Inferential ADRC control of product compositions 

The inferential ADRC control strategy is compared with single tray temperature control and 

composition analyser based control. After analysing the data used for building the inferential 

models, it was found that the temperature of the eighth tray (from the column bottom) has the 

largest correlation coefficient with the top product composition and the temperature of the second 

tray has the largest correlation coefficient with the bottom product composition. Hence, 

temperatures of the second and the eighth trays were controlled to indirectly control the bottom 

and top product compositions respectively. Temperatures at the second and the eighth trays 

correspond to the bottom composition of 7% and the top composition of 93% are 85.9°C and 

70.5°C respectively. Hence, the set-points for the second and the eighth tray temperatures were set 

at 85.9° C and 70.5° C respectively. Temperature set-points corresponding to other product 

compositions were identified from simulated process operation data. A 10 min delay was added to 

both top and bottom compositions as the composition analyser typically possesses such a delay. 

Therefore, a uniform 10 min delay was added to all transfer functions introduced in Chapter 4 to 

simulate the delay of the composition analyser. 

 Figure 5.12 shows the control performance of tray temperature control and composition 

analyser based control. The solid, dash-dotted, and dashed lines represent the response of the single 
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tray temperature control, composition analyser based control, and the desired set-point signal. It 

can be seen from this figure that the composition analyser based control has a sluggish response. 

 

Figure 5.12: Control performance of tray temperature control and composition analyser based 

control 

 Figure 5.13 shows the set-point tracking and disturbance rejection performance of 

inferential ADRC with the static PCR model across a broad range of set-point changes, feed flow 

rate and feed composition disturbance. The set-point signal was smoothed by TPG to avoid 

undesired overshoot. It can be seen that the top composition is controlled quite well with small 

control offsets, but large control errors exist for the bottom product composition. These control 

errors are due to the estimation errors of the PCR models, which can get worse when operating 

conditions change such as during set-point change and or disturbance changes. In addition, more 

deviation from the introduced estimated signal will lead to more un-accurate actual output 

composition. Figure 5.14 shows the set-point tracking and disturbance rejection performance of 

inferential ADRC with the sixth order dynamic PCR model for the same set-point changes, feed 

flow rate and feed composition disturbance. It can be seen that the control performance improved 

under the dynamic PCR model. Furthermore, the control offsets in the dynamic PCR are smaller 

than the control offset in the static one. In addition, more accurate estimation of product 

compositions leads to better control performance.  
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Figure 5.13: Responses of actual and estimated product compositions under inferential ADRC 

with static PCR model (without mean updating) 

 

Figure 5.14: Responses of actual and estimated product compositions under inferential ADRC 

with sixth order dynamic PCR models (without mean updating) 
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 To overcome the control offset issue due to the variation in process operating conditions, 

the intermittent process variable mean updating strategy proposed by Zhang (2006) is used here. 

When a new steady state is reached, the static values of product compositions and tray temperatures 

are used to replace the mean values of these variables in the PCR models. It can be seen here that 

only intermittent product composition measurements are required. Figures 5.15 and 5.16 present 

the control performance with the mean updating technique. It can be observed from these figures 

that mean updating is an efficient technique that can significantly reduce static control offsets. 

Moreover, the SSE of control errors has been reduced dramatically after using the mean updating 

technique as shown in Table 5.3.  

 

Figure 5.15: Responses of actual and estimated product compositions of static inferential ADRC 

(with mean updating) 



118 

 

 

Figure 5.16: Responses of actual and estimated product compositions of inferential ADRC using 

the 6th order dynamic PCR model (with mean updating) 

Table 5.3: SSE of different control schemes 

Control schemes Top Comp Bottom Comp 

Inferential ADRC with 

static PCR model 

Without mean updating 100.8368 828.3034 

With mean updating 0.0642 0.1516 

Inferential ADRC with 

sixth order dynamic PCR 

model 

Without mean updating 18.6386 92.7922 

With mean updating 0.0436 0.0295 

 

 It can be seen from the above figures that the resulting control offsets and steady state 

model estimation bias have been eliminated successfully through the mean updating technique. 

Moreover, it can be noticed from Table 5.3 that the dynamic PCR model has much smaller 
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estimation offsets than the static PCR model when the operating condition is changed. This leads 

to the conclusion that the dynamic PCR model is more robust than the static PCR model for 

processing operating condition variations. As a result, the dynamic inferential ADRC scheme 

provides better control performance than the static inferential ADRC.  

 

5.4 Inferential ADRC scheme based on PLS models 

Historically, PCR predates the PLS technique, with the latter introduced in the chemical 

literature around 1983 (Wold et al. 2001; Wentzell and Montoto 2003).
 
Since its introduction 

however, the PLS approach appears to have become the technique of choice among 

chemometricians. The reasons for this are due to a number of advantages (Wentzell and Montoto 

2003): 

i. PLS can estimate better because the correlations with the y variable are required in 

specifying the latent variables. 

ii. PLS requires fewer latent variables than the PCR approach. 

This section presents the implementation of static and dynamic soft sensors for predicting 

the product compositions using the PLS approach.  

 

5.4.1 Static PLS model 

As mentioned previously, PLS techniques can be used to build an estimation model with 

correlated data. Similar to the PCR approach, data partition and data scaling are the same as in 

developing static PCR models. In this research, the PLS model was designed and developed by 

selecting the suitable number of latent variables (LVs) based on the minimum SSE on the testing 

data set as shown in Figure 5.17. 

. 
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Figure 5.17: SSE of static PLS prediction 

 Table 5.4 presents the SSE of different PLS models on the training and testing data. The 

PLS model with the lowest SSE on the testing data is considered to have a suitable number of LVs. 

Table 5.4: SSE on training and testing data for static PLS models with different numbers of LVs 

 Top composition Bottom composition 

No. of 

LVs
 

Training data Testing data Training 

data 

Testing 

data 

1
 

85.8460 77.7726 198.0767 335.817 

2
 

56.4557 53.6429 31.0883 29.1430 

3
 

52.8871 45.8497 29.0368 26.9307 

4
 

48.6229 42.5458 26.9729 24.1009 

5
 

46.5161 39.0638 25.8117 22.9674 

6
 

46.3635 39.1601 25.7595 23.0993 
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7
 

46.3548 39.1348 25.7540 23.0563 

8
 

46.3541 39.1468 25.7536 23.0527 

9
 

46.3540 39.1548 25.7536 23.0538 

10
 

46.3540 39.1547 25.7536 23.0539 

  

It can be seen from Table 5.4 that the PLS model with five latent variables provides the best 

performance for the top composition on the testing data, and five latent variables offer the best 

performance for the bottom compositions on the testing data. Therefore, five latent variables are 

used in both the top and bottom composition models. This proves the fact that PLS requires fewer 

latent variables than PCR. The developed PLS models for the top and bottom product compositions 

in terms of LVs as model inputs are as follows: 

yD = 0.3896 LV1 + 0.8230 LV2 + 0.5142 LV3 + 0.9145 LV4 + 0.2214 LV5                         (5.7) 

yB = 0.0311 LV1 + 0.9121 LV2 + 0.4850 LV3 + 0.6776 LV4 + 0.0603 LV5                         (5.8) 

The developed PLS models for both top and bottom product compositions can be re-

expressed using the tray temperatures as model inputs as follows: 

yD = 93 − 0.02546ΔT1 + 0.02926ΔT2 + 0.007075ΔT3 + 0.44464ΔT4 − 0.33676ΔT5 + 

0.04521ΔT6 +  0.15891ΔT7 − 1.25635ΔT8 − 0.18726ΔT9 − 0.08926ΔT10                                    (5.9) 

yB = 7 − 0.18163ΔT1 −  0.048632ΔT2 + 0.08601ΔT3 + 0.00591ΔT4 − 0.07168ΔT5 + 

0.05474ΔT6 − 0.018416ΔT7 − 0.04858ΔT8 − 0.04047ΔT9 − 0.060867ΔT10                                  (5.10) 

Where yD and yB represent the top and bottom compositions (wt%) respectively, and ΔT is 

the deviation of a tray temperature from its nominal mean value. 

 

5.4.2 Dynamic PLS models 

Similar to the dynamic PCR model, it is expected that the inferential estimation accuracy 

could be further enhanced if dynamic PLS models are developed. In this research, dynamic PLS 

models with orders ranging from 1– 6 were designed.  
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Data partition and data scaling are the same as when developing static PLS models. A 

suitable number of LVs was once again determined by the least SSE on the testing data. Table 5.5 

presents the number of latent variables and the corresponding SSE values on the testing data of 

these dynamic PLS models.  

 

Table 5.5 Number of latent variables and SSE on testing data of different dynamic PLS models 

Model orders Product compositions SSE No. of LVs 

Static PLS model Top composition 40.5380 5 

Bot composition 49.8400 5 

1st dynamic PLS model Top composition 28.8752 8 

Bot composition 30.1748 5 

2nd dynamic PLS model Top composition 25.3334 5 

Bot composition 26.9182 8 

3rd dynamic PLS model Top composition 22.9115 5 

Bot composition 24.3736 9 

4th dynamic PLS model Top composition 22.2474 5 

Bot composition 23.1856 8 

5th dynamic PLS model Top composition 21.6017 5 

Bot composition 22.4371 9 

6th dynamic PLS model Top composition 21.2488 6 

Bot composition 19.7109 9 

 

The data in the table shows that the dynamic PLS models significantly enhance the 

estimation accuracy compared to the static PLS model especially at the sixth order model. Thus, 

the sixth order dynamic PLS model was selected and used due to its lowest SSE value. This sixth 
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order dynamic PLS was integrated with the ADRC scheme to estimate the primary variables of 

top and bottom compositions. 

Figures 5.18 and 5.19 and Figures 5.20 and 5.21 present, respectively, predictions from the 

static inferential PLS model and the sixth order dynamic inferential model. In these figures, the 

blue line represents the actual product compositions while the red solid line represents the 

corresponding estimations.  
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Figure 5.18: Model estimation of static PLS model (training data) 

 

Figure 5.19: Model estimation of static PLS model (testing data) 
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Figure 5.20: Model estimation of 6th order dynamic PLS model (training data) 

 

Figure 5.21: Model estimation of 6th order dynamic PLS model (testing data) 
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 Figure 5.22 and 5.23 presents estimation errors for both the static and 6th dynamic PLS 

model. It can be noticed from this figure and as expected, the 6th order dynamic PLS model shows 

better estimated performance than the static model.  
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Figure 5.22: PLS Model estimation errors (training data) 

 

Figure 5.23: PLS Model estimation errors (testing data) 
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5.5 Inferential ADRC scheme based on PLS models 

Similar to the inferential ADRC scheme based on PCR models, the manipulated variables 

for top and bottom compositions are: reflux flow rate L and steam flow rate V to the reboiler 

respectively. The only difference is that the secondary measurements and tray temperatures here 

are passed to the PLS inferential estimator instead of the PCR software sensors to estimate the 

product compositions. The predicted product compositions are then used as feedback signals to 

the ADRC scheme in order to provide an online measurement for both product compositions as 

shown in Figure 5.11. The performance of the inferential ADRC will be investigated through 

simulation. The simulated distillation column is subjected to external disturbance introduced by 

the feed flow rate and feed composition. 

 Figure 5.23 shows the set-point tracking and disturbance rejection performance of the 

inferential ADRC with static PLS model across a wide range of set-point changes, feed flow rates 

and feed composition disturbance. It can be seen that both product compositions have large control 

offsets due to the estimation errors of the static PLS model that can get worse when operating 

conditions change such as set-point changes and or disturbance changes. In addition, large 

estimation offsets will lead to large control offsets. Figure 5.24 shows the set-point tracking and 

disturbance rejection performance of inferential ADRC with the 6th order dynamic PLS model for 

the same set-point changes, feed flow rate and feed composition disturbances. It can be seen that 

the control performance improved under the dynamic PLS model with small control offsets at both 

actual product compositions. In addition, accurate inferential estimations will lead to better control 

performance.  
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Figure. 5.24: Responses of actual and estimated product compositions under the inferential 

ADRC with static PLS model (without mean updating) 

 

Figure 5.25: Responses of actual and estimated product compositions under inferential ADRC 

with 6th order dynamic PLS models (without mean updating) 
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 The control offset in both the static and dynamic inferential ADRC will again be eliminated 

by implementing the mean updating technique in order to improve the overall performance of the 

inferential ADRC. Figures 5.26 and 5.27 present the control performance with the mean updating 

technique. It can be seen from these figures that mean updating is an efficient and successful 

technique that can eliminate the effects of undesired control offsets. The SSE of control errors has 

been reduced significantly after implementing and utilising the mean updating technique as shown 

in Table 5.6. 
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Figure 5.26: Responses of actual and estimated product compositions of static inferential ADRC 

(with mean updating) 

 

Figure 5.27: Responses of actual and estimated product compositions of inferential ADRC using 

the sixth order dynamic PLS model (with mean updating) 
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Table 5.6: SSE of different control schemes 

Control schemes Top Comp. Bottom Comp. 

Inferential ADRC with 

static PLS model 

Without mean updating 190.572 958.4365 

With mean updating 0.5129 0.8197 

Inferential ADRC with 

eighth order dynamic PLS 

model 

Without mean updating 24.4268 15.1448 

With mean updating 0.0431 0.0557 

 

It can be observed from the above figures that control off-sets and steady state model 

estimation bias have been eliminated successfully through the technique of mean updating. 

Furthermore, it can be noted from Table 5.6 that there is a large difference between the SSE of the 

dynamic inferential ADRC scheme and the static inferential ADRC scheme, where the dynamic 

PLS model has much smaller estimation off-sets than the static PLS model when the operating 

conditions change. This is due to the efficient performance of dynamic over static estimation. In 

addition, the dynamic PLS model provides more robust performance than the static PLS model to 

process operating condition variations. As a result, the dynamic inferential ADRC scheme 

provides better control performance than the static inferential ADRC. Moreover, the inferential 

ADRC scheme based on the PLS model provides good overall performance as the inferential 

ADRC scheme is based on the PCR model under correlated data.  

 

5.6 Conclusions  

Inferential ADRC control schemes with static and dynamic PCR and PLS models are 

proposed for product composition control in distillation columns. Inferential estimation models for 

product compositions are developed from the process operational data using both PCR and PLS. 

The estimated product compositions are used as the controlled variables in the ADRC controller. 

The mean updating technique is used to eliminate steady state model estimation bias and resulting 

control off-sets. The proposed control method is applied to a simulated methanol–water separation 

column. Simulation results indicate the effectiveness and success of the proposed dynamic 
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inferential ADRC control method over the static inferential ADRC control method. Furthermore, 

no significant differences were observed from the simulation results in the prediction errors 

reported by both PCR and PLS. The PLS approach however always required fewer LVs than the 

PCR technique, but this did not appear to influence predictive ability. 
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 ADRC of a heat integrated distillation column simulated using a 

mechanistic model  
 

6.1 Introduction 

The control system for a HIDiC is considered a MIMO system with model plant mismatches, time 

delay, strong loop interactions and significant sensitivity to external disturbance including feed 

composition and feed rate fluctuations. Model plant mismatches commonly exist due to several 

reasons (Cong, 2015a): 

• Model parameters are only known approximately.  

• Measurement devices have some limitations or imperfections.  

• Model parameters may vary with operating conditions.  

However, to the author’s knowledge the issues of how to compensate for control loop 

coupling, undesired disturbance and model uncertainties in HIDiC have not yet been fully 

investigated. These issues obstruct attempts to control product compositions and might result in 

degradation in product quality and over-consumption of energy. Thus, the main objectives for 

controlling a HIDiC can be described as follows (Olujić et al., 2008): 

• To maintain stable operation of the distillation column.  

• To control conditions in the distillation column in order to make product compositions 

always meet desired specifications despite internal and/or external disturbance. 

This chapter is organised as follows: Section 6.2 introduces the control structure of HIDiC. 

In this section, the nominal operating conditions of the considered HIDiC with the assumptions 

made are introduced prior to implementing both multi-loop PI and ADRC schemes. It will also 

introduce the 2×2 transfer function matrix for the purpose of PI controller tuning. Section 6.3 

presents the multi-loop PI controller using the BLT technique. It will also show the selected 

parameters for the ADRC scheme. After that, both control schemes will be implemented, 

investigated and evaluated by performing various tests such as set-point tracking and external 

disturbance rejection in Section 6.4. Section 6.5 gives an overview of the inferential ADRC for 

HIDiC. Section 6.6 introduces the control structure with the PCR software sensor. In this section, 

the static and dynamic PCR inferential models are introduced and integrated with the ADRC 
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schemes. Then, Section 6.7 introduces the control structure with the PLS software sensors. The 

static and dynamic PLS inferential models are integrated with the ADRC schemes. Finally, 

conclusions are drawn in Section 6.8. 

 

6.2 The ADRC control structure of a HIDiC 

Currently, most industrial distillation columns are controlled by using multi-loop PID. In 

this research, ADRC is applied to the HIDiC in order to control the product compositions. The 

performance of ADRC is compared to that of PID control. Both control schemes are implemented 

individually in order to assess and compare their performance and efficiency under common 

process conditions such as set-point tracking and disturbance rejection. 

 

6.2.1 The considered distillation column  

The heat integrated distillation column is one of the most complex distillation columns around 

the world due to its challenging process characteristics such as non-linearity and strong loop 

interactions. ADRC and PI control algorithms are applied to control both top and bottom product 

compositions of a simulated HIDiC for separating a benzene-toluene mixture. The non-linear 

HIDiC dynamic simulation is based on a rigorous mechanistic model consisting of tray-by-tray 

energy and mass balances. Table 6.1 gives the nominal operating conditions of the simulated 

HIDiC.  

The mechanistic model of a HIDiC is formulated under the following assumptions: negligible 

vapour holdups, perfect mixing of vapour and liquid on each tray, constant liquid molar holdups on 

each tray, uniform composition and the temperature on each tray, negligible pressure drop in each 

column, instantaneous heat transfer from the rectifying section to the stripping section, negligible 

heat capacity change and heat loss of the separation process, negligible time delay in thermal feed 

condition and column pressures changes,, constant and equal latent heat of each component, 

constant relative volatility, no liquid and vapour side stream withdrawn, instantaneous control for 

the top and bottom composition, and finally instantaneous pressure control. 
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The mechanistic model of the HIDiC can be represented by the following equations 

(Takamatsu et al. 1996; Cong et al. 2015b; Bisgaard et al. 2017): 

• The heat transferred between stage j in the rectifying section and stage j+f-1 in the stripping 

column is: 

𝑄𝑗 = 𝑈𝐴 (𝑇𝑗 − 𝑇𝑗+𝑓−1)                                  (j = 1, …, f−1)                                                   (6.1) 

Where UA represents the heat transfer rate and Tj is the stage temperature, which can be 

calculated according to the Antoine equation, Raoult’s law and Dalton’s law: 

𝑇𝑗 = 
𝑏

(𝑎− ln𝑝𝑣𝑝,𝑗)−𝑐
                                                                                                                     (6.2) 

𝑝𝑣𝑝,𝑗 = 
𝑃

[ 𝑋𝑗+
1− 𝑋𝑗

𝛼
]
                                                                                                                      (6.3) 

Where a, b, and c are the coefficients of the Antoine equation, 𝑝𝑣𝑝,𝑗  represents the vapour 

saturated pressure of the stage j, P represents the pressure of either rectifying column Pr or the 

stripping column Ps, Xj is the mole fraction of the liquid at stage j, α is the relative volatility. 

• Liquid flow rates in the rectifying section are: 

𝐿𝑗 = ∑
𝑄𝑘

𝜆

𝑗
𝑘=1                                                                               (j = 1, …, f−1)                             (6.4) 

Where 𝜆 represents the latent heat.  

The vapour flow rates in the rectifying section can be calculated by: 

𝑉𝑗+1 = 𝑉1 + 𝐿𝑗                                                                    (j = 1, …, f−1)                             (6.5) 

Where V1 represents the vapour flow rate of the top product leaving the first stage that can be 

derived from the total mass equation: 

𝑉1 = 𝐹(1 − 𝑞)                                                                                                                           (6.6) 

Where F is the feed flow rate and q represents the feed thermal condition.  

• Liquid flow rates in the stripping section are calculated as: 

𝐿𝑓+𝑗−1 = 𝐿𝑓−1 + 𝐹𝑞 − ∑
𝑄𝑘

𝜆

𝑗
𝑘=1                                     (j = 1, …, f−1)                                    (6.7) 

𝐿𝑛 = 𝐹 − 𝑉1                                                                                                                            (6.8) 
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• The vapour flow rates in the stripping section are: 

𝑉𝑓+𝑗 = 𝑉𝑓 −  𝐹(1 − 𝑞) − ∑
𝑄𝑘

𝜆

𝑗
𝑘=1                                 (j = 1, …, f−1)                                   (6.9) 

• Component mass balances are: 

𝐻
𝑑𝑋1

𝑑𝑡
= 𝑉2𝑌2 − 𝑉1𝑌1 − 𝐿1𝑋1                                                                                              (6.10) 

𝐻
𝑑𝑋𝑗

𝑑𝑡
= 𝑉𝑗+1𝑌𝑗+1 − 𝑉𝑗𝑌𝑗 + 𝐿𝑗−1𝑋𝑗−1 − 𝐿𝑗𝑋𝑗        (j = 2, …, n−1 and j≠f)                             (6.11) 

𝐻
𝑑𝑋𝑓

𝑑𝑡
= 𝑉𝑓+1𝑌𝑓+1 − 𝑉𝑓𝑌𝑓 + 𝐿𝑓−1𝑋𝑓−1 − 𝐿𝑓𝑋𝑓 + 𝐹𝑍𝑓                                                      (6.12) 

𝐻
𝑑𝑋𝑛

𝑑𝑡
= − 𝑉𝑛𝑌𝑛 + 𝐿𝑛−1𝑋𝑛−1 − 𝐿𝑛𝑋𝑛                                                                                  (6.13) 

Where H represents the stage holdup, Zf is the mole fraction of the feed and Yj is the mole 

fraction of the vapour at stage j. 

• Vapour–liquid equilibrium relationships: 

𝑌𝑗 =
𝛼𝑋𝑗

[(𝛼−1)𝑋𝑗+1]
                                                       (j = 1, …, n)                                           (6.14) 

Typical values of the model parameters are shown in Table 6.1 (Bisgaard et al. 2017): 

Table 6.1 Model variables and parameters 

Property Numerical value 

Number of stages 54  

Feed stage 27 

Feed flow rate 83.33 kmol h−1 

Top composition (benzene) 99.5% 

Bottom composition (toluene) 0.5% 

Feed thermal condition (q) 0–1 

Feed composition (d1) 50% 

Pressure of stripping section (Ps) 0.1013 MPa 

Pressure of rectifying section (Pr) 2.3385 MPa 

Heat transfer rate 9803 W K−1 

Latent heat of vaporisation 30001.1 kJ kmol−1 

Relative volatility 2.317 
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Simulations were conducted to verify the effectiveness of the ADRC scheme compared to the 

conventional PI controller in terms of set-point tracking and disturbance rejection. SSE is used as a 

control performance indicator. The controlled variables are the top and bottom product 

compositions and the corresponding manipulated variables are the rectifying pressure Pr (u1) and 

feed thermal condition q (u2). The undesired disturbance will be introduced by adding some changes 

to the feed composition zf (D) as shown in Figure 6.1.  

 

Figure 6.1 Schematic of the HIDiC 

6.2.2 Modelling the considered distillation column  

First of all, and prior to implementing and applying the multi-loop PI controller on the 

HIDiC, its transfer function model should be obtained first in order to tune the PI controller 

efficiently. The form of the transfer function model is given in Equation (6.15). 

[
𝑌1(𝑠)
𝑌2(𝑠)

] =  [
𝐺11 𝐺12
𝐺21 𝐺22

] [
𝑢1(𝑠)
𝑢2(𝑠)

]+  [
𝑑1
𝑑2
] [𝑍(𝑠)]                                                                                           (6.15) 
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Where the process model is represented by the transfer function Gp and the disturbance model is 

represented by Gd: 

Gp = [
𝐺11 𝐺12
𝐺21 𝐺22

] , and Gd = [
𝑑1
𝑑2
] 

According to equation 6.15, in order to obtain the transfer function of G11 and G21, a step 

change was applied to the rectifying pressure Pr and feed thermal q, which correspondingly 

changes both Y1 and Y2. Both top and bottom composition models were obtained using these step 

test data. 

Since the mechanistic model of a HIDiC is quite complicated, the process reaction curve 

method will be used to obtain the transfer function. Prior to using the process reaction curve to 

produce the transfer function Gp, two step changes have been made in both manipulated variables 

Pr and q individually and the corresponding changes in both Y1 and Y2 were recorded in Figures 

6.2 and 6.3. Product compositions are measured and it is assumed that there is a 10 min time delay 

in the composition analyser. 
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Figure 6.2: Process modelling with rectifying pressure step change 
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Figure 6.3: Process modelling with feed thermal step change 

The identified process model is: 

𝐺𝑝 = [
−

0.84  

34.1𝑠+1

152 𝑒−9.75𝑠 

109.2𝑠+1
0.8325 

18.7𝑠+1

4.98 

20.3𝑠+1

] 𝑒−10𝑠                                                                                        (6.16)  

It can be seen from the identified process model Gp that there is a direct relationship between 

both rectifying pressure u1 and feed thermal u2 with the bottom composition and product 

compositions respectively while there is a reverse relationship between the rectifying pressure u1 

and the top composition.  
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In order to obtain the transfer functions of Gd, a step change was applied to the feed composition 

as shown in Figure 6.4.   

 

 

Figure 6.4: Disturbance modelling with feed composition step changes 

Furthermore, the identified disturbance model is: 

𝐺𝑑 = [

197.2 𝑒−3.4 𝑠

47.5𝑠+1
2.499

23.7𝑠+1

] 𝑒−10𝑠                                                                                                         (6.17) 
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6.3 Closed loop control of the case study 

6.3.1 Tuning the PI controller parameters 

In the transfer function model G11 will be used to tune the first controller and GC1 and G22 

will be used to tune the second controller GC2. Figures 6.5 and 6.6 show Bode plots for G11 and 

G22 respectively.  

 

Figure 6.5: Bode plot of the top transfer function 
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Figure 6.6: Bode plot of the bottom transfer function 

From these Bode plots, both GM and wG were obtained and the corresponding controller 

parameters are given in Table 6.2. 

Table 6.2: ZN tuning settings for the HIDiC 

Loop Controller GM wG KC 𝝉𝑰 

Y1 Gc1 13.4842 0.3318 6.1292 15.7787 

Y2 Gc2 1.4082 0.3426 0.6401 15.2814 

 

As the HIDiC is a 2×2 MIMO dynamic system that should have a BLT of 4, the plot of Lcm 

with F=4.9 is shown in Figure 6.7. It can be seen that the BLT is approximately 4 when the 

detuning factor F is 4.9. 
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Figure 6.7: Closed-loop log modulus for HIDiC 

In addition, the gain parameters introduced from ZN tuning approach in Table 6.2 are further 

tuned using the detuned factor F, and summarised in Table 6.3. 

Table 6.3: BLT tuning setting for HIDiC 

Loop Controller Kc 𝝉𝑰 

Y1 Gc1 (Pr) 1.2509 77.3247 

Y2 Gc2 (q) 0.1304 74.8872 

 

6.3.2 Implementing the components of the ADRC scheme 

Prior to applying the ADRC scheme on the mechanistic model of HIDiC, each component 

of ADRC will be designed and tuned based on the equations introduced in Chapter 2. Table 6.4 

presents the tuned suitable value of the components of the ADRC scheme: 
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Table 6.4: Selected values for the ADRC approach. 

ADRC tuning 

parameters 

Selected values 

Y1 Y2 

r 10 10 

h 0.004 0.004 

b 0. 292999 27.74 

k 0.04 0.04 

𝛼 0.4 0.09 

𝛿 0.07 0.045 

kp 2.45 0.045 

𝑓𝑐  0.1999589 0.039999 

 

 

6.4 Investigation of the performance of both control schemes 

Set-point tracking, model uncertainty, control signal response, and disturbance rejection are 

the most important behavioural characteristics of any multivariable control system. These factors 

will be analysed and discussed in order to investigate the efficiency of both controllers.  

A. Set-point tracking performance  

The overall performance of both control schemes will be investigated and analysed based on 

their performance under the impact of set-point tracking. A good controller should produce desired 

performance without any undesired overshoot and large settling time.  

The performance of both control schemes was investigated by applying a series of set-point 

changes. The control performance was assessed based on SSE values of the control errors. The 

set-point tracking performance of Y1 and Y2 using ADRC and PI controllers are presented in 
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Figures 6.8 and 6.10 with their corresponding control actions presented in Figures 6.9 and 6.11 

respectively. 
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Figure 6.8: Performance of PI and ADRC schemes under the set -point tracking test for Y1 

 

Figure 6.9: Control action of PI and ADRC schemes under the set-point tracking test for Y1 
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Figure 6.10: Performance of PI and ADRC schemes under the set-point tracking test for Y2 

 

Figure 6.11: Control action of PI and ADRC schemes under the set-point tracking test for Y2 
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Several points can be clearly observed from the above simulation results:  

Set-point tracking capability 

In terms of set-point tracking and by referring to Figures 6.8 and 6.10, both the ADRC and 

PI schemes show an efficient and successful control performance under a sudden set-point changes 

but the ADRC gives better control performance than the PI. In the ADRC scheme, the controlled 

process outputs follow their set-points tightly without producing any signs of overshoot or 

sluggishness in both product compositions. Furthermore, it produces a smooth response, small 

maximum deviation and short settling time. This amazing performance of the ADRC scheme is 

due to the structure of the ADRC scheme. The TPG produces a transient profile that smoothens 

the set-point signal and makes it follow the desired set-point gradually and successfully, while the 

ESO component is utilised at the feedback loop to continuously monitor the internal states that are 

represented by the product compositions in order to update the N-LWS and compensate for the 

error rapidly and efficiently. Based on accurate estimation from the ESO component, the product 

compositions of the HIDiC track the desired set-point accurately. Figures 6.9 and 6.11 indicate 

that the ADRC control signal gives smooth control performance due to the structure of ADRC, 

which has an internal low-pass filter. 

The suitable rates for both manipulated variables—rectifying pressure Pr and feed thermal 

q—should be within their operating point 30–40% specified in Table 6.1. In this test, ADRC 

control signals are operating within the specified operating range but the PI control signals are 

operating beyond the specified range.  

 

Strong loop interactions  

It can be seen that the interaction between both individual loops is very strong but the ADRC 

scheme reduces its impact. Despite the strength of the interaction in the HIDiC, the controlled 

process outputs follow strictly and successfully the desired set-points with small signs of overshoot 

when the set-point of any loop changes, especially at the bottom composition where there are signs 

of variation during set-point changes of the top composition. The ADRC scheme shows its 

superiority to recover and tackle this situation successfully. The efficient performance of the 

ADRC scheme is due to the integral performance of its components where the interaction between 
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both loops is considered an external disturbance and can be estimated and compensated for by the 

ADRC algorithm. 

The performance of the conventional PI controller under the impact of loop interactions also 

efficient but not as the ADRC performance. Moreover, the speed of the PI controller in recovering 

the loop interaction impact is slower than the ADRC scheme and takes longer to settle down to a 

steady state, causing a large overshoot at the same time. The control signal of the PI controller is 

impractical, unlike the ADRC control signal.  

Table 6.5 gives the SSE values of both control schemes for set-point tracking. It can be seen 

that the SSE values associated with the PI controller are considerably greater than the SSE values 

associated with ADRC.  

Table 6.5: SSE values associated to both control schemes under the test of set-point tracking 

Control Loops SSE (PI) SSE (ADRC) 

Y1 
12.6581 1.1178 

Y2 
14.8429 4.8943 

 

B. External disturbance rejection capability  

Getting the desired product purity in a HIDiC is always affected by several factors such as 

the external disturbance introduced by feed composition Z. This type of disturbance adds another 

challenge to the controller. According to Table 6.1, the normal value of the feed composition is 

50%. In order to illustrate the disturbance rejection capability of a closed loop system, some external 

disturbances were generated and introduced by adding series step changes in the feed composition.  

 

External disturbance conferred by changes in feed composition from the feed stream 

According to Table 6.1, the normal operating conditions of the feed composition is 50%. 

External disturbance can be generated by changing the feed composition whilst maintaining 
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constant normal operating set-point values of Y1 and Y2. Figure 6.12 shows the series step changes 

that were introduced to the feed composition. 

 

 

Figure 6.12: Changes in feed composition introduced to the HIDiC system 

The disturbance rejection performance of Y1 and Y2 using ADRC and PI controllers are 

presented in Figures 6.13 and 6.15 with their corresponding control actions at Figures 6.14 and 

6.16 respectively. 
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Figure 6.13: Performance of PI and ADRC schemes under the external disturbance rejection test 

for Y1 

 

Figure 6.14:  Control action of PI and ADRC schemes under the external disturbance rejection 

test for Y1 



154 

 

 

Figure 6.15: Performance of PI and ADRC schemes under the external disturbance rejection test 

for Y2 

 

Figure 6.16: Control action of PI and ADRC schemes under the external disturbance rejection 

test for Y2 
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Several points can be clearly seen from the above simulation results: 

Referring to Figures 6.13 and 6.15, the ADRC scheme produces better performance than the 

PI control under the feed composition disturbance Z. Furthermore, the speed of the PI controller 

in compensating for the disturbance is slower than the ADRC scheme. In the ADRC scheme, the 

controlled product composition follows their set-points with small signs of variations especially at 

the bottom composition. The ADRC scheme shows its superiority in recovering the controlled 

process outputs to their original steady state rapidly. This good performance of the ADRC scheme 

is due to efficient integration of its components where the ESO component estimates external 

disturbance. Subsequently, this estimated output is compared with the output of TPG in order to 

produce the control signal by N-LWS that reduces the impact of external disturbance in order to 

eliminate its impact before it enters the plant system. Moreover, and according to Figures 6.14 and 

6.16, the ADRC control signal is smooth and without any sign of oscillation and overshoot due to 

the presence of an internal low-pass filter that removes signals with a frequency higher than the 

cut-off frequency fc specified in Table 6.4 for both Y1 and Y2. The control signal of the PI controller 

however is non-smooth and not desirable in practice due to large oscillation and variation at both 

product compositions.  

Table 6.6 gives the SSE values of both control schemes under the impact of external 

disturbance. The SSE values of the PI controller are considerably greater than those of the ADRC. 

The large value of SSE associated with the PI controller shows the efficiency of the ADRC scheme 

in dealing with external disturbances compared to the conventional PI controller. 

Table 6.6: SSE values associated with external disturbance rejection capability 

Control Loops SSE (PI) SSE (ADRC) 

Y1 

33.5723 1.1695 

Y2 
35.0912 18.315 

.9057  

Controlling the product composition of the HIDiC is a significant challenge due to undesired 

delay associated with product composition measurements. Delay is introduced by current 

measurement devices such as gas analysers. As a result, the delayed online composition 
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measurements used in the feedback control loop of the ideal HIDiC will impact the overall 

performance of the ADRC scheme significantly.  

 

Figure 6.17: Control performance under the influence of composition analyser 

As in Chapter 5, this issue can be solved by using inferential control, which will produce an 

online estimation of the product compositions. 

The application of soft sensors for estimating the unmeasured primary variables is of 

particular interest in the processing industry, where many secondary variables are measured 

quickly and continuously and can be used as input signals for an inferential estimator. Moreover, 

since inferential estimation is being implemented by a computer, values can be estimated quickly 

compared to the hardware sensors with measurement delay (Willis et al. 1992). In HIDiC, a single 

tray temperature is not efficient enough to infer the composition of one product (Mejdell and 

Skogestad 1991; Baratti et al. 1995; Yeh et al. 2003). In this chapter, the tray temperatures of 

HIDiC will be used as secondary variables in order to estimate product compositions. The 

estimated compositions will be used directly in the ADRC scheme similarly to that shown in Figure 

5.2. 
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6.5 Overview of inferential ADRC for HIDiC 

The designed inferential ADRC scheme for a HIDiC consists of three main parts: 

i. Inferential estimators: Due to stringent environmental laws and a highly competitive 

industrial market, strict quality control of distillation column products is essential. As a result, 

many variables should be effectively measured online so that the key process parameters can be 

successfully monitored and controlled through a feedback mechanism. In order to achieve this, 

inferential estimators, sometimes called soft sensors, are introduced. Inferential estimators are 

developed by utilising the relationship between the difficult-to-measure primary variables and the 

easy-to-measure secondary variables. The secondary variables are used to infer the values of the 

primary variables at a continuous frequent sampling rate. The inferential estimator is designed in 

an adaptive framework with the parameters of the primary model and updated whenever the 

secondary variable value becomes available. The soft sensors designed in this experiment use tray 

temperatures as secondary measurements to estimate the product composition (Bahar et al. 2006). 

However, there are various advantages of using inferential control (Deshpande and Deshpande 

2012): 

• Due to the large measurement delay associated with composition analysers, inferential 

control of product composition is a suitable approach as it depends on measurements of secondary 

variables that have no or relatively low dead time.  

• In case of sensor failure for a particular plant, the performance of the controller will 

deteriorate and finally may affect the productivity and safety of a plant. In this case the estimated 

signal can be used for retaining the controller performance (Xie et al. 2010).  

• Due to the huge amount of maintenance cost associated with online analysers, inferential 

estimators that measure the secondary variables typically eliminate the maintenance costs and are 

easier to implement. Furthermore, they keep the control loops working properly without any 

unexpected off-time.  

• In many cases, online analysers for measuring primary variables are not accessible at all, 

making the inferential control technique the only suitable option.  

Currently, there are many soft sensor techniques such as artificial neural networks and the 

Kalman filter (Zhang and Agustriyanto 2001).  
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ii. ADRC Controller: the ADRC scheme here receives the inferential estimator via 

ESO in order to estimate the internal and external undesired disturbance. Then, the N-LWS will 

compare the output estimation signals of ESO with the TPG output signal in order to produce the 

control signal u to compute the manipulated variables. In this plant, the top product purity is 

controlled by manipulating the rectifying pressure, while the bottom product purity is controlled 

by manipulating the feed thermal rate. The complete list of manipulated variables and control 

variables is shown in Figure 6.18. 

 

Figure 6.18: MIMO control of HIDiC 

iii. Process: the distillation column used in this study is a HIDiC for separating a 

benzene and toluene mixture. A mechanistic nonlinear tray-by-tray dynamic model has been 

developed using mass and energy balances (Bisgaard et al. 2013). 

 

6.6 Software sensors based on PCR models  

Data for building soft sensor models are generated from simulations using the mechanistic 

model by adding some changes to the manipulated variables in open-loop. The following 

disturbances are also applied to the simulated column: feed composition increased by 15% at 200 

and 2100 minutes, Simulated measure noises with normal distribution are added to the product 

compositions. The mean and standard deviation of the noise are 0 and 0.1% respectively.  
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Figure 6.19: Product composition of HIDiC 

The 54 tray temperatures generated from the dynamic simulation of the HIDiC were used to 

estimate the product compositions. Random measurement noises of the distribution N(0°𝐶, 0.1°𝐶) 

were added to the tray temperature measurements in order to represent the practical situations 

where measurement noises always exist. Data are scaled to unit variance and zero mean prior to 

the model building. The data set (2700 samples) is divided into two sets: 

• The training data set is the set of samples used to build and fit the model parameters. The 

training data set used in this study contains samples 1–1400.  

• The testing data set is the set of samples used as part of the model building process to 

prevent any over-fitting. It is also used to identify the number of principal components used in the 

PCR model. The testing data set used in this study contains samples 1401–2700.  

According to Figure 6.20, the tray temperatures of HIDiC exhibit strong correlation, making 

multiple linear regression inappropriate. As a result, PCR and PLS will be used in order to 

overcome the issue of correlation among the predictor variables (Kresta et al. 1991; Min et al. 

1994). These methods address the collinearity issue by projecting the original model input 

variables into a low dimensions space forming orthogonal LVs (Zhang and Agustriyanto 2001; 
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Zhang (2006). PCR was originally introduced by analytical chemists to deal with the issues 

associated with multivariable calibration applications (Geladi and Kowalski 1986). It generally 

results in a well-conditioned model with good estimation performance. Implementing the PCR 

model in a HIDiC will calculate the linear relation between the primary and both manipulated and 

secondary variables over a wide range of operating conditions (Budman et al. 1992).  

 

Figure 6.20: Tray temperatures of the HIDiC 

 

6.6.1 Static inferential model  

Again, the static inferential model of the HIDiC will be developed using Equation (5.2). The 

secondary variables tray temperatures of the HIDiC from trays 1–54 is used as an input signal of 

soft sensors in order to be used to estimate the primary variables. In this section, a PCR model was 

developed by selecting the suitable number of PCs based on the minimum SSE on the testing data 

set as shown in Figure 6.21. 
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Figure 6.21: SSE of static PCR models 

It can be seen from Figure 6.21 that the PCR model with 8 PCs gives the best performance 

for the top composition on the testing data, and 8 PCs produces the best performance for the bottom 

compositions on the testing data. Therefore, 8 PCs are used in both the top and bottom composition 

models. The developed PCR models for the top and bottom product compositions in terms of PCs 

are as follows: 

yD = 0.0998 PC1 − 0.1790 PC2 + 0.6588 PC3 + 0.5940 PC4 + 1.2163 PC5 − 1.3716 PC6 − 

0.0045 PC7 + 1.5119 PC8                                                                                                            (6.2) 

yB = −0.0095 PC1 + 0.4966 PC2 − 0.4402 PC3 +0.2198 PC4 − 0.5411 PC5 − 1.1518 PC6 + 

0.6654 PC7 + 1.7234 PC8                                                                                                          (6.3) 

 

6.6.2 Dynamic inferential model 

The relationship between the easy-to-measure process variables and the difficult-to-measure 

product quality variables can be dynamic. In such cases, dynamic soft sensors would be more 
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appropriate. In order to enhance the estimation accuracy of the inferential estimator, seven 

dynamic models have been developed. 

Data division and scaling are kept the same as for building static PCR models. The 

appropriate dynamic model can be recognised by identifying the lowest SSE value on the testing 

data. Eight inferential feedback control schemes with seven different soft sensors (static and seven 

dynamic inferential PCR models) were developed and implemented. Table 6.7 presents the SSE 

values of different inferential models. 

 

Table 6.7: Number of PCs with corresponding SSE on the testing data of different dynamic PCR 

models. 

Order of dynamic model  Product 

compositions  

No of PC SSE 

Static inferential model Top Comp 8 21.1013 

Bot comp  8 13.2801 

1st order dynamic PCR model Top Comp 10 17.9134 

Bot comp  27 11.1365 

2nd order dynamic PCR model Top Comp 22 16.6029 

Bot comp  25 10.3346 

3rd order dynamic PCR model Top Comp 26 15.7191 

Bot comp  26 9.7464 

4th order dynamic PCR model Top Comp 31 14.6439 

Bot comp  13 9.1311 

5th order dynamic PCR model Top Comp 37 13.7126 

Bot comp  25 8.5876 

6th order dynamic PCR model Top Comp 17 12.2620 
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Bot comp  21 7.5707 

7th order dynamic PCR model Top Comp 18 12.9932 

Bot comp  18 8.0464 

 

According to Table 6.7, the estimation accuracy of the dynamic model has been significantly 

enhanced compared to the static inferential PCR model, especially in the 6th order models. In 

addition, the 6th dynamic model is selected and integrated with the ADRC controller as it gives 

better performance than the rest. Figures 6.22 and 6.23 and Figures 6.24 and 6.25 present, 

respectively, predictions from the static inferential PCR model and the 6th order dynamic 

inferential model. In these figures, the blue line represents the actual product composition response 

while the red solid line represents the corresponding estimation response.  
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Figure 6.22: Model estimation of static PCR model (training data) 

 

Figure 6.23: Model estimation of static PCR model (testing data) 
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Figure 6.24: Model estimation of 6th order dynamic PCR model (training data) 

 

Figure 6.25: Model estimation of 6th order dynamic PCR model (testing data) 
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 Figures 6.26 and 6.27 present the estimation errors for both the static and 6th dynamic PCR 

model. It can be noticed from this figure and as expected, the 6th order dynamic PCR model shows 

better estimation performance than the static model.  

 

Figure 6.26: Model estimation errors (training data) 
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Figure 6.27: Model estimation errors (testing data) 

 

6.6.3 Inferential control performance  

Since the dynamic inferential models give better performance than the static inferential 

models, especially the 6th dynamic inferential ADRC schemes, the 6th order dynamic inferential 

model will be combined with the ADRC scheme in order to introduce the inferential ADRC 

scheme.  

Figures 6.28 and 6.29 respectively show the responses of both static and dynamic inferential 

ADRC schemes over a wide range of feed composition disturbance and set-point changes. It can 

be seen from both figures that the set-point signal was smoothed by the ADRC scheme in order to 

make the controlled variables follow the smoothed set-point signal gradually without any 

overshoot. Furthermore, the dynamic inferential ADRC gives better performance than the static 

inferential scheme despite large offset errors existing at the bottom composition. The existence of 

offset error in both the static and dynamic inferential ADRC schemes is due to bias in the soft 

sensor that increases when operating conditions change.   
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Figure 6.28: Responses of actual and estimated product composition of the static inferential 

scheme (without the mean updating technique) 

 

Figure 6.29: Responses of actual and estimated product composition of 6th dynamic inferential 

scheme (without the mean updating technique) 



169 

 

In order to improve the estimation accuracy and remove the existence of control offsets due 

to estimation bias, the mean updating strategy introduced by Zhang (2006) is implemented. The 

main principle of the mean updating technique is that when a new steady state is reached, the new 

steady values of the process variables are used as the new mean values of these variables. Hence, 

the estimation accuracy of the estimated signal is improved.  

Figures 6.30 and 6.31 show the control performance of inferential ADRC scheme with mean 

updating strategy. It can be seen from both figures that the control offsets have been eliminated by 

using the mean updating technique. 

 

Figure 6.30: Responses of actual and estimated product compositions of static inferential scheme 

(with the mean updating technique) 
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Figure 6.31: Responses of actual and estimated product composition of 6th dynamic inferential 

scheme (with the mean updating technique) 

Table 6.8: SSE of static and dynamic inferential ADRC schemes 

Control 

schemes 

Product composition Top comp Bot comp 

Static 

inferential 

ADRC  

Without mean updating 10.2497 21.2276 

With mean updating 2.9371 × 10−5 1.0010 ×  10−5 

6th  dynamic 

inferential 

ADRC  

Without mean updating 0.5809 1.4160 

With mean updating 1.0396 ×  10−7 1.1987  ×  10−7 

 It can be seen from Table 6.8 that the mean updating strategy reduces the SSE value. Table 

6.9 also demonstrates the efficiency of dynamic inferential ADRC compared to the static one with 

and without the existence of the mean updating technique.  
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6.7 Inferential ADRC scheme based on PLS models 

6.7.1 Static PLS model 

The PLS method can also be used to deal with collinear model input variables. In building 

static PLS soft sensors, data partition and data scaling are the same as in building static PCR 

models. In this research, PLS models are developed by selecting the suitable number of LVs based 

on the minimum SSE on the testing data set as shown in Figure 6.32. 

 

Figure 6.32: SSE of static PLS prediction of HIDiC 

The PLS model with the lowest SSE on the testing data set is considered to have the most 

suitable number of LVs. According to this table, the PLS model with six LVs gives the best 

performance for both top and bottom compositions on the testing data. The developed PLS models 

for the top and bottom product compositions in terms of the latent variables are as follows: 

yD =0.0329 LV1 + 0.1783 LV2 − 0.1848 LV3 + 0.0837 LV4 + 0.0572 LV5 + 0.1869 LV6(6.4) 

yB = 0.0002 LV1 + 0.0615 LV2 − 0.0530 LV3 + 0.0228 LV4 + 0.0234 LV5 + 0.1039 LV6(6.5) 
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Therefore, six latent variables were used to build both top and bottom composition models.  

 Figures 6.33 and 6.34 shows the estimations of the static PLS model. It can be seen from 

this figure that the model estimations of static PLS are very accurate where the estimation signal 

follows the actual compositions precisely.  

 

Figure 6.33: Model estimation of static PLS model (training data) 
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Figure 6.34: Model estimation of static PLS model (testing data) 

 

6.7.2 Dynamic PLS models 

In order to further improve the estimation of the static PLS model, dynamic PLS models are 

developed. In this research, dynamic PLS models with orders ranging from 1–5 were built.  

Data partition and data scaling are the same as in developing static PLS models. Table 6.9 

presents the number of latent variables and the corresponding SSE values on the testing data of 

nine dynamic PLS models.  

Table 6.9:  SSE of different dynamic PLS models on the testing data 

Order of dynamic model  Product 

compositions  

No of LV SSE 

Static PLS model  Top Comp 6 21.5957 

Bot comp  6 13.1389 
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1st order dynamic PLS model Top Comp 7 20.5056 

Bot comp  8 12.9832 

2nd order dynamic PLS model Top Comp 15 18.8667 

Bot comp  18 11.3227 

3rd order dynamic PLS model Top Comp 19 17.5135 

Bot comp  21 10.6982 

4th order dynamic PLS model Top Comp 16 16.4601 

Bot comp  23 10.0834 

5th order dynamic PLS model Top Comp 22 15.3769 

Bot comp  21 9.4759 

 

It can be seen from this table that the estimation accuracy of the dynamic PLS models have 

been significantly enhanced compared to the static PLS model, especially at the 5th order. In 

addition, the 5th order dynamic PLS model was selected since it has the lowest SSE value. This 

dynamic PLS model was integrated with the ADRC scheme to control the product compositions 

using tray temperature measurements. The estimations from the 5th order dynamic PLS model are 

shown in Figures 6.35 and 6.36. Again, in this figure the red solid lines represent the actual 

measured compositions while the blue solid lines represent the corresponding model estimations. 
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Figure 6.35: Model estimation of dynamic PLS model (training data) 

 

Figure 6.36: Model estimation of dynamic PLS model (testing data) 
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Figures 6.37 and 6.38 present the estimation errors for both the static and 5th order dynamic 

PLS models. It can be noticed from this figure and as expected, the 5th order dynamic PLS model 

shows better estimation performance than the static model.  

 

Figure 6.37: Model prediction error (training data) 
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Figure 6.38: Model prediction error (testing data) 

 

6.7.3 Inferential control performance  

Figure 6.39 shows the control performance of the inferential ADRC with the static PLS 

model across a wide range of set-point changes. It can be seen from this figure that large control 

offsets exist at both product compositions due to the estimation errors of the static PLS model, 

which become worse when operating conditions change, such as during a set-point change. Figure 

6.40 shows the control performance of the inferential ADRC with the 5th order dynamic PLS model 

for the same set-point changes and feed composition disturbance. It can be seen from this figure 

that the control performance improved under the dynamic PLS model with small control offsets at 

both product compositions.  
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Figure 6.39: Responses of actual and estimated product composition of the static inferential 

scheme (without the mean updating technique) 

 

Figure 6.40: Responses of actual and estimated product composition of the 5th dynamic 

inferential scheme (without the mean updating technique) 
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 The existence of undesired control offset in both the static and dynamic inferential ADRC 

schemes will be again reduced and/or removed by applying the mean updating technique 

introduced by Zhang (2006) in order to enhance overall product composition performance. Figures 

6.41 and 6.42 show the control performance of the inferential ADRC scheme with the mean 

updating technique. It can be seen from these figures that the mean updating technique is an 

effective means of eliminating steady state control offsets. Moreover, the SSE of control errors 

have been reduced considerably after implementing this method as shown in Table 6.10.  

 

Figure 6.41: Responses of actual and estimated product composition of the static inferential 

scheme (with the mean updating technique) 
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Figure 6.42: Responses of actual and estimated product composition of the 5th inferential 

scheme (with the mean updating technique): 

Table 6.10: SSE of static and dynamic inferential PLS schemes 

Control schemes Top Comp. Bottom Comp. 

Inferential ADRC 

with static PLS model 

Without mean updating 8.33 16.690 

With mean updating 7.6392 × 10−4 8.9755 × 10−5 

Inferential ADRC 

with 5th order dynamic 

PLS model 

Without mean updating 2.31 4.73 

With mean updating 1.4154 × 10−7 1.5614 ×  10−7 

 

It can be seen from the above figures that the control offsets and steady state estimation 

biases were completely eliminated by using the mean updating technique. Furthermore, it can be 

observed from Table 6.11 that the dynamic estimation model improved over the static model 

significantly with a large reduction in SSE of control errors. Moreover, the inferential ADRC 
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scheme based on the PLS model gives as good overall performance as the inferential ADRC 

scheme based on the PCR model under correlated data.  

 

6.8 Conclusions  

The ADRC and conventional multi-loop PI control schemes have been applied here in the 

HIDiC in order to investigate their performance for set-point tracking and disturbance rejection. 

Prior to the performance comparison, the 2×2 transfer function matrix was obtained from the 

mechanistic model based simulation of a HIDiC. The transfer function introduced here was used 

for identifying the parameters of the PI controller using the BLT approach. Simulation results 

clearly indicate that the ADRC scheme exhibits a much better dynamic control performance than 

the traditional PI controller in terms of set-point tracking and disturbance rejection. Moreover, the 

ADRC control signal in both tests is smooth, non-oscillatory and non-aggressive compared to the 

control signal of the PI control.  

The inferential ADRC control scheme was then proposed for the HIDiC process in order to 

overcome the problems of large time delay associated with composition analysers. Due to 

existence of strong correlation in temperature trays of the HIDiC, the product compositions are 

estimated from multiple tray temperatures using PCR and PLS techniques. Both static and dynamic 

soft sensors were developed. The soft sensor outputs were operated as an inferential estimator that 

then feeds back its estimation to the ADRC scheme as a feedback signal to provide online 

measurements of the product compositions. Excellent control performance was obtained with both 

types of soft sensors, but the dynamic PCR and PLS soft sensor gave better control performance 

than the static one. Moreover, the mean updating technique was used to eliminate steady state 

estimation bias and the resulting control offsets. 
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 Conclusions and recommendations for future work 
 

7.1. Conclusions 

This thesis has examined the advantages of applying the ADRC scheme to a common 

chemical process: distillation columns. The thesis starts by providing some recent statistics in 

terms of energy consumption in the chemical industry worldwide. It is shown that distillation 

columns consume approximately 45% of the energy consumed by the chemical industry, which 

leads to an increase in production costs. In order to reduce energy consumption in distillation 

columns, some options have been introduced such as changing the operating conditions, changing 

the design of the column, preheating the feed rate and implementing some optimal control 

solutions. In addition, this has motivated control researchers to develop various control schemes 

for distillation columns to reduce energy consumption and associated costs. It has been identified 

through the existing literature that the PID control scheme is the most common control scheme 

applied to distillation columns. Moreover, it has been argued by some researchers that the 

simplicity of the PID controller leads to some major limitations such as sudden set-point jumps, 

noise degeneration in the derivative control ‘D’, oversimplification in the form of linear weighted 

sum control law, and complications due to the integral term ‘I’. It was also found that some existing 

control theories are not practical because they require an accurate mathematical model of the 

controlled plant, which may not be easy to obtain in the real world, especially for complex 

industrial processes. As a result, it was expected that the ADRC scheme could overcome these 

limitations due to its independence from the mathematical model of the controlled plant. Therefore, 

the core aim and contribution of this research was to design and develop an inferential ADRC 

technique to control conventional distillation columns and HIDiCs. Chapter 2 presents 

comprehensive background information about the characteristics, design and advantages of the 

ADRC components and the inferential control.  

Since the Wood–Berry distillation column model has been considered as a classical process 

control example that has been widely used in many previous research papers concerned with 

MIMO process control, it has been adopted as the first case study used in this research. Control of 

the Wood–Berry distillation column using ADRC is presented in Chapter 3, where all its basic 

features are explained. First, the BLT tuning method was applied to MIMO transfer function of 
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the Wood–Berry model in order to specify the parameters of the multi-loop PI controller. Then, PI 

and ADRC schemes were applied to the MIMO system. Both control schemes were analysed and 

investigated through several tests such as set-point tracking, robustness capability and disturbance 

rejection. The controlled variables specified are the top and bottom product compositions, while 

the manipulated variables are reboiler boil up rate and reflux flow rate. The simulation results 

clearly indicate that the ADRC scheme provides better performance than the PI controller in terms 

of set-point tracking, disturbance rejection, robustness, and coping with loop interactions. 

A binary distillation column for separating methanol and water simulated using rigorous 

mechanistic model was selected and used as a second case study. The mechanistic model of this 

column is presented in Chapter 4. The reflux flow-rate (L) and vapour flow rate (v) are used as 

manipulated variables to control the product composition of binary distillation columns. 

Furthermore, the feed flow-rate (F) and feed composition (xf) are considered external disturbances 

to which the binary column is subjected. Prior to applying the PI controller, a process reaction 

curve technique is used to generate the 2×2 MIMO transfer function using simulated step test data 

for the purpose of PI tuning. Simulation results show that the ADRC scheme has the ability to 

provide fast and smooth dynamic performance under various amounts of disturbance, where it has 

the capability to force the output signal to follow the desired set-point signal rapidly and avoid any 

unexpected undesired overshoot. The SSE values of the ADRC scheme are much lower than those 

of the PI controller, demonstrating the efficiency of ADRC compared to the conventional PI 

controller.  

Like any control scheme, the ADRC technique needs measurements of the controlled 

variables without much delay. Unfortunately, obtaining delay-free measurements for the product 

compositions is not possible via current measurement tools, such as gas analysers. These tools 

have some drawbacks such as high maintenance costs and a large measurement delay of around 

5–20 min as explained in Chapter 5. This chapter proposes integrating inferential control with the 

ADRC scheme to control the binary distillation column. In this scheme, the top composition (Y1) 

and bottom composition (Y2) were considered the primary controlled variables whereas the 

secondary measurements are the tray temperatures (x). Due to the existence of correllation among 

the tray temperature measurements, static inferential estimation models were designed and 

implemented via PCR and PLS techniques. Then, the developed inferential estimation models 
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were integrated with the ADRC scheme. The static estimation bias and the resulting static control 

offset due to the variation in process operating conditions were eliminated via the mean updating 

technique introduced by Zhang (2006). In order to futher improve the inferential estimation 

performance, dynamic inferential PCR and PLS models were developed and integrated with the 

ADRC scheme to form the dynamic inferential ADRC scheme. Based on the simulation results, 

this scheme provided a more accurate estimation compared to the static inferential ADRC scheme. 

It can be concluded that the inferential ADRC scheme provides better control performance 

compared to the single tray temperature control and direct composition control using 

measurements from gas analysers. It can be also observed that there is no difference between PCR 

and PLS approaches in terms of estimation accuracy except that the PLS techniques required fewer 

LVs compared to the PCR technique.  

Due to the promising results achieved from applying the ADRC scheme to the simple binary 

distillation column, it was of significant importance to further investigate the efficiency of this 

control scheme in controlling more complex distillation columns such as the HIDiC. The HIDiC 

is a new distillation technology introduced to reduce energy consumption in the distillation 

process. However, it is difficult to control due to strong loop interactions and time delay associated 

with product composition measurements. The mechanistic model of the HIDiC for seperating a 

benzene and toluene mixture was adopted and presented in Chapter 6 where all characteristics and 

assumptions were explained. The rectifiying pressure (Pr) and feed thermal condition (q) are used 

as manipulated variables to control the product compositions of the HIDiC. The feed composition 

(z) is considered an external disturbance to the HIDiC. Before operating and controlling the HIDiC 

by PI controller, the 2×2 MIMO transfer function was identified first for the PI tuning purpose. 

The tuning parameters of the PI controller were then altered using the BLT tuning method. After 

that, PI and ADRC schemes were analysed and specified individually. Simulation results clearly 

show that the ADRC scheme produces much better dynamic control performance than the 

traditional PI controller in terms of set-point tracking, loop interaction and disturbance rejection. 

Moreover, the control signal of the ADRC scheme in both tests is practical, smooth, non-oscillating 

and non-aggressive compared to the control signal of the PI scheme. An inferential ADRC control 

scheme was proposed to overcome the problem of long time delays in composition measurements. 

The 54 tray temperatures (x) of the HIDiC were considered secondary variables to estimate the top 

composition (Y1) and bottom composition (Y2). First, the static inferential model was designed and 
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implemented using both PCR and PLS techniques to overcome the strong correlation among tray 

temperatures., The static inferential ADRC scheme was then implemented with mean updating in 

order to reduce estimation bias. It is believed that the estimation model can be further enhanced 

and improved by implementing the dynamic inferential ADRC scheme. The suitable dynamic 

model was selected based on the lowest SSE. Finally, the dynamic model was combined with the 

ADRC to form the dynamic inferential ADRC scheme. The mean updating technique was used 

again to eliminate the undesired static control offset. Overall, performance of the dynamic 

inferential ADRC scheme is better than the static one.  

          

7.2 Recommendations for future work  

The work presented in this thesis shows the efficiency and success of the ADRC control 

scheme in controlling non-linear distillation columns compared to the PI controller over a wide 

range of operating conditions. Furthermore, it also shows the ability of the inferential ADRC 

scheme in eliminating undesired measurement delays introduced from the current measurement 

tools. In this section, some recommendations on possible guidelines for future work are presented. 

i. Robustness analysis of ADRC on distillation column control 

As mentioned in Chapter 2, the ADRC scheme needs little information about the dynamic plant 

system where the discrepancy between the mathematical model and the dynamic system is 

considered a generalised disturbance that will be estimated by ESO and then successfully 

compensated in the control law. In this research, and due to the time limitation, the model 

uncertainty and its impact on ADRC control performance for the Wood–Berry distillation column 

has been investigated in the time domain. In addition, and as future research, the model uncertainty 

and its effect on ADRC control performance should be investigated in the frequency domain using 

some robustness analysis techniques such as structured singular value analysis (μ-analysis). 

ii. Implementation of the inferential ADRC scheme in the chemical and oil and gas industries 

In this thesis, the inferential ADRC controller shows successful, efficient and promising results. It 

can be further enhanced and applied to other oil and gas industries and similar industrial processes 

in which the controlled or primary variables are inaccessible or cannot be measured directly online 
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and depend on laboratory assays associated with long-time analysis. It can also be applied on non-

linear and time-varying industrial processes that are associated with strong loop interactions, 

external disturbance and continuous set-point changes. 

In my country, Oman, the Oil Refineries and Petroleum Industries Company (ORPIC) for 

example, use both the Crude Distillation Unit (CDU) and Vacuum Distillation Unit (VDU) to distil 

and separate valuable distillates such as oil, naphtha, kerosene, diesel and atmospheric gas oil 

(AGO) from the crude feedstock stream. They use the multi-loop PI control scheme to control 

these distillation columns. They also use gas chemography and lab samples to measure product 

compositions. The average production cost in Oman is approximately 28 $ per barrel. In the future, 

it is essential to implement the inferential ADRC scheme in their processes to improve overall 

control performance and consequently reduce the huge amount of energy consumption and 

associated production costs.    
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Abbreviations  
 

ADRC: Active Disturbance Rejection Control 

ARMAX: Auto Regressive Moving Average with Exogenous Input. 

ARX: Autoregressive with Exogenous Input 

BLT: Biggest Log-Modulus 

CDU: Crude Distillation Unit 

DCSaDE-LS: Diversity Controlled Self Adaptive Differential evolution with Local Search  

EPA: Environmental Protection Agency 

ESO: Extended State Observer 

FIS: Fuzzy Inference System 

FQL: Fuzzy Q-learning Algorithm 

GA: Genetic Algorithm 

GPC: Generalised Predictive Controller 

GUI: Graphical User Interface 

HGA: Hierarchical Genetic Algorithm 

HIDiC: Heat Integrated Distillation Column 

IAE: Integrate Absolute Error 

ICI: Imperial Chemical Industry 
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i-HIDiC: ideal Heat Integrated Distillation Column 

IMC: Internal Model Controller 

ITAE: Integral of Time – Weighted Absolute Error 

LV: Latent Variables 

MIMO: Multi-Input Multi-Output 

MLR: Multiple Linear Regression 

MPC: Model Predictive Control 

MPM: Model Plan Mismatch 

NIR: Near-Infrared  

N-LWS: Non-Linear Weighted Sum 

NN: Neural Networks 

OIE: Overall Integral Error 

OLS: Ordinary Least Square 

ORPIC: Oil Refineries and Petroleum Industries 

PCR: Principal Component Regression. 

PID: Proportional-Integral-Derivative controller 

PLS: Partial Least Square 

PSO: Particle Swarm Optimization 
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RTO: Real Time Optimization 

SCADA: Supervisory Control and Data Acquisition 

SMC: Sliding Mode Control 

SNR: Signal to Noise Rate 

SRV: Secondary Reflux and Vaporization  

SSE: Sum of Squared Errors 

TAC: Total Annual Cost 

TITO: Two-Inputs, Two-Outputs 

TPG: Transient Profile Generator 

VDU: Vacuum Distillation Unit 

ZoH: Zero Order Hold 

 

 

 


